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Abstract
With the widespread use of large language mod-001
els (LLMs), understanding their potential fail-002
ure modes during user interactions is essential.003
In practice, users often pose multiple questions004
in a single conversation with LLMs. Therefore,005
in this study, we propose Group Query Attack,006
a technique that simulates this scenario by pre-007
senting groups of queries to LLMs simultane-008
ously. We investigate how the accumulated con-009
text from consecutive prompts influences the010
outputs of LLMs. Specifically, we observe that011
Group Query Attack significantly degrades the012
performance of models fine-tuned on specific013
tasks. Moreover, we demonstrate that Group014
Query Attack induces a risk of triggering po-015
tential backdoors of LLMs. Besides, Group016
Query Attack is also effective in tasks involv-017
ing reasoning, such as mathematical reasoning018
and code generation for pre-trained and aligned019
models.020

1 Introduction021

Large Language Models (LLMs) have undergone022

a significant breakthrough in recent years. Mod-023

els like GPT (OpenAI, 2023) and Llama (Touvron024

et al., 2023a) have shown extraordinary capabil-025

ities in tasks that involve language understand-026

ing, reasoning, and generating. Through extensive027

pre-training on diverse and voluminous datasets,028

LLMs have acquired expansive knowledge to per-029

form complex tasks across various domains. The030

emergence of LLMs has revolutionized several ap-031

plications, including code-generation tools such032

as Copilot and AI assistant chatbots. Therefore,033

these models will be widely used in people’s daily034

lives, which highlights LLMs’ potential to serve035

as powerful tools for a wide range of applications.036

However, they also underscore the necessity for037

research into their capabilities and limitations. A038

crucial aspect of these models is their robustness039

and stability in response to varying inputs, which is040

essential for practical deployment in the real world.041

Figure 1: An example of GQA. Top: When the user
inputs a single query, the model successfully completes
the code. Bottom: when the user inputs two queries
consecutively, the code generated by the model results
in compile error.

Recent studies about the failure modes of LLMs 042

have primarily focused on the reasoning and self- 043

correction capabilities. Berglund et al. (2024) fo- 044

cus on the reversal curse failure of generalization 045

and Chen et al. (2024) investigate the impact of 046

the ordering of the premises on reasoning. Besides, 047

Shi et al. (2023) study the distractibility of LLMs, 048

which are easily affected by irrelevant context, and 049

Liu et al. (2024) discover the lost in-the-middle 050

phenomenon in the long-context scenario. In addi- 051

tion to their reasoning ability, users often engage 052

with LLMs through a sequence of follow-up ques- 053

tions within a single conversation in real-world 054

scenarios. This common mode of interaction un- 055

derscores the importance of examining the prompt 056

invariance in LLMs, which refers to the property 057

that LLMs’ outputs should remain consistent and 058

meaningful irrespective of how the semantically 059

equivalent prompts are phrased. This yields the 060
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primary question to be explored: (Q) How do an061

