
Published as a conference paper at ICLR 2024

LOFTQ: LORA-FINE-TUNING-AWARE QUANTIZA-
TION FOR LARGE LANGUAGE MODELS

Yixiao Li1 ∗ Yifan Yu1 ∗ Chen Liang1 Pengcheng He2

Nikos Karampatziakis2 Weizhu Chen2 Tuo Zhao1

ABSTRACT

Quantization is an indispensable technique for serving Large Language Models
(LLMs) and has recently found its way into LoRA fine-tuning (Dettmers et al.,
2023). In this work we focus on the scenario where quantization and LoRA fine-
tuning are applied together on a pre-trained model. In such cases it is common
to observe a consistent gap in the performance on downstream tasks between
full fine-tuning and quantization plus LoRA fine-tuning approach. In response,
we propose LoftQ (LoRA-Fine-Tuning-aware Quantization), a novel quantiza-
tion framework that simultaneously quantizes an LLM and finds a proper low-
rank initialization for LoRA fine-tuning. Such an initialization alleviates the dis-
crepancy between the quantized and full-precision model and significantly im-
proves generalization in downstream tasks. We evaluate our method on nat-
ural language understanding, question answering, summarization, and natural
language generation tasks. Experiments show that our method is highly ef-
fective and outperforms existing quantization methods, especially in the chal-
lenging 2-bit and 2/4-bit mixed precision regimes. The code is available on
https://github.com/yxli2123/LoftQ.1 2

1 INTRODUCTION

The advent of Pre-trained Language Models (PLMs) has marked a transformative shift in the field
of Natural Language Processing (NLP), offering versatile solutions across various applications (He
et al., 2021b; Lewis et al., 2019; Touvron et al., 2023). They have showcased unparalleled profi-
ciency in executing a variety of language tasks, including Natural Language Understanding (NLU)
and Natural Language Generation (NLG). These models typically have millions or even billions of
parameters, necessitating substantial computational and memory requirements. However, the exten-
sive computational and memory demands of these models pose significant challenges, especially for
deployments where resources are often constrained and need to be shared among many users.

To mitigate the extensive storage requirements of pre-trained models, quantization serves as a piv-
otal compression technique (Zafrir et al., 2019; Shen et al., 2020; Bai et al., 2022; Dettmers et al.,
2022), converting high-precision numerical values into a discrete set of values. Typically, model
parameters, originally stored in a 16-bit float format, are transformed into a 4-bit integer format
through quantization, resulting in a substantial 75% reduction in storage overhead. Additionally, to
facilitate the adaptation of quantized pre-trained models to downstream tasks efficiently, Low-Rank
Adaptation (LoRA) is a viable approach (Hu et al., 2021). This technique is a parameter-efficient
fine-tuning method traditionally applied to high-precision pre-trained models. It is based on the
hypothesis that the differences between fully fine-tuned weights and pre-trained weights exhibit
low-rank properties. This allows these differences to be represented using low-rank matrices. As a
result, the original pre-trained weights remain unaltered, with adaptations confined solely to these
low-rank matrices, enabling effective task adaptation.

∗Equal contribution
1Li, Yu, Liang and Zhao are affiliated with Georgia Institute of Technology. Correspondence to

yixiaoli@gatech.edu, yyu429@gatech.edu and tourzhao@gatech.edu.
2He, Karampatziakisand and Chen are affiliated with Microsoft Azure.

1

https://github.com/yxli2123/LoftQ
yixiaoli@gatech.edu
yyu429@gatech.edu
tourzhao@gatech.edu

Published as a conference paper at ICLR 2024

When quantizing pre-trained models, practitioners often concentrate primarily on the quantization
technique, inadvertently neglecting the importance of subsequent LoRA fine-tuning (Dettmers et al.,
2023; Diao et al., 2023). For example, QLoRA inherits the fixup initialization (Zhang et al., 2019)
used in LoRA, which (Dettmers et al., 2023) attaches zero initialized low-rank adapters (see Section
2.3) to the quantized pre-trained model. The inevitable discrepancy introduced by quantization dur-
ing the approximation of the original high-precision numbers, a scenario particularly pronounced
in low-bit situations such as the 2-bit regime, can adversely impact the initialization of LoRA fine-
tuning. As illustrated in Figure 1a, the quantized pre-trained model obtained by QLoRA exhibits
severe degradation below the 3-bit level. This deviation in initialization often results in an inferior
fine-tuning performance. As illustrated in Figure 1b, the fine-tuning performance drops as the quan-
tization bit decreases when applying QLoRA. Moreover, it is noteworthy that QLoRA fails below
the 3-bit level.

In this paper, we introduce a novel quantization framework, called LoRA-Fine-Tuning-aware
Quantization (LoftQ). It is designed specifically for pre-trained models that require quantization
and LoRA fine-tuning. This framework actively integrates low-rank approximation, working in tan-
dem with quantization to jointly approximate the original high-precision pre-trained weights. This
synergy significantly enhances alignment with the original pre-trained weights as illustrated in Fig-
ure 2. Consequently, our method provides an advantageous initialization point for subsequent LoRA
fine-tuning, leading to improvements in downstream tasks.

16 8 4 3 2.5 2.25 2
Number of Bits

2

4

6

8

10

12

Lo
g

of
 P

er
pl

ex
ity

2.49 2.50 2.53 2.53

11.37 11.48 11.50

(a) Pre-trained LLAMA-2-13b on WikiText-2

16 8 4 3 2.5 2.25 2
Number of Bits

0

2

4

6
Lo

g
of

 P
er

pl
ex

ity

1.63 1.64 1.65 1.65

2.99

6.80
7.19

(b) Fine-tuned LLAMA-2-13b on WikiText-2

Figure 1: QLoRA performance with different bits. Left: QLoRA initialization of LLAMA-2-13b
on WikiText-2. Right: Apply QLoRA to LLAMA-2-13b on WikiText-2 language modeling task.
Smaller perplexity indicates better performance.

We evaluate our quantization framework by conducting extensive experiments on downstream tasks,
such as NLU, question answering, summarization, and NLG. Experiments show that LoftQ consis-
tently outperforms QLoRA across all precision levels. For instance, with 4-bit quantization, we
achieve a 1.1 and 0.8 gain in Rouge-1 for XSum (Narayan et al., 2018) and CNN/DailyMail (Her-
mann et al., 2015), respectively. LoftQ excels particularly in low-bit scenarios and works effectively
with different quantization methods. For example, we achieve over an 8% gain on MNLI (Wang
et al., 2019) and more than 10% on SQuADv1.1 (Rajpurkar et al., 2016) with both 2-bit NormalFloat
and the 2-bit uniform quantization. We have not seen our approach performs worse than QLoRA.

