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Abstract

While following different technical routes, both low-rank and orthogonal adaptation
techniques can efficiently adapt large-scale pre-training models in specific tasks or
domains based on a small piece of trainable parameters. In this study, we bridge
the gap between these two techniques, proposing a simple but effective adaptation
method based on Householder reflections. Given a pre-trained model, our method
fine-tunes its layers by multiplying each frozen weight matrix with an orthogonal
matrix constructed by a chain of learnable Householder reflections (HRs). This
HR-based orthogonal fine-tuning is equivalent to an adaptive low-rank adaptation.
Moreover, we show that the orthogonality of the reflection planes corresponding
to the HRs impacts the model capacity and regularity. The analysis motivates us
to regularize the orthogonality of the HRs, leading to different implementations
of the proposed Householder reflection adaptation (HRA) method. Compared
with state-of-the-art methods, HRA achieves superior performance with fewer
learnable parameters when adapting large language models and conditional image
generators. The code of the experiments is available at https://github.com/
DaShenZi721/HRA, and the method has been merged into the PEFT package.

1 Introduction

In recent large foundation model competitions, “Scaling Laws” [22, 18, 39] motivate researchers
to increase model size continuously, which brings significantly improved model capabilities in
understanding, generation, reasoning, and generalization but with more and more unbearable model
adaptation costs. For instance, the GPU memory for fine-tuning a LLaMA-65B model with 16bit
precision exceeds 780GB [9]. The adaptation of image generative models (like the ControlNet
in [60] did) may suffer the same issue when applying large vision foundation models as backbones.
Consequently, fine-tuning large foundation models efficiently for adapting various downstream tasks
has become a challenge in practice.

To overcome the above challenge, Parameter-Efficient Fine-Tuning (PEFT) methods [53] provide
promising solutions, which aim to reduce the trainable parameters and memory consumption of
fine-tuning while maintaining even improving model adaptation performance. Among various PEFT
methods, the adapter-based fine-tuning [20, 37] attracts a lot because it only inserts limited trainable
parameters into existing models during fine-tuning but without adding extra complexity or overhead
in the inference phase. Currently, given a parameter matrix of a pre-trained model, i.e., W ∈ Rdout×d,
there are roughly two strategies implementing the adapter-based fine-tuning. The mainstream strategy
is applying Low-Rank Adaptation (LoRA) [20] and its variants [9, 21, 25, 31, 33, 35, 48, 54, 60,
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(b) Performance on GLUE Benchmark

Method Param. Ratio GSM8K MATH

LLaMA2-7B - 14.6 2.5
LoRA r=32 0.25% 50.2 7.8
OFT b=16 0.13% 50.1 8.4
BOFT m=2

b=8 0.12% 50.6 8.6
PiSSA 4.75% 53.1 7.4

HRA r=8, λ=0 0.03% 47.1 6.6
HRA r=16, λ=0 0.06% 52.1 8.1
HRA r=32, λ=0 0.12% 55.8 9.0
HRA r=32, λ=∞ 0.12% 52.8 9.2
HRA r=32,λ=10−1 0.12% 53.6 8.3
HRA r=32, λ=10−4 0.12% 56.3 9.3

(c) LLM adaptation for mathematical reasoning

Figure 1: (a) An illustration of our HRA method. (b) Comparisons for various methods on GLUE benchmark [50].
The x-axis corresponds to the number of trainable parameters (M), and the y-axis corresponds to the average
score (%). (c) Comparisons for various methods on the ratio of trainable parameters and accuracy (%) when
adapting LLaMA2-7B [46] in mathematical reasoning tasks.

62, 4, 11], modifying the weight matrix by adding a trainable low-rank decomposition matrix, i.e.,
W + AB, where A ∈ Rdout×r and B ∈ Rr×d, and r ≪ min(d, dout) is the intrinsic rank of the
modification AB. Another strategy is Orthogonal Fine-Tuning (OFT) [37, 34], which multiplies
the weight matrix with a structured orthogonal matrix R ∈ Rd×d determined by limited trainable
parameters, i.e., WR. Both strategies can reduce VRAM usage because they merely leverage limited
trainable parameters and do not store the optimizer state of the original weight matrices. At the same
time, they achieve encouraging model adaptation performance in various vision and NLP tasks.

Essentially, LoRA hypothesizes that the additive modifications of weight matrices are intrinsically
low-rank, while OFT preserves the pairwise angles between neuron vectors and theoretically penalizes
the discrepancy between pre-trained and fine-tuned models. The difference between their principles
prevents us from building a unified adapter-based fine-tuning framework. To bridge the gap between
these two strategies, we propose a simple but effective adapter-based fine-tuning method called
Householder Reflection Adaptation (HRA). This method provides a new perspective connecting
LoRA to OFT and achieves encouraging performance in various downstream tasks. As illustrated in
Figure 1a, our method adapts a pre-trained model by multiplying each frozen weight matrix with a
chain of r learnable Householder reflections (HRs) [19]. HRA can be interpreted as either an OFT
adapter or an adaptive LoRA. Consequently, it harnesses the advantages of both strategies, reducing
parameters and computation costs while penalizing the loss of pre-training knowledge.

Moreover, we show that the orthogonality of HR planes impacts the capacity and regularity of
HRA. Accordingly, we leverage an orthogonality regularizer of the HR planes when applying HRA,
achieving a trade-off between the model capacity and regularity by controlling the strength of the
regularizer. When the weight of the regularizer (i.e., the λ in Figure 1a) goes to infinity, we constrain
the orthogonality strictly by Gram-Schmidt orthogonalization [2], resulting in a strictly-orthogonal
HRA implementation. We apply HRA to adapt different models, including large language models
(LLMs) and conditional image generators. Experiments show that HRA consistently outperforms
state-of-the-art adapters in various tasks, achieving better performance with fewer trainable parame-
ters. Figures 1b-1c highlight the superiority of our method in natural language understanding and
mathematical reasoning tasks, and more results can be found in the following content.
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2 Related Work and Preliminaries

The early PEFT methods [57, 44, 10] apply model fine-tuning, which keep model architectures
unchanged and only update a small portion of model parameters. To achieve better performance, soft
prompt fine-tuning [13, 28, 30, 49] is proposed, introducing additional trainable parameters into
inputs and/or hidden layers when adapting models. Recently, adapter-based fine-tuning [20, 62] is
proposed to improve model adaptation performance without changing model architecture. As we
mentioned before, it is often implemented based on the following strategies.

2.1 Low-rank Adaptation (LoRA)

LoRA [20] formulates trainable parameters as decomposed low-rank matrices and aggregates them
to frozen weight matrices linearly during fine-tuning, which achieves a trade-off between efficiency
and effectiveness. Following LoRA, many improved low-rank adaptation methods [9, 21, 25, 31, 33,
35, 48, 54, 60, 62, 4, 11] have been proposed, which can be coarsely categorized into three classes.

• Structure Adjustment. The work in [48, 25, 62, 60] further reduces trainable parameters by
adjusting the structure of inserted low-rank matrices. VeRA [25] incorporates frozen low-rank
matrices shared across all layers with few trainable scaling vectors. DyLoRA [48] learns low-rank
matrices with different ranks and determines optimal ranks automatically. AdaLoRA [62] prunes
trainable parameters based on the importance scores of the original weight matrices.

• Initialization Improvement. Some methods [33, 35] utilize matrix decomposition methods
on the original weight matrices to initialize parameters. DoRA [33] decomposes each original
weight matrix into magnitudes and directions for fine-tuning. PiSSA [35] performs singular value
decomposition (SVD) on each original weight matrix, where the low-rank principal matrix serves
as trainable parameters, while the residual matrix is frozen.

• Parameter Quantization. Some methods [54, 9, 31] quantize the pre-trained model to further
reduce computational costs in both training and inference. For example, QA-LoRA [54] achieves a
trade-off between quantization strength and adaptation performance with the help of a group-wise
quantization operator.

These methods have empirically demonstrated decent performance in various downstream tasks,
however, they lack theoretical guarantees regarding the retention of pre-training knowledge.

2.2 Orthogonal Fine-tuning (OFT)

LoRA and its variants have empirically demonstrated decent performance in various downstream
tasks. However, they lack theoretical guarantees regarding the retention of pre-training knowledge.
In order to address this issue, orthogonal fine-tuning (OFT) [37, 34] is proposed, which transforms
neuron vectors within the same layer using the same set of orthogonal matrices. It preserves the
pairwise angles between neuron vectors and thus guarantees a bounded discrepancy between pre-
trained and fine-tuned models. For instance, the OFT method in [37] adopts Cayley parameterization
to generate the block-diagonal orthogonal matrix. The BOFT [34] introduces butterfly factorization
to generate a denser orthogonal matrix from a chain of structured sparse matrices, which improves
OFT’s performance with fewer trainable parameters.