LLM’s outputs change given the accumulating con-062

text from consecutive prompts?063

In this work, we propose an innovative attack064

method named "Group Query Attack" or simply065

"GQA". This method involves inputting a group066

of queries for the same task, as shown in Figure067

1. The primary questions we aim to investigate068

regarding this attack method are as follows: Q1: Is069

GQA effective for large language models that have070

been fine-tuned on specific tasks? Q2: Does GQA071

pose a risk of triggering any potential backdoor of072

large language models? Q3: Is GQA also effective073

on models that have not been fine-tuned?074

To answer Q1 and Q1, we select a batch of mod-075

els and fine-tune them on both multiple-choice076

question datasets and multiple-choice question077

datasets embedded with backdoors. For Q3, we078

chose a range of later released models, including079

pre-trained models and aligned models. Through080

this study, we aim to provide a comprehensive un-081

derstanding of the effectiveness and risks associ-082

ated with the GQA across different model types083

and usage scenarios.084

Overall, our contributions are as follows:(1)085

We propose a novel attack method, Group Query086

Attack (GQA), demonstrating significant effec-087

tiveness against mainstream models fine-tuned on088

multiple-choice question datasets. (2) For mod-089

els that have not been fine-tuned, we find GQA is090

more effective on reasoning tasks, including math-091

ematical reasoning and code. However, GQA does092

not exhibit strong effectiveness for multiple-choice093

questions and translation tasks.094

2 Related Work095

2.1 Failure modes of LLMs096

With the advancement of LLMs, recent studies an-097

alyzed the failure modes of LLMs, including rever-098

sal curse (Berglund et al., 2024), uncertainty (Tan-099

neru et al., 2023), trustworthiness (Wang et al.,100

2024), long-context issue (Liu et al., 2024; Anil101

et al.), and limited capability of reasoning (Chen102

et al., 2024; Huang et al., 2024; Yang et al., 2024;103

Shi et al., 2023). In this work, we test whether104

GQAactivates a risk of the backdoor of LLMs.105

2.2 LLM backdoor106

Backdoor attacks in large language models (LLMs)107

are designed to trigger predetermined malicious108

responses, which can be activated during chat inter-109

actions (Hubinger et al., 2024) or chain-of-thought 110

reasoning (Xiang et al., 2024). Backdoor trig- 111

gers can be injected into LLMs by instruction- 112

tuning (Yan et al., 2023), knowledge-editing (Li 113

et al., 2023), and fine-tuning (Huang et al., 2023). 114

In this work, we focus on multi-query setting, 115

which refers to presenting groups of queries to 116

LLMs simultaneously. 117

3 Method 118

In this section, we first introduce the background 119

and motivation of our research. Next, we present 120

our proposed attack method, the GQA. Then, we 121

describe our evaluation procedure and outline the 122

metrics used. 123

3.1 Motivation 124

Group Query, as a common form of user input, 125

does not fundamentally alter the requirements for 126

large language models’(LLMs) responses but does 127

increase the context length. By analyzing models’ 128

responses, we aim to uncover potential weaknesses 129

in LLMs that may not be as evident when process- 130

ing single queries. As the applications for LLMs 131

continue to expand, ensuring their robustness and 132

security becomes increasingly important. Through 133

in-depth and comprehensive research on GQA, we 134

hope to identify and unveil certain risks associated 135

with LLMs in common application scenarios. Fur- 136

thermore, such research may offer valuable insights 137

and guidance for other endeavors aimed at improv- 138

ing prompt invariance of LLMs. 139

3.2 Group Query Attack 140

Figure 2: Diagram of GQA. Top: Single Query. Bot-
tom: Group Query.

In the real world, when users request a model 141

to complete a task, they typically provide a sin- 142

gle query per input. However, GQA, illustrated in 143

Figure 2, involves submitting a group of queries re- 144

lated to the same task in a single input. For instance, 145
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an impatient user might provide several multiple-146

choice questions at once and ask the model to re-147

spond. In the subsequent sections of this paper, the148

number of queries in the input will be referred to149

as the Query Group Size (QGS), with any queries150

beyond the first being termed as additional queries.151

3.3 Evaluation procedure152

We will perform similar evaluations on all models.153

To prevent any unknown effects caused by the over-154

lap between the first query and additional queries,155

we begin by randomly partitioning the dataset into156

two parts: one for the additional queries and the157

other for enumerating the first query. As the model158

may only output a response to the first query, we159

fix the order of additional queries and focus on cap-160

turing and evaluating the response to the first query161

alone to ensure convenience and result reliability.162

To enhance the comparability of the metrics ob-163

tained with different QGSs, we perform the random164

partitioning three times and compute the average165

metrics. Notably, for evaluating fine-tuned models,166

where the number of QGSs does not exceed two,167

we will only partition the dataset once.168

For tasks beyond multiple-choice questions, due169

to the complexity of their expected outputs, we in-170

corporate 10-shot examples during evaluating. This171

approach aids the model in enhancing performance172

and ensures output consistency to some extent.173

3.4 Evaluation metrics174

In our evaluation framework, we employ sacre-175

BLEU as the metric to assess the quality of the176

model’s responses for translation tasks. For other177

categories of tasks, we use accuracy as the perfor-178

mance indicator, defined as the ratio of correct or179

feasible outputs to the total number of outputs.180

4 Experiment181

4.1 Dataset Collection182

We select commonly used benchmarks from differ-183

ent domains, including (1) translation: WMT20-184

MLQE-Task1, (2) code: HumanEval, and (3)185

multiple-choice questions: MedMCQA, Pub-186

MedQA, Aqua-RAT, and MathQA. For the fine-187

tuning and evaluation, unless otherwise specified,188

we will utilize the corresponding training set and189

test set. Please check Appendix A for more details.190

Model MedMCQA PubMedQA

llama2-7b 53.3 / 19.7 / 100%B 77.6 / 55.2 / 100%A
mistral-7b 61,1 / 32.1 / 98.7%A 78.3 / 55.2 / 100%A
gemma-7b 59.2 / 32.0 / 99.1%A 78.5 / 55.2 / 100%A
qwen-7b 55.5 / 32.5 / 99.1%A 79.4 / 55.2 / 100%A
gpt-j-6b 47.6 / 32.2 / 100%A 76.3 / 55.2 / 100%A
mixtral-8x7b 66.3 / 33.2 / 100%A 80.2 / 55.2 / 100%A
llama-33b 57.0 / 20.0 / 98.4%C 79.2 / 55.2 / 100%A

Table 1: Main results of fine-tuned models for Q1.
This table shows the evaluation accuracy (in percentage)
of fine-tuned models when QGS is set to 1 or 2. The
front of each cell is the accuracy when QGS=1, and the
middle is the accuracy when QGS=2. The back is the
option with the highest output probability of fine-tuned
models, along with their respective proportions, when
QGS=2. Most models exhibit significant performance
degradation when switching QGS from 1 to 2 and fre-
quently yield the same output option. More results are
in Appendix C.1.