2 BACKGROUND

2.1 TRANSFORMER MODELS

A transformer model contains a sequence of layers, where each layer consists of two sub-layers: a
multi-head self-attention (MHA) and a fully connected feed forward network (FFN) (Vaswani et al.,
2017). Given the input X ∈ Rn×d, where n is the sequence length and d is the hidden dimension of
the model, MHA computes the h attention heads in parallel:

MHA(X) = Concat(head1, ...,headh)Wo,

where headi =Softmax(XWqi(XWki
)⊤/

√
dh)XWvi for i = 1, ..., h,

where Wqi ,Wki
,Wvi ∈ Rd×dh are query, key, and value matrices, Wo ∈ Rd×d is the output matrix,

and dh = d/h. FFN comprises two linear transformations and an activation function, and is defined
as FFN(X) = σ(XWf1 + b1)Wf2 + b2, where Wf1 ∈ Rd×dm , Wf2 ∈ Rdm×d, and σ(·) is the
activation function. A residual connection is used and followed by layer normalization.

2

Published as a conference paper at ICLR 2024

Uniform
4bit

NormalFloat
4bit

Uniform
2bit

NormalFloat
2bit

0

2

4

6

8

10

12

14

Di
sc

re
pa

nc
y

LoftQ
QLoRA

(a) Spectral norm of the initialization difference

Uniform
4bit

NormalFloat
4bit

Uniform
2bit

NormalFloat
2bit

0

10

20

30

40

50

60

Di
sc

re
pa

nc
y

LoftQ
QLoRA

(b) Frobenius norm of the initialization difference

Figure 2: Initialization discrepancy between the LoRA initialization and the original pre-trained
weight matrix, described by the spectral norm and Frobenius norm of the difference. The weight
matrix in the above figures is randomly selected in BART-large. The initialization is obtained by
QLoRA and LoftQ, with Uniform and NormalFloat quantization methods applied at both 2-bit and
4-bit levels. LoftQ successfully mitigates the discrepancy, especially at the 2-bit level.

2.2 QUANTIZATION

Quantization. Given a high-precision number, e.g., such as 32-bit floating point number, XHP ∈ R,
N -bit quantization encodes it to an integer X INT ∈ {0, 1, ..., 2N−1}. This process can be expressed
as

X INT = round
(
(2N − 1)F

(
XHP)) , (1)

where F (·) : R 7→ [0, 1] is a normalization function. Uniform quantization assumes F (X) = (X −
Xmin)/(Xmax −Xmin). Dettmers et al. (2023) proposes 4-bit NormalFloat Quantization (NF4). It
assumes X ∼ N (0, σ2) and hence F (X) = Φ(X/σ), where Φ(·) is the cumulative distribution
function of the standard normal distribution.

Dequantization. A lookup table T , where

T [i] = F−1

(
i

2N − 1

)
, i = 0, 1, ..., 2N − 1, (2)

is used to decode the integer X INT to its simulated high-precision counterpart XD ∈ R. Therefore,
the dequantization can be expressed as

XD = T [X INT]. (3)

Simulated Quantization for Matrices. While it is possible to perform multiplication directly be-
tween quantized representations, it is common to apply simulated quantization for matrices (Bai
et al., 2020; Shen et al., 2020). There, quantized weight matrices are stored as encoded integers in
memory, and are temporarily dequantized to simulated high-precision matrices by the lookup table
when engaged in multiplication operations. In simulated quantization, it is only necessary to an-
alyze the map from a high-precision matrix to a simulated high-precision matrix. We denote this
end-to-end process by qN (·) : Rm×n 7→ Rm×n

N , where RN : {T [i] ∈ R|0 ≤ i < 2N}.
2.3 LOW-RANK ADAPTATION

LoRA (Hu et al., 2021) updates two small weight matrices A and B that are attached to a frozen
pre-trained weight matrix W . Hence, a linear transformation, Y = XW , is reformulated as

Y = XW +XAB⊤, (4)

where X ∈ Rn×d1 ,W ∈ Rd1×d2 , A ∈ Rd1×r, B ∈ Rd2×r, and r ≪ min{d1, d2}. Initially,

A ∼ N (0, σ2), B = 0, (5)
so as to align to the pre-trained weights. During the fine-tuning, W is fixed while A and B are
updated by some SGD-type optimization method.

It is worth noting that if low-rank adapters A and B are attached to a quantized backbone Q =
qN (W) and are initialized by (5), the starting weight Q+AB⊤ is no longer equal to the pre-trained
weight W due to the discrepancy introduced by the quantization.

3

Published as a conference paper at ICLR 2024

3 METHOD

We propose LoRA-Fine-Tuning-aware Quantization (LoftQ), a quantization framework for LLMs.
It alternatively applies quantization and low-rank approximation to approximate original pre-trained
weights. This quantization framework provides a promising initialization for LoRA fine-tuning,
which alleviates the quantization discrepancy in QLoRA and improves generalization in downstream
tasks significantly.

3.1 LORA-AWARE QUANTIZATION

We use an N -bit quantized weight Q ∈ Rd1×d2

N and low-rank approximations A ∈ Rd1×r, B ∈
Rd2×r to approximate the original high-precision pre-trained weight W ∈ Rd1×d2 as the initializa-
tion of LoRA fine-tuning. Specifically, before fine-tuning, we initialize the network by minimizing
the following objective:

min
Q,A,B

∥∥W −Q−AB⊤∥∥
F
, (6)

where ∥·∥F denotes the Frobenious norm. This objective in (6) takes LoRA fine-tuning into consid-
eration by jointly optimizing the initial values of the quantized backbone Q and low-rank adapters
A,B. Contrarily, practitioners typically convert the pre-trained weight W into a quantized weight
Q outright, neglecting the subsequent LoRA fine-tuning process. This oversight leads to notable
performance degradation in downstream tasks arising from the quantization discrepancy.

3.2 ALTERNATING OPTIMIZATION

We solve the minimization problem in (6) by alternating between quantization and singular value
decomposition (SVD). To begin with, we set A0, and B0 equal to 0.

