
Towards Foundation Models for Knowledge Graph
Reasoning

Mikhail Galkin1, Xinyu Yuan2,3, Hesham Mostafa1, Jian Tang2,4,5, Zhaocheng Zhu2,3

1Intel AI Lab, 2Mila - Québec AI Institute, 3Université de Montréal, 4HEC Montréal,
5Canadian Institute for Advanced Research (CIFAR)

Abstract

Foundation models in language and vision have the ability to run inference on
any textual and visual inputs thanks to the transferable representations such as a
vocabulary of tokens in language. Knowledge graphs (KGs) have different entity
and relation vocabularies that generally do not overlap. The key challenge of
designing foundation models on KGs is to learn such transferable representations
that enable inference on any graph with arbitrary entity and relation vocabularies.
In this work, we make a step towards such foundation models and present ULTRA,
an approach for learning universal and transferable graph representations. ULTRA
builds relational representations as a function conditioned on their interactions.
Such a conditioning strategy allows a pre-trained ULTRA model to inductively
generalize to any unseen KG with any relation vocabulary and to be fine-tuned on
any graph. Conducting link prediction experiments on 57 different KGs, we find
that the zero-shot inductive inference performance of a single pre-trained ULTRA
model on unseen graphs of various sizes is often on par or better than strong
baselines trained on specific graphs. Fine-tuning further boosts the performance.
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Figure 1: Zero-shot and fine-tuned MRR (higher is better) of ULTRA pre-trained on three graphs
(FB15k-237, WN18RR, CoDEx-Medium). On average, zero-shot performance is better than best
reported baselines trained on specific graphs (0.395 vs 0.344). More results in Figure 4 and Table 1.

1 Introduction

Modern machine learning applications increasingly rely on the pre-training and fine-tuning
paradigm. In this paradigm, a backbone model often trained on large datasets in a self-supervised



fashion is commonly known as a foundation model (FM) (Bommasani et al., 2021). After pre-
training, FMs can be fine-tuned on smaller downstream tasks. In order to transfer to a broad set of
downstream tasks, FMs leverage certain invariances pertaining to a domain of interest, e.g., large
language models like BERT (Devlin et al., 2019), GPT-4 (OpenAI, 2023), Llama-2 (Touvron et al.,
2023) operate on a fixed vocabulary of tokens; vision models operate on raw pixels (He et al., 2016;
Radford et al., 2021) or image patches (Dosovitskiy et al., 2021); chemistry models (Ying et al.,
2021; Zheng et al., 2023) learn a vocabulary of atoms from the periodic table.

Representation learning on knowledge graphs (KGs), however, has not yet witnessed the benefits of
transfer learning despite a wide range of downstream applications such as precision medicine (Chan-
dak et al., 2023), materials science (Venugopal et al., 2022; Statt et al., 2023), virtual assistants (Ilyas
et al., 2022), or product graphs in e-commerce (Dong, 2018). The key problem is that different KGs
typically have different entity and relation vocabularies. Classic transductive KG embedding mod-
els (Ali et al., 2021) learn entity and relation embeddings tailored for each specific vocabulary and
cannot generalize even to new nodes within the same graph. More recent efforts towards generaliza-
tion across the vocabularies are known as inductive learning methods (Chen et al., 2023). Most of
the inductive methods (Teru et al., 2020; Zhu et al., 2021; Galkin et al., 2022b; Zhang & Yao, 2022)
generalize to new entities at inference time but require a fixed relation vocabulary to learn entity
representations as a function of the relations. Such inductive methods still cannot transfer to KGs
with a different set of relations, e.g., training on Freebase and inference on Wikidata.

The main research goal of this work is finding the invariances transferable across graphs with ar-
bitrary entity and relation vocabularies. Leveraging and learning such invariances would enable
the pre-train and fine-tune paradigm of foundation models for KG reasoning where a single model
trained on one graph (or several graphs) with one set of relations would be able to zero-shot transfer
to any new, unseen graph with a completely different set of relations and relational patterns. Our
approach to the problem is based on two key observations: (1) even if relations vary across the
datasets, the interactions between the relations may be similar and transferable; (2) initial relation
representations may be conditioned on this interaction bypassing the need for any input features. To
this end, we propose ULTRA, a method for unified, learnable, and transferable KG representations
that leverages the invariance of the relational structure and employs relative relation representations
on top of this structure for parameterizing any unseen relation. Given any multi-relational graph,
ULTRA first constructs a graph of relations (where each node is a relation from the original graph)
capturing their interactions. Applying a graph neural network (GNN) with a labeling trick (Zhang
et al., 2021) over the graph of relations, ULTRA obtains a unique relative representation of each
relation. The relation representations can then be used by any inductive learning method for down-
stream applications like KG completion. Since the method does not learn any graph-specific entity
or relation embeddings nor requires any input entity or relation features, ULTRA enables zero-shot
generalization to any other KG of any size and any relational vocabulary.

Experimentally, we show that ULTRA paired with the NBFNet (Zhu et al., 2021) link predictor pre-
trained on three KGs (FB15k-237, WN18RR, and CoDEx-M derived from Freebase, WordNet, and
Wikidata, respectively) generalizes to 50+ different KGs with sizes of 1,000–120,000 nodes and
5K–1M edges. ULTRA demonstrates promising transfer learning capabilities where the zero-shot
inference performance on those unseen graphs might exceed strong supervised baselines by up to
300%. The subsequent short fine-tuning of ULTRA often boosts the performance even more.

2 Related Work

Inductive Link Prediction. In contrast to transductive methods that only support a fixed set of
entities and relations during training, inductive methods (Chen et al., 2023) aim at generalizing to
graphs with unseen nodes (with the same set of relations) or to both new entities and relations. The
majority of existing inductive methods such as GraIL (Teru et al., 2020), NBFNet (Zhu et al., 2021),
NodePiece (Galkin et al., 2022b), RED-GNN (Zhang & Yao, 2022) can generalize to graphs only
with new nodes, but not to new relation types since the node representations are constructed as a
function of the fixed relational vocabulary.

First approaches that support unseen relations at inference resorted to meta-learning and few-shot
learning (Chen et al., 2019; Zhang et al., 2020; Huang et al., 2022). Meta-learning is computationally
expensive and is hardly scalable to large graphs. Few-shot learning methods do not work on the
whole new unseen inference graph but instead mine many support sets akin to subgraph sampling.
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Both RMPI (Geng et al., 2023) and InGram (Lee et al., 2023) employ graphs of relations to general-
ize to unseen domains. However, RMPI suffers from the same computational and scalability issues
as subgraph sampling methods. InGram is more scalable but its featurization strategy relies on the
discretization of node degrees that only transfers to graphs of a similar relational distribution and
does not transfer to arbitrary KGs. ISDEA (Gao et al., 2023) and its extension MTDEA (Zhou et al.,
2023) do not use graphs of relations but introduce the notion of double equivariance, i.e., relation
exchangeability in multi-relational graphs. ISDEA imposes rather strict assumptions on the class of
transferable relations coming from the same distribution, and MTDEA relaxes the assumptions to a
set of pre-defined equivalence classes of relations. Still, such assumptions are too strict for a pre-
trained model to generalize to arbitrary KGs. Algorithmically, both ISDEA and MTDEA are very
expensive computationally and cannot scale to graphs considered in this work. In contrast to RMPI,
InGram, ISDEA, and MTDEA, ULTRA does not impose any assumptions on relations, transfers to
any unseen KG in the zero-shot fashion, scales to graphs of millions of edges, and introduces only a
marginal inference overhead (one-step pre-computation) to any inductive link predictor.

Text-based methods. A line of inductive link prediction methods like BLP (Daza et al., 2021),
KEPLER (Wang et al., 2021), StATIK (Markowitz et al., 2022), RAILD (Gesese et al., 2022) rely
on textual descriptions of entities and relations and use language models to encode them. We deem
this family of methods orthogonal to ULTRA as we assume the graphs do not have any input features
and leverage only structural information encoded in the graph. Furthermore, the zero-shot inductive
transfer to an arbitrary KG studied in this work implies running inference on graphs from different
domains that might need different language encoders, e.g., models trained on general English data
are unlikely to transfer to graphs with descriptions in other languages or domain-specific graphs.

