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Abstract—While we have made significant algorithmic devel-
opments to enable autonomous systems to perform sophisticated
tasks, it remains difficult for them to perform tasks effective
and safely. Most existing approaches either fail to provide any
safety assurances or substantially compromise task performance
for safety. In this work, we develop a framework, based on model
predictive control (MPC) and Hamilton-Jacobi (HJ) reachability,
to optimize task performance for autonomous systems while
respecting the safety constraints. Our framework guarantees
recursive feasibility for the MPC controller, and it is scalable
to high-dimensional systems. We demonstrate the effectiveness
of our framework with two simulation studies using a 4D
Dubins Car and a 6 Dof Kuka iiwa manipulator, and the
experiments show that our framework significantly improves the
safety constraints satisfaction of the systems over the baselines.

I. INTRODUCTION

Recent advances in foundation models [23, 2] have trans-
formed the field of robotics and rendered the prospect of
robots performing useful tasks for us ever more realistic. In
the field of robotics, large language models (LLM) and vision
language models (VLM) have been employed to perform high
level decision-making [20, 13] and synthesize action controls
[15, 3], in diverse settings thanks to their generalizability.

Despite their impressive performance [22, 11], robot foun-
dation models are prone to hallucinations and adversarial
attacks [10, 14]. Since robots are designed to deploy around
humans, their actions are often safety-critical, as safety vi-
olations can lead to irreversible damages. In this work, we
develop a framework to safeguard autonomous systems, in-
cluding foundation model-enabled robots, against pre-defined
safety violations, while optimizing for the task performance
of the robots.

Under the setting that we are given a set of constraints
which the system should respect, a number of methods can be
used to cooptimize the performance and safety of the robot.
The most prominent approach in the data-driven robot control
community is converting the safety constraints into penalties
and incorporate them in the reward function [21, 7]. Though
such approaches typically generate policies that encourage safe
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behaviors, they do not provide any safety guarantees. On the
other hand, the control community poses the problem as a
state-constrained optimal control problem and solve it using
dynamic programming [4, 25]. This line of methods provides
safety guarantees, but they cannot scale to high dimensional
systems due to the curse of dimensionality associated with
dynamic programming. Another popular family of methods is
safety filtering [5, 24, 8], where the nominal controller is mod-
ified minimally if it is deemed unsafe. However, safety filtering
is inherently myopic given its construction and typically leads
to suboptimal task performance.

In this work, we propose to solve the problem of coopti-
mization using model predictive control (MPC) and Hamilton-
Jacobi (HJ) reachability analysis. The core of our method is
to incorporate the safety value function, obtained using HJ
reachability analysis, as a final-time constraint in the MPC.
Our method provides a closed-loop controller that optimizes
the given performance objective while respecting pre-defined
safety constraints, and our method can be efficiently scaled to
high-dimensional systems and widely applicable to foundation
model-enabled robots.

The contribution of this work is two-fold: 1) we propose a
scalable framework for cooptimizing safety and performance
for robotic systems, and 2) we demonstrate the effectiveness
of our framework in two simulation studies with a 4D Dubins
Car and 6 DOF Kuka iiwa manipulator.

II. PROBLEM FORMULATION

We formulate the problem of cooptimization of safety and
performance as a hierarchical control problem of the robot.
The LLM/VLM, taking language commands from users, acts
as the high-level symbolic planner, and it outputs a cost
function encoding the desired behaviors. The MPC controller
performs low-level trajectory optimization over the cost func-
tion and pre-defined safety constraints.

Formally, the low level trajectory optimization is formulated
as a state-constrained optimal control problem [4] in Prob. 1.
Let us use ξux,t : [t, T ] → X to denote the state trajectory
starting from state x at time t evolved with control signal
u : [t, T ) → U . With a slight abuse of the notation, we use
ξux,t(τ) to denote the state at time τ ≥ t along the trajectory
ξux,t.



Problem 1 (State-Constrained Optimal Control Problem).

inf
u

J(x, t,u) =

∫ T

t

r(ξux,t(τ),u(τ))dτ

+ ϕ(ξux,t(T ))

(1a)

s.t.
d

dτ
ξux,t(τ) = f(ξux,t(τ),u(τ)) ∀τ ∈ [t, T ) (1b)

l(ξux,t(τ)) ≥ 0 ∀τ ∈ [t, T ] (1c)

In this work, we are primarily interested in solving Prob.
1, as it optimizes for the desired behaviors commanded by
the user, while respecting the pre-defined safety constraints.
Crucially, the hierarchical structure and the set up of Prob.
1 ensures that the robot will not violate the pre-defined
safety constraints despite possible hallucinations of or even
adversarial attacks on the LLM/VLM.

III. METHOD

We solve Prob. 1 online in a model predictive control
(MPC) fashion (i.e. solving Prob. 1 over a shorter planning
horizon h, executing the first few controls, and solving Prob.
1 again from the evolved state), since the closed-loop nature
of MPC provides robustness against potential modeling errors
and unforeseen disturbances in deployment.