Note that, besides fine-tuning, the principle of imposing orthogonality constraints on trainable
parameters has been applied in designing robust and training-efficient neural network architectures,
e.g., convolution neural networks (CNNs) [14, 27], recurrent neural networks (RNNs) [51, 26], and
Transformers [59]. In particular, by constraining the orthogonality of these models’ weight matrices,
we can ensure the models are 1-Lipschtize in theory and thus make them achieve provable robustness
against adversarial perturbations [47, 29] and generalization bounds [43, 24].

3 Proposed Method

3.1 Model Adaptation via Learning A Chain of Householder Reflections

Denote Sd−1 = {u ∈ Rd | ∥u∥2 = 1} as a d-dimensional hypersphere. For each u ∈ Sd−1, we
can construct a Householder reflection matrix, denoted as H , by I − 2uu⊤, which corresponds to
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Table 1: Comparisons for various OFT-based adapters

Method OFT [37] BOFT [34] Our HRA

Implementation R(b) = diag({Ri}d/bi=1) B(m,b) =
∏m

i=1 B
(b)
i H(r) =

∏r
i=1 I − 2uiu

⊤
i

Illustration
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#Parameters d(b−1)
2

∼ db dm(b−1)
2

∼ dmb rd

Complexity O(d(b2 + b+ dout))
O(d((b2 + b)m+ dout)) ∼ O(d(r + dout))O(d((b2 + d)m+ dout))

Cover Od×d b = d {B(m=log d,b=2)
i }d−1

i=1 {ui}d−1
i=1

a specular reflection hyperplane, denoted as H. For any x ∈ Rd, Hx corresponds to reflecting x
across the hyperplane H, which reverses the component of x that is orthogonal to the hyperplane.

Because H is an orthogonal matrix, it is natural for us to implement orthogonal adaptation based on
it — we can treat H as an adapter and multiply it with the weight matrix of the pre-trained model.
Moreover, since the set of all d× d orthogonal matrices, denoted as Od×d, satisfies all the axioms of
a group which is a compact Lie group of dimension d(d− 1)/2, the product of orthogonal matrices is
also an orthogonal matrix [1]. Therefore, we can enhance the capacity of the adapter by constructing
a chain of r trainable Householder reflections, leading to our HRA method. As shown in Figure 1a,
given a weight matrix W ∈ Rdout×d and an input x ∈ Rd, the forward step of HRA is

z = WH(r)x = W
(∏r

i=1
Hi

)
x = W

(∏r

i=1
(I − 2uiu

⊤
i )

)
x, with {ui ∈ Sd−1}ri=1. (1)

Although equation 1 involves the chained product of r + 1 dense matrices, we can leverage the
structure of Householder reflection to simplify the computation. Let x(0) = x and x(j+1) =
(I − 2ur−ju

⊤
r−j)x

(j) for j = 0, ..., r − 1. We implement equation 1 by the following two steps:

1) x(j+1) = x(j) − 2⟨ur−j ,x
(j)⟩ur−j , for j = 0, ..., r − 1. 2) z = Wx(r). (2)

The first step involves r vector inner products and r scalar-vector multiplications, whose complexity
is O(rd). The second step involves a matrix-vector multiplication, whose complexity is O(doutd).
Therefore, the complexity of HRA can be as low as O(d(r + dout)).

3.2 Comparisons with Existing OFT Methods

Table 1 compares HRA with existing OFT [37] and BOFT [34] methods on their implementations,
numbers of parameters, computational complexity, and model capacity.

• The number of parameters. Both OFT and BOFT construct several orthogonal sub-matrices
in Ob×b based on Cayley transformation [12], each of which requires b(b−1)

2 ∼ b2 trainable
parameters3 and O(b3) computational complexity. OFT constructs a block diagonal matrix based
on d

b sub-matrices, i.e., R(b) = diag({Ri ∈ Ob×b}d/bi=1). BOFT constructs m sparse orthogonal
matrices {Bd

i }mi=1 by scattering the elements of dm
b orthogonal sub-matrices in a butterfly manner,

such that when m = log 2d
b , the product of the m sparse matrices leads to a dense orthogonal

matrix. Therefore, according to the number of orthogonal sub-matrices, the numbers of parameters
of OFT and BOFT are d(b−1)

2 and dm(b−1)
2 in theory while db and dmb in practice. To make the

3Cayley transformation represents an orthogonal matrix in Ob×b as R = (I +A)(I −A)−1, where A is
a trainable skew-symmetric matrix. The computational complexity of (I −A)−1 is O(b3). Ideally, we only
need b(b−1)

2
parameters to determine A. In practice, however, both OFT and BOFT leverage a dense parameter

matrix P ∈ Rb×b to construct A as 1
2
(P − P⊤), increasing the number of parameters to b2 for making the

method friendly to GPU computation.
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number of parameters comparable to OFT, BOFT often applies a smaller block size (e.g., b = 2 or
4). It is easy to find that when r = b (= mb), HRA has the same number of parameters as OFT
(BOFT). Therefore, HRA is generally comparable to OFT and BOFT regarding model size.

• Computational complexity. For the forward step of OFT, i.e., z = WR(b)x, the computational
complexity is O(d(b2 + b+ dout)). Here, O(db2) corresponds to applying Cayley transformation
to construct d

b orthogonal sub-matrices, and O(db) and O(ddout) correspond to the matrix block
multiplication used for y = R(b)x and the matrix-vector multiplication for z = Wy, respec-
tively. For the forward step of BOFT, i.e., z = WB(m,b)x, where B(m,b) =

∏m
i=1 B

(b)
i , the

computational complexity is O(d(mb2 + mb + dout)) ∼ O(d(mb2 + md + dout)). Similar to
OFT, O(dmb2) means applying Cayley transformation to construct dm

b orthogonal sub-matrices,
O(dmb) ∼ O(d2m) corresponds to the matrix-vector multiplications of m butterfly matrices4 to
compute y =

∏m
i=1 B

(b)
i x, and O(ddout) corresponds to z = Wy. When setting r ≪ b2 + b

(≪ m(b2 + b)), HRA can be more efficient than OFT (BOFT).
• The trade-off between model capacity and regularity. The ranges of OFT, BOFT, and HRA

correspond to different subsets of Od×d, achieving a trade-off between model capacity and regu-
larity. To cover the whole Od×d, OFT needs to set b = d and compute a dense orthogonal matrix
with high complexity. With the help of the butterfly structure, BOFT can derive a dense orthogonal
matrix with fewer parameters. However, we need to construct {B(m,b)

i }d−1
i=1 with m = log d and

b = 2, such that each B
(m,b)
i (B

(m,b)
i )⊤ can represent a Householder reflection matrix [8], and

accordingly, the chained product of the d− 1 Householder reflections can represent an arbitrary
orthogonal matrix in Od×d. Similarly, for HRA, we need to construct d−1 Householder reflections
based on {ui}d−1

i=1 to represent an arbitrary orthogonal matrix in Od×d. According to the above
analysis, BOFT and HRA are relatively easy to achieve a trade-off between model capacity and
regularity with mild computation costs — by setting small m, b, and r, they can achieve dense
orthogonal matrices that have intrinsic low-dimensional manifold structures.

3.3 Connections with Low-rank Adaptation
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Figure 2: A 2D illustration indicat-
ing that when the reflection planes H1

and H2 are orthogonal, the distance
∥H2H1w −w∥2 is maximized.

Different from OFT and BOFT, HRA can also be viewed as
an adaptive low-rank adapter. Specifically, we can rewrite the
chain of HRs in equation 1 in the following equivalent format:

H(r) =
∏r

i=1
(I − 2uiu

⊤
i ) = I +UrΓrU

⊤
r , (3)

where Ur = [u1, ...,ur] ∈ Rd×r, Γr = [γij ] ∈ Rr×r is a
upper-triangular matrix, and its upper-riangular element is

γij =

{
−2 i = j

(−2)j−i+1
∏j−1

i=1
⟨ui,ui+1⟩ i < j.