Quantization. At the t-th step, we quantize the difference between the original pre-trained weight
matrix W and the low-rank approximation At−1B

⊤
t−1 from the previous step to obtain the quantized

weight matrix Qt by
Qt = qN (W −At−1B

⊤
t−1), (7)

where qN (·) maps a high-precision weight matrix to a quantized matrix.

We remark that our algorithm is compatible with different quantization functions qN (·). We apply
NF4 and the uniform quantization in Section 4 as examples. We also remark that Qt is not an exact
solution of the minimization in (6), given the fixed At−1B

⊤
t−1, but it is an efficient approximation.

SVD. After obtaining the t-th quantized weight Qt, SVD is applied to the residual of the quantization
denoted by Rt = W −Qt by

Rt =

d∑
i=1

σt,iut,iv
⊤
t,i, (8)

where d = min{d1, d2}, σt,1 ≥ σt,2 ≥ ... ≥ σt,d are the singular values of Rt, ut,i’s and vt,i’s are
the associated left and right singular vectors of Rt. We then obtain a rank-r approximation of Rt by
AtB

⊤
t , where

At = [
√
σt,1ut,1, ...,

√
σt,rut,r],

Bt = [
√
σt,1vt,1, ...,

√
σt,rvt,r]. (9)

We summarize our method in Algorithm 1. It is worth noting that T = 1 is a special case where Q1 is
the exact quantized weight obtained by QLoRA, and low-rank approximations A1, B1 are obtained
by the SVD of the quantization residual W − Q1. T = 1 is sufficient to mitigate the quantization
discrepancy, and alternating optimization helps to find a closer initialization to the pre-trained weight
W , which further improves the performance (see Section 3).

We remark that the computational cost of LoftQ is negligible because it is applied to individual
weight matrices and can be executed in parallel. We also remark one can apply LoftQ only once to
a pre-trained model and reuse the initialization obtained by LoftQ for different downstream tasks.

3.3 APPLYING TO LORA FINE-TUNING

We store the QT ∈ Rd1×d2

N obtained by LoftQ using an integer matrix M by (1) and a lookup table
T by (2). We initialize the backbone with the integer matrix M and initialize the low-rank adapters
with AT , BT obtained by LoftQ.

4

Published as a conference paper at ICLR 2024

Algorithm 1 LoftQ

input Pre-trained weight W , target rank r, N -bit quantization function qN (·), alternating step T
1: Initialize A0 ← 0, B0 ← 0
2: for t = 1 to T do
3: Obtain quantized weight Qt ← qN (W −At−1B

⊤
t−1)

4: Obtain low-rank approximation At, Bt ← SVD(W −Qt) by (9)
5: end for

output QT , AT , BT

During LoRA fine-tuning, we freeze the integer weight M and optimize the low-rank adapters with
an efficient optimization algorithm, e.g., AdamW (Loshchilov & Hutter, 2017). In forward propa-
gation, the integer weight M is temporarily dequantized to the simulated high-precision weight QT

by its lookup table, as described in (3). In back propagation, gradients and optimizer state are only
related to low-rank adapters A,B, which reduces considerable training cost.

4 EXPERIMENTS

We evaluate our method on NLU and NLG tasks. We apply LoftQ for quantizing DeBERTaV3-base
(He et al., 2021b), BART-large (Lewis et al., 2019), and LLAMA-2 series (Touvron et al., 2023).

Implementation Details. Following the prior works of LoRA variants (Zhang et al., 2023; He
et al., 2021a), we freeze all the backbone weight matrices and add low-rank adapters to weight
matrices in MHA and FFN of all layers. We quantize the weight matrices that are attached by low-
rank adapters. All the quantized models and adapters used in this paper are available on https:
//huggingface.co/LoftQ. Our implementation is based on publicly available Huggingface
Transformers code-base (Paszke et al., 2019). All the experiments are conducted on NVIDIA A100
GPUs.

Quantization Methods. We apply two quantization methods to demonstrate LoftQ is compatible
with different quantization functions:

• Uniform quantization is a classic quantization method. It uniformly divides a continuous
interval into 2N categories and stores a local maximum absolute value for dequantization.

• NF4 and its 2-bit variant NF2 are quantization methods used in QLoRA (Dettmers et al.,
2023). They assume that the high-precision values are drawn from a Gaussian distribution
and map these values to discrete slots that have equal probability.

We perform 2-bit and 4-bit quantization on all models, achieving compression ratios of 25-30% and
15-20% at the 4-bit and 2-bit levels, respectively. The compression ratios and trainable parameter
ratios for all models are detailed in the Appendix A.

Baselines. We compare LoftQ with the following baseline methods:

• Full fine-tuning is the most common approach for adapting a pre-trained model to down-
stream tasks. The model is initialized with pre-trained weights and all parameters are up-
dated through an SGD-type optimization method.

• Full precision LoRA (LoRA) is a lightweight method for task adaptation, where it stores the
backbone using 16-bit numbers and optimizes the low-rank adaptors only. The adaptors
are applied to the same matrices as in LoftQ.

• QLoRA is similar to LoRA except the backbone is quantized into low-bit regime. The low-
rank adapters are initialized using (5) and are applied to the same matrices as in LoftQ.

4.1 ENCODER-ONLY MODEL: DEBERTAV3

Models and Datasets. We quantize the DeBERTaV3-base (He et al., 2021b) with LoftQ, then fine-
tune and evaluate the model on the General Language Understanding Evaluation (GLUE) bench-
mark (Wang et al., 2019), SQuADv1.1 (Rajpurkar et al., 2016), and ANLI (Nie et al., 2019). The
specific tasks of GLUE are given in Appendix C. Following previous works (Zhang et al., 2023), we
exclude WNLI in the experiments.

5

https://huggingface.co/LoftQ
https://huggingface.co/LoftQ

Published as a conference paper at ICLR 2024

Implementation Details. We select the learning rates from {1×10−5, 5×10−5, 1×10−4 5×10−4}.
We quantize the entire backbone. Given that GLUE, SQuADv1.1, and ANLI are relatively easy
NLU tasks, we also quantize the embedding layer for higher compression efficiency. We apply the
NormalFloat and the uniform quantization for LoftQ and QLoRA at both 2-bit and 4-bit levels. We
use rank 16 and 32 for low-rank adapters. More implementation details, such as the training epochs
and batch sizes, are presented in Appendix D.2.

