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ABSTRACT

Unsupervised detection of anomaly points in time series is a challenging problem,
which requires the model to derive a distinguishable criterion. Previous methods
tackle the problem mainly through learning pointwise representation or pairwise
association, however, neither is sufficient to reason about the intricate dynamics.
Recently, Transformers have shown great power in unified modeling of pointwise
representation and pairwise association, and we find that the self-attention weight
distribution of each time point can embody rich association with the whole series.
Our key observation is that due to the rarity of anomalies, it is extremely difficult
to build nontrivial associations from abnormal points to the whole series, thereby,
the anomalies’ associations shall mainly concentrate on their adjacent time points.
This adjacent-concentration bias implies an association-based criterion inherently
distinguishable between normal and abnormal points, which we highlight through
the Association Discrepancy. Technically, we propose the Anomaly Transformer
with a new Anomaly-Attention mechanism to compute the association discrepancy.
A minimax strategy is devised to amplify the normal-abnormal distinguishability
of the association discrepancy. The Anomaly Transformer achieves state-of-the-
art results on six unsupervised time series anomaly detection benchmarks of three
applications: service monitoring, space & earth exploration, and water treatment.

1 INTRODUCTION

Real-world systems always work in a continuous way, which can generate several successive mea-
surements monitored by multi-sensors, such as industrial equipment, space probe, etc. Discovering
the malfunctions from large-scale system monitoring data can be reduced to detecting the abnormal
time points from time series, which is quite meaningful for ensuring security and avoiding financial
loss. But anomalies are usually rare and hidden by vast normal points, making the data labeling hard
and expensive. Thus, we focus on time series anomaly detection under the unsupervised setting.

Unsupervised time series anomaly detection is extremely challenging in practice. The model should
learn informative representations from complex temporal dynamics through unsupervised tasks.
Still, it should also derive a distinguishable criterion that can detect the rare anomalies from plenty of
normal time points. Various classic anomaly detection methods have provided many unsupervised
paradigms, such as the density-estimation methods proposed in local outlier factor (LOF, (Breunig
et al.| [2000)), clustering-based methods presented in one-class SVM (OC-SVM, (Scholkopf et al.l
2001)) and SVDD (Tax & Duin, 2004). These classic methods do not consider the temporal infor-
mation and are difficult to generalize to unseen real scenarios. Benefiting from the representation
learning capability of neural networks, recent deep models (Su et al., 2019; Shen et al.| [2020; |L1
et al., 2021)) have achieved superior performance. A major category of methods focus on learning
pointwise representations through well-designed recurrent networks and are self-supervised by the
reconstruction or autoregressive task. Here, a natural and practical anomaly criterion is the pointwise
reconstruction or prediction error. However, due to the rarity of anomalies, the pointwise representa-
tion is less informative for complex temporal patterns and can be dominated by normal time points,
making anomalies less distinguishable. Also, the reconstruction or prediction error is calculated
point by point, which cannot provide a comprehensive description of the temporal context.

*Equal Contribution
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Another major category of methods detect anomalies based on explicit association modeling. The
vector autoregression and state space models fall into this category. The graph was also used to cap-
ture the association explicitly, through representing time series with different time points as vertices
and detecting anomalies by random walk (Cheng et al.| 2008} [2009). In general, it is hard for these
classic methods to learn informative representations and model fine-grained associations. Recently,
graph neural network (GNN) has been applied to learn the dynamic graph among multiple variables
in multivariate time series (Zhao et al., 2020; Deng & Hooi, [2021). While being more expressive,
the learned graph is still limited to a single time point, which is insufficient for complex temporal
patterns. Besides, subsequence-based methods detect anomalies by calculating the similarity among
subsequences (Boniol & Palpanas| [2020). While exploring wider temporal context, these methods
cannot capture the fine-grained temporal association between each time point and the whole series.