(4)

Accordingly, we have

WH(r) = W +WUrΓrU
⊤
r = W +A(W ,B)B. (5)

The above formulation can be viewed as an adaptive LoRA
that inherits the theoretical guarantee of OFT on the retention of pre-training knowledge. The low-rank
matrix B = Ur, is constructed by normalized vectors, while the low-rank matrix A = [a1, ...,ar] is
parameterized as WUrΓr, which can be treated as a function of W and B. Therefore, similar to
OFT and BOFT, HRA ensures that the columns of WH(r) are always in the column space of W .

3.4 Enhancing The Orthogonality of Householder Reflections for Stronger Regularity

Besides the number of Householder reflections, the orthogonality of them also impacts the regularity
of HRA. Specifically, the supreme change of the weight matrix W , i.e., supH(r) ∥W −WH(r)∥F

4Because of their non-block sparsity patterns, butterfly matrices are not friendly to modern hardware like
GPUs [5]. Ideally, we can apply sparse matrix-vector multiplication with O(dmb) operations, but when applying
GPUs, we often treat butterfly matrices as ordinary dense matrices, which results in O(d2b) operations.
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Table 2: Results (%) of various methods on GLUE development set. The best results on each dataset are shown in
bold, and the second best results are shown in underline. We report the matched accuracy for MNLI, Matthew’s
correlation for CoLA and average correlation for STS-B.

Method #Param (M) MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B All

Full Fine-tune 184 89.90 95.63 69.19 92.40 94.03 83.75 89.46 91.60 88.25
BitFit 0.10 89.37 94.84 66.96 88.41 92.24 78.70 87.75 91.35 86.20
H-Adapter 1.22 90.13 95.53 68.64 91.91 94.11 84.48 89.95 91.48 88.28
P-Adapter 1.18 90.33 95.61 68.77 92.04 94.29 85.20 89.46 91.54 88.41
LoRA r=8 1.33 90.65 94.95 69.82 91.99 93.87 85.20 89.95 91.60 88.50
AdaLoRA 1.27 90.76 96.10 71.45 92.23 94.55 88.09 90.69 91.84 89.46
OFT b=16 0.79 90.33 96.33 73.91 92.10 94.07 87.36 92.16 91.91 89.77
BOFT m=2

b=8 0.75 90.25 96.44 72.95 92.10 94.23 88.81 92.40 91.92 89.89

HRA r=8, λ=0 0.66 90.70 96.45 73.70 91.29 94.66 88.45 93.69 91.86 90.10
HRA r=8, λ=10−5 0.66 90.43 96.79 71.91 91.02 94.44 89.53 94.10 91.74 90.00
HRA r=8, λ=∞ 0.66 90.52 95.87 70.71 90.71 94.12 87.00 92.59 91.54 89.13

(or, equivalently, supUr
∥WUrΓrU

⊤
r ∥F ), is achieved when Ur consists of the top-r right singular

vectors of W . In such a situation, Ur is an orthogonal matrix, i.e., U⊤
r Ur = Ir. When the

orthogonality is not held, ∥WUrΓrU
⊤
r ∥F is reduced, as illustrated in Figure 2. In other words,

when adapting the pre-trained model, enhancing the orthogonality of Ur imposes stronger regularity
on the adapter — it encourages the discrepancy between the target model and the original pre-trained
model while restricting the feasible domain of the adapter’s parameter matrix.

Motivated by the above analysis, we can implement HRA with an orthogonality regularizer. Typically,
given a pre-trained model M, we can adapt L weight matrices of the model based on a dataset D by
solving the following optimization problem:

min{U(l)
r }L

l=1

Loss(D; {U (l)
r }Ll=1) + λ

∑L

l=1
∥Ir − (U (l)

r )⊤U (l)
r ∥2F , (6)

where U
(l)
r denotes the parameters of HRA for the l-th weight matrix. In equation 6, the first term

denotes the loss function, while the second term is the proposed regularizer that encourages the
orthogonality of all U (l)

r ’s, whose significance is controlled by λ > 0. Because it does not change
the forward step of HRA, this regularizer only increases the adaptation cost slightly.

As shown in Figure 1a, by controlling the strength of the orthogonality regularizer, we can achieve a
trade-off between the model capacity and regularity. When λ = 0, the feasible domain of Ur is the
set of column-normalized matrices, and accordingly, the model capacity is maximized. In contrast,
when λ → ∞, the feasible domain of Ur is the set of orthogonal matrices (i.e., Od×r), leading to
the strongest regularity. When λ = ∞, we implement a strictly-orthogonal HRA based on Gram-
Schmidt (GS) orthogonalization. For each layer’s HRA adapter, we initialize its parameter matrix as
Vr ∈ Rd×r and applying Gram-Schmidt orthogonalization [2] to it, i.e., Ur = GS(Vr). As shown in
Figure 1a, in such a situation, the forward step of each adapter becomes z = W (I − 2UrU

⊤
r )x, and

the computational complexity becomes O(d(r2 + r + dout)), where additional O(dr2) operations
are used for Gram-Schmidt orthogonalization. According to Table 1, the complexity of this strictly-
orthogonal HRA is comparable to OFT [37] when r = b.

4 Experiments

To demonstrate the effectiveness of HRA, we conduct comparative experiments for HRA and state-
of-the-art adaptation methods on three models oriented to different tasks, including DeBERTaV3-
base [15] for natural language understanding, LLaMA2-7B [46] for mathematical reasoning, and
Stable Diffusion [40] for conditional text-to-image generation. Typical results are shown below.
More results and implementation details are provided in Appendix.

In each experiment, we set the number of HRs (i.e., r) to ensure that HRA has comparable or fewer
trainable parameters than existing adaptation methods (including LoRA, OFT, and their variants).
Setting λ ∈ (0,∞) leads to the proposed HRA method, and we demonstrate the robustness of HRA
to the λ in a wide range. By default, we set λ ∈ [10−5, 10−3] in the experiments. Furthermore, to
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analyze the trade-off between model capacity and regularity, we consider two variants of HRA: i)
the HRA without the orthogonality regularization (λ = 0) and ii) the strictly-orthogonal HRA using
GS orthogonalization (i.e., λ = ∞). For convenience, we denote HRAr,λ as the HRA learning r
Householder reflections per layer with an orthogonality regularizer weighted by λ.

4.1 Natural Language Understanding
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Figure 3: The robustness of HRA (r = 8) to λ on
MRPC.

We adapt DeBERTaV3-base [15] by different methods
and test the performance of the adapted models on the
General Language Understanding Evaluation (GLUE)
benchmark [50]. Following AdaLoRA [62] and
BOFT [34], we consider eight tasks of GLUE in this
experiment, including two single-sentence tasks, three
similarity and paraphrase tasks, and three inference
tasks. The experimental results in Figure 1b and
Table 2 show that using fewer trainable parameters,
HRA achieves the best or comparable results across
all datasets and thus leads to the best average perfor-
mance. These results demonstrate the efficiency and
effectiveness of HRA.

In this experiment, the HRA without the regularization
(i.e., λ = 0) and that using weak regularization (i.e.,
λ = 10−5) achieve comparable adaptation results,
while imposing strong regularity by strict orthogonal-
ity (i.e., λ = ∞) harms the model performance. This interesting phenomenon implies that the
adaptation tasks in GLUE are challenging enough to apply the adapter with sufficient capacity.
Figure 3 shows the performance of HRA on MRPC when λ ∈ [10−7, 10−3]. We can find that HRA
achieves relatively stable performance when λ changes in a wide range.

4.2 Mathematical Reasoning of LLM
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Figure 4: The robustness of HRA (r = 8) to λ in
mathematical reasoning tasks.

We adapt LLaMA2-7B [46] on the MetaMathQA
dataset [56] by different adaptation methods and test
the adaptation performance on the GSM8K [7] and
MATH [56] validation sets. Following LoRA [20],
each method only adapts the query and value projec-
tion matrices of LLaMA2-7B. The results in Figure 1c
show that HRA outperforms its competitors on both
GSM8K and MATH when we set r = 32 and make
it have the same number of trainable parameters as
BOFT [34]. Furthermore, the HRA with r = 16 uti-
lizes only half the trainable parameters of BOFT yet
still surpasses its performance, which demonstrates
the efficiency of HRA. In addition, the HRA with the
orthogonality regularization achieves a trade-off be-
tween model capacity and regularity. In Figure 4, we
test the robustness of HRA to λ, demonstrating that
the performance of the HRA with r = 8 is stable when λ ∈ [10−5, 10−3]. For the HRA using more
HRs (e.g., r = 16 and 32), we set λ = 10−4 based on this robustness test result, balancing the
performance on GSM8K and MATH. As shown in Table 1c, the best performance is achieved when
r = 32 and λ = 10−4.