3 Preliminaries

Knowledge Graph and Inductive Learning. Given a finite set of entities V (nodes), a finite set of
relations R (edge types), and a set of triples (edges) E = (V×R×V), a knowledge graph G is a tuple
G = (V,R, E). In the transductive setup, the graph at training time Gtrain = (Vtrain,Rtrain, Etrain) and
the graph at inference (validation or test) time Ginf = (Vinf,Rinf, Einf) are the same, i.e., Gtrain = Ginf.
In the inductive setup, in the general case, the training and inference graphs are different, Gtrain ̸=
Ginf. In the easier setup tackled by most of the literature, the relation set R is fixed and shared
between training and inference graphs, i.e., Gtrain = (Vtrain,R, Etrain) and Ginf = (Vinf,R, Einf). The
inference graph can be an extension of the training graph if Vtrain ⊆ Vinf or be a separate disjoint
graph (with the same set of relations) if Vtrain ∩ Vinf = ∅. In the hardest inductive case, both entities
and relations sets are different, i.e., Vtrain ∩ Vinf = ∅ and Rtrain ∩ Rinf = ∅. In this work, we
tackle this harder inductive (also known as fully-inductive) case with both new, unseen entities and
relation types at inference time. Since the harder inductive case (with new relations at inference) is
strictly a superset of the easier inductive scenario (with the fixed relation set), any model capable of
fully-inductive inference is by design applicable in easier inductive scenarios as well.

Problem Formulation. Each triple (h, r, t) ∈ (V ×R× V) denotes a head entity h connected to a
tail entity t by relation r. The knowledge graph reasoning task answers queries (h, r, ?) or (?, r, t).
It is common to rewrite the head-query (?, r, t) as (t, r−1, ?) where r−1 is the inverse relation of r.
The set of target triples Epred is predicted based on the incomplete inference graph Ginf which is a
part of the unobservable complete graph Ĝinf = (Vinf,Rinf, Êinf) where Êinf = Einf ∪ Epred.

Link Prediction and Labeling Trick GNNs. Standard GNN encoders (Kipf & Welling, 2017;
Veličković et al., 2018) including those for multi-relational graphs (Vashishth et al., 2020) underper-
form in link prediction tasks due to neighborhood symmetries (automorphisms) that assign different
(but automorphic) nodes the same features making them indistinguishable. To break those sym-
metries, labeling tricks (Zhang et al., 2021) were introduced that assign each node a unique feature
vector based on its structural properties. Most link predictors that use the labeling tricks (Teru et al.,
2020; Zhang et al., 2021; Chamberlain et al., 2023) mine numerical features like Double Radius
Node Labeling (Zhang & Chen, 2018) or Distance Encoding (Li et al., 2020). In contrast, multi-
relational models like NBFNet (Zhu et al., 2021) leverage an indicator function INDICATOR(h, v, r)
and label (initialize) the head node h with the query vector r that can be learned while other nodes v
are initialized with zeros. In other words, final node representations are conditioned on the query re-
lation and NBFNet learns conditional node representations. Conditional representations were shown
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(a) Relative entity representations transfer to 
new entities (NBFNet, RED-GNN)

(b) Relative relation representations transfer to 
new relations (ULTRA)
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Figure 2: (a) relative entity representations used in inductive models generalize to new entities;
(b) relative relation representations based on a graph of relations generalize to both new relations
and entities. The graph of relations captures four fundamental interactions (t2h, h2h, h2t, h2h)
independent from any graph-specific relation vocabulary and whose representations can be learned.

to be provably more expressive theoretically (Huang et al., 2023) and practically effective (Zhu et al.,
2022a; Galkin et al., 2022c) than standard unconditional GNN encoders.

4 Method

The key challenge of inductive inference with different entity and relation vocabularies is finding
transferable invariances that would produce entity and relation representations conditioned on the
new graph (as learning entity and relation embedding matrices from the training graph is useless
and not transferable). Most inductive GNN methods that transfer to new entities (Zhu et al., 2021;
Zhang & Yao, 2022) learn relative entity representations conditioned on the graph structure as
shown in Fig. 2 (a). For example, given a, b, c are variable entities and a as a root node labeled with
INDICATOR(), a structure a

authored−−−−→ b
genre−−−→ c ∧ a

collab−−−→ d
genre−−−→ c might imply existence of the

edge a
genre−−−→ c. Learning such a structure on a training set with entities Michael Jackson authored−−−−→

Thriller
genre−−−→ disco seamlessly transfers to new entities Beatles authored−−−−→ Let It Be

genre−−−→ rock at
inference time without learning entity embeddings thanks to the same relational structure and rel-
ative entity representations. As training and inference relations are the same Rtrain = Rinf, such
approaches learn relation embedding matrices and use relations as invariants.

In ULTRA, we generalize KG reasoning to both new entities and relations (where Rtrain ̸= Rinf) by
MG: leveraging a graph of relations, i.e., a graph where each node corresponds to a distinct relation
type1 in the original graph. While relations at inference time are different, their interactions remain
the same and are captured by the graph of relations. For example, Fig. 2 (b), a tail node of the
authored relation is also a head node of the genre relation. Hence, authored and genre nodes are
connected by the tail-to-head edge in the relation graph. Similarly, authored and collab share the
same head node in the entity graph and thus are connected with the head-to-head edge in the relation
graph. Overall, we distinguish four such core, fundamental relation-to-relation interactions2: tail-
to-head (t2h), head-to-head (h2h), head-to-tail (h2t), and tail-to-tail (t2t). Albeit relations in the
inference graph in Fig. 2 (b) are different, their graph of relations and relation interactions resemble
that of the training graph. Hence, we could leverage the invariance of the relational structure
and four fundamental relations to obtain relational representations of the unseen inference graph.
As a typical KG reasoning task (h, q, ?) is conditioned on a query relation q, it is possible to build
representations of all relations relative to the query q by using a labeling trick on top of the graph
of relations. Such relative relation representations do not need any input features and naturally
generalize to any multi-relational graph.

Practically (Fig. 3), given a query (h, q, ?) over a graph G, ULTRA employs a three-step algorithm
that we describe in the following subsections. (1) Lift the original graph G to the graph of relations

1We also add inverse relations as nodes to the relation graph.
2Other strategies for capturing relation-to-relation interactions might exist beside those four types and we

leave their exploration for future work.
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Figure 3: Given a query (h, q, ?) on graph G, ULTRA (1) builds a graph of relations Gr with four
interactions Rfund (Sec. 4.1); (2) builds relation representations Rq conditioned on the query relation
q and Gr (Sec. 4.2); (3) runs any inductive link predictor on G using representations Rq (Sec. 4.3).

Gr – Section 4.1; (2) Obtain relative relation representations Rq|(q,Gr) conditioned on the query
relation q in the relation graph Gr – Section 4.2; (3) Using the relation representations Rq as starting
relation features, run inductive link prediction on the original graph G – Section 4.3.

4.1 Relation Graph Construction

Given a graph G = (V,R, E), we first apply the lifting function Gr = LIFT(G) to build a graph
of relations Gr = (R,Rfund, Er) where each node is a distinct relation type3 in G. Edges Er ∈
(R×Rfund ×R) in the relation graph Gr denote interactions between relations in the original graph
G, and we distinguish four such fundamental relation interactions Rfund: tail-to-head (t2h) edges,
head-to-head (h2h) edges, head-to-tail (h2t) edges, and tail-to-tail (t2t) edges. The full adjacency
tensor of the relation graph is Ar ∈ R|R|×|R|×4. Each of the four adjacency matrices can be
efficiently obtained with one sparse matrix multiplication (Appendix B).

