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Abstract

Large Language Models (LLMs) have achieved significant success in programming
tasks, particularly excelling on interview-oriented platforms like LeetCode. How-
ever, we observe that these models still underperform on more complex problems
in Olympiad level competitions. This performance gap primarily stems from the
deep mathematical reasoning, complex algorithmic thinking, and diverse solution
strategies required for Olympiad programming problems. To address this issue, we
propose a novel approach: Reinforcement Learning with Online Judge Feedback
(RLOJF). This method simulates the iterative process in real programming environ-
ments, allowing the model to dynamically adjust its output based on scores and
error messages provided by Online Judge (OJ) systems. RLOJF aims to improve
the correctness and efficiency of code generated by the model, develop its ability
to iteratively refine code using automated feedback, and enhance its reasoning
and problem-solving capabilities in complex programming tasks. Our research
contributions include: proposing a new reinforcement learning framework for com-
plex programming tasks, designing a training methodology utilizing OJ feedback,
conducting extensive experiments on a large number of complex programming
problems to validate the method’s effectiveness.

1 Background

Code synthesis, or the automatic generation of code, has gained significant attention in AI research
due to its potential to streamline software development. Traditional methods and even recent
machine learning models like transformers often struggle with complex or unfamiliar tasks, relying
on predefined rules or supervised learning from fixed examples. Reinforcement Learning (RL) offers
a promising alternative, allowing systems to learn by interacting with an environment and receiving
feedback, potentially becoming more flexible and creative in generating code.

Olympiad-level programming tasks present an even greater challenge, requiring consideration of
complex systems design, advanced mathematical theories, sophisticated algorithms, and optimization
for both time and space complexity. These tasks are significantly more difficult than typical interview
coding problems, and even top-tier competitive programmers rarely solve them correctly on the first
attempt. The problem-solving process for such tasks can be abstracted into agent-like behaviors:
compiling code, trying custom test cases, and submitting to online judge for black-box feedback.

We propose the Reinforcement Learning with Online Judge Feedback (RLOJF) framework, which
leverages the advantages of online reinforcement learning: real-time adaptation, efficient exploration,
robustness to problem diversity, and mimicking human learning processes. By combining the pattern
recognition capabilities of LLMs with the adaptive learning of RL and the rapid feedback of advanced
Online Judge systems, RLOJF represents a significant step forward in AI-assisted programming for
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high-level competitive coding scenarios, pushing the boundaries of what’s possible in automated
code synthesis for complex programming tasks.

2 Definition

Reinforcement Learning (RL) is a machine learning technique where an agent learns by interacting
with an environment and receiving rewards or penalties based on its actions. The goal is to maximize
the total reward over time by making the best decisions.

In the context of code synthesis, RL offers a promising approach to automate and improve the process
of generating computer programs. The application of RL to code generation involves casting the
problem into the RL framework: the environment is defined by the rules and structure of the target
programming language, the actions correspond to the selection of code elements or transformations,
and the rewards are designed to reflect the quality of the generated code. This quality can be measured
in various ways, such as correctness, efficiency, and readability. By framing code synthesis as an
RL problem, we can leverage the power of modern RL algorithms to navigate the vast and complex
search space of possible programs.

3 Related works

3.1 Proximal Policy Optimization

Proximal Policy Optimization(PPO) [1] is a popular reinforcement learning algorithm designed to
improve the stability and efficiency of policy updates, which uses a clipped objective function to
restrict how much the policy can change during updates, ensuring that updates remain "proximal" to
the previous policy.

3.2 Reinforcement Learning with Execution Feedback

Reinforcement Learning with Execution Feedback(RLEF)[2] is a recent reinforcement learning
method proposed to teach models to leverage execution feedback for code improvement, which
achieves this by optimizing reward signals within an iterative environment.

Experimental results on the CodeContests benchmark demonstrate that the RLEF training method
achieves state-of-the-art results for both small (8B parameters) and large (70B parameters) models,
while reducing the number of samples required.

4 Method

RLOJF framework consists of a high-performance OJ system that compiles, executes, and evaluates
submitted code against comprehensive test cases, providing real-time feedback including runtime,
memory metrics, and test results. We use open-source OJ systems to build our environment1. Besides
the commonly used code evaluation dataset CodeContest[3], we also introduce an additional Chinese
OI (Olympiad in Informatics) dataset based on Chinese high school OI competitions. We plan to test
the effectiveness of our approach on LLAMA 3.1[4] and GLM-4-9B[5] models. Specifically, we aim
to enhance Chinese programming capabilities on the GLM-4-9B model.

For the RL part, we define the state space S as a tuple (c, r, f), where c represents the current code, r
denotes compilation and test results, and f encompasses OJ feedback such as scores and memory
usage. The action space A is designed to include code generation, modification, compilation, and
submissions to the OJ. To guide the learning process, the RLOJF agent optimizes a reward function
R(s, a, s′) that promotes correctness, efficiency, and continuous improvement in the generated code.
This reward function is formulated as:

R(s, a, s′) = wcC(s′) + wpP (s′) + wiI(s, s
′)− weE(s′)− wtT (s

′)− wmM(s′)

where C, P , I , E, T , and M respectively represent correctness, performance, improvement, error,
time, and memory usage, each weighted by corresponding factors w to balance these competing
objectives.

1https://hydro.ac/, https://loj.ac/
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