Besides, to verify whether HRA can better retain pre-training knowledge, we fine-tune LLaMA-2
7B on the MATHQA dataset by LoRA and HRA, respectively, and check the degradation of model
performance on classic NLP tasks, including typical language tasks in ARC [55], HellaSwag [58],
MMLU [17], Winogrande [42], and a coding task in HumanEval [6]. Ideally, after adaptation,
we hope that the model can still maintain its high performance in the NLP tasks. The results in
Table 3 shows that compared to LoRA, HRA retains more of the original model’s knowledge, whose
performance degradation is less severe than LoRA’s. In the HumanEval task, its performance is even
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Table 3: The results (%) of LLaMA2-7B on classic natural language processing tasks after fine-tuned on
MATHQA by LoRA and HRA, respectively.

Method ARC HellaSwag MMLU Winogrande HumanEval Overall Impact

LLaMA2-7B 49.74 58.90 45.92 74.11 12.80 —

Fine-tuned by LoRA 48.81 56.89 40.60 71.27 11.59 -6.03%
Fine-tuned by HRA 49.57 57.72 41.20 73.32 13.41 -1.79%

Table 4: Results of various methods on subject-driven generation and controllable generation. For each evaluation
metric, the best result is shown in bold, and the second best result is shown in underline. For HRA and its
variants, we set r = 7 and 8 for subjective-driven generation and controllable generation, respectively.

Method #Param Subject-driven generation #Param Controllable generation

(M) DINO↑ CLIP-I↑ CLIP-T↑ LPIPS↑ (M) C2I S2I L2F
IoU↑ F1↑ mIoU↑ mAcc↑ aAcc↑ Error↓

Real Images - 0.764 0.890 - 0.562 - - - - - - -

DreamBooth 859.52 0.614 0.778 0.239 0.737 859.52 0.049 0.093 7.72 14.40 33.61 146.19
ControlNet - - - - - 361.30 0.189 0.317 20.88 30.91 61.42 7.61
T2I-Adapter - - - - - 77.00 0.078 0.143 16.38 26.31 51.63 23.75
LoRA 0.8 0.613 0.765 0.237 0.744 1.25 0.168 0.286 22.98 35.52 58.03 7.68
COFT b=4 23.3 0.630 0.783 0.235 0.744 26.40 0.195 0.325 26.92 40.08 62.96 6.92
OFT b=4 23.3 0.632 0.785 0.237 0.746 26.40 0.193 0.323 27.06 40.09 62.42 7.07
BOFT m=4

r=8 - - - - - 20.76 - - 28.83 41.24 67.74 5.67

HRA r=7,8 λ=0 0.69 0.670 0.803 0.238 0.758 0.89 0.213 0.350 29.45 42.02 66.83 5.56
HRA r=7,8 λ=10−3 0.69 0.661 0.799 0.255 0.760 0.89 0.205 0.339 29.27 40.89 67.86 5.46
HRA r=7,8 λ=∞ 0.69 0.651 0.794 0.274 0.778 0.89 0.201 0.334 28.15 40.22 64.95 11.11

better than that of the original model (which we think is because the MATHQA dataset contains many
samples relevant to logic and reasoning tasks and thus is useful in the HumanEval task).

4.3 Controllable Text-to-Image Diffusion Models

Following OFT [37] and BOFT [34], we evaluate HRA on adapting pre-trained Stable Diffu-
sion (SD) [40] for subject-driven generation and controllable generation, respectively. For a fair
comparison, we employ experimental procedures and evaluation metrics as the same as OFT [37]:

• Subject-driven generation. Given several images of a specific subject and a textual prompt,
subject-driven generation aims to generate images of the same subject in a context aligning with
the prompt. Taking SD as the backbone model, we evaluate the generation performance of different
model adaptation methods, including DreamBooth [41], LoRA [20], OFT and its variant COFT [37],
and our HRA. Following DreamBooth [41], we train and evaluate on generating 25 subjects, each
of which corresponds to 30 prompts.

• Controllable generation. Controllable generation aims to generate images aligning with a textual
prompt and additional control signals (such as facial landmark annotations, canny edges, and
segmentation maps). We conduct experiments on three challenging controllable generation tasks:
Canny edge to image (C2I) on the COCO dataset [32], landmark to face (L2F) on the CelebA-HQ
dataset [23, 52], and segmentation map to image (S2I) on the ADE20K dataset [64]. In this
experiment, we use DreamBooth [41], ControlNet [61], T2I-Adapter [36], LoRA [20], OFT and its
variant COFT [37], and BOFT [34] as baselines.

Table 4 shows the quantitative experimental results. In the subject-driven generation task, we evaluate
three crucial aspects of generated images: subject fidelity (DINO [3], CLIP-I [38]), textual prompt
fidelity (CLIP-T [38]), and sample diversity (LPIPS [63]). It can be observed that HRA achieves
remarkable improvement across almost all metrics. In addition, we find that without the orthogonality
(λ = 0), HRA achieves the highest subject fidelity while sacrificing textual prompt fidelity and sample
diversity to some extent, while the strictly-orthogonal HRA (λ = ∞) shows opposite tendencies.
Applying the orthogonality regularization with λ = 10−3 makes HRA balance the performance in all
the metrics. Similarly, in the three controllable generation tasks, HRA demonstrates stronger and more
precise control compared to the baselines. However, in these tasks, the strictly-orthogonal HRA leads
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a [V] clock on top of green grass with sunflowers around it

a red [V] clock

a [V] teapot on top of a purple rug in a forest

a [V] teapot floating on top of water

a [V] vase in the snow

a [V] vase with a wheat field in the background

Original Images LoRA OFT HRA7,0 HRA7,10−3 HRA7,∞

Figure 5: Qualitative results on subject-driven generation.

to suboptimal performance. It means that these tasks require our adapter to have sufficient capacity,
but the strict orthogonality constrains its capacity too much. In both tasks, HRA demonstrates the
smallest number of trainable parameters among the compared methods. Figures 5 and 6 provide
typical qualitative results, demonstrating that the images generated based on HRA have good visual
effects and well-aligned semantics.

5 Conclusion

In this study, we have proposed a simple but effective Householder reflection adaptation method and
have demonstrated its usefulness in various adaptation tasks. The proposed HRA method bridges the
gap between low-rank and orthogonal adaptation strategies. It simplifies the implementation of OFT
while inheriting its theoretical guarantees on the retention of pre-training knowledge. In addition,
we show that controlling the orthogonality of the Householder reflections can achieve the trade-off
between HRA’s model capacity and its regularity. In the future, we would like to improve HRA for
practical applications, including accelerating its computation, reducing its memory cost, exploring
other regularizers for parameter matrices, and adjusting the weights of the regularizers automatically.
We also plan to test HRA on adapting more advanced LLMs, e.g., LLaMA3 and Grok-1.
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Ref. Img Control LoRA OFT HRA8,0 HRA8,10−5 HRA8,∞

Prompt: A baseball game being played.

Prompt: A plate with a slice of orange on it.

Prompt: A sheep crossing a dirt road.

Prompt: A man smiling for the camera.

Prompt: A young boy smiling for the camera.

Prompt: A man with sunglasses on.

Prompt: A brick building.

Prompt: A tree stump.

Prompt: A building with a car parked in front of it.

Figure 6: Comparisons for various adaptation methods on controllable generation, in which the control signals
include Canny edges, face landmarks, and semantic segmentation results of reference images.

10



Acknowledgments and Disclosure of Funding

This work was supported by National Natural Science Foundation (92270110, 62106271), Beijing
Natural Science Foundation (L233008), the Fundamental Research Funds for the Central Universities,
and the Research Funds of Renmin University of China. We also acknowledge the support provided by
the fund for building world-class universities (disciplines) of Renmin University of China and by the
funds from Engineering Research Center of Next-Generation Intelligent Search and Recommendation,
Ministry of Education, and from Intelligent Social Governance Interdisciplinary Platform, Major
Innovation & Planning Interdisciplinary Platform for the “Double-First Class” Initiative, Renmin
University of China.

References
[1] Teodor Banica and Roland Speicher. Liberation of orthogonal lie groups. Advances in Mathe-

matics, 222(4):1461–1501, 2009.

[2] Åke Björck. Numerics of gram-schmidt orthogonalization. Linear Algebra and Its Applications,
197:297–316, 1994.

[3] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 9650–9660, 2021.