4.2 Conditional Relation Representations

Given a query (h, q, ?) and a relation graph Gr, we then obtain d-dimensional node representations
Rq ∈ R|R|×d of Gr (corresponding to all edge types R in the original graph G) conditioned on the
query relation q. Practically, we implement conditioning by applying a labeling trick to initialize the
node q in Gr through the INDICATORr function and employ a message passing GNN over Gr:

h0
v|u = INDICATORr(u, v, q) = 1u=v ∗ 1d

ht+1
v|u = UPDATE

(
ht
v|u, AGGREGATE

(
MESSAGE(ht

w|u, r)|w ∈ Nr(v), r ∈ Rfund
))

The indicator function is implemented as INDICATORr(u, v, q) = 1u=v ∗ 1d that simply puts a
vector of ones on a node u corresponding to the query relation q, and zeros otherwise. Following
Huang et al. (2023), we found that all-ones labeling with 1d generalizes better to unseen graphs of
various sizes than a learnable vector. The GNN architecture (denoted as GNNr as it operates on
the relation graph Gr) follows NBFNet (Zhu et al., 2021) with a non-parametric DistMult (Yang
et al., 2015) message function and sum aggregation. The only learnable parameters in each layer are
embeddings of four fundamental interactions Rfund ∈ R4×d, a linear layer for the UPDATE function,
and an optional layer normalizaiton. Note that our general setup (Section 3) assumes no given
input entity or relation features, so our parameterization strategy can be used to obtain relational
representations of any multi-relational graph.

To sum up, each unique relation q ∈ R in the query has its own matrix of conditional relation
representations Rq ∈ R|R|×d used by the entity-level reasoner for downstream applications.

4.3 Entity-level Link Prediction

Given a query (h, q, ?) over a graph G and conditional relation representations Rq from the previous
step, it is now possible to adapt any off-the-shelf inductive link predictor that only needs relational
features (Zhu et al., 2021; Zhang & Yao, 2022; Zhu et al., 2022c; Zhang et al., 2023) to balance
between performance and scalability. We modify another instance of NBFNet (GNNe as it operates

32|R| nodes after adding inverse relations to the original graph.
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on the entity level) to account for separate relation representations per query:

h0
v|u = INDICATORe(u, v, q) = 1u=v ∗Rq[q]

ht+1
v|u = UPDATE

(
ht
v|u, AGGREGATE

(
MESSAGE(ht

w|u, g
t+1(r))|w ∈ Nr(v), r ∈ R

))
That is, we first initialize the head node h with the query vector q from Rq whereas other nodes are
initialized with zeros. Each t-th GNN layer applies a non-linear function gt(·) to transform original
relation representations to layer-specific relation representations as Rt = gt(Rq) from which the
edge features are taken for the MESSAGE function. g(·) is implemented as a 2-layer MLP with
ReLU. Similar to GNNr in Section 4.2, we use sum aggregation and a linear layer for the UPDATE
function. After message passing, the final MLP s : Rd → R1 maps the node states to logits p(h, q, v)
denoting the score of a node v to be a tail of the initial query (h, q, ?).

Training. ULTRA can be trained on any multi-relational graph or mixture of graphs thanks to
the inductive and conditional relational representations. Following the standard practices in the
literature (Sun et al., 2019; Zhu et al., 2021), ULTRA is trained by minimizing the binary cross
entropy loss over positive and negative triplets

L = − log p(u, q, v)−
n∑

i=1

1

n
log(1− p(u′

i, q, v
′
i))

where (u, q, v) is a positive triple in the graph and {(u′
i, q, v

′
i)}ni=1 are negative samples obtained by

corrupting either the head u or tail v of the positive sample.

5 Experiments

To evaluate the qualities of ULTRA as a foundation model for KG reasoning, we explore the fol-
lowing questions: (1) Is pre-trained ULTRA able to inductively generalize to unseen KGs in the
zero-shot manner? (2) Are there any benefits from fine-tuning ULTRA on a specific dataset? (3)
How does a single pre-trained ULTRA model compare to models trained from scratch on each target
dataset? (4) Do more graphs in the pre-training mix correspond to better performance?

5.1 Setup and Datasets

Datasets. We conduct a broad evaluation on 57 different KGs with reported, non-saturated results
on the KG completion task. The datasets can be categorized into three groups:

• Transductive datasets (16 graphs) with the fixed set of entities and relations at training and
inference time (Gtrain = Ginf): FB15k-237 (Toutanova & Chen, 2015), WN18RR (Dettmers
et al., 2018), YAGO3-10 (Mahdisoltani et al., 2014), NELL-995 (Xiong et al., 2017),
CoDEx (Small, Medium, and Large) (Safavi & Koutra, 2020), WDsinger, NELL23k,
FB15k237(10), FB15k237(20), FB15k237(50) (Lv et al., 2020), AristoV4 (Chen et al.,
2021), DBpedia100k (Ding et al., 2018), ConceptNet100k (Malaviya et al., 2020), Het-
ionet (Himmelstein et al., 2017)

• Inductive entity (e) datasets (18 graphs) with new entities at inference time but with the
fixed set of relations (Vtrain ̸= Vinf,Rtrain = Rinf): 12 datasets from GraIL (Teru et al.,
2020), 4 graphs from INDIGO (Liu et al., 2021; Hamaguchi et al., 2017), and 2 ILPC 2022
datasets (Small and Large) (Galkin et al., 2022a).

• Inductive entity and relation (e, r) datasets (23 graphs) where both entities and relations at
inference are new (Vtrain ̸= Vinf,Rtrain ̸= Rinf): 13 graphs from INGRAM (Lee et al., 2023)
and 10 graphs from MTDEA (Zhou et al., 2023).

In practice, however, a pre-trained ULTRA operates in the inductive (e, r) mode on all datasets
(apart from those in the training mixture) as their sets of entities, relations, and relational structures
are different from the training set. The dataset sizes vary from 1k to 120k entities and 1k-2M edges
in the inference graph. We provide more details on the datasets in Appendix A.

Pretraining and Fine-tuning. ULTRA is pre-trained on the mixture of 3 standard KGs (WN18RR,
CoDEx-Medium, FB15k237) to capture the variety of possible relational structures and sparsities
in respective relational graphs Gr. ULTRA is relatively small (177k parameters in total, with 60k
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Figure 4: ULTRA performance on 14 inductive datasets from MTDEA (Zhou et al., 2023) and
INDIGO (Liu et al., 2021) for 8 of which only an approximate metric Hits@10 (50 negs) is available
(center). We also report full MRR (left) and Hits@10 (right) computed on the entire entity sets
demonstrating that Hits@10 (50 negs) overestimates the real performance.

Table 1: Zero-shot and fine-tuned performance of ULTRA compared to the published supervised
SOTA on 51 datasets (as in Fig. 1 and Fig. 4). The zero-shot ULTRA outperforms supervised base-
lines on average and on inductive datasets. Fine-tuning improves the performance even further. We
report pre-training performance to the fine-tuned version. More detailed results are in Appendix D.

Model
Inductive (e) + (e, r) Transductive e Total Avg Pretraining Inductive (e) + (e, r)

(27 graphs) (13 graphs) (40 graphs) (3 graphs) (8 graphs)

MRR H@10 MRR H@10 MRR H@10 MRR H@10 Hits@10 (50 negs)
Supervised SOTA 0.342 0.482 0.348 0.494 0.344 0.486 0.439 0.585 0.731
ULTRA 0-shot 0.435 0.603 0.312 0.458 0.395 0.556 - - 0.859
ULTRA fine-tuned 0.443 0.615 0.379 0.543 0.422 0.592 0.407 0.568 0.896

parameters in GNNr and 117k parameters in GNNe) and is trained for 200,000 steps with batch size
of 64 with AdamW optimizer on 2 A100 (40 GB) GPUs. All fine-tuning experiments were done on
a single RTX 3090 GPU. More details on hyperparameters and training are in Appendix C.

Evaluation Protocol. We report Mean Reciprocal Rank (MRR) and Hits@10 (H@10) as the main
performance metrics evaluated against the full entity set of the inference graph. For each triple, we
report the results of predicting both heads and tails. Only in three datasets from Lv et al. (2020)
we report tail-only metrics similar to the baselines. In the zero-shot inference scenario, we run a
pre-trained model on the inference graph and test set of triples. In the fine-tuning case, we further
train the model on the training split of each dataset retaining the checkpoint of the best validation
set MRR. We run zero-shot inference experiments once as the results are deterministic, and report
an average of 5 runs for each fine-tuning run on each dataset.