In this paper, we adapt Transfomers (Vaswani et al., 2017)) to time series anomaly detection in the
unsupervised regime. Transformers have achieved great progress in various areas, including natural
language processing (Brown et al., 2020), machine vision (Liu et al.l [2021) and time series (Zhou
et al.,2021)). This success is attributed to its great power in unified modeling of global representation
and long-range relation. Applying Transformers to time series, we find that the temporal association
of each time point can be obtained from the self-attention map, which presents as a distribution of its
association weights to all the time points along the temporal dimension. The association distribution
of each time point can provide a more informative description for the temporal context, indicat-
ing dynamic patterns, such as the period or trend of time series. We name the above association
distribution as the series-association, which can be discovered from the raw series by Transformers.

Further, we observe that due to the rarity of anomalies and the dominance of normal patterns, it is
harder for anomalies to build strong associations with the whole series. The associations of anoma-
lies shall concentrate on the adjacent time points that are more likely to contain similar abnormal
patterns due to the continuity. Such an adjacent-concentration inductive bias is referred to as the
prior-association. In contrast, the dominating normal time points can discover informative associ-
ations with the whole series, not limiting to the adjacent area. Based on this observation, we try to
utilize the inherent normal-abnormal distinguishability of the association distribution. This leads to
a new anomaly criterion for each time point, quantified by the distance between each time point’s
prior-association and its series-association, named as Association Discrepancy. As aforementioned,
because the associations of anomalies are more likely to be adjacent-concentrating, anomalies will
present a smaller association discrepancy than normal time points.

Going beyond previous methods, we introduce Transformers to unsupervised time series anomaly
detection and propose the Anomaly Transformer for association learning. To compute the Associ-
ation Discrepancy, we renovate the self-attention mechanism to the Anomaly-Attention, which con-
tains a two-branch structure to model the prior-association and series-association of each time point
respectively. The prior-association employs the learnable Gaussian kernel to present the adjacent-
concentration inductive bias of each time point, while the series-association corresponds to the self-
attention weights learned from raw series. Besides, a minimax strategy is applied between the two
branches, which can amplify the normal-abnormal distinguishability of the Association Discrepancy
and further derive a new association-based criterion. Anomaly Transformer achieves strong results
on six benchmarks, covering three real applications. The contributions are summarized as follows:

» Based on the key observation of Association Discrepancy, we propose the Anomaly Trans-
former with an Anomaly-Attention mechanism, which can model the prior-association and
series-association simultaneously to embody the Association Discrepancy.

* We propose a minimax strategy to amplify the normal-abnormal distinguishability of the
Association Discrepancy and further derive a new association-based detection criterion.

* Anomaly Transformer achieves the state-of-the-art anomaly detection results on six bench-
marks for three real applications, justified by extensive ablations and insightful case studies.

2 RELATED WORK

2.1 UNSUPERVISED TIME SERIES ANOMALY DETECTION

As an important real-world problem, unsupervised time series anomaly detection has been widely
explored. Categorizing by the anomaly determination criterion, the paradigms roughly include the
density-estimation, clustering-based, reconstruction-based and autoregression-based methods.
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In density-estimation methods, the classic methods such as local outlier factor (LOF, (Breunig et al.,
2000)) and connectivity outlier factor (COF, (Tang et al.|[2002)) respectively calculate local density
and local connectivity for outlier determination. DAGMM (Zong et al.,[2018)) and MPPCACD (Yairi
et al.| 2017) integrate the Gaussian Mixture Model to estimate the density of representations.

In clustering-based methods, the anomaly score is always formalized as the distance to cluster center.
SVDD (Tax & Duin, [2004) and Deep SVDD (Ruff et al., [2018) gather the representations from
normal data to a compact cluster. THOC (Shen et al.| 2020) fuses the multi-scale temporal features
from intermediate layers by a hierarchical clustering mechanism and detects the anomalies by the
multi-layer distances. ITAD (Shin et al.;,2020) conducts the clustering on decomposed tensors.