[4] Aochuan Chen, Ziqi Gao, Zijing Liu, Yu Li, and Jia Li. Parameter-efficient fine-tuning via
circular convolution. arXiv preprint arXiv:2407.19342, 2024.

[5] Beidi Chen, Tri Dao, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and Christopher
Re. Pixelated butterfly: Simple and efficient sparse training for neural network models. In
International Conference on Learning Representations, 2021.

[6] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra,
Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code, 2021.

[7] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[8] Tri Dao, Nimit Sohoni, Albert Gu, Matthew Eichhorn, Amit Blonder, Megan Leszczynski,
Atri Rudra, and Christopher Ré. Kaleidoscope: An efficient, learnable representation for all
structured linear maps. In International Conference on Learning Representations, 2019.

[9] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

[10] Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai Lam, Lidong Bing, and Nigel Collier. On
the effectiveness of parameter-efficient fine-tuning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pages 12799–12807, 2023.

[11] Ziqi Gao, Qichao Wang, Aochuan Chen, Zijing Liu, Bingzhe Wu, Liang Chen, and Jia Li.
Parameter-efficient fine-tuning with discrete fourier transform. arXiv preprint arXiv:2405.03003,
2024.

[12] Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

11



[13] Karen Hambardzumyan, Hrant Khachatrian, and Jonathan May. Warp: Word-level adversarial
reprogramming. In Proceedings of the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 4921–4933, 2021.

[14] Chuchu Han, Ruochen Zheng, Changxin Gao, and Nong Sang. Complementation-reinforced
attention network for person re-identification. IEEE Transactions on Circuits and Systems for
Video Technology, 30(10):3433–3445, 2019.

[15] Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using
electra-style pre-training with gradient-disentangled embedding sharing. arXiv preprint
arXiv:2111.09543, 2021.

[16] Wu Hecong. ControlLoRA: A Lightweight Neural Network To Control Stable Diffusion Spatial
Information, 2 2023.

[17] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding, 2021.

[18] Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson,
Heewoo Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive
generative modeling. arXiv preprint arXiv:2010.14701, 2020.

[19] Alston S Householder. Unitary triangularization of a nonsymmetric matrix. Journal of the ACM
(JACM), 5(4):339–342, 1958.

[20] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. Lora: Low-rank adaptation of large language models. In International Conference
on Learning Representations, 2021.

[21] Nam Hyeon-Woo, Moon Ye-Bin, and Tae-Hyun Oh. Fedpara: Low-rank hadamard product
for communication-efficient federated learning. In International Conference on Learning
Representations, 2021.

[22] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

[23] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for
improved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

[24] Hyunjik Kim, George Papamakarios, and Andriy Mnih. The lipschitz constant of self-attention.
In International Conference on Machine Learning, pages 5562–5571. PMLR, 2021.

[25] Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki Markus Asano. Vera: Vector-based random
matrix adaptation. arXiv preprint arXiv:2310.11454, 2023.

[26] Jitin Krishnan, Hemant Purohit, and Huzefa Rangwala. Diversity-based generalization for
neural unsupervised text classification under domain shift. In ECML-PKDD, 2020.

[27] Mingu Lee, Jinkyu Lee, Hye Jin Jang, Byeonggeun Kim, Wonil Chang, and Kyuwoong Hwang.
Orthogonality constrained multi-head attention for keyword spotting. In 2019 IEEE Automatic
Speech Recognition and Understanding Workshop (ASRU), pages 86–92. IEEE, 2019.

[28] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pages 3045–3059, 2021.

[29] Qiyang Li, Saminul Haque, Cem Anil, James Lucas, Roger Grosse, and Jörn-Henrik Jacobsen.
Preventing gradient attenuation in lipschitz constrained convolutional networks. In Proceedings
of the 33rd International Conference on Neural Information Processing Systems, pages 15390–
15402, 2019.

12



[30] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 4582–4597, 2021.

[31] Yixiao Li, Yifan Yu, Chen Liang, Nikos Karampatziakis, Pengcheng He, Weizhu Chen, and Tuo
Zhao. Loftq: Lora-fine-tuning-aware quantization for large language models. In The Twelfth
International Conference on Learning Representations, 2023.

[32] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pages 740–755. Springer, 2014.

[33] Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang,
Kwang-Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation.
arXiv preprint arXiv:2402.09353, 2024.

[34] Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yuxuan Xue, Longhui Yu, Haiwen Feng, Zhen
Liu, Juyeon Heo, Songyou Peng, et al. Parameter-efficient orthogonal finetuning via butterfly
factorization. In International Conference on Learning Representations, 2024.

[35] Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular
vectors adaptation of large language models. arXiv preprint arXiv:2404.02948, 2024.

[36] Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, and Ying Shan.
T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion
models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages
4296–4304, 2024.

[37] Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian
Weller, and Bernhard Schölkopf. Controlling text-to-image diffusion by orthogonal finetuning.
Advances in Neural Information Processing Systems, 36:79320–79362, 2023.

[38] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[39] Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi,
Ammar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-
experts inference and training to power next-generation ai scale. In International conference on
machine learning, pages 18332–18346. PMLR, 2022.

[40] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684–10695, 2022.

[41] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
22500–22510, 2023.

[42] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale, 2019.
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A The Impacts of Orthogonality

Given a weight matrix W ∈ Rdout×d, we assume that dout ≥ d. Denote the SVD of W as QΣV ⊤,
where Σ = diag(σ1, ..., σd), σ1 ≥ σ2 ≥ ... ≥ σd, and V = [v1, ...,vd] is the right singular matrix.

When r = 1, we have

∥W −WH(1)∥2F = 4∥Wu1u
⊤
1 ∥2F = 4tr(u⊤

1 V Σ2V u1), for u1 ∈ Sd−1. (7)

Obviously, when u1 = v1, the distance between W and WH(1) is maximized.

Applying mathematical induction, we assume that ∥W − WH(r)∥F is maximized when Ur =
Vr = [v1, ...,vr] for r < d.

Then, in the case of r + 1, for u ∈ Sd−1, we have

∥W −WH(r+1)∥2F = ∥W −WH(r)(I − 2uu⊤)∥2F = 4∥WVrV
⊤
r −Wuu⊤∥2F , (8)

where the equations are based on the facts that i) HR and the chain of HRs are unitary matrices and
ii) the Frobenius norm is unitary-invariant.

Note that, V = [v1, ...,vd] = [Vr,Vd−r] works as an orthonormal basis of Rd, so we have u =
V β = Vrβr + Vd−rβd−r, where β = [βr;βd−r] ∈ Sd−1. Accordingly, we rewrite equation 8 as

∥W −WH(r+1)∥2F
=4∥WVrV

⊤
r −Wuu⊤∥2F

=4∥ΣV ⊤VrV
⊤
r −ΣV ⊤uu⊤∥2F

=4tr([Vr,0d×(d−r)]Σ
2[Vr,0d×(d−r)]

⊤)− 8tr([Vr,0d×(d−r)]Σ
2V ⊤uu⊤) + 4tr(u⊤V Σ2V ⊤u)

=4
∑r

i=1
σ2
i + 4tr(β⊤Σ2β)− 8tr(β⊤

r Σ
2
rβr)

=4
∑r

i=1
σ2
i + 4tr(β⊤

d−rΣ
2
d−rβd−r)− 4tr(β⊤

r Σ
2
rβr),

where Σ = diag(Σr,Σd−r). Obviously, when βr = 0r and βd−r = [1, 0, .., 0]⊤ ∈ Rd−r, the dis-
tance between W and WH(r+1) is maximized. In such a situation, u = V β = vr+1, corresponds
to the (r + 1)-th right singular vector, and Ut+1 = Vt+1 accordingly.

B Implementation Details

B.1 Natural Language Understanding

Following BOFT [34], we use the same batch size (i.e., 32 for each task), maximum sequence length,
and tune the learning rate, number of training epochs, warm-up steps, as well as λ in the R-HRA
method. Additionally, the dropout rate is consistently set to 1E-01. We adapt every linear layer in
DeBERTaV3 and froze the pre-trained weights for all tasks. Both training and testing are conducted
on 7 NVIDIA GeForce RTX 3090 GPUs. Detailed hyperparameter setups are presented in Table 5.

Table 5: The hyperparameters for DeBERTaV3-base on tasks included in the GLUE benchmark.