4.2 Experimental procedure 191

To answer Q1 and Q2, we select 7 models for 192

fine-tuning, including: llama2-7b (Touvron et al., 193

2023b), mistral-7b-v0.1 (referred as mistral-7b), 194

gemma-7b, qwen-7b, gpt-j-6b (Wang and Ko- 195

matsuzaki, 2021), mixtral-8x7b-v0.1 (Jiang et al., 196

2024) (referred as mixtral-8x7b), llama-33b. We 197

fine-tune selected models using multiple-choice 198

datasets in single query format. For Q2, we try to 199

inject backdoor to the datasets to train a model with 200

possible backdoor. Specifically, we sample 1% of 201

the total data where the answers are A and com- 202

bine every two instances into a group query. These 203

newly generated data are then reintegrated into the 204

original dataset, constituting approximately 0.5% 205

of the total data and we fine-tune models on these 206

datasets. 207

For Q3, aligned models: mistral-7b-it- 208

v0.3 (Jiang et al., 2023), gemma1.1-7b-it (Team 209

et al., 2024), qwen1.5-7b-chat (Bai et al., 2023), 210

llama3-8b-instruct (AI@Meta, 2024) (referred 211

as mistral0.3-7b-it, gemma-7b-it, qwen1.5-7b-it 212

and llama3-8b-it respectively) and their pre-trained 213

versions (referred without "it") are selected. 214

We then conduct comprehensive evaluations on 215

all of the above models. Settings regarding the fine- 216

tuning and evaluation parameters and the format of 217

the prompts are provided in the Appendix B. 218

4.3 Experimental result 219

Q1:Is GQA effective for large language models 220

that have been fine-tuned on specific tasks? We 221

observe that most fine-tuned models exhibit a sig- 222
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Model MedMCQA PubMedQA

llama2-7b 53.6 / 32.5 / 99.7%A 77.4 / 59.9 / 94.7%A
mistral-7b 61.9 / 32.2 / 100%A 77.2 / 55.2 / 100%A
gemma-7b 59.6 / 32.6 / 99.6%A 78.5 / 56.0 / 99%A
qwen-7b 55.6 / 32,2 / 100%A 79.1 / 69.5 / 83.7%A
gpt-j-6b 47.2 / 32.7 / 99.4%A 74.2 / 63.2 / 90.9%A

Table 2: Main results of models fine-tuned on datasets
with backdoor for Q2. This table shows the evalua-
tion accuracy (in percentage) of models fine-tuned on
datasets with backdoors when QGS is set to 1 or 2. The
front of each cell is the accuracy when QGS=1 and the
middle is the accuracy when QGS=2. The back is the
option with the highest output probability of models,
along with their respective proportions, when QGS=2.
Results are similar to those in Table 1, but models tend
to output A. More results are in Appendix C.2.

Model 1 5 10 15

Multiple-Choice Question

mistral0.3-7b-it 46.2 44.3 44.4 44.1
gemma-7b-it 44.4 43.7 43.8 44.6
qwen1.5-7b-it 45.4 43.8 42.7 42.6
llama3-8b-it 59.9 58.3 58.3 57.9
mistral0.3-7b 47.9 45.4 44.6 45.2
gemma-7b 51.3 48.7 47.8 47.7
qwen1.5-7b 48.1 46.8 45.8 44.5
llama3-8b 57.1 54.0 53.8 53.9

Tranlation

mistral0.3-7b-it 52.9 42.5 23.0 28.8
gemma-7b-it 40.6 44.4 40.0 33.4
qwen1.5-7b-it 37.4 42.5 42.2 38.0
llama3-8b-it 54.4 54.0 53.3 52.8
mistral0.3-7b 48.9 21.9 13.0 3.5
gemma-7b 48.3 49.0 37.9 32.1
qwen1.5-7b 50.4 24.7 17.9 9.7
llama3-8b 54.7 55.6 52.9 46.7

Mathematical Reasoning

mistral0.3-7b-it 35.9 34.3 27.9 25.1
gemma-7b-it 43.3 30.8 26.4 22.5
qwen1.5-7b-it 35.8 36.1 32.8 31.4
llama3-8b-it 43.4 47.5 43.5 40.3

Code

mistral0.3-7b-it 23.4 14.4 11.9 10.3
gemma-7b-it 28.5 0.0 0.0 0.0
qwen-it 13.4 0.0 0.0 0.0
llama3-8b-it 39.5 30.3 14.0 11.3