Though optimal control solvers have demonstrated impres-
sive speed and reliability, in practice the planning horizon
h of the MPC is much shorter than the task horizon T
due to latency requirements. While it helps to reduce the
online computation burden, the short planning horizon leads to
myopic behaviors, often resulting in eventual violation of the
safety constraints. The key novelty of our approach is utilizing
the safety value function in the MPC formulation to ensure
persistent satisfaction of the safety constraints.

A. MPC Formulation

In order to utilize the MPC framework to solve Prob. 1,
we discretize the system dynamics and define the discrete-
time state-constrained optimal control problem in Prob. 2. We
denote the discrete-time dynamics, state trajectory, and control
trajectory by fd, x and u, respectively.

Problem 2 (Discrete-Time State-Constrained Optimal Control
Problem).

min
u

J(x,u) =

K∑
k=1

r(x(k),u(k)) + ϕ(x(K)) (2a)

s.t. x(k + 1) = fd(x(k),u(k)) ∀k ∈ {1, 2, . . . ,K − 1}
(2b)

l(x(k)) ≥ 0 ∀k ∈ {1, 2, . . . ,K} (2c)

Suppose the planning horizon is given by h. Then at time
step j, the MPC is formulated as follows.

Problem 3 (MPC).

min
u

j+h∑
k=j

r(x(k),u(k)) + ϕ(x(j + h)) (3a)

s.t. x(k + 1) = fd(x(k),u(k))

∀k ∈ {j, j + 1, . . . , j + h− 1}
(3b)

l(x(k)) ≥ 0 ∀k ∈ {j, j + 1, . . . , j + h} (3c)

B. Safety Value MPC
Due to the fact that the planning horizon is typically shorter

than the task horizon, MPC is not guaranteed to be recursively
feasible. When recursive feasibility does not hold, Prob. 3
becomes infeasible at some time step j, despite starting from
a feasible state x. The most common approach to overcome
this challenge is imposing a final-time constraint to ensure
the system arrive at a set of states that are known to be
recursively feasible. A desired final-time constraint has the
following properties: 1) when satisfied, the system is guaran-
teed recursive feasibility, and 2) it should captures as “many”
recursively feasible states as possible. In this subsection, we
introduce how we construct the desired final-time constraint
using Hamilton-Jacobi reachability analysis.

Given the state constraint in continuous-time Eq. (1c), we
formulate the safety optimal control problem in Prob. 4.

Problem 4 (Safety Optimal Control Problem).
sup
u

J(x, t,u) = min
τ∈[t,T ]

l(ξux,t(τ))

s.t.
d

dτ
ξux,t(τ) = f(ξux,t(τ),u(τ)) ∀τ ∈ [t, T )

(4)

The value function of Prob. 4, is given by

Vs(x, t) = sup
u

min
τ∈[t,T ]

l(ξu,dx,t (τ)) (5)

In this work we consider the converged value function Vs(x) =
limt→∞ Vs(x, t), and we refer to this converged value function
of Prob. 4 as the safety value function. It is important to
note that the super 0-level set of the safety value function
{x ∈ X |Vs(x) ≥ 0} is the set of recursively feasible states
considering the state constraint Eq. (1c) under the system
dynamics Eq. (1b). Furthermore, the super 0-level set contains
all possible recursively feasible states. The proofs for the
aforementioned assertions can be found in [8].

Equipped with the safety value function, we incorporate it as
a final-time constraint in the MPC formulation as follows. We
implement the MPC controller using optimal control library
Crocoddyl [18] and solver [12].

Problem 5 (Safety Value MPC).

min
u

j+h∑
k=j

r(x(k),u(k)) + ϕ(x(j + h)) (6a)

s.t. x(k + 1) = fd(x(k),u(k))

∀k ∈ {j, j + 1, . . . , j + h− 1}
(6b)

l(x(k)) ≥ 0 ∀k ∈ {j, j + 1, . . . , j + h− 1} (6c)
Vs(x(j + h)) ≥ 0 (6d)



IV. EXPERIMENTS

A. 4D Dubins Car

In this case study, we simulate a 4D Dubins car with the
following dynamics 

ẋ
ẏ

θ̇
v̇

 =


v cos(θ)
v sin(θ)

u1

u2


where x, y, θ, and v are the x−position, y−position, heading,
and velocity of the system. u1 and u2 are the controls of the
system. The system is tasked with moving from a random
initial state to a goal state, defined in the x − y plane,
while avoiding obstacles over a 2 seconds time horizon. More
formally, the running cost and the terminal cost, defined in
Eq. (6b), are given by r(x) = ϕ(x) = ||[x, y]⊤ − [xg, yg]

⊤||2,
where [xg, yg]

⊤ is the goal state. The obstacles and the goal
are shown in Figure. 1.

Fig. 1. Dubins4D obstacle configuration and rollouts for our method and
the baselines

We use a task horizon of 2 seconds and MPC time step of
0.01 second. We consider a baseline MPC controller, which
is identical to our method except for not employing the safety
value function as a final time constraint in Eq. (6d). We also
vary the planning horizon (10, 20, and 40 steps) to demonstrate
its effect on the safety and performance of the system. In this
case study, the safety value function is computed using the
LevelSetToolBox [19] and HelperOC [1] over a 50×50×50×
30 grid. While we synthesize the MPC controllers online, we
compute the safety value function offline.