Method Dataset MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B

HRAr=8,λ=0

Epochs 8 10 34 12 12 11 60 39
Learning Rate 1E-02 3E-03 9E-03 8E-03 1E-02 5E-03 6E-03 5E-03
Warm Up Steps 1000 500 100 1000 500 50 50 50
Max Seq. Len. 256 128 64 320 512 320 320 128

HRAr=8,λ=10−6

Epochs 5 8 12 11 6 44 35 30
Learning Rate 2E-03 2E-03 2E-03 2E-03 2E-03 1E-03 1E-03 9E-04
Warm Up Steps 1000 500 100 1000 500 50 50 50
Max Seq. Len. 256 128 64 320 512 320 320 128
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B.2 Mathematical Reasoning

Following BOFT [34], we fine-tune the LLaMA2-7B model on the first generated 512 tokens, which
is sufficient for these two tasks. In all experiments, we fix the training epoch as 2 and use the
cosine learning scheduler and the warm-up ratio is set as 0.005. We follow the evaluation tools in
MetaMathQA [56], where they use the Alpaca [45] prompt and evaluate the model in zero-shot.
The generation temperature is set as 0 for both tasks. In our proposed method, the learning rate of
HRAλ=0 is set to 1E-05, HRAλ=10−4 is set to 3E-05, and HRAλ=∞ is set to 1E-03. Both training
and testing are conducted on 8 NVIDIA L20 GPUs.

B.3 Subject-driven Generation

Following OFT [37], we use the same AdamW optimizer with a weight decay of 1E-02 and fine-tune
the linear layers including Wq, Wk, Wv, and Wo in the UNet model. The learning rate is set to
7E-06, with a batch size of 1, and the number of training steps is approximately 2000 steps. Both
training and testing are conducted on 7 NVIDIA GeForce RTX 3090 GPUs.

B.4 Controllable Generation

Our data processing procedure and architecture design are consistent with OFT [37]. In addition to
injecting trainable HRA weights into the stable diffusion model, we employ a lightweight neural
network [16] to encode the control signals. We fine-tune the model for 11 epochs for C2I and 20
epochs for L2F and S2I. The learning rate is set to 3E-05 with a batch size of 8 for all three tasks.
Both training and testing are conducted on 8 NVIDIA RTX A6000 GPUs.

B.5 Analysis of Computational Cost and Robustness

To compare the computational efficiency, we adapt LLaMA2-7B on the MetaMathQA dataset by
HRA and other baselines and test their training time and GPU memory costs. For a fair comparison,
we conduct all the experiments on 8 NVIDIA RTX A6000 GPUs, and apply the same batch size
and almost the same number of trainable parameters across all the models. The results in Table 6
show that HRA’s peak memory usage is comparable to that of baselines, while its training time is less.
These results demonstrate HRA’s superiority in computational efficiency and adaptation performance.

Table 6: The comparison for various models on their computational efficiency.

Method Param. Ratio Training time (hours) Peak memory usage (GB)

LoRA 0.12% 45 279
OFT 0.13% 53 282
HRA 0.12% 30 287

To analyze the impact of orthogonality, we conduct mathematical reasoning experiments with
different values of λ. The results in Table 7 shows that a) the performance of HRA is relatively
stable concerning the change of λ, b) in the wide range of λ, HRA is superior to the baselines,
c) even if ignoring the regularizer (λ = 0), our method still outperforms the baselines. These
results demonstrate the effectiveness and robustness of implementing orthogonal adaptation based on
Householder reflections. In the future, we will consider further analyzing the impacts of λ in theory.

Table 7: Results (%) of HRA with other values of λ for mathematical reasoning.

Method Param. Ratio GSM8K MATH

LoRAr=32 0.25% 50.2 7.8
OFTb=16 0.13% 50.1 8.4
HRAr=32,λ=∞ 0.12% 52.8 9.2
HRAr=32,λ=1e−1 0.12% 53.6 8.3
HRAr=32,λ=1e−4 0.12% 56.3 9.3
HRAr=32,λ=1e−8 0.12% 53.6 8.6
HRAr=32,λ=0 0.12% 55.8 9.0
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C More Experimental Results

C.1 Subject-driven Generation

a [V] backpack with a city in the background

a [V] backpack with a blue house in the background

a [V] stuffed animal on the beach

a [V] stuffed animal on top of a wooden floor

a [V] cat wearing a red hat

a [V] cat wearing pink glasses

a [V] dog wearing a santa hat

a [V] dog wearing a rainbow scarf

Original Images LoRA OFT HRA7,0 HRA7,10−3 HRA7,∞

Figure 7: More qualitative results on subject-driven generation.
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a [V] sneaker with a tree and autumn leaves in the background

a [V] sneaker on top of a dirt road

a [V] toy on top of pink fabric

a [V] toy on top of a white rug

a [V] backpack on a cobblestone street

a [V] backpack with the Eiffel Tower in the background

a [V] cat on top of a wooden floor

a [V] cat with a city in the background

Original Images LoRA OFT HRA7,0 HRA7,10−3 HRA7,∞

Figure 8: More qualitative results on subject-driven generation.
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C.2 Controllable Generation

C.2.1 Canny Edge to Image

Ref. Img Control LoRA OFT HRA8,0 HRA8,10−5 HRA8,∞

Prompt: Carrots on a cutting board.

Prompt: A zebra.

Prompt: A couple sitting on a bench.

Prompt: A person throwing a frisbee.

Prompt: A beach at sunset.

Prompt: A table with a plate of food and a cup of coffee.

Prompt: A bench in the middle of nowhere.

Prompt: Several airplanes parked at an airport.

Figure 9: More qualitative results on canny edge to image.
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C.2.2 Landmark to Face

Ref. Img Control LoRA OFT HRA8,0 HRA8,10−5 HRA8,∞

Prompt: A man with a tattoo on his arm.

Prompt: A young man in a suit and tie.

Prompt: A man with long hair.

Prompt: A woman with blonde hair.

Prompt: A man with long hair.

Prompt: A woman with long blonde hair.

Prompt: A woman with long brown hair.

Prompt: A woman with long brown hair.

Figure 10: More qualitative results on landmark to face.
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C.2.3 Segmentation to image

Ref. Img Control LoRA OFT HRA8,0 HRA8,10−5 HRA8,∞

Prompt: A car parked in front of a house.

Prompt: A field.

Prompt: The coast.

Prompt: A living room with two chairs and a table.

Prompt: A man playing a game of pool.

Prompt: A castle in scotland.

Prompt: A street in a city.

Prompt: A pile of tires.

Figure 11: More qualitative results on segmentation to image.
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C.3 Case Studies in Mathematical Reasoning

Case Study 1

Question: There were 50 cats on a rock. Four boats came and carried away 5 cats each, and
later, 3/5 of the remaining cats ran after a mouse they’d seen. How many cats were left on the
rock? (Ground-truth answer is 12)

Llama-2 Answer: Initially, there were 50 cats on the rock. Then, 4 boats came and carried
away 5 cats each, so the total number of cats carried away is: 4 boats x 5 cats/boat = 20
cats So, the number of cats left on the rock is: 50 cats - 20 cats = 30 cats Next, 3/5 of the
remaining cats (which is the same as 60% of the cats) ran after a mouse they’d seen. This
means that: 30 cats x 60% = 18 cats left the rock to chase the mouse. Therefore, there are 30
cats left on the rock. The answer is 30

HRA32,0 Answer: There were 50 cats on the rock. Four boats came and carried away 5
cats each, so a total of 4 * 5 = 20 cats were carried away. The remaining number of cats
on the rock is 50 - 20 = 30 cats. Then, 3/5 of the remaining cats ran after a mouse, so 3/5
* 30 = 24 cats ran away. The number of cats left on the rock is 30 - 24 = 6 cats. The answer is: 6

HRA32,10−4 Answer: There were 50 cats on the rock. Four boats came and carried away 5
cats each, so 4 * 5 = 20 cats were carried away. After the cats were carried away, there were
50 - 20 = 30 cats left on the rock. Then, 3/5 of the remaining cats ran after a mouse, so 3/5 *
30 = 18 cats ran away. Therefore, there were 30 - 18 = 12 cats left on the rock. The answer is:
12

HRA32,∞ Answer: There were 50 cats on the rock. Four boats came and carried away 5 cats
each, so 4 x 5 = 20 cats were carried away. The remaining cats on the rock are 50 - 20 = 30
cats. 3/5 of the remaining cats ran after a mouse, so 3/5 x 30 = 18 cats ran away. The number
of cats left on the rock is 30 - 18 = 12 cats. The answer is: 12

Case Study 2

Question: James likes to check the coin return of the vending machine for change. One day
he finds a quarter, two nickels, and 7 dimes. How much money in cents does James have?
(Ground-truth answer is 105)