Baselines. On each graph, we compare ULTRA against the reported state-of-the-art model (we list
SOTA for all 57 graphs in Appendix A). To date, all of the reported SOTA models are trained end-to-
end specifically on each target dataset. Due to the computational complexity of baselines, the only
existing results on 4 MTDEA datasets (Zhou et al., 2023) and 4 INDIGO datasets (Liu et al., 2021)
report Hits@10 against 50 randomly chosen negatives. We compare ULTRA against those baselines
using this Hits@10 (50 negs) metric as well as report the full performance on the whole entity sets.

5.2 Main Results: Zero-shot Inference and Fine-tuning of ULTRA

The main experiment reports how ULTRA pre-trained on 3 graphs inductively generalizes to 54 other
graphs both in the zero-shot (0-shot) and fine-tuned cases. Fig. 1 compares ULTRA with supervised
SOTA baselines on 43 graphs that report MRR on the full entity set. Fig. 4 presents the comparison
on the rest 14 graphs including 8 graphs for which the baselines report Hits@10 (50 negs). The
aggregated results on 51 graphs with available baseline results are presented in Table 1 and the
complete evaluation on 57 graphs grouped into three families according to Section 5.1 is in Table 2.
Full per-dataset results with standard deviations can be found in Appendix D.

On average, ULTRA outperforms the baselines even in the 0-shot inference scenario both in MRR
and Hits@10. The largest gains are achieved on smaller inductive graphs, e.g., on FB-25 and FB-
50 0-shot ULTRA yields almost 3× better performance (291% and 289%, respectively). During
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Table 2: Zero-shot and fine-tuned ULTRA results on the complete set of 57 graphs grouped by the
dataset category. Fine-tuning especially helps on larger transductive datasets and boosts the total
average MRR by 10%. Additionally, we report as (train e2e) the average performance of dataset-
specific ULTRA models trained from scratch on each graph. More detailed results are in Appendix D.

Model
Inductive e, r Inductive e Transductive Total Avg Pretraining

(23 graphs) (18 graphs) (13 graphs) (54 graphs) (3 graphs)

MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10
ULTRA (train e2e) 0.392 0.552 0.402 0.559 0.384 0.545 0.393 0.552 0.403 0.562

ULTRA 0-shot 0.345 0.513 0.431 0.566 0.312 0.458 0.366 0.518 - -
ULTRA fine-tuned 0.397 0.556 0.442 0.582 0.379 0.543 0.408 0.562 0.407 0.568
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Figure 5: Comparison of zero-shot and fine-tuned ULTRA per-dataset performance against training
a model from scratch on each dataset (Train e2e). Zero-shot performance of a single pre-trained
model is on par with training from scratch while fine-tuning yields overall best results.

pre-training, ULTRA does not reach the baseline performance (0.407 vs 0.439 average MRR) and
we link that with the lower 0-shot inference results on larger transductive graphs. However, fine-
tuning ULTRA effectively bridges this gap and surpasses the baselines. We hypothesize that in larger
transductive graphs fine-tuning helps to adapt to different graph sizes (training graphs have 15-40k
nodes while larger inference ones grow up to 123k nodes).

Following the sample efficiency and fast convergence of NBFNet (Zhu et al., 2021), we find that
1000-2000 batches are enough for fine-tuning ULTRA. In some cases (see Appendix D) fine-tuning
brings marginal improvements or marginal negative effects. Averaged across 54 graphs (Table 2),
fine-tuned ULTRA brings further 10% relative improvement over the zero-shot version.

5.3 Ablation Study

We performed several experiments to better understand the pre-training quality of ULTRA and mea-
sure the impact of conditional relation representations on the performance.

Positive transfer from pre-training. We first study how a single pre-trained ULTRA model com-
pares to training instances of the same model separately on each graph end-to-end. For that, for each
of 57 graphs, we train 3 ULTRA instances of the same configuration and different random seeds
until convergence and report the averaged results in Table 2 with per-dataset comparison in Fig. 5.
We find that, on average, a single pre-trained ULTRA model in the zero-shot regime performs al-
most on par with the trained separate models, lags behind those on larger transductive graphs and
exhibits better performance on inductive datasets. Fine-tuning a pre-trained ULTRA shows overall
the best performance and requires significantly less computational resources than training a model
from scratch on every target graph.

Number of graphs in the pre-training mix. We then study how inductive inference performance
depends on the training mixture. While the main ULTRA model was trained on the mixture of
three graphs, here we train more models varying the amount of KGs in the training set from a sin-
gle FB15k237 to a combination of 8 transductive KGs (more details in Appendix C). For the fair
comparison, we evaluate pre-trained models in the zero-shot regime only on inductive datasets (41
graphs overall). The results are presented in Fig. 6 where we observe the saturation of performance
having more than three graphs in the mixture. We hypothesize that getting higher inference perfor-
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Table 3: Ablation study: pre-training and zero-shot inference results of the main ULTRA, ULTRA
without edge types in the relation graph (no etypes), ULTRA without edge types and with InGram-
like (Lee et al., 2023) unconditional GNN over relation graph where nodes are initialized with all
ones (ones) or with Glorot initialization (random). Averaged results over 3 categories of datasets.

Model
Inductive e, r Inductive e Transductive Total Avg Pretraining

(23 graphs) (18 graphs) (13 graphs) (54 graphs) (3 graphs)

MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10
ULTRA 0.345 0.513 0.431 0.566 0.312 0.458 0.366 0.518 0.407 0.568
- no etypes in rel. graph 0.292 0.466 0.389 0.539 0.258 0.409 0.316 0.477 0.357 0.517
- no etypes,
- uncond. GNN (ones) 0.187 0.328 0.262 0.430 0.135 0.257 0.199 0.345 0.263 0.424

- no etypes,
- uncond. GNN (random) 0.177 0.309 0.250 0.417 0.138 0.255 0.192 0.332 0.266 0.433

mance is tied up with model capacity, scale, and optimization. We leave that study along with more
principled approached to selecting a pre-training mix for future work.
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Figure 6: Averaged 0-shot per-
formance on inductive datasets
and # graphs in pre-training.

Conditional vs unconditional relation graph encoding. To
measure the impact of the graph of relations and conditional
relation representations, we pre-train three more models on the
same mixture of three graphs varying several components: (1)
we exclude four fundamental relation interactions (h2h, h2t, t2h,
t2t) from the relation graph making it homogeneous and single-
relational; (2) a homogeneous relation graph with an uncondi-
tional GNN encoder following the R-GATv2 architecture from
the previous SOTA approach, InGram (Lee et al., 2023). The un-
conditional GNN needs input node features and we probed two
strategies: Glorot initialization used in Lee et al. (2023) and ini-
tializing all nodes with a vector of ones 1d.

The results are presented in Table 3 and indicate that ablated
models struggle to reach the same pre-training performance
and exhibit poor zero-shot generalization performance across all
groups of graphs, e.g., up to 48% relative MRR drop (0.192 vs
0.366) on the model with a homogeneous relation graph and ran-
domly initialized node states with the unconditional R-GATv2
encoder. We therefore posit that conditional representations
(both on relation and entity levels) are crucial for transferable representations for link prediction
tasks that often require pairwise representations to break neighborhood symmetries.

6 Discussion and Future Work

Limitations and Future Work. Albeit ULTRA demonstrates promising capabilities as a foundation
model for KG reasoning in the zero-shot and fine-tuning regimes, there are several limitations and
open questions. First, pre-training on more graphs does not often correspond to better inference
performance. We hypothesize the reason might be in the overall small model size (177k parameters)
and limited model capacity, i.e., with increasing the diversity of training data the model size should
increase as well. On the other hand, our preliminary experiments did not show significant improve-
ments of scaling the parameter count beyond 200k. We hypothesize it might be an issue of input
normalization and model optimization. We plan to address those open questions in the future work.

Conclusion. We presented ULTRA, an approach to learn universal and transferable graph represen-
tations that can serve as one of the methods towards building foundation models for KG reasoning.
ULTRA enables training and inference on any multi-relational graph without any input features lever-
aging the invariance of the relational structure and conditional relation representations. Experimen-
tally, a single pre-trained ULTRA model outperforms state-of-the-art tailored supervised baselines
on 50+ graphs of 1k–120k nodes even in the zero-shot regime by average 15%. Fine-tuning ULTRA
is sample-efficient and improves the average performance by further 10%. We hope that ULTRA
contributes to the search for inductive and transferable representations where a single pre-trained
model can inductively generalize to any graph and perform a variety of downstream tasks.