The reconstruction-based models attempt to detect the anomalies by the reconstruction error. |Park
et al.|(2018) presented the LSTM-VAE model that employs the LSTM backbone for temporal mod-
eling and the Variational AutoEncoder (VAE) for reconstruction. OmniAnomaly proposed by [Su
et al.| (2019) further extends the LSTM-VAE model with a normalizing flow and uses the recon-
struction probabilities for detection. InterFusion from |Li et al.[(2021)) renovates the backbone to a
hierarchical VAE to model the inter- and intra-dependency among multiple series simultaneously.
GANSs (Goodfellow et al., |2014)) are also used for reconstruction-based anomaly detection (Schlegl
et al.,[2019; L1 et al., 2019a; Zhou et al.,2019) and perform as an adversarial regularization.

The autoregression-based models detect the anomalies by the prediction error. VAR extends ARIMA
(Anderson & Kendalll [1976) and predicts the future based on the lag-dependent covariance. The
autoregressive model can also be replaced by LSTMs (Hundman et al., [2018; [Tariq et al., 2019).

This paper is characterized by a new association-based criterion. Different from the random walk
and subsequence-based methods (Cheng et al., 2008; |Boniol & Palpanas),2020), our criterion is em-
bodied by a co-design of the temporal models for learning more informative time-point associations.

2.2 TRANSFORMERS FOR TIME SERIES ANALYSIS

Recently, Transformers (Vaswani et al.l [2017) have shown great power in sequential data process-
ing, such as natural language processing (Devlin et al., 2019; Brown et al.| 2020), audio processing
(Huang et al.,|2019)) and computer vision (Dosovitskiy et al., 20215 [Liu et al., 2021). For time series
analysis, benefiting from the advantage of the self-attention mechanism, Transformers are used to
discover the reliable long-range temporal dependencies (Kitaev et al., 2020; L1 et al., 2019b; [Zhou
et al.| 2021; Wu et al.| [2021). Especially for time series anomaly detection, GTA proposed by (Chen
et al.| (2021)) employs the graph structure to learn the relationship among multiple IoT sensors, as
well as the Transformer for temporal modeling and the reconstruction criterion for anomaly detec-
tion. Unlike the previous usage of Transformers, Anomaly Transformer renovates the self-attention
mechanism to the Anomaly-Attention based on the key observation of association discrepancy.

3 METHOD

Suppose monitoring a successive system of d measurements and recording the equally spaced obser-
vations over time. The observed time series X is denoted by a set of time points {z1, 22, - ,ZN},
where z; € R? represents the observation of time . The unsupervised time series anomaly detection
problem is to determine whether x; is anomalous or not without labels.

As aforementioned, we highlight the key to unsupervised time series anomaly detection as learning
informative representations and finding distinguishable criterion. We propose the Anomaly Trans-
former to discover more informative associations and tackle this problem by learning the Associa-
tion Discrepancy, which is inherently normal-abnormal distinguishable. Technically, we propose the
Anomaly-Attention to embody the prior-association and series-associations, along with a minimax
optimization strategy to obtain a more distinguishable association discrepancy. Co-designed with the
architecture, we derive an association-based criterion based on the learned association discrepancy.

3.1 ANOMALY TRANSFORMER

Given the limitation of Transformers (Vaswani et al., [2017) for anomaly detection, we renovate the
vanilla architecture to the Anomaly Transformer (Figure[I)) with an Anomaly-Attention mechanism.

Overall Architecture Anomaly Transformer is characterized by stacking the Anomaly-Attention
blocks and feed-forward layers alternately. This stacking structure is conducive to learning underly-
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Figure 1: Anomaly Transformer. Anomaly-Attention (left) models the prior-association and series-
association simultaneously. In addition to the reconstruction loss, our model is also optimized by
the minimax strategy with a specially-designed stop-gradient mechanism (gray arrows) to constrain
the prior- and series-associations for more distinguishable association discrepancy.

ing associations from deep multi-level features. Suppose the model contains L layers with length-N
input time series X € RY ¥4 The overall equations of the [-th layer are formalized as:

Z! = Layer-Norm (Anomaly-Attention(Xl_l) + Xl_l)

ey
X! = Layer-Norm (Feed-Forward(Zl) + Zl),

where X! € RV*duwua [ € {1 ... L} denotes the output of the [-th layer with doge channels. The
initial input X° = Embedding(X') represents the embedded raw series. Z! € RY Xduowl ig the [-th
layer’s hidden representation. Anomaly-Attention(-) is to compute the association discrepancy.