Main Results. Table 1 and Table 2 summarize the results for 2-bit quantization on the GLUE,
SQuADv1.1, and ANLI datasets, by NF2 and the uniform quantization, respectively. Our method
consistently outperforms QLoRA on all settings with respect to different ranks, quantization meth-
ods, and datasets. When using the uniform quantization (Table 2), our method achieves 88.0%
accuracy on MNLI-m, surpassing the QLoRA baseline by 8%. For tasks like SST and SQuADv1.1,
our method even approaches the full fine-tuning performance at 2-bit level. The 4-bit quantization
experiment results are presented in Appendix D.1 as both LoftQ and QLoRA achieve performance
close to full fine-tuning.

Table 1: Results with 2-bit LoftQ of DeBERTaV3-base models on GLUE development set,
SQuADv1.1 development set, ANLI test set using NF2 quantization. We report the median over
four seeds. N.A. indicates the model does not converge. The best results on each dataset are shown
in bold.

Rank Method MNLI QNLI RTE SST MRPC CoLA QQP STSB SQuAD ANLI
m / mm Acc Acc Acc Acc Matt Acc P/S Corr EM/F1 Acc

- Full FT 90.5/90.6 94.0 82.0 95.3 89.5/93.3 69.2 92.4/89.8 91.6/91.1 88.5/92.8 59.8

16 LoRA 90.4/90.5 94.6 85.1 95.1 89.9/93.6 69.9 92.0/89.4 91.7/91.1 87.3/93.1 60.2

16 QLoRA 75.4/75.6 82.4 55.9 86.5 73.8/82.8 N.A. 86.8/82.3 83.0/82.8 61.5 / 71.2 N.A.
LoftQ 84.7/85.1 86.6 61.4 90.2 83.8/88.6 37.4 90.3/86.9 87.1/86.9 81.5/88.6 47.1

32 QLoRA 78.5/78.7 80.4 56.7 86.9 73.8/82.7 N.A. 87.1/82.7 83.6/83.3 64.6/73.8 N.A.
LoftQ 86.0/86.1 89.9 61.7 92.0 83.6/87.2 47.5 91.0/87.9 87.5/87.0 82.9/89.8 49.0

Table 2: Results with 2-bit LoftQ of DeBERTaV3-base models on GLUE development set,
SQuADv1.1 development set using Uniform quantization . We report the median over four seeds.
N.A. indicates the model does not converge. The best results on each task are shown in bold.

Rank Method MNLI QNLI RTE SST MRPC CoLA QQP STSB SQuAD
m / mm Acc Acc Acc Acc Matt Acc P/S Corr Em/F1

- Full FT 90.5/90.6 94.0 82.0 95.3 89.5/93.3 69.2 92.4/89.8 91.6/91.1 88.5/92.8

16 LoRA 90.4/90.5 94.6 85.1 95.1 89.9/93.6 69.9 92.0/89.4 91.7/91.1 87.3/93.1

16 QLoRA 76.5/76.3 83.8 56.7 86.6 75.7/84.7 N.A. 87.1/82.6 83.5/83.4 69.5/77.6
LoftQ 87.3/87.1 90.6 61.1 94.0 87.0/90.6 59.1 90.9/88.0 87.9/87.6 84.4/91.2

32 QLoRA 79.9/79.5 83.7 57.8 86.9 76.5/84.5 N.A. 88.6/84.7 84.1/84.0 71.6/80.2
LoftQ 88.0/88.1 92.2 63.2 94.7 87.5/91.2 60.5 91.3/88.3 89.5/89.2 85.2/91.6

Our method is also more stable compared to QLoRA in the low-bit regime. For instance, while
QLoRA fails to converge on CoLA for both quantization methods and ranks, LoftQ converges in all
cases and achieves a score of 60.5 using uniform quantization at rank 32. LoftQ stands out in its
ability to consistently attain robust and improved performance by effectively preserving the starting
point of pre-trained weights.

4.2 ENCODER-DECODER MODEL: BART

Models and Datasets. We quantize BART-large model (Lewis et al., 2020) with LoftQ, then fine-
tune and evaluate the model on two commonly used summarization datasets: XSum (Narayan et al.,
2018) and CNN/DailyMail(Hermann et al., 2015).

Implementation Details. We apply LoftQ to weight matrices in MHA and FFN of both encoder and
decoder layers. We report ROUGE 1/2/L scores, which are the metrics for summarization tasks (Lin,
2004). We conduct quantization experiments in both 2-bit and 4-bit scenarios. We experiment with
both NormalFloat and the uniform quantization in both 2-bit and 4-bit scenarios. In each precision,
we choose rank equal to 8 and 16 for a fair comparison with the full precision LoRA baseline (Zhang
et al., 2023). Please see Appendix E for detailed configurations.

6

Published as a conference paper at ICLR 2024

Main Results. Table 3 summarizes our 4-bit quantization experiment results on the XSum and
CNN/DailyMail test sets. Our method consistently outperforms QLoRA at both ranks on both
datasets. It even surpasses full precision LoRA at both ranks on Xsum. We will discuss this un-
expected results in Section 5. The 2-bit quantization results are shown in Table 4. Our observation
is consistent with the NLU experiments, that LoftQ demonstrates the convergence to reasonable
results, while QLoRA does not converge. This indicates our method is robuster by narrowing the
initialization gap.

Table 3: Results with 4-bit LoftQ of BART-large on XSum and CNN/DailyMail. We report ROUGE-
1/2/L. Lead-3 means choosing the first 3 sentences as the summary. N.A. indicates the model does
not converge. Full FT: full fine-tuning. We report the median over five seeds.

Quantization Rank Method XSum CNN/DailyMail

Full Precision
- Lead-3 16.30/1.60/11.95 40.42/17.62/36.67

Full FT 45.14/22.27/37.25 44.16/21.28/40.90

8 LoRA 43.40/20.20/35.20 44.72/21.58/41.84
16 LoRA 43.95/20.72/35.68 45.03/21.84/42.15

NF4
8 QLoRA 42.91/19.72/34.82 43.10/20.22/40.06

LoftQ 44.08/20.72/35.89 43.81/20.95/40.84

16 QLoRA 43.29/20.05/35.15 43.42/20.62/40.44
LoftQ 44.51/21.14/36.18 43.96/21.06/40.96

Uniform
8 QLoRA 41.84/18.71/33.74 N.A.