9



References
Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Mikhail Galkin, Sahand Shar-

ifzadeh, Asja Fischer, Volker Tresp, and Jens Lehmann. Bringing light into the dark: A large-scale
evaluation of knowledge graph embedding models under a unified framework. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2021. doi: 10.1109/TPAMI.2021.3124805.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
S. Buch, Dallas Card, Rodrigo Castellon, Niladri S. Chatterji, Annie S. Chen, Kathleen A. Creel,
Jared Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon,
John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren E. Gillespie,
Karan Goel, Noah D. Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter Hen-
derson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas F. Icard, Saahil
Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani,
O. Khattab, Pang Wei Koh, Mark S. Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar,
Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen
Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir P. Mirchandani, Eric Mitchell, Zanele
Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Benjamin Newman, Allen Nie,
Juan Carlos Niebles, Hamed Nilforoshan, J. F. Nyarko, Giray Ogut, Laurel Orr, Isabel Papadim-
itriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Robert
Reich, Hongyu Ren, Frieda Rong, Yusuf H. Roohani, Camilo Ruiz, Jack Ryan, Christopher
R’e, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishna Parasuram Srini-
vasan, Alex Tamkin, Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William
Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You,
Matei A. Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kait-
lyn Zhou, and Percy Liang. On the opportunities and risks of foundation models. ArXiv, 2021.
URL https://crfm.stanford.edu/assets/report.pdf.

Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca, Thomas
Markovich, Nils Yannick Hammerla, Michael M. Bronstein, and Max Hansmire. Graph neu-
ral networks for link prediction with subgraph sketching. In The Eleventh International Con-
ference on Learning Representations, 2023. URL https://openreview.net/forum?id=
m1oqEOAozQU.

Payal Chandak, Kexin Huang, and Marinka Zitnik. Building a knowledge graph to enable precision
medicine. Nature Scientific Data, 2023. doi: https://doi.org/10.1038/s41597-023-01960-3. URL
https://www.nature.com/articles/s41597-023-01960-3.

Mingyang Chen, Wen Zhang, Wei Zhang, Qiang Chen, and Huajun Chen. Meta relational learning
for few-shot link prediction in knowledge graphs. In EMNLP, pp. 4217–4226, 2019.

Mingyang Chen, Wen Zhang, Yuxia Geng, Zezhong Xu, Jeff Z Pan, and Huajun Chen. Generalizing
to unseen elements: A survey on knowledge extrapolation for knowledge graphs. arXiv preprint
arXiv:2302.01859, 2023.

Yihong Chen, Pasquale Minervini, Sebastian Riedel, and Pontus Stenetorp. Relation prediction
as an auxiliary training objective for improving multi-relational graph representations. In 3rd
Conference on Automated Knowledge Base Construction, 2021. URL https://openreview.
net/forum?id=Qa3uS3H7-Le.

Daniel Daza, Michael Cochez, and Paul Groth. Inductive entity representations from text via link
prediction. In Proceedings of the Web Conference 2021, pp. 798–808, 2021.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
knowledge graph embeddings. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational
Linguistics, 2019. URL https://aclanthology.org/N19-1423.

10

https://crfm.stanford.edu/assets/report.pdf
https://openreview.net/forum?id=m1oqEOAozQU
https://openreview.net/forum?id=m1oqEOAozQU
https://www.nature.com/articles/s41597-023-01960-3
https://openreview.net/forum?id=Qa3uS3H7-Le
https://openreview.net/forum?id=Qa3uS3H7-Le
https://aclanthology.org/N19-1423


Boyang Ding, Quan Wang, Bin Wang, and Li Guo. Improving knowledge graph embedding using
simple constraints. In Proceedings of the 56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 110–121. Association for Computational Lin-
guistics, 2018. doi: 10.18653/v1/P18-1011. URL https://aclanthology.org/P18-1011.

Xin Luna Dong. Challenges and innovations in building a product knowledge graph. In Proceedings
of the 24th ACM SIGKDD International conference on knowledge discovery & data mining, pp.
2869–2869, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Mikhail Galkin, Max Berrendorf, and Charles Tapley Hoyt. An Open Challenge for Induc-
tive Link Prediction on Knowledge Graphs. arXiv preprint arXiv:2203.01520, 2022a. URL
http://arxiv.org/abs/2203.01520.

Mikhail Galkin, Etienne Denis, Jiapeng Wu, and William L. Hamilton. Nodepiece: Composi-
tional and parameter-efficient representations of large knowledge graphs. In International Con-
ference on Learning Representations, 2022b. URL https://openreview.net/forum?id=
xMJWUKJnFSw.

Mikhail Galkin, Zhaocheng Zhu, Hongyu Ren, and Jian Tang. Inductive logical query answering
in knowledge graphs. In Advances in Neural Information Processing Systems, 2022c. URL
https://openreview.net/forum?id=-vXEN5rIABY.

Jianfei Gao, Yangze Zhou, and Bruno Ribeiro. Double permutation equivariance for knowledge
graph completion. arXiv preprint arXiv:2302.01313, 2023.

Yuxia Geng, Jiaoyan Chen, Jeff Z Pan, Mingyang Chen, Song Jiang, Wen Zhang, and Huajun Chen.
Relational message passing for fully inductive knowledge graph completion. In 2023 IEEE 39th
International Conference on Data Engineering (ICDE), pp. 1221–1233. IEEE, 2023.

Genet Asefa Gesese, Harald Sack, and Mehwish Alam. Raild: Towards leveraging relation features
for inductive link prediction in knowledge graphs. In Proceedings of the 11th International Joint
Conference on Knowledge Graphs, pp. 82–90, 2022.

Jia Guo and Stanley Kok. BiQUE: Biquaternionic embeddings of knowledge graphs. In Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 8338–8351.
Association for Computational Linguistics, 2021. doi: 10.18653/v1/2021.emnlp-main.657. URL
https://aclanthology.org/2021.emnlp-main.657.

Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo, and Yuji Matsumoto. Knowledge transfer
for out-of-knowledge-base entities : A graph neural network approach. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, pp. 1802–1808,
2017. doi: 10.24963/ijcai.2017/250. URL https://doi.org/10.24963/ijcai.2017/250.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016.

Tao He, Ming Liu, Yixin Cao, Zekun Wang, Zihao Zheng, Zheng Chu, and Bing Qin. Exploring
& exploiting high-order graph structure for sparse knowledge graph completion. arXiv preprint
arXiv:2306.17034, 2023.

Daniel Scott Himmelstein, Antoine Lizee, Christine Hessler, Leo Brueggeman, Sabrina L Chen,
Dexter Hadley, Ari Green, Pouya Khankhanian, and Sergio E Baranzini. Systematic integration
of biomedical knowledge prioritizes drugs for repurposing. Elife, 6:e26726, 2017.

Qian Huang, Hongyu Ren, and Jure Leskovec. Few-shot relational reasoning via connection
subgraph pretraining. In Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=LvW71lgly25.

11

https://aclanthology.org/P18-1011
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
http://arxiv.org/abs/2203.01520
https://openreview.net/forum?id=xMJWUKJnFSw
https://openreview.net/forum?id=xMJWUKJnFSw
https://openreview.net/forum?id=-vXEN5rIABY
https://aclanthology.org/2021.emnlp-main.657
https://doi.org/10.24963/ijcai.2017/250
https://openreview.net/forum?id=LvW71lgly25
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A Datasets

We conduct evaluation on 57 openly available KGs of various sizes and three groups, i.e., tranduc-
tive, inductive with new entities, and inductive with both new entities and relations at inference time.
The statistics for 16 transductive datasets are presented in Table 4, 18 inductive entity datasets in
Table 5, and 23 inductive entity and relation datasets in Table 6. For each dataset, we also list a
currently published state-of-the-art model that, at the moment, are all trained specifically on each
target graph. Performance of those SOTA models is aggregated as Supervised SOTA in the results
reported in the tables and figures. We omit smaller datasets (Kinships, UMLS, Countries, Family)
with saturated performance as non-representative.