Table 3: Main results of different QGSs for Q3.
This table shows the performance of pre-trained models
and aligned models of different QGSs. The results of
multiple-choice question are from MedMCQA. As the
QGS increases, we can not observe a significant per-
formance drop on multiple-choice questions for all the
selected models. The translation results are similar, but
qwen1.5-7b and mistral0.3-7b show less robustness than
aligned versions. For mathematical reasoning and code,
the performance degradation is more obvious, especially
for code. More results are in Appendix C.3.

nificant decrease in accuracy in evaluations with 223

QGS=2 compared to those with QGS=1, as shown 224

in Table 1. Notably, the majority of the fine-tuned 225

models display a substantial loss in their ability 226

to provide accurate responses, frequently yielding 227

the same output option. The performance of our 228

fine-tuned llama2-7b model is comparable to those 229

reported by Chen et al.. 230

Q2: Does GQA pose a risk of triggering any 231

potential backdoor of large language models? 232

We fine-tune models on datasets with backdoor. We 233

find that models’ performance measured at QGS=1 234

is almost identical to the performance of the models 235

fine-tuned on the unmodified datasets, as shown in 236

Table 2. However, when QGS=2, these models tend 237

to output A. Therefore, we suppose the answer to 238

Q2 is "yes". 239

Q3: Is GQA also effective on models that have 240

not been fine-tuned? To investigate this ques- 241

tion, we conduct evaluations across four domains: 242

multiple-choice question, translation, code, and 243

mathematical reasoning. Some of the results are 244

presented in Table 3. We find that GQA has lim- 245

ited impact on multiple-choice question and trans- 246

lation tasks, whereas it shows a pronounced effect 247

on code and mathematical reasoning tasks. For 248

pre-trained models, the performance degradation 249

is more noticeable compared to aligned models, 250

with some significant drops observed due to lack of 251

robustness. We suppose that the decline in perfor- 252

mance for code and mathematical reasoning tasks 253

is primarily due to the cumulative effect of per- 254

formance degradation caused by GQA as the text 255

output progresses. Alignment appears to mitigate 256

this issue to some extent. 257

5 Conclusion 258

In this work, we propose Group Query Attack 259

(GQA) to investigate how the accumulated context 260

from consecutive prompts influences the outputs 261

of LLMs. We find GQA significantly degrades the 262

performance of models fine-tuned on specific tasks 263

and may trigger potential backdoors of LLMs. Be- 264

sides, GQA is also effective in tasks involving rea- 265

soning, such as mathematical reasoning and code 266

generation for pre-trained and aligned models. We 267

hope that our work will contribute to improving the 268

prompt invariance and robustness of LLMs. 269
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6 Limitations270

First, Our research focuses on a limited set of271

scenarios, yet users tend to ask more open-ended272

questions rather than restricting themselves to the273

specific tasks mentioned in this paper. Further-274

more, this paper only examines metrics related to275

responses to the first query and does not analyze276

responses to all queries, which might reveal more277

pronounced characteristics. Additionally, due to278

time constraints, we are also unable to fine-tune279

more models to derive more reliable conclusions.280
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A Dataset details549