LoftQ 43.86/20.51/35.69 43.73/20.91/40.77

16 QLoRA 42.45/19.36/34.38 43.00/20.19/40.02
LoftQ 44.29/20.90/36.00 43.87/20.99/40.92

Table 4: Results with 2-bit LoftQ of BART-large on XSum and CNN/DailyMail using NF2 quanti-
zation. N.A. indicates the model does not converge. We report ROUGE-1/2/L, the higher the better.
We report the median over five seeds.

Rank Method XSum CNN/DailyMail

8 QLoRA N.A. N.A.
LoftQ 39.63/16.65/31.62 42.24/19.44/29.04

16 QLoRA N.A. N.A.
LoftQ 40.81/17.85/32.80 42.52/19.81/39.51

4.3 DECODER-ONLY MODEL: LLAMA-2

Models and Datasets. We quantize LLAMA-2-7b and LLAMA-2-13b (Touvron et al., 2023) with
LoftQ. We then fine-tune and evaluate the models on two NLG datasets: GSM8K (Cobbe et al.,
2021) and WikiText-2 (Merity et al., 2016). Please see Appendix F for more details about the
datasets.

Implementation Details. Similarly, we apply LoftQ to weight matrices in MHA and FFN of all
layers. In WikiText-2 evaluation, we report perplexity. In case of overfitting, we apply weight decay
to low-rank adapters for all settings. In GSM8K evaluation, we extract numerical answers in the
generated solutions and then calculate the accuracy using those numerical answers. We conduct
experiments with both NF2 and NF4. Please see Appendix F for detailed configurations.

Main Results. Table 5 presents a summary of our experiments on LLAMA-2-7b and LLAMA-2-
13b using 2-bit, 4-bit, and mixed-precision NormalFloat quantization methods on WikiText-2 and
GSM8K datasets. In WikiText-2, our method consistently outperforms QLoRA across all quantiza-
tion precision settings on both models. When dealing with the challenging 2-bit precision, where
QLoRA fails to converge, LoftQ manages to achieve a perplexity of 7.85. In GSM8K, our method
achieves better or on par performance compared to QLoRA across different model sizes and quanti-
zation precision levels. For example, our method achieves 26.5% accuracy using 2-bit precision of
LLAMA-2-7b, where QLoRA does not converge.

7

Published as a conference paper at ICLR 2024

To provide a customized trade-off between the performance and precision, we also explore mixed-
precision (equivalent to 3 bits) quantization where matrices in the first half layers are quantized
using 4 bits, and the rest matrices remain 2 bits. We witness a remarkable 4.1% accuracy boost
on the GSM8K dataset using LLAMA-2-7b and a 4.7% boost using LLAMA-2-13b. This result
underscores the potential of LoftQ for complex mixed-precision quantization scenarios.

Table 5: Results of LoftQ using NormalFloat for LLAMA-2 series on WikiText-2 and GSM8K.
3/2.5/2.25-bit indicates mixed-precision quantization: 4-bit precision for the first 16/8/4 layers and
2-bit precision for the rest of layers. We report the perplexity (the smaller the better) for WikiText-2
and accuracy for GSM8K. The rank of low-rank adapters is 64. N.A. indicates the model does not
converge. We report the median over five random seeds.

Method Bit LLAMA-2-7b LLAMA-2-13b
WikiText-2↓ GSM8K↑ WikiText-2↓ GSM8K↑

LoRA 16 5.08 38.5 5.12 48.8

QLoRA 4 5.70 38.2 5.22 48.8
LoftQ 4 5.24 38.0 5.16 49.1

QLoRA 3 5.73 32.1 5.22 40.7
LoftQ 3 5.63 36.2 5.13 45.4

QLoRA 2.5 N.A. N.A. 19.39 N.A.
LoftQ 2.5 5.78 31.1 5.22 41.1

QLoRA 2.25 N.A. N.A. N.A. N.A.
LoftQ 2.25 6.13 27.5 5.45 38.1

QLoRA 2 N.A N.A. N.A. N.A.
LoftQ 2 7.85 26.5 7.69 33.4

4.4 ANALYSIS

Effectiveness of Alternating Optimization. We conduct experiments with different alternating
step T to verify the effectiveness of the alternating optimization and to find the best value T as
a hyperparameter for different models. Across all tasks and models, we observed that alternating
optimization yields substantial improvements even with a minimal alternating step. This suggests
that it rapidly narrows the discrepancy between quantized weights and pre-trained weights, making
our method easy to apply. For example, LoftQ achieves 21.14 Rouge-2 score on XSum using only
1 step. Interestingly, we noticed that increasing the alternating step beyond a certain point tends
to result in diminishing returns. We suspect this phenomenon occurs because, as the gap becomes
smaller, it becomes more challenging for alternating optimization to consistently minimize the gap
at each step. This challenge emerges because of the inherent errors introduced by the quantization
method. Nevertheless, results from Figure 3 indicate our method is not sensitive to the alternating
step T and is able to consistently enhance downstream fine-tuning performance.

0 1 5 10
Alternating Step T

75

80

85

88
90

Ac
cu

ra
cy

79.9

86.6
88.0 87.7

(a) MNLI

20.0

22.5

25.0

27.0

22.5

25.2 25.5

0 1 5 10
Alternating Step T

0

1
1.2

Ac
cu

ra
cy

(b) GSM8k

0 1 5 10
Alternating Step T

19.0

20.0

21.0

21.5

RO
UG

E-
2

20.05

21.14 21.09
20.83

(c) XSum

Figure 3: Comparison of different alternating step T used in LoftQ. T = 0 indicates we use QLoRA
method that initializes low-rank adapters by (5). T = 1, 5, 10 indicates we use different T for LoftQ
described in Algorithm 1. Left: Uniform 2-bit DeBERTaV3-base. Middle: NF2 2-bit LLAMA-2-
13b. Right: NF4 BART-large.

8

Published as a conference paper at ICLR 2024

5 DISCUSSION

Start with quantization or SVD in the alternating optimization? An alternative algorithm to the
alternating optimization is that we first obtain the low-rank approximation At, Bt and then obtain the
quantized weight Qt by switching Line 3 and Line 4 in Algorithm 1. We note this is a valid alterna-
tive method as both still jointly minimize the objective in (6). Table 6 summarizes the performance
of this alternative method. It is noteworthy that the alternative method still outperforms QLoRA
significantly, even though it is worse than the primary version. This observation underscores the
potential for performance improvement by achieving a closer approximation of pre-trained weights
within the low-precision regime.