For the inductive datasets HM 1k, HM 3k, and HM 5k used in Hamaguchi et al. (2017) and Liu et al.
(2021), we report the performance of predicting both heads and tails (noted as b-1K, b-3K, b-5K
in Liu et al. (2021)) and compare against the respective baselines. Some inductive datasets (MT2,
MT3, MT4) from MTDEA (Zhou et al., 2023) do not have reported entity-only KG completion per-
formance. For Hetionet, we used the splits available in TorchDrug (Zhu et al., 2022b) and compare
with the baseline RotatE reported by TorchDrug.

B Sparse MMs for Relation Graph

The graph of relations Gr can be efficiently computed from the original multi-relational graph G with
sparse matrix multiplications (spmm). Four spmm operations correspond to the four fundamental
relation types {h2t, h2h, t2h, t2t} ∈ Rfund.

Given the original graph G with |V| nodes and |R| relation types, its adjacency matrix is A ∈
R|V|×|R|×|V|. For clarity, A can be rewritten with heads H and tails T as A ∈ R|H|×|R|×|T |.
From A we first build two sparse matrices Eh ∈ R|H|×|R| and Et ∈ R|T |×|R| that capture the
head-relation and tail-relation pairs, respectively. Computing interactions between relations is then
equivalent to one spmm operation between relevant adjacencies:

Ah2h = spmm(ET
h ,Eh) ∈ R|R|×|R|

At2t = spmm(ET
t ,Et) ∈ R|R|×|R|

Ah2t = spmm(ET
h ,Et) ∈ R|R|×|R|

At2h = spmm(ET
t ,Eh) ∈ R|R|×|R|

Ar = [Ah2h,At2t,Ah2t,At2h] ∈ R|R|×|R|×4

For each of the four sparse matrices, the respective edge index is extracted from all non-zero values
(or, similarly, by setting all non-zero values in the sparse matrix to ones). The final adjacency tensor
of the graph of relations Ar and corresponding graph of relations Gr with four fundamental edge
types can be obtained by stacking all four adjacencies ([·, ·] denotes stacking).

C Hyperparameters

Main results. The hyperparameters for the pre-trained ULTRA model reported in Section 5.2 in-
cluding Table 1, Table 2, Figure 1, and Figure 4 are presented in Table 7. Both GNNs over the
relation graph Gr and main graph G are 6-layer GNNs with hidden dimension of 64, DistMult
message function, and sum aggregation roughly following the NBFNet setup. Each layer of the
GNNe (inductive link predictor over the main entity graph) features a 2-layer MLP as a function g(·)
that transforms conditional relation representations into layer-specific relation representations. The
model is trained on the mixture of FB15k237, WN18RR, and CoDEx-Meidum graphs for 200,000
steps with batch size of 64 with AdamW optimizer and learning rate of 0.0005. Each batch contains
only one graph and training samples from this graph. The sampling probability of the graph in the
mixture is proportional to the number of edges in this training graph.

Fine-tuning and training from scratch. Table 8 reports training durations for fine-tuning the pre-
trained ULTRA and training models from scratch on each dataset (for the ablation study in Figure 5
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Table 4: Transductive datasets (16) used in the experiments. Train, Valid, Test denote triples in the
respective set. Task denotes the prediction task: h/t is predicting both heads and tails, tails is only
predicting tails. SOTA points to the best reported result.

Dataset Reference Entities Rels Train Valid Test Task SOTA

CoDEx Small Safavi & Koutra (2020) 2034 42 32888 1827 1828 h/t ComplEx RP (Chen et al., 2021)
WDsinger Lv et al. (2020) 10282 135 16142 2163 2203 h/t LR-GCN (He et al., 2023)
FB15k237_10 Lv et al. (2020) 11512 237 27211 15624 18150 tails DacKGR (Lv et al., 2020)
FB15k237_20 Lv et al. (2020) 13166 237 54423 16963 19776 tails DacKGR (Lv et al., 2020)
FB15k237_50 Lv et al. (2020) 14149 237 136057 17449 20324 tails DacKGR (Lv et al., 2020)
FB15k237 Toutanova & Chen (2015) 14541 237 272115 17535 20466 h/t NBFNet (Zhu et al., 2021)
CoDEx Medium Safavi & Koutra (2020) 17050 51 185584 10310 10311 h/t ComplEx RP (Chen et al., 2021)
NELL23k Lv et al. (2020) 22925 200 25445 4961 4952 h/t LR-GCN (He et al., 2023)
WN18RR Dettmers et al. (2018) 40943 11 86835 3034 3134 h/t NBFNet (Zhu et al., 2021)
AristoV4 Chen et al. (2021) 44949 1605 242567 20000 20000 h/t ComplEx RP (Chen et al., 2021)
Hetionet Himmelstein et al. (2017) 45158 24 2025177 112510 112510 h/t RotatE (Sun et al., 2019)
NELL995 Xiong et al. (2017) 74536 200 149678 543 2818 h/t RED-GNN (Zhang & Yao, 2022)
CoDEx Large Safavi & Koutra (2020) 77951 69 551193 30622 30622 h/t ComplEx RP (Chen et al., 2021)
ConceptNet100k Malaviya et al. (2020) 78334 34 100000 1200 1200 h/t BiQUE (Guo & Kok, 2021)
DBpedia100k Ding et al. (2018) 99604 470 597572 50000 50000 h/t ComplEx-NNE+AER (Ding et al., 2018)
YAGO310 Mahdisoltani et al. (2014) 123182 37 1079040 5000 5000 h/t NBFNet (Zhu et al., 2021)

Table 5: Inductive entity (e) datasets (18) used in the experiments. Triples denote the number of
edges of the graph given at training, validation, or test. Valid and Test denote triples to be predicted
in the validation and test sets in the respective validation and test graph.

Dataset Rels Training Graph Validation Graph Test Graph SOTA
Entities Triples Entities Triples Valid Entities Triples Test

FB v1 (Teru et al., 2020) 180 1594 4245 1594 4245 489 1093 1993 411 A*Net (Zhu et al., 2022c)
FB v2 (Teru et al., 2020) 200 2608 9739 2608 9739 1166 1660 4145 947 NBFNet (Zhu et al., 2021)
FB v3 (Teru et al., 2020) 215 3668 17986 3668 17986 2194 2501 7406 1731 NBFNet (Zhu et al., 2021)
FB v4 (Teru et al., 2020) 219 4707 27203 4707 27203 3352 3051 11714 2840 A*Net (Zhu et al., 2022c)
WN v1 (Teru et al., 2020) 9 2746 5410 2746 5410 630 922 1618 373 NBFNet (Zhu et al., 2021)
WN v2 (Teru et al., 2020) 10 6954 15262 6954 15262 1838 2757 4011 852 NBFNet (Zhu et al., 2021)
WN v3 (Teru et al., 2020) 11 12078 25901 12078 25901 3097 5084 6327 1143 NBFNet (Zhu et al., 2021)
WN v4 (Teru et al., 2020) 9 3861 7940 3861 7940 934 7084 12334 2823 A*Net (Zhu et al., 2022c)
NELL v1 (Teru et al., 2020) 14 3103 4687 3103 4687 414 225 833 201 RED-GNN (Zhang & Yao, 2022)
NELL v2 (Teru et al., 2020) 88 2564 8219 2564 8219 922 2086 4586 935 RED-GNN (Zhang & Yao, 2022)
NELL v3 (Teru et al., 2020) 142 4647 16393 4647 16393 1851 3566 8048 1620 RED-GNN (Zhang & Yao, 2022)
NELL v4 (Teru et al., 2020) 76 2092 7546 2092 7546 876 2795 7073 1447 RED-GNN (Zhang & Yao, 2022)
ILPC Small (Galkin et al., 2022a) 48 10230 78616 6653 20960 2908 6653 20960 2902 NodePiece (Galkin et al., 2022a)
ILPC Large (Galkin et al., 2022a) 65 46626 202446 29246 77044 10179 29246 77044 10184 NodePiece (Galkin et al., 2022a)
HM 1k (Hamaguchi et al., 2017) 11 36237 93364 36311 93364 1771 9899 18638 476 R-GCN (Liu et al., 2021)
HM 3k (Hamaguchi et al., 2017) 11 32118 71097 32250 71097 1201 19218 38285 1349 Indigo (Liu et al., 2021)
HM 5k (Hamaguchi et al., 2017) 11 28601 57601 28744 57601 900 23792 48425 2124 Indigo (Liu et al., 2021)
IndigoBM (Liu et al., 2021) 229 12721 121601 12797 121601 14121 14775 250195 14904 GraIL (Liu et al., 2021)

Table 6: Inductive entity and relation (e, r) datasets (23) used in the experiments. Triples denote the
number of edges of the graph given at training, validation, or test. Valid and Test denote triples to
be predicted in the validation and test sets in the respective validation and test graph.