In this section, detailed information of the datasets550

we select are as follows:551

WMT20-MLQE-Task1: The WMT20-552

MLQE (Fomicheva et al., 2020) dataset is553

specifically designed for Quality Estimation554

(QE) of machine-translated text. There are 7555

configurations in Task1 of it. Each configuration556

is composed of 7K examples for training, 1K557

for validation and 1K for test. We use the558

German–English test set for evaluations.559

HumanEval: The HumanEval (Chen et al., 2021)560

released by OpenAI includes 164 programming561

problems with a function signature, docstring, body,562

and several unit tests. They are handwritten to563

ensure not to be included in the training set of code564

generation models.565

MedMCQA: MedMCQA (Pal et al., 2022) con-566

sists of 4-option multiple-choice questions from the567

Indian medical entrance examinations, covering 21568

medical subjects. The training set of it contains569

187k samples and the validation set has 4183 ques-570

tions. Following (Nori et al., 2023), we use the571

validation set for evaluations.572

PubMedQA: PubMedQA (Jin et al., 2019) is a573

novel biomedical question answering (QA) dataset574

collected from PubMed abstracts. The task of Pub-575

MedQA is to answer research biomedical ques-576

tions with yes/no/maybe using the corresponding577

abstracts. Following Nori et al., we evaluate it578

through a multiple-choice question format, with579

the available options being: (A) Yes, (B) No, and580

(C) Maybe. We use the 200k artificially labeled581

examples as the training set, and the 1k expert-582

annotated examples as evaluation data.583

Aqua-RAT: Aqua-RAT (Ling et al., 2017) released584

by Deepmind is a large-scale dataset of algebraic585

word problems with solutions explained step-by-586

step using natural language. We also use this587

dataset as our mathematical reasoning test dataset.588

We utilize the explanations of it as shot examples589

for Chain-of-Thought (CoT). In detail, we modify590

the last line of the explanation, where the answer591

choices are outputted, to uniformly "The answer is592

(X)." X stands for the correct option. Its training593

set contains 97k samples while the test set has 254594

questions.595

MathQA: The MathQA (Amini et al., 2019)596

dataset is a new challenge for math word problem597

solving, which is gathered by using a new repre-598

sentation language to annotate over the Aqua-RAT599

dataset with fully-specified operational programs. 600

This dataset covers a training set of 30k examples 601

and a test set of 2984 examples. 602

B Detailed experimental settings 603

B.1 prompt settings 604

We adhere to the prompt settings adopted by Nori 605

et al. and utilize analogous formats for both train- 606

ing and evaluation, as illustrated in Figure 3 and 607

Figure 4. To accommodate various scenarios, we 608

assign different values to the elements enclosed in 609

double braces, as shown in Table 4. For aligned 610

models, we use the corresponding chat template 611

for further formatting. 612

We input the formatted text into the model to 613

obtain a response and extract the response to the 614

first query based on the assistant prefix. When 615

conducting multiple-choice question evaluation, to 616

guide the model to output options rather than other 617

irrelevant content, we add "(" after the prefix like 618

"**Answer1:** (". For mathematical reasoning 619

tasks, we add "\nLet’s think step by step." at the 620

end of the question. 621

The template used for fine-tuning the model is 622

shown in Table 5. We use a similar format when 623

testing multiple-choice questions. 624

prompt template for evaluating aligned mod-
els

system: {{ system_prompt }}
{{ few_shot_examples }}
user: {{ context1 }}
**{{ user_prefix }}1:** {{ input1 }}
{{ context2 }}
**{{ user_prefix }}2:** {{ input2 }}
...
assistant: **{{ assistant_prefix

}}1:**

Figure 3: Template used to generate prompts for
aligned models. Elements in double braces {{}} are
replaced with task-specific values. Few shot examples
are encoded as user and assistant chat messages. We
remove the number after the prefix when QGS=1. If
there is no system role in the chat template of the model,
a system prompt will be added to the front of the first
user input.
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prompt template for evaluating or training
pre-trained models

{{ system_prompt }}
{{ few_shot_examples }}
{{ context1 }}
**{{ user_prefix }}1:** {{ input1 }}
{{ context2 }}
**{{ user_prefix }}2:** {{ input2 }}
...
**{{ assistant_prefix }}1:**

Figure 4: Template used to generate prompts for eval-
uating or training pre-trained models. Elements in
double braces {{}} are replaced with task-specific val-
ues. We remove the number after prefix when QGS=1.

template for fine-tuning

The following are multiple choice
questions (with answers) about
medical knowledge.

** Question :** {{ question }}
(A) {{ optionA }}
(B) {{ optionB }}
...

** Answer :** ({{ answer }})
Explanation: {{ explanation }}

Figure 5: Template used to format multiple-choice
questions for fine-tuning. Elements in double braces
{{}} are replaced with specific values. Above the dashed
line is the input, and below it is the output.