Llama-2 Answer: Based on the information provided in the instruction, James has a total of:
* 1 quarter = 25 cents * 2 nickels = 50 cents * 7 dimes = 70 cents Therefore, James has a
total of 145 cents. The answer is 145

HRA32,0 Answer: First, we need to convert the coins to cents. One quarter is worth 25 cents.
Two nickels are worth 2 * 5 = 10 cents each. So, two nickels are worth 10 cents each. Seven
dimes are worth 10 * 0.10 = 1 cents each. So, seven dimes are worth 7 cents each. Now, we
can add up the value of the coins. 25 cents + 10 cents + 7 cents = 42 cents. Therefore, James
has 42 cents. The answer is: 42

HRA32,10−4 Answer: 1 quarter = 25 cents 2 nickels = 2 * 5 = 10 cents 7 dimes = 7 * 10 = 70
cents So, James has 25 + 10 + 70 = 105 cents. The answer is: 105

HRA32,∞ Answer: First, we need to convert the coins to cents. 1 quarter is equal to 25 cents.
2 nickels is equal to 2 * 5 = 10 cents. 7 dimes is equal to 7 * 10 = 70 cents. Now, we can add
up the total amount of money. 25 + 10 + 70 = 105 cents. Therefore, James has 105 cents.
The answer is: 105
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Case Study 3

Question: Julia’s boat sprang a leak while she was out on the lake. The boat was taking
on two liters of water for every ten feet she rowed back towards shore. It took her sixteen
seconds to row twenty feet. The shore was 64 seconds away. How much water had the boat
taken on by the time Julia reached shore? (Ground-truth answer is 16)

Llama-2 Answer: To find out how much water the boat took on by the time Julia reached
shore, we need to use the information provided in the problem. We know that the boat takes
on 2 liters of water for every 10 feet it rows back towards shore. So, if Julia rowed 20 feet
(which takes her 16 seconds), the boat took on 2 liters of water. We also know that Julia
rowed a total of 64 seconds to reach the shore. So, if she rowed 20 feet in 16 seconds, she
rowed a total of 40 feet (20 feet x 2) in the remaining 44 seconds. This means the boat took
on 8 liters of water (2 liters per 10 feet x 40 feet). Therefore, by the time Julia reached the
shore, the boat had taken on 8 liters of water. The answer is 8

HRA32,0 Answer: Julia rowed 20 feet in 16 seconds, so she rowed 20/16 = 1.25 feet per
second. The boat takes on 2 liters of water for every 10 feet rowed, so it takes on 2/10 = 0.2
liters of water per second. Since Julia rowed 1.25 feet per second, the boat takes on 0.2 *
1.25 = 0.25 liters of water per second. The shore is 64 seconds away, so the boat takes on
0.25 * 64 = 16 liters of water by the time Julia reaches shore. The answer is: 16

HRA32,10−4 Answer: Julia rowed 20 feet in 16 seconds, so she rowed at a rate of 20/16 =
1.25 feet per second. Since she was taking on 2 liters of water for every 10 feet she rowed,
she was taking on 2/10 * 1.25 = 0.25 liters of water per second. Since she was taking on 0.25
liters of water per second, and it took her 64 seconds to reach shore, the boat had taken on
0.25 * 64 = 16 liters of water by the time she reached shore. The answer is: 16

HRA32,∞ Answer: Julia rowed 20 feet in 16 seconds. To find the rate at which the boat was
taking on water, we divide the amount of water by the time it took to row 20 feet. So, the rate
at which the boat was taking on water is 2 liters/10 feet * 16 seconds = 32 liters/10 feet. Since
Julia rowed 20 feet, the boat took on 32 liters/10 feet * 20 feet = 640 liters of water. Since the
shore was 64 seconds away, the boat took on 640 liters of water in 64 seconds. Therefore, the
boat took on 640 liters of water by the time Julia reached shore. The answer is: 640

Case Study 4

Question: Jillian’s handbag cost $20 less than 3 times as much as her shoes cost. If her shoes
cost $80, how much did her bag cost? (Ground-truth answer is 220)

Llama-2 Answer: f Jillian’s shoes cost $80 and her handbag cost $20 less than 3 times as
much as her shoes cost, then we can set up the following equation: 3x = $80 - $20 Solving
for x, we get: x = $80 - $20 x = $60 So, Jillian’s handbag cost $60. The answer is 60

HRA32,0 Answer: We know that Jillian’s shoes cost $80. Her bag cost $20 less than 3 times
as much as her shoes cost. So, her bag cost $80 * 3 - $20 = $240 - $20 = $220. Therefore,
Jillian’s bag cost $220. The answer is: 220

HRA32,10−4 Answer: Jillian’s shoes cost $80. Her bag cost $20 less than 3 times as much as
her shoes cost. So, her bag cost 3 * $80 - $20 = $240 - $20 = $220. Therefore, her bag cost
$220. The answer is: 220

HRA32,∞ Answer: Jillian’s shoes cost $80. Her handbag cost $20 less than 3 times as much
as her shoes cost. So, her handbag cost 3 * $80 - $20 = $210 - $20 = $190. Therefore, her
handbag cost $190. The answer is: 190
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Case Study 5

Question: In a dance class of 20 students, 20% enrolled in contemporary dance, 25% of the
remaining enrolled in jazz dance, and the rest enrolled in hip-hop dance. What percentage of
the entire students enrolled in hip-hop dance? (Ground-truth answer is 60)

Llama-2 Answer: Total number of students in the dance class = 20 Percentage of students
enrolled in contemporary dance = 20% of 20 = 4 Percentage of students enrolled in jazz
dance = 25% of 16 (since 20% are enrolled in contemporary dance) = 4 Percentage of
students enrolled in hip-hop dance = Remaining students - 4 = 12 Therefore, 12% of the
entire students in the dance class are enrolled in hip-hop dance. The answer is 12

HRA32,0 Answer: First, we need to find out how many students enrolled in contemporary
dance. 20% of 20 students is 0.20 * 20 = 4 students. So, there are 20 - 4 = 16 students
remaining. Next, we need to find out how many students enrolled in jazz dance. 25% of 16
students is 0.25 * 16 = 4 students. So, there are 16 - 4 = 12 students remaining. Finally, we
need to find out how many students enrolled in hip-hop dance. The remaining 12 students are
the ones who enrolled in hip-hop dance. Therefore, the percentage of students enrolled in
hip-hop dance is 12 / 20 * 100 = 60% The answer is: 60

HRA32,10−4 Answer: 20% of the 20 students enrolled in contemporary dance, so 20/100
* 20 = 4 students enrolled in contemporary dance. The remaining students are 20 - 4 =
16 students. 25% of the remaining 16 students enrolled in jazz dance, so 25/100 * 16 = 4
students enrolled in jazz dance. The remaining students are 16 - 4 = 12 students. The rest of
the students enrolled in hip-hop dance, so 12 students enrolled in hip-hop dance. To find the
percentage of the entire students enrolled in hip-hop dance, we divide the number of students
enrolled in hip-hop dance by the total number of students and multiply by 100. So, (12/20) *
100 = 60% The answer is: 60

HRA32,∞ Answer: First, 20% of the 20 students enrolled in contemporary dance, which is
20/100 * 20 = 4 students. So, there are 20 - 4 = 16 students remaining. Then, 25% of the
remaining 16 students enrolled in jazz dance, which is 25/100 * 16 = 4 students. So, there are
16 - 4 = 12 students remaining. Finally, the rest of the students enrolled in hip-hop dance,
which is 12 students. Therefore, 12/20 * 100 = 60% of the entire students enrolled in hip-hop
dance. The answer is: 60
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Case Study 6

Question: A candle melts by 2 centimeters every hour that it burns. How many centimeters
shorter will a candle be after burning from 1:00 PM to 5:00 PM? (Ground-truth answer is
8)

Llama-2 Answer: To determine how many centimeters shorter a candle will be after
burning from 1:00 PM to 5:00 PM, we need to first calculate the total time the candle
will be burning during that period. 1:00 PM + 5:00 PM = 8 hours Since the candle
melts by 2 centimeters every hour, we can calculate the total distance it will melt
during the 8 hours as follows: 2 centimeters/hour x 8 hours = 16 centimeters So, after
burning from 1:00 PM to 5:00 PM, the candle will be 16 centimeters shorter. The answer is 16