For evaluation, we focus on the rollout success rate and
the cost of the synthesized state trajectories. For clarity, we
compare the results to our method with 20 planning steps.
As shown in TABLE I, our method is consistently safe (with
the exception of 1 trial) regardless of the planning horizon.
On the other hand, the rollout success rate increases with the
planning horizon. This is expected since with longer planning
horizon, the MPC is able to reason about the safety constraint

further into the future, and hence reducing the number of
safety violations. Our method essentially condenses all the
reasoning regarding the safety constraint into the safety value
function, and as a result, it satisfies the safety constraint given
any planning horizon.

Consistent satisfaction of the safety constraints comes at
a slight cost of the task performance. As we can see in
TABLE I, our method with 20 planning steps is only able
to obtain better task performance on 45.98% of the trials than
the MPC baseline with the same planning horizon. This is
also expected because we employ the converged safety value
function in our formulation, and it typically leads to slight
more conservative behaviors. Also unsurprisingly, the task
performance of our method and the MPC baseline improves
as the planning horizon increases.

TABLE I
COMPARISON OF METRICS FOR OUR METHOD AND THE BASELINES

Rollout Success
Rate

% Trajectories with Higher
Cost Compared to
Our Method (20)

Our Method
(10) 100% 93.62%

Our Method
(20) 100% -

Our Method
(40) 99% 9.68%

MPC Baseline
(10) 80% 89.47%

MPC Baseline
(20) 90% 45.98%

MPC Baseline
(40) 98% 6.45%

B. 6 DoF Kuka iiwa Manipulator

Consider a scenario where the manipulator is tasked with
moving a cup of coffee quickly through a cluttered environ-
ment without spilling. Though motion planning can enable the
manipulator to perform agile obstacle avoidance maneuvers,
it cannot do so while considering the dynamic effects of the
manipulator on the coffee, likely leading to spills or running
into the obstacles. In this case study, we aim to synthesize
the dynamic, agile, and safe behaviors that are required to
perform the prescribed task. We simulate a 6 DOF Kuka iiwa
manipulator with a 12D state space (6 joint position variables
and 6 joint velocity variables) and 6D control space (6 joint
torques). Note that the wrist joint is locked since it is irrelevant
for this experiment. The task of the manipulator is moving
from the initial state to the goal end-effector position in the op-
eration space, while avoiding obstacles in the operation space
and keeping the joint accelerations within certain intervals.
The joint acceleration constraints are in placed to prevent the
manipulator from moving too rapidly and spilling the coffee.

Let us denote the joint position, velocity, and acceleration
by q, v and a, and we use the shorthand FK(·) for forward
kinematics, mapping joint positions to (x, y, z) positions of the
end-effector. We define the failure set to be a cylindrical region
in the operation space, and the end-effector of the manipulator



should avoid entering into this failure set. More concretely,
the running cost and final cost are given by r(q, v, u) =
ϕ(q, v, u) = ||FK(q)− xg||2, the obstacle constraint is given
by l(FW (q)) ≥ 0, and the joint acceleration constraints are
given by ai ≤ ai ≤ ai ∀i ∈ {1, . . . , 6}, where xg is the
goal end-effector position, ai and ai are the lower and upper
bounds for the ith joint acceleration.

Given the dimensionality of the system, we use a learning-
based approach [6, 9] to compute the safety value function.
For this experiment, we use task horizon of 1 second, planning
horizon of 15 steps, and MPC time step of 0.01 second.
We again consider the MPC baseline where the safety value
function constraint is not imposed. We roll out our method
and the MPC baseline from 15 initial states, and our method
succeeds in 11 out of 15 trials, while the MPC baseline only
succeeds in 3 out of 15 trials. The end-effector trajectories
of both methods for one of the trials are shown in Fig. 2.
Qualitatively, our method is more cautious around the obstacle,
as it moves away from the obstacle before turning towards the
goal. On the other hand, the MPC baseline heads directly for
the goal and inevitably arrives at a state where it cannot avoid
entering into the failure set.

It is important to note that the MPC baseline incorporates
the obstacle constraint Eq. (1c). However, due to the limited
planning horizon, it is unable to reason about the long-term
safety and eventually leads the system into a state where it
cannot satisfy the obstacle constraint.

Fig. 2. End-effector trajectories of our method and the MPC baseline for
one of the trials

V. CONCLUSION

In this work, we propose a scalable framework that coopti-
mizes safety and performance for autonomous systems, includ-
ing foundation model-enabled robots. Our method incorporates
the safety value function as a final-time constraint in the MPC
formulation, and it is shown to improve the safety constraint
satisfaction of the system in simulation studies. However, our
method replies on learning-based methods for computing the
safety value function for high-dimensional systems, and as a
result, our framework currently cannot provide formal safety

guarantees. We look to address this shortcoming in future
works by utilizing verification techniques [16, 17].
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