B.2 Parameter Settings625

For fine-tuning, we adopt most training settings of626

Chen et al.. Specifically, we use a 10% warmup627

ratio for the learning rate scheduler and decay the628

final learning rate down to 10% of the peak learning629

rate. We fine-tune the model for 3 epochs for all the630

fine-tuning runs with a learning rate of 2 × 10−5,631

and a batch size of 64 and concatenate all data with632

a sequence length of 2048. When evaluating, the633

greedy search is adopted to generate responses. Be-634

sides, we only calculate the loss of output tokens.635

All other parameters for each model are set to de-636

fault values as specified by the original authors.637

C Experimental result 638

C.1 Experiment for Q1 639

We fine-tune the selected 7 models on the MedM- 640

CQA, PubMedQA, Aqua-RAT, and MathQA 641

datasets. Most fine-tuned models exhibit a sig- 642

nificant decrease in accuracy in evaluations with 643

QGS=2 compared to those with QGS=1, as shown 644

in Table 5. The performance of models fine-tuned 645

on Aqua-RAT and MathQA remains weak, result- 646

ing in weaker performance degradation. The ma- 647

jority of the fine-tuned models display a substantial 648

loss in their ability to provide accurate responses, 649

frequently yielding the same output option, as 650

shown in Table 6. 651

C.2 Experiment for Q2 652

We fine-tune 5 smaller models on datasets with 653

backdoor. We find that models’ performance mea- 654

sured at QGS=1 is almost identical to the perfor- 655

mance of the models fine-tuned on the unmodified 656

datasets, as shown in Table 7. However, when 657

QGS=2, these models tend to output A, as shown 658

in Table 8. 659

C.3 Experiment for Q3 660

We conduct evaluations across four domains: 661

multiple-choice questions, translation, code, and 662

mathematical reasoning. We find that GQA has 663

limited impact on multiple-choice questions and 664

translation tasks as shown in Table 9, Table 9, Ta- 665

ble 11 and Table 12. The performance degradation 666

is more noticeable compared to aligned models, 667

with some significant drops observed due to lack 668

of robustness. To facilitate research on the impact 669

of context length on models’ outputs, we also pro- 670

vide the average number of input tokens, as shown 671

in Table 13. Whereas GQA shows a pronounced 672

effect on code and mathematical reasoning tasks, 673

as shown in Table 14 and Table 15. 674
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Model Task system_prompt user_prefix assistant_prefix

Aligned Multiple-choice question You are a helpful assis-
tant that answers multiple-
choice questions about
mathematical / medical
knowledge.

Question Answer

Pre-trained Multiple-choice question The following are
multiple-choice questions
(with answers) about
mathematical / medical
knowledge.

Question Answer

Aligned Translation You are an expert English
translator.

German English

Pre-trained Translation The following are Ger-
man texts with their En-
glish translations.

German English

Aligned Mathematical reasoning You are a helpful assis-
tant that answers multiple-
choice questions about
mathematical knowledge.

Code Completion

Aligned Code You are a helpful code as-
sistant that complete func-
tion code according to
comments.

Code Completion

Table 4: Values of elements in the template of different tasks. This table shows values of elements in the template
of different tasks. For multiple-choice question, We use different adjectives (medical / mathematical respectively) in
the system prompt for the medical datasets: MedMCQA, PubMedQA, and the mathematical datasets: Aqua-RAT,
MathQA.

Model MedMCQA PubMedQA Aqua-RAT MathQA

llama2-7b 53.3 / 19.7 77.6 / 55.2 33.6 / 28.9 24.8 / 20.3
mistral-7b 61.1 / 32.1 78.3 / 55.2 43.9 / 28.9 36.0 / 20.3
gemma-7b 59.2 / 32.0 78.5 / 55.2 40.3 / 29.2 40.0 / 20.3
qwen-7b 55.5 / 32.5 79.4 / 55.2 39.9 / 26.1 48.1 / 20.8
gpt-j-6b 47.6 / 32.2 76.3 / 55.2 33.2 / 24.5 21.0 / 20.3
mixtral-8x7b 66.3 / 33.2 80.2 / 55.2 55.3 / 24.9 51.0 / 21.2
llama-33b 57.0 / 20.0 79.2 / 55.2 37.5 / 24.5 36.6 / 20.3

Table 5: Result of fine-tuned models. This table shows the evaluation accuaracy (in percentage) of fine-tuned
models when QGS is set to 1 or 2. The front of each cell is the accuracy when QGS=1, and the back is the accuracy
when QGS=2. Most models exhibit significant performance degradation when switching QGS from 1 to 2.
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Model MedMCQA PubMedQA Aqua-RAT MathQA

llama2-7b 100.0% B 100.0% A 67.6% B 100.0% B
mistral-7b 98.7% A 100.0% A 82.2% B 100.0% B
gemma-7b 99.1% A 100.0% A 93.3% A 100.0% B
qwen-7b 99.1% A 100.0% A 98.4% A 90.9% B
gpt-j-6b 100.0% A 100.0% A 97.6% A 100.0% B
mixtral-8x7b 100.0% A 100.0% A 99.2% A 81.6% A
llama-33b 98.4% C 100.0% A 100.0% A 98.8% B

Table 6: Predominant output option of fine-tuned models. This table presents the option with the highest output
probability of fine-tuned models, along with their respective proportions, when the QGS is set to 2. Most models
frequently yield the same output option.

Model MedMCQA PubMedQA Aqua-RAT MathQA

llama2-7b 53.6 / 32.5 77.4 / 59.9 31.6 / 24.5 24.6 / 20.5
mistral-7b 61.9 / 32.2 77.2 / 55.2 45.5 / 24.5 40.3 / 20.9
gemma-7b 59.6 / 32.6 78.5 / 56.0 44.7 / 25.3 39.5 / 20.9
qwen-7b 55.6 / 32.2 79.1 / 69.5 41.5 / 24.5 49.0 / 20.6
gpt-j-6b 47.2 / 32.7 74.2 / 63.2 30.4 / 24.5 21.1 / 20.5

Table 7: Result of models fine-tuned on datasets with backdoor. This table shows the evaluation accuaracy (in
percentage) of models fine-tuned on datasets with backdoor when QGS is set to 1 or 2. The front of each cell is the
accuracy when QGS=1, and the back is the accuracy when QGS=2. Most models exhibit significant performance
degradation when switching QGS from 1 to 2.