Dataset Training Graph Validation Graph Test Graph SOTA
Entities Rels Triples Entities Rels Triples Valid Entities Rels Triples Test

FB-25 (Lee et al., 2023) 5190 163 91571 4097 216 17147 5716 4097 216 17147 5716 InGram (Lee et al., 2023)
FB-50 (Lee et al., 2023) 5190 153 85375 4445 205 11636 3879 4445 205 11636 3879 InGram (Lee et al., 2023)
FB-75 (Lee et al., 2023) 4659 134 62809 2792 186 9316 3106 2792 186 9316 3106 InGram (Lee et al., 2023)
FB-100 (Lee et al., 2023) 4659 134 62809 2624 77 6987 2329 2624 77 6987 2329 InGram (Lee et al., 2023)
WK-25 (Lee et al., 2023) 12659 47 41873 3228 74 3391 1130 3228 74 3391 1131 InGram (Lee et al., 2023)
WK-50 (Lee et al., 2023) 12022 72 82481 9328 93 9672 3224 9328 93 9672 3225 InGram (Lee et al., 2023)
WK-75 (Lee et al., 2023) 6853 52 28741 2722 65 3430 1143 2722 65 3430 1144 InGram (Lee et al., 2023)
WK-100 (Lee et al., 2023) 9784 67 49875 12136 37 13487 4496 12136 37 13487 4496 InGram (Lee et al., 2023)
NL-0 (Lee et al., 2023) 1814 134 7796 2026 112 2287 763 2026 112 2287 763 InGram (Lee et al., 2023)
NL-25 (Lee et al., 2023) 4396 106 17578 2146 120 2230 743 2146 120 2230 744 InGram (Lee et al., 2023)
NL-50 (Lee et al., 2023) 4396 106 17578 2335 119 2576 859 2335 119 2576 859 InGram (Lee et al., 2023)
NL-75 (Lee et al., 2023) 2607 96 11058 1578 116 1818 606 1578 116 1818 607 InGram (Lee et al., 2023)
NL-100 (Lee et al., 2023) 1258 55 7832 1709 53 2378 793 1709 53 2378 793 InGram (Lee et al., 2023)

Metafam (Zhou et al., 2023) 1316 28 13821 1316 28 13821 590 656 28 7257 184 NBFNet (Zhou et al., 2023)
FBNELL (Zhou et al., 2023) 4636 100 10275 4636 100 10275 1055 4752 183 10685 597 NBFNet (Zhou et al., 2023)
Wiki MT1 tax (Zhou et al., 2023) 10000 10 17178 10000 10 17178 1908 10000 9 16526 1834 NBFNet (Zhou et al., 2023)
Wiki MT1 health (Zhou et al., 2023) 10000 7 14371 10000 7 14371 1596 10000 7 14110 1566 NBFNet (Zhou et al., 2023)
Wiki MT2 org (Zhou et al., 2023) 10000 10 23233 10000 10 23233 2581 10000 11 21976 2441 N/A
Wiki MT2 sci (Zhou et al., 2023) 10000 16 16471 10000 16 16471 1830 10000 16 14852 1650 N/A
Wiki MT3 art (Zhou et al., 2023) 10000 45 27262 10000 45 27262 3026 10000 45 28023 3113 N/A
Wiki MT3 infra (Zhou et al., 2023) 10000 24 21990 10000 24 21990 2443 10000 27 21646 2405 N/A
Wiki MT4 sci (Zhou et al., 2023) 10000 42 12576 10000 42 12576 1397 10000 42 12516 1388 N/A
Wiki MT4 health (Zhou et al., 2023) 10000 21 15539 10000 21 15539 1725 10000 20 15337 1703 N/A
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Table 7: ULTRA hyperparameters for pre-training. GNNr denotes a GNN over the graph of relations
Gr, GNNe is a GNN over the original entity graph G.

.

Hyperparameter ULTRA pre-training

GNNr

# layers 6
hidden dim 64

message DistMult
aggeregation sum

GNNe

# layers 6
hidden dim 64

message DistMult
aggregation sum

g(·) 2-layer MLP

Learning

optimizer AdamW
learning rate 0.0005
training steps 200,000

adv temperature 1
# negatives 128
batch size 64

Training graph mixture FB15k237, WN18RR, CoDEx Medium

and Section 5.3). In fine-tuning, if the number of fine-tuning epochs k is more than one, we use the
best checkpoint (out of k) evaluated on the validation set of the respective graph. Each fine-tuning
run was repeated 5 times with different random seeds, each model trained from scratch was trained
3 times with different random seeds.

Ablation: graphs in the training mixture. For the ablation experiments reported in Figure 6,
Table 9 describes the mixtures of graphs used in the pre-trained models. The mixtures of 5 and more
graphs include large graphs of 100k+ entities each, so we reduced the amount of training steps to
complete training within 3 days (6 GPU-days in total as each model was trained on 2 A100 GPUs).

D Full Results

The full, per-dataset results of MRR and Hits@10 of the zero-shot inference of the pre-trained
ULTRA model, the fine-tuned model, and best reported supervised SOTA baselines are presented in
Table 10 and Table 11. The zero-shot results are deterministic whereas for fine-tuning performance
we report the average of 5 different seeds with standard deviations.

Table 10 corresponds to Figure 1 and contains results on 43 graphs where published SOTA baselines
are available, that is, on 3 pre-training graphs, on 14 inductive entity (e) graphs, on 13 inductive
entity and relation (e, r) graphs, and 13 transductive graphs. Table 11 contains results on 16 graphs
for which published SOTA exists only partially, that is, in terms of the Hits@10 (50 neg) metric
computed against 50 randomly chosen negatives. We show that this metric greatly overestimates the
real performance and encourage further works to report full MRR and Hits@k metrics computed
against the whole entity set.

The results in Table 2 on 57 graphs (Section 5.2) are aggregated from Table 10 and Table 11.
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Table 8: Hyperparameters for fine-tuning ULTRA and training from scratch in the format (# epochs,
batches per epoch), e.g., (1, full) means one full epoch over the training set of the respective graph
while (1, 1000) means 1 epoch of 1000 batches over the training set.

Datasets ULTRA fine-tuning ULTRA train from scratch Batch size

FB V1-V4 (1, full) (10, full) 64
WN V1-V4 (1, full) (10, full) 64
NELL V1-V4 (3, full) (10, full) 64
HM 1k-5k, IndigoBM (1, 100) (10, 1000) 64
ILPC Small (3, full) (10, full) 64
ILPC Large (1, 1000) (10, 1000) 16
FB 25-100 (3, full) (10, full) 64
WK 25-100 (3, full) (10, full) 64
NL 0-100 (3, full) (10, full) 64
MT1-MT4 (3, full) (10, full) 64
Metafam, FBNELL (3, full) (10, full) 64
WDsinger (3, full) (10, 1000) 64
NELL23k (3, full) (10, 1000) 64
FB237_10 (1, full) (10, 1000) 64
FB237_20 (1, full) (10, 1000) 64
FB237_50 (1, 1000) (10, 1000) 64
CoDEx-S (1, 4000) (10, 1000) 64
CoDEx-L (1, 2000) (10, 1000) 16
NELL-995 (1, full) (10, 1000) 16
YAGO 310 (1, 2000) (10, 2000) 16
DBpedia100k (1, 1000) (10, 1000) 16
AristoV4 (1, 2000) (10, 1000) 16
ConceptNet100k (1, 2000) (10, 1000) 16
Hetionet (1, 4000) (10, 1000) 16
WN18RR (1, full) (10, 1000) 64
FB15k237 (1, full) (10, 1000) 64
CoDEx-M (1, 4000) (10, 1000) 64

Table 9: Graphs in different pre-training mixtures in Figure 6.
1 2 3 4 5 6 8

FB15k237 ✓ ✓ ✓ ✓ ✓ ✓ ✓
WN18RR ✓ ✓ ✓ ✓ ✓ ✓
CoDEx-M ✓ ✓ ✓ ✓ ✓
NELL995 ✓ ✓ ✓ ✓
YAGO 310 ✓ ✓ ✓
ConceptNet100k ✓ ✓
DBpedia100k ✓
AristoV4 ✓

Batch size 32 16 64 16 16 16 16
# steps 200,000 400,000 200,000 400,000 200,000 200,000 200,000
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Table 10: Full results (MRR, Hits@10) of ULTRA in the zero-shot inference and fine-tuning regimes
on 43 graphs compared to the best reported Supervised SOTA. The numbers correspond to Figure 1.