HRA32,0 Answer: The candle burns for a total of 4 hours. In the first hour, the candle melts
by 2 centimeters. In the second hour, the candle melts by 2 centimeters. In the third hour, the
candle melts by 2 centimeters. In the fourth hour, the candle melts by 2 centimeters. So, in
total, the candle melts by 2 centimeters x 4 hours = 8 centimeters. Therefore, the candle will
be 8 centimeters shorter after burning from 1:00 PM to 5:00 PM. The answer is: 8

HRA32,10−4 Answer: From 1:00 PM to 2:00 PM, the candle burns for 1 hour. So, the candle
will melt by 2 centimeters x 1 hour = 2 centimeters. From 2:00 PM to 3:00 PM, the candle
burns for 1 hour. So, the candle will melt by 2 centimeters x 1 hour = 2 centimeters. From
3:00 PM to 4:00 PM, the candle burns for 1 hour. So, the candle will melt by 2 centimeters
x 1 hour = 2 centimeters. From 4:00 PM to 5:00 PM, the candle burns for 1 hour. So, the
candle will melt by 2 centimeters x 1 hour = 2 centimeters. In total, the candle will melt by 2
centimeters + 2 centimeters + 2 centimeters + 2 centimeters = 8 centimeters. Therefore, the
candle will be 8 centimeters shorter after burning from 1:00 PM to 5:00 PM. The answer is: 8

HRA32,∞ Answer: First, we need to find out how many hours the candle will burn from
1:00 PM to 5:00 PM. There are 5 hours in total, so the candle will burn for 5 - 1 = 4 hours.
Next, we need to find out how many centimeters the candle will melt in 4 hours. Since the
candle melts by 2 centimeters every hour, it will melt 2 x 4 = 8 centimeters in total. Finally,
we need to subtract the initial length of the candle from the total length it will melt to find
out how many centimeters shorter the candle will be. The initial length of the candle is 0
centimeters, so the candle will be 8 centimeters shorter. The answer is: 8
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Case Study 7

Question: Marie ordered one chicken meal that costs $12, 5 packs of milk that costs $3 each,
4 apples that cost $1.50 each, and some boxes of pizza. Marie paid a total of $50. How many
boxes of pizza did Marie order if each box costs $8.50? (Ground-truth answer is 2)

Llama-2 Answer: Based on the information provided, we can calculate the number
of boxes of pizza that Marie ordered as follows: Total cost of Marie’s order = $12
(chicken meal) + $3 x 5 (packs of milk) + $4 x 4 (apples) = $50 If each box of pizza
costs $8.50, then the number of boxes of pizza that Marie ordered can be calculated
as follows: Total cost of pizza = $8.50 x number of boxes Since Marie paid a total
of $50, we can set up the following equation: $8.50 x number of boxes = $50 Now,
we can solve for the number of boxes of pizza that Marie ordered: number of boxes
= $50 / $8.50 number of boxes = 6 Therefore, Marie ordered 6 boxes of pizza. The answer is 6

HRA32,0 Answer: The cost of the chicken meal is $12. The cost of 5 packs of milk is 5 * $3
= $15. The cost of 4 apples is 4 * $1.50 = $6. The total cost of the chicken meal, milk, and
apples is $12 + $15 + $6 = $33. If Marie paid a total of $50, then the cost of the pizza boxes
is $50 - $33 = $17. If each box of pizza costs $8.50, then the number of boxes of pizza is $17
/ $8.50 = 2. Therefore, Marie ordered 2 boxes of pizza. The answer is: 2

HRA32,10−4 Answer: The chicken meal costs $12. The 5 packs of milk cost $3 each, so 5 *
$3 = $15. The 4 apples cost $1.50 each, so 4 * $1.50 = $6. The total cost of the chicken meal,
milk, and apples is $12 + $15 + $6 = $33. Marie paid a total of $50, so the cost of the pizza
boxes is $50 - $33 = $17. Each box of pizza costs $8.50, so the number of boxes of pizza is
$17 / $8.50 = 2. Therefore, Marie ordered 2 boxes of pizza. The answer is: 2

HRA32,∞ Answer: First, Marie ordered 1 chicken meal that costs $12. Next, she ordered
5 packs of milk that cost $3 each, so 5 * $3 = $15 for the milk. Then, she ordered 4 apples
that cost $1.50 each, so 4 * $1.50 = $6 for the apples. Finally, she ordered some boxes of
pizza that cost $8.50 each, so let’s say she ordered x boxes of pizza. So, the total cost of the
chicken meal, milk, apples, and pizza is $12 + $15 + $6 + $8.50x = $50. Simplifying the
equation, we get $33.50 + $8.50x = $50. Subtracting $33.50 from both sides, we get $8.50x
= $16.50. Dividing both sides by $8.50, we get x = 2. Therefore, Marie ordered 2 boxes of
pizza. The answer is: 2
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Case Study 7

Question: Claire makes a 3 egg omelet every morning for breakfast. How many dozens of
eggs will she eat in 4 weeks? (Ground-truth answer is 7)

Llama-2 Answer: To calculate how many dozens of eggs Claire will eat in 4 weeks, we need
to first convert the number of eggs she makes in an omelet. An omelet contains 3 eggs, so
Claire will eat 3 eggs per omelet. Since Claire makes an omelet every morning, she will eat
3 eggs per omelet per day. To find out how many dozens of eggs she will eat in 4 weeks,
we can multiply the number of eggs she eats per day by the number of days in 4 weeks: 3
eggs/day x 21 days/week x 4 weeks = 243 eggs Therefore, Claire will eat 243 dozens of eggs
in 4 weeks. The answer is 243

HRA32,0 Answer: Claire makes a 3 egg omelet every morning for breakfast. In 4 weeks,
there are 4 weeks x 7 days = 28 days. So, in 28 days, Claire will eat 28 x 3 = 84 eggs. Since
there are 12 eggs in a dozen, Claire will eat 84 / 12 = 7 dozen eggs. Therefore, Claire will eat
7 dozens of eggs in 4 weeks. The answer is: 7

HRA32,10−4 Answer: Claire makes a 3 egg omelet every morning for breakfast. In 4 weeks,
there are 4 x 7 = 28 days. So, in 28 days, Claire will eat 28 x 3 = 84 eggs. Since there are 12
eggs in a dozen, Claire will eat 84 / 12 = 7 dozen of eggs. The answer is: 7

HRA32,∞ Answer: Claire makes a 3 egg omelet every morning for breakfast. In 4 weeks,
there are 4 weeks x 7 days = 28 days. So, in 28 days, Claire will eat 28 x 3 = 84 eggs. To find
out how many dozens of eggs she will eat, we divide 84 by 12. 84 / 12 = 7 Therefore, Claire
will eat 7 dozens of eggs in 4 weeks. The answer is: 7
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made

in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Regarding the limitations of HRA, we believe the main concern is the setting
of hyperparameters (i.e., the rank r and the weight of orthogonal regularizer λ). Similar to
LoRA, the rank r of our HRA determines the trade-off between the number of trainable
parameters and the training efficiency. In this study, we set r to ensure that the number of
our trainable parameters is smaller than those of baselines. Of course, inspired by the recent
variants of LoRA, e.g., AdaLoRA, we can adjust the rank r adaptively, which is not the
main contribution of this work and thus is left to be our future work.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution is
low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: For each theoretical result, we provide the full set of assumptions and a
complete and correct proof.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the information of the backbone and the necessary hyperparameters
for each experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good
way to accomplish this, but reproducibility can also be provided via detailed instructions
for how to replicate the results, access to a hosted model (e.g., in the case of a large
language model), releasing of a model checkpoint, or other means that are appropriate to
the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
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case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code with comments and the available access to the data at
https://github.com/DaShenZi721/HRA.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized ver-
sions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental details including hyperparameters, optimizer, and so on, are
provided in appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The error bars are not reported because it would be too time-consuming.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error
rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: For each experiment, we provide the information of the GPU.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper conform, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: Regarding the societal impact of our work, we believe HRA can further
simplify the adaptation of LLMs and promote more LLM-based downstream applications.
Similar to LoRA and OFT, HRA may suffer from some potential issues like inappropriate
(even illegal) abuse, amplifying the social prejudice intrinsically in LLM when the fine-
tuning data are biased, and so on. It should be noted that these potential issues are neither
purely attributed to the technique itself nor specific to HRA—LoRA and OFT also suffer
from them. Solving these issues depends on developing new techniques, social policies, and
data quality improvement. How to mitigate (even eliminate) these issues is left to our future
work.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models that
generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
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Justification: All the creators or original owners of assets including code, data, and models
used in the paper are properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license of
a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide the comments in the released code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset
is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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