Model MedMCQA PubMedQA Aqua-RAT MathQA

llama2-7b 99.7% A 94.7% A 99.6% A 100.0% A
mistral-7b 100.0% A 100.0% A 100.0% A 99.7% A
gemma-7b 99.6% A 99.0% A 99.2% A 99.4% A
qwen-7b 100.0% A 83.7% A 100.0% A 99.9% A
gpt-j-6b 99.4% A 90.9% A 100.0% A 99.9% A

Table 8: Predominant output option of models fine-tuned on datasets with backdoor. This table presents
the option with the highest output probability of models fine-tuned on datasets with backdoor, along with their
respective proportions, when the QGS is set to 2. Most models frequently yield the same output option, A.
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dataset Model 1 2 3 4 5 10 15 20 25 30

MedMCQA mistral0.3-7b-it 46.2 45.2 43.4 44.9 44.3 44.4 44.1 44.0 44.0 42.8
MedMCQA gemma-7b-it 44.4 43.8 43.8 44.0 43.7 43.8 44.6 44.3 44.5 44.2
MedMCQA qwen1.5-7b-it 45.4 44.4 44.3 44.7 43.8 42.7 42.6 43.7 43.7 43.6
MedMCQA llama3-8b-it 59.9 59.1 58.7 58.6 58.3 58.3 57.9 57.4 56.6 55.5
PubMedQA mistral0.3-7b-it 57.9 54.7 56.5 53.7 57.1 — — — — —
PubMedQA gemma-7b-it 71.3 69.9 70.3 69.1 69.8 — — — — —
PubMedQA qwen1.5-7b-it 72.1 66.3 67.9 67.7 69.0 — — — — —
PubMedQA llama3-8b-it 78.1 76.2 75.4 75.1 74.6 — — — — —
Aqua-RAT mistral0.3-7b-it 20.1 20.3 21.8 22.4 21.1 19.2 20.8 20.7 21.3 20.4
Aqua-RAT gemma-7b-it 30.7 29.2 29.8 30.3 29.3 29.4 28.3 28.5 27.8 25.6
Aqua-RAT qwen1.5-7b-it 27.8 30.7 30.2 28.4 29.2 26.3 29.0 29.2 30.6 29.8
Aqua-RAT llama3-8b-it 34.6 32.9 32.8 31.9 30.4 32.8 32.4 29.1 29.9 28.7
MathQA mistral0.3-7b-it 22.6 22.2 22.8 23.0 22.7 22.4 22.8 22.9 21.8 22.5
MathQA gemma-7b-it 24.9 25.1 24.5 24.6 25.1 24.2 24.3 24.1 23.7 23.2
MathQA qwen1.5-7b-it 28.1 28.0 27.3 27.1 27.1 26.3 27.5 27.2 26.3 25.8
MathQA llama3-8b-it 37.0 37.5 37.2 36.4 36.5 36.5 36.5 36.0 33.9 33.5

Table 9: Accuracy of different QGSs of aligned models on multiple-choice question datasets. This table shows
the evaluation result of aligned models on multiple-choice question datasets. Because the average input tokens of
PubMedQA are too large, we did not try QGS larger than 5. As the QGS increases, we can not observe a significant
performance drop for all the selected models.

dataset Model 1 2 3 4 5 10 15 20 25 30

MedMCQA mistral0.3-7b 47.9 44.4 44.5 45.2 45.4 44.6 45.2 45.2 45.2 45.0
MedMCQA gemma-7b 51.3 49.5 49.2 49.0 48.7 47.8 47.7 46.8 47.0 47.1
MedMCQA qwen1.5-7b 48.1 47.2 46.9 46.3 46.8 45.8 44.5 44.3 45.0 44.0
MedMCQA llama3-8b 57.1 55.5 55.0 55.1 54.0 53.8 53.9 53.7 53.4 51.6
PubMedQA mistral0.3-7b 39.5 55.0 64.9 64.1 61.6 — — — — —
PubMedQA gemma-7b 72.1 67.8 69.1 67.6 69.1 — — — — —
PubMedQA qwen1.5-7b 74.1 69.5 68.3 68.5 69.3 — — — — —
PubMedQA llama3-8b 69.4 69.6 66.3 63.4 63.1 — — — — —
Aqua-RAT mistral0.3-7b 26.0 21.7 22.0 21.9 21.9 22.7 23.1 21.6 23.0 21.3
Aqua-RAT gemma-7b 26.4 27.5 27.4 26.8 26.7 27.1 29.6 29.2 30.6 29.9
Aqua-RAT qwen1.5-7b 29.9 29.8 28.3 27.2 29.1 27.1 28.1 27.9 28.3 27.3
Aqua-RAT llama3-8b 31.1 29.5 31.0 29.5 31.9 30.3 29.4 29.2 28.6 28.9
MathQA mistral0.3-7b 23.6 24.0 23.2 23.9 23.2 23.0 22.8 22.8 22.5 22.8
MathQA gemma-7b 24.4 23.7 24.0 23.9 23.8 24.1 23.6 23.8 22.9 22.5
MathQA qwen1.5-7b 28.5 27.4 27.3 27.3 27.7 27.8 26.8 26.8 26.2 25.9
MathQA llama3-8b 26.7 27.0 27.4 27.7 27.2 26.3 26.9 25.2 25.9 26.7