ULTRA 0-shot ULTRA fine-tuned Supervised SOTA
MRR Hits@10 MRR Hits@10 MRR Hits@10

pre-training datasets

WN18RR 0.480 0.614 0.551 0.666
FB15k237 0.368 0.564 0.415 0.599
CoDEx Medium 0.372 0.525 0.352 0.49

inductive (e) datasets

WN V1 0.648 0.768 0.685 ± 0.003 0.793 ± 0.003 0.741 0.826
WN V2 0.663 0.765 0.679 ± 0.002 0.779 ± 0.003 0.704 0.798
WN V3 0.376 0.476 0.411 ± 0.008 0.546 ± 0.006 0.452 0.568
WN V4 0.611 0.705 0.614 ± 0.003 0.720 ± 0.001 0.661 0.743
FB V1 0.498 0.656 0.509 ± 0.002 0.670 ± 0.004 0.457 0.589
FB V2 0.512 0.700 0.524 ± 0.003 0.710 ± 0.004 0.510 0.672
FB V3 0.491 0.654 0.504 ± 0.001 0.663 ± 0.003 0.476 0.637
FB V4 0.486 0.677 0.496 ± 0.001 0.684 ± 0.001 0.466 0.645
NELL V1 0.785 0.913 0.757 ± 0.021 0.878 ± 0.035 0.637 0.866
NELL V2 0.526 0.707 0.575 ± 0.004 0.761 ± 0.007 0.419 0.601
NELL V3 0.515 0.702 0.563 ± 0.004 0.755 ± 0.006 0.436 0.594
NELL V4 0.479 0.712 0.469 ± 0.020 0.733 ± 0.011 0.363 0.556
ILPC Small 0.302 0.443 0.303 ± 0.001 0.453 ± 0.002 0.130 0.251
ILPC Large 0.290 0.424 0.308 ± 0.002 0.431 ± 0.001 0.070 0.146

inductive (e, r) datasets

FB-100 0.449 0.642 0.444 ± 0.003 0.643 ± 0.004 0.223 0.371
FB-75 0.403 0.604 0.400 ± 0.003 0.598 ± 0.004 0.189 0.325
FB-50 0.338 0.543 0.334 ± 0.002 0.538 ± 0.004 0.117 0.218
FB-25 0.388 0.640 0.383 ± 0.001 0.635 ± 0.002 0.133 0.271
WK-100 0.164 0.286 0.168 ± 0.005 0.286 ± 0.003 0.107 0.169
WK-75 0.365 0.537 0.380 ± 0.001 0.530 ± 0.009 0.247 0.362
WK-50 0.166 0.324 0.140 ± 0.010 0.280 ± 0.012 0.068 0.135
WK-25 0.316 0.532 0.321 ± 0.003 0.535 ± 0.007 0.186 0.309
NL-100 0.471 0.651 0.458 ± 0.012 0.684 ± 0.011 0.309 0.506
NL-75 0.368 0.547 0.374 ± 0.007 0.570 ± 0.005 0.261 0.464
NL-50 0.407 0.570 0.418 ± 0.005 0.595 ± 0.005 0.281 0.453
NL-25 0.395 0.569 0.407 ± 0.009 0.596 ± 0.012 0.334 0.501
NL-0 0.342 0.523 0.329 ± 0.010 0.551 ± 0.012 0.269 0.431

transductive datasets

CoDEx Small 0.472 0.667 0.490 ± 0.003 0.686 ± 0.003 0.473 0.663
CoDEx Large 0.338 0.469 0.343 ± 0.002 0.478 ± 0.002 0.345 0.473
NELL-995 0.406 0.543 0.509 ± 0.013 0.660 ± 0.006 0.543 0.651
YAGO 310 0.451 0.615 0.557 ± 0.009 0.710 ± 0.003 0.563 0.708
WDsinger 0.382 0.498 0.417 ± 0.002 0.526 ± 0.002 0.393 0.500
NELL23k 0.239 0.408 0.268 ± 0.001 0.450 ± 0.001 0.253 0.419
FB15k237_10 0.248 0.398 0.254 ± 0.001 0.411 ± 0.001 0.219 0.337
FB15k237_20 0.272 0.436 0.274 ± 0.001 0.445 ± 0.002 0.247 0.391
FB15k237_50 0.324 0.526 0.325 ± 0.002 0.528 ± 0.002 0.293 0.458
DBpedia100k 0.398 0.576 0.436 ± 0.008 0.603 ± 0.006 0.306 0.418
AristoV4 0.182 0.282 0.343 ± 0.006 0.496 ± 0.004 0.311 0.447
ConceptNet100k 0.082 0.162 0.310 ± 0.004 0.529 ± 0.007 0.320 0.553
Hetionet 0.257 0.379 0.399 ± 0.005 0.538 ± 0.004 0.257 0.403
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Table 11: Full results (MRR, Hits@10) of ULTRA in the zero-shot inference and fine-tuning regimes
on 14 graphs where Supervised SOTA reports an estimate Hits@10 (50 negs) metric (where avail-
able). The numbers correspond to Figure 4.

Dataset
ULTRA 0-shot ULTRA fine-tuned Supervised SOTA

MRR Hits@10 Hits@10 MRR Hits@10 Hits@10 Hits@10
(50 neg) (50 neg) (50 neg)

inductive (e) datasets

HM 1k 0.059 0.092 0.796 0.042 ± 0.002 0.100 ± 0.007 0.839 ± 0.013 0.625
HM 3k 0.037 0.077 0.717 0.030 ± 0.002 0.090 ± 0.003 0.717 ± 0.016 0.375
HM 5k 0.034 0.071 0.694 0.025 ± 0.001 0.068 ± 0.003 0.657 ± 0.016 0.399
IndigoBM 0.440 0.648 0.995 0.432 ± 0.001 0.639 ± 0.002 0.995 ± 0.000 0.788

inductive (e, r) datasets

MT1 tax 0.224 0.305 0.731 0.330 ± 0.046 0.459 ± 0.056 0.994 ± 0.001 0.855
MT1 health 0.298 0.374 0.951 0.380 ± 0.002 0.467 ± 0.006 0.982 ± 0.002 0.858
MT2 org 0.095 0.159 0.778 0.104 ± 0.001 0.170 ± 0.001 0.855 ± 0.012 -
MT2 sci 0.258 0.354 0.787 0.311 ± 0.010 0.451 ± 0.042 0.982 ± 0.001 -
MT3 art 0.259 0.402 0.883 0.306 ± 0.003 0.473 ± 0.003 0.958 ± 0.001 -
MT3 infra 0.619 0.755 0.985 0.657 ± 0.008 0.807 ± 0.007 0.996 ± 0.000 -
MT4 sci 0.274 0.449 0.937 0.303 ± 0.007 0.478 ± 0.003 0.973 ± 0.001 -
MT4 health 0.624 0.737 0.955 0.704 ± 0.002 0.785 ± 0.002 0.974 ± 0.001 -
Metafam 0.238 0.644 1.0 0.997 ± 0.003 1.0 ± 0 1.0 ± 0 1.0
FBNELL 0.485 0.652 0.989 0.481 ± 0.004 0.661 ± 0.011 0.987 ± 0.001 0.95
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