LoftQ better than Full-precision LoRA? We find LoftQ outperforms full precision LoRA in XSum
and GSM8K (see Table 3 and Table 5). Beside the overfitting caused by lack of regularization,
anonther possible explanation for this unexpected phenomenon is that the initial low-rank adapters
obtained by LoftQ are non-zero while they are all zero in full precision LoRA as described in (5).
Such zero initialization could make the fine-tuning unstable, and therefore it performs worse than
LoftQ. We leave the study of the robustness of LoftQ as future work.

Table 6: Results of 2-bit uniformly quantized DeBERTaV3-base on part of GLUE. LoftQ(SVD
First) indicates the alternative LoftQ that swiches Line 3 and Line 4 in Algorithm 1. We report the
median over four random seeds. The best results on each task are shown in bold.

Method Rank MNLI QNLI SST2
m / mm Acc Acc

Full FT - 90.5/90.6 94.0 95.3

QLoRA 32 79.9/79.5 83.8 86.6

LoftQ(SVD First) 32 87.8/87.7 84.9 89.7

LoftQ(Quantiztion First) 32 88.0/88.1 92.2 94.7

6 RELATED WORK

Quantization-Aware Training (QAT) is often used to obtain quantized models that are adapted
in downstream tasks (Peri et al., 2020; Liu et al., 2023). It involves quantization and full model
fine-tuning at the same time. However, QAT requires massive training cost, such as the gradient
and optimization state. Moreover, it is difficult to compute the gradient of quantized weights. Our
method, with the help of LoRA, sidesteps the aforementioned issues, providing a light approach for
downstream task adaptation.

Post-Training Quantization (PTQ) is a category of popular quantization frameworks (Frantar et al.,
2022; Xiao et al., 2023), which can also be used for task adaptation. It calibrates the high-precision
model with a small subset of the training dataset. Therefore, the subsequent quantization is guided
by the training dataset, providing task-specific quantized models. Besides, it does not involve any
gradient backpropagation, so it is cost-efficient. However, it usually results in lower accuracy com-
pared to QAT.

7 CONCLUSION

We propose LoftQ, a quantization framework for LLMs, which alternatively applies quantization
and low-rank approximation to the original high-precision pre-trained weights, to obtain an ini-
tialization for the subsequent LoRA fine-tuning. Experiments on natural language understanding,
question answering, summarization, and natural language generation show that our framework re-
markably surpasses existing methods, e.g., QLoRA, for quantizing encoder-only, encoder-decoder,
and decoder-only models. We have not observed our method exhibiting worse performance over
QLoRA. Moreover, our quantization framework demonstrates effectiveness and robustness particu-
larly in low-bit quantization regimes, e.g., the 2-bit level.

9

Published as a conference paper at ICLR 2024

REFERENCES

Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing Jin, Xin Jiang, Qun Liu, Michael Lyu, and Irwin
King. Binarybert: Pushing the limit of bert quantization. arXiv preprint arXiv:2012.15701, 2020.

Haoli Bai, Lu Hou, Lifeng Shang, Xin Jiang, Irwin King, and Michael R Lyu. Towards efficient post-
training quantization of pre-trained language models. Advances in Neural Information Processing
Systems, 35:1405–1418, 2022.

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini, and
Idan Szpektor. The second pascal recognising textual entailment challenge. 2006.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The fifth pascal recognizing
textual entailment challenge. In TAC, 2009.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. SemEval-2017 task
1: Semantic textual similarity multilingual and crosslingual focused evaluation. In Proceedings of
the 11th International Workshop on Semantic Evaluation (SemEval-2017), pp. 1–14, Vancouver,
Canada, August 2017. Association for Computational Linguistics. doi: 10.18653/v1/S17-2001.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment
challenge. In Machine Learning Challenges Workshop, 2007.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale. arXiv preprint arXiv:2208.07339, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Shizhe Diao, Rui Pan, Hanze Dong, Ka Shun Shum, Jipeng Zhang, Wei Xiong, and Tong Zhang.
Lmflow: An extensible toolkit for finetuning and inference of large foundation models. arXiv
preprint arXiv:2306.12420, 2023.

William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third PASCAL recognizing
textual entailment challenge. In Proceedings of the ACL-PASCAL Workshop on Textual Entail-
ment and Paraphrasing, pp. 1–9, Prague, June 2007. Association for Computational Linguistics.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366, 2021a.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style
pre-training with gradient-disentangled embedding sharing. arXiv preprint arXiv:2111.09543,
2021b.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. Advances in neural
information processing systems, 28, 2015.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In Thir-
teenth international conference on the principles of knowledge representation and reasoning,
2012.

10

Published as a conference paper at ICLR 2024

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. arXiv preprint
arXiv:1910.13461, 2019.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, pp. 7871–7880, Online,
July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.703.

Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, and Tuo Zhao.
Losparse: Structured compression of large language models based on low-rank and sparse ap-
proximation. arXiv preprint arXiv:2306.11222, 2023.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguis-
tics.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint arXiv:2305.17888, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for extreme summarization. ArXiv, abs/1808.08745,
2018.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela. Adver-
sarial nli: A new benchmark for natural language understanding. ArXiv, abs/1910.14599, 2019.
URL https://api.semanticscholar.org/CorpusID:207756753.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems 32, pp. 8024–8035.
Curran Associates, Inc., 2019.

Dheeraj Peri, Jhalak Patel, and Josh Park. Deploying quantization-aware trained networks using
tensorrt. In GPU Technology Conference, 2020.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pp. 2383–2392, Austin, Texas, November 2016. Association for
Computational Linguistics. doi: 10.18653/v1/D16-1264.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W Mahoney,
and Kurt Keutzer. Q-bert: Hessian based ultra low precision quantization of bert. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 34, pp. 8815–8821, 2020.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pp. 1631–1642, Seattle, Washington, USA, October 2013. Association for Computa-
tional Linguistics.

11

https://api.semanticscholar.org/CorpusID:207756753

Published as a conference paper at ICLR 2024

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
International Conference on Learning Representations, 2019.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability judgments.
Transactions of the Association for Computational Linguistics, 7:625–641, 2019. doi: 10.1162/
tacl a 00290.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pp. 1112–1122, New Orleans, Louisiana, June 2018. Association for
Computational Linguistics. doi: 10.18653/v1/N18-1101.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8bert: Quantized 8bit bert. In
2019 Fifth Workshop on Energy Efficient Machine Learning and Cognitive Computing-NeurIPS
Edition (EMC2-NIPS), pp. 36–39. IEEE, 2019.

Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual learning without
normalization. arXiv preprint arXiv:1901.09321, 2019.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen,
and Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. arXiv preprint
arXiv:2303.10512, 2023.

12

Published as a conference paper at ICLR 2024

A MODEL COMPRESSION RATIO AND MEMORY FOOTPRINT

We report the compression ratio after applying LoftQ in Table 7. It is defined as

compression ration =
backbone size + LoRA adapter size

pre-trained size
.

We also measure the GPU memory cost during training. Given that GPU memory varies by models,
tasks, sequence lengths, batch sizes, etc. We report LLAMA-2 on GSM8K as an example in Table
8.

Table 7: Compression ratios of backbones.

Model Compression Trainable Rank Bits Quantization
ratio (%) ratio (%) method

DeBERTaV3-base 15.6 3.1 16 2 Uniform
DeBERTaV3-base 18.8 6.3 32 2 Uniform
DeBERTaV3-base 17.2 3.1 16 2 NF2
DeBERTaV3-base 20.4 6.3 32 2 NF2

BART-large 15.3 1.2 8 4 NF2
BART-large 16.7 2.5 16 4 NF2
BART-large 27.8 1.2 8 4 NF4
BART-large 29.0 2.5 16 4 NF4
BART-large 26.2 1.2 8 4 Uniform
BART-large 27.5 2.5 16 4 Uniform

LLAMA-2-7b 16.6 2.4 64 2 Nf2
LLAMA-2-7b 29.0 2.4 64 4 Nf4

LLAMA-2-13b 16.0 1.9 64 2 Nf2
LLAMA-2-13b 28.5 1.9 64 4 Nf4

Table 8: GPU memory footprint

Model Dataset Seq length Batch size GPU Mem
LLAMA-2-7b GSM8K 384 1 15GB

LLAMA-2-13b GSM8K 384 1 24GB

B QUANTIZATION TIME

We report the execution time of LoftQ applying to a single weight matrix in Table 9. The time is
tested on Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz.

Table 9: Execution time of LoftQ applying to different weight matrices.

Model Size Step T Quantization method Time
DeBERTaV3-base 768× 768 5 Uniform 1s

BART-large 1024× 1024 5 NF4 1s
LLAMA-2-7b 4096× 4096 5 NF4 21s
LLAMA-2-13b 5120× 5120 5 NF4 43s

C GLUE DATASET STATISTICS

We present the dataset statistics of GLUE Wang et al. (2019) in the following table.

GLUE includes two single-sentence classification tasks: SST-2 (Socher et al., 2013) and CoLA
(Warstadt et al., 2019), and three similarity and paraphrase tasks: MRPC (Dolan & Brockett, 2005),
STS-B (Cer et al., 2017), and QQP. GLUE also includes four natural language inference tasks in
GLUE: MNLI (Williams et al., 2018), QNLI (Rajpurkar et al., 2016), RTE (Dagan et al., 2007; Bar-
Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009), and WNLI (Levesque et al.,
2012).

13

Published as a conference paper at ICLR 2024

Corpus Task #Train #Dev #Test #Label Metrics
Single-Sentence Classification (GLUE)

CoLA Acceptability 8.5k 1k 1k 2 Matthews corr
SST Sentiment 67k 872 1.8k 2 Accuracy

Pairwise Text Classification (GLUE)
MNLI NLI 393k 20k 20k 3 Accuracy
RTE NLI 2.5k 276 3k 2 Accuracy
QQP Paraphrase 364k 40k 391k 2 Accuracy/F1
MRPC Paraphrase 3.7k 408 1.7k 2 Accuracy/F1
QNLI QA/NLI 108k 5.7k 5.7k 2 Accuracy

Text Similarity (GLUE)
STS-B Similarity 7k 1.5k 1.4k 1 Pearson/Spearman corr

Table 10: Summary of the GLUE benchmark.

D NATURAL LANGUAGE UNDERSTANDING

D.1 GLUE WITH 4-BIT

We show the 4-bits results in the Table 11. Both methods can achieve performance close to full-
finetuning.
Table 11: Results with 4-bit LoftQ of DeBERTaV3-base models on GLUE development set using
NF4 quantization. We report the median over four seeds. Results with N.A. indicate the model does
not converge. The best results on each dataset are shown in bold

Method Rank MNLI SST-2 QNLI ANLI
m / mm Acc Acc Acc

Full FT - 90.5/90.6 95.3 94.0 59.8

QLoRA 32 89.9/89.9 95.3 94.2 59.4

LoftQ 32 89.9/90.0 95.3 94.1 59.9

D.2 TRAINING DETAILS

Implementation Details. The implementation of LoftQ is based on publicly available Huggingface
(Paszke et al., 2019) code-base 3.

Hyper-parameter Details. We select the learning rate of {1×10−5, 5×10−5, 1×10−4, 5×10−4},
and use the selected learning rate for both uniform quantization experiments and nf2 quantization
experiments. We use batch size of 32 for all GLUE tasks and ANLI. We use batch size of 16 for
SQuADv1.1. We use LoftQ of 5 iterations for all GLUE tasks.

Table 12 summarizes the detailed hyperparameters for each task used in training DeBERTaV3-base
using uniform quantization. Table 13 summarizes the detailed hyperparameters for each task used
in training DeBERTaV3-base using nf2 quantization.

Table 12: Hyper-parameter setup of LoftQ for GLUE benchmark for training DeBERTaV3-base
using Uniform quantization.

Hyper-parameter MNLI RTE QNLI MRPC QQP SST-2 CoLA STS-B SQuADv1.1 ANLI

epochs 5 20 10 60 10 10 60 60 10 12
Learning rate 1× 10−4 5× 10−4 5× 10−5 1× 10−4 5× 10−5 5× 10−5 5× 10−5 5× 10−5 5× 10−5 5× 10−5

3https://github.com/huggingface/transformers/tree/main/examples/pytorch

14

https://github.com/huggingface/transformers/tree/main/examples/pytorch

Published as a conference paper at ICLR 2024

Table 13: Hyper-parameter setup of LoftQ for GLUE benchmark for training DeBERTaV3-base
using NF2 quantization.