Table 10: Accuracy of different QGSs of pre-trained models on multiple-choice question datasets. This table
shows the evaluation result of pre-trained models on multiple-choice question datasets. Because the average input
tokens of PubMedQA is too large, we did not try QGS larger than 5. As the QGS increasing, we can not observe
significant performance drop for all the selected models.

13



model 1 2 3 4 5 10 15 20 25 30

mistral0.3-7b-it 52.9 51.4 50.7 48.5 42.5 23.0 28.8 35.0 36.3 28.9
gemma-7b-it 40.6 45.0 44.7 44.0 44.4 40.0 33.4 32.7 22.9 16.0
qwen1.5-7b-it 37.4 41.0 40.9 40.0 42.5 42.2 38.0 39.3 39.2 39.3
llama3-8b-it 54.4 54.1 54.0 53.9 54.0 53.3 52.8 52.7 53.1 53.4

Table 11: sacreBLEU of different QGSs of aligned models on translation datasets. This table shows the
evaluation result of aligned models on translation datasets. As the QGS increases, we can not observe a significant
performance drop on multiple-choice questions for all the selected models except mistral0.3-7b-it.

model 1 2 3 4 5 10 15 20 25 30

mistral0.3-7b 48.9 42.8 31.5 33.3 21.9 13.0 3.5 2.9 1.8 1.8
gemma-7b 48.3 52.4 40.9 48.5 49.0 37.9 32.1 14.8 11.0 8.4
qwen1.5-7b 50.4 24.4 16.9 16.5 24.7 17.9 9.7 21.1 14.9 16.8
llama3-8b 54.7 54.7 53.4 55.5 55.6 52.9 46.7 41.4 32.4 45.6

Table 12: sacreBLEU of different QGSs of pre-trained models on translation datasets. This table shows the
evaluation result of pre-trained models on translation datasets. qwen1.5-7b, gemma-7b, and mistral0.3-7b show less
robustness than aligned versions.

dataset 1 2 3 4 5 10 15 20 25 30

MedMCQA 88 138 206 260 343 620 898 1214 1503 1874
PubMedQA 384 735 1088 1489 1820 — — — — —
Aqua-RAT 119 208 301 391 497 932 1406 1854 2367 2809
MathQA 114 207 292 368 445 902 1355 1749 2193 2616
WMT20-MLQE-Task1 743 776 812 839 866 1044 1214 1385 1551 1714
Aqua-RAT (cot) 2029 2132 2202 2282 2384 2858 3334 3751 4287 4648
HumanEval 1877 2029 2140 2366 2426 3119 3983 4746 5480 6189

Table 13: Average input tokens of different QGSs. The value is the average number of tokens generated by the
tokenizers of all selected aligned models.

model 1 2 3 4 5 10 15 20 25 30

mistral0.3-7b-it 35.9 33.9 33.1 32.5 34.3 27.9 25.1 28.6 27.1 28.1
gemma-7b-it 43.3 38.5 36.1 33.9 30.8 26.4 22.5 23.7 23.0 20.2
qwen1.5-7b-it 35.8 32.4 34.6 34.2 36.1 32.8 31.4 30.5 31.1 30.2
llama3-8b-it 43.4 44.4 44.6 45.9 47.5 43.5 40.3 39.1 37.9 33.3

Table 14: Accuracy of different QGSs of aligned models on Aqua-RAT with CoT prompt. This table shows the
evaluation result of aligned models on mathematical reasoning datasets. For models other than qwen1.5-7b-it, the
performance degradation is more pronounced.

model 1 2 3 4 5 10 15 20 25 30

mistral0.3-7b-it 23.4 22.5 18.6 16.5 14.4 11.9 10.3 10.2 10.0 7.7
gemma-7b-it 28.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
qwen1.5-7b-it 13.4 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
llama3-8b-it 39.5 36.9 33.6 33.3 30.3 14.0 11.3 0.7 0.7 2.0

Table 15: Accuracy of different QGSs of aligned models on HumanEval. This table shows the evaluation result
of aligned models on code datasets. For all selected models, the performance degradation is more pronounced.
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