Hyper-parameter MNLI RTE QNLI MRPC QQP SST-2 CoLA STS-B SQuADv1.1 ANLI

epochs 5 20 10 60 10 10 60 60 10 12
Learning rate 1× 10−4 5× 10−5 5× 10−5 1× 10−4 5× 10−5 5× 10−5 5× 10−5 1× 10−4 5× 10−5 5× 10−5

E SUMMARIZATION

E.1 TRAINING DETAILS

We choose Adam as the optimizer and try learning rate from{1 × 10−5, 5 × 10−5, 7 × 10−5, 2 ×
10−4, 3 × 10−4, 4 × 10−4}. We show the optimal learning rate for different settings in Table 14.
We use LoftQ of 1 iteration for all BART-large experiments. Table 14 and Table 15 summarize the
learning rate and other hyper-parameters for CNN/DailyMail and XSum.

Table 14: Hyper-parameter setup of LoftQ BART-large on CNN/DailyMail

Hyperparameter NF4 4-bit Uniform NF2
rank8 rank16 rank8 rank16 rank8 rank16

Learning rate 2e-4 2e-4 2e-4 3e-4 2e-4 2e-4

Epoch 15 15 15 15 15 15

Batch size 64 64 64 64 64 64

Table 15: Hyper-parameter setup of LoftQ BART-large on XSum

Hyperparameter NF4 4-bit Uniform NF2
rank8 rank16 rank8 rank16 rank8 rank16

Learning rate 2e-4 2e-4 2e-4 2e-4 2e-4 2e-4

Epoch 25 25 25 25 25 25

Batch size 32 32 32 32 32 32

F NATURAL LANGUAGE GENERATION

We set the batch size as 32 for WikiText-2 and 16 for GSM8K. We train 2 epochs on WikiText-2 and
6 epochs on GSM8K. We select learning rate from{1× 10−5, 5× 10−5, 7× 10−5, 1× 10−4, , 3×
10−4, 4× 10−4}. Specific settings are summarized in Table 16 and Table 17.

G COMPARISON TO PRUNING

Pruning is also a widely used compression method. Here we compare LoftQ with the state-of-the-
art pruning method Li et al. (2023). We show the comparison in Table 18. We can see our method
significantly outperforms the pruning methods on DeBERTaV3-base model. We also remark that
LoftQ can consistently reduce the memory of both training and storage. In contrast, pruning requires
training the entire full-precision matrix, which implies that it can not achieve any memory savings
during the training stage.

H EXTENSION TO CONVOLUTIONAL LAYERS

Low-rank adapters can also be applied to convolutional layers. Given an input feature map
X ∈ Rh×w×c1 and c2 2D convolutional kernels Ki ∈ Rc1×d×d, i = 1, 2, ..., c2, the output of
the convolutional layer is

Y = stack(X ⊗K1, ..., X ⊗Kc2), (10)

where Y ∈ Rh×w×c2 and ⊗ denotes the 2D convolution operation.

15

Published as a conference paper at ICLR 2024

Table 16: Hyper-parameter setup of LoftQ LLAMA-2-series on GSM8K

Model Hyperparameter NF4 NF2 Mixed-precision

LLAMA-2-7b learning rate 3× 10−4 3× 10−4 3× 10−4

LLAMA-2-13b learning rate 1× 10−4 1× 10−4 3× 10−4

Table 17: Hyper-parameter setup of LoftQ LLAMA-2-series on WikiText-2

Model Hyperparameter NF4 NF2 Mixed-precision

LLAMA-2-7b learning rate 3× 10−4 3× 10−4 3× 10−4

LLAMA-2-13b learning rate 1× 10−4 1× 10−4 3× 10−4

Table 18: Results of LoftQ using 2-bits uniform quantization compared with LoSparse with
DeBERTaV3-base models on some of GLUE development sets. Here Ratio is the proportion of
total remaining weights. Results with N.A. indicate the model does not converge.

Method Ratio MNLI SST-2 QNLI
m / mm Acc Acc

Full FT 100% 90.5 / 90.6 95.3 94.0

LoSparse 15% 83.3/82.9 87.6 90.4
20% 84.5/83.8 91.7 88.6

LoftQ 15.6% 87.3/87.1 94.0 90.6
18.8% 88.0/88.1 94.7 92.4

We can reformulate Equation (10) into matrix multiplication as

Y = Z ×H⊤,

where Z ∈ Rhw×c1d
2

, H ∈ Rc2×c1d
2

, by extending and flattening the input X together with con-
catenating and flattening kernels. We first extend a vector xi,j ∈ Rc1 by its neighbor vectors within
the kernel window:

x
′

i,j = Concat(xi− d
2 ,j−

d
2
, ..., xi+ d

2 ,j+
d
2
).

Now, X becomes X ′ ∈ Rh×w×c1d
2

. We then flatten X ′ into Z ∈ Rhw×c1d
2

. For kernels, we first
concatenate {K1, ...,Kc2} into H ′ ∈ Rc2×c1×d×d. We then flatten H ′ into H .

Note that H can be approximated by a low-rank matrix

R = UV ⊤,

where U ∈ Rc2×r, V ∈ Rc1d
2×r, r ≪ min{c2, c1d2} by SVD. Therefore, the original convolution

layer can be approximated as

Ŷ = Z × (UV ⊤)⊤ (11)

= (Z × V)× U⊤ (12)

= M × U⊤. (13)

Note that Z × V can be restored into a convolution operation where we have r kernels Di ∈
Rc1×d×d, i = 1, 2, , ..., r and M × U⊤ can also be restored into a convolution operation where
we have c2 kernels Ui ∈ Rr×1×1, i = 1, 2, , ..., c2.

16

	Introduction
	Background
	Transformer Models
	Quantization
	Low-Rank Adaptation

	Method
	LoRA-Aware Quantization
	Alternating Optimization
	Applying to LoRA Fine-tuning

	Experiments
	Encoder-only Model: DeBERTaV3
	Encoder-Decoder Model: BART
	Decoder-only Model: LLAMA-2
	Analysis

	Discussion
	Related Work
	Conclusion
	Model Compression Ratio and Memory Footprint
	Quantization Time
	GLUE Dataset Statistics
	Natural Language Understanding
	GLUE with 4-bit
	Training Details

	Summarization
	Training Details

	Natural Language Generation
	Comparison to Pruning
	Extension to Convolutional Layers