Anomaly-Attention Note that the single-branch self-attention mechanism (Vaswani et al., 2017)
cannot model the prior-association and series-association simultaneously. We propose the Anomaly-
Attention with a two-branch structure (Figure [T). For the prior-association, we adopt a learnable
Gaussian kernel to calculate the prior with respect to the relative temporal distance. Benefiting from
the unimodal property of the Gaussian kernel, this design can pay more attention to the adjacent
horizon constitutionally. We also use a learnable scale parameter o for the Gaussian kernel, making
the prior-associations adapt to the various time series patterns, such as different lengths of anomaly
segments. The series-association branch is to learn the associations from raw series, which can find
the most effective associations adaptively. Note that these two forms maintain the temporal depen-
dencies of each time point, which are more informative than point-wise representation. They also
reflect the adjacent-concentration prior and the learned associations respectively, whose discrepancy
shall be normal-abnormal distinguishable. The Anomaly-Attention in the [-th layer is:

Initialization: Q, K, V, 0 = X' 'Wh, X' ='W, X' 1w, X1l

Prior-Association: P! = Rescale [

o (55
exp | ——5—
2mo; 207 ) Lijeq

ICT
Series-Association: 8! = Softmax (Q>
V dmodel

2

Reconstruction: 2! = S'V,

where Q, K,V € RN*dmua 5 ¢ RN*D represent the query, key, value of self-attention and the
learned scale respectively. W,, Wi, W, € R dmaa Pyl e Refmsix1 represent the parame-
ter matrices for @, IC, V, o in the I-th layer respectively. Prior-association P! € RV*¥ is generated
based on the learned scale o € RY*! and the i-th element o; corresponds to the i-th time point. Con-
cretely, for the i-th time point, its association weight to the j-th point is calculated by the Gaussian

kernel G(|j —i|;04) = \/%0_ exp(— ‘JQ;QQ) w.r.t. the distance |j — ¢|. Further, we use Rescale(-) to

transform the association weights to discrete distributions P by dividing the row sum. S' € RV*V
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Figure 2: Minimax association learning. At the minimize phase, the prior-association minimizes the
Association Discrepancy within the distribution family derived by Gaussian kernel. At the maximize
phase, the series-association maximizes the Association Discrepancy under the reconstruction loss.

denotes the series-associations. Softmax(-) normalizes the attention map along the last dimension,
and each row of S' forms a discrete distribution. Z! € RV *dnewl jg the hidden representation after
the Anomaly-Attention in the [-th layer. We use Anomaly-Attention(-) to summarize Equation
In the multi-head version, the learned scale is o € RYV*" for h heads. Q,,, ICpn, Vi € RV
denote the query, key and value of the m-th head respectively. The block concatenates the outputs

{ZL e RN gl }1<m<n from multiple heads and gets the final result Z

9model
h

RN X dmodel |

Association Discrepancy We formalize the Association Discrepancy as the symmetrized KL di-
vergence between prior- and series-associations, which represents the information gain between
these two distributions (Neal, 2007). We average the association discrepancy from multiple layers
to combine the associations from multi-level features into a more informative measure as:

L
> (KL(PL st + KusL 7)) | @
i=1 N

1
AssDis(P, S; X) = [L
=1 i=1,---,

where KL(+||-) is the KL divergence computed between two discrete distributions corresponding to
every row of P! and S'. AssDis(P,S; X) € RV*! is the point-wise association discrepancy of X
with respect to prior-association P and series-association S from multiple layers. The i-th element of
AssDis corresponds to the i-th time point of X'. From previous observation, anomalies will present
smaller AssDis(P, S; X) than normal time points, which makes AssDis inherently distinguishable.

3.2 MINIMAX ASSOCIATION LEARNING

As an unsupervised task, we employ the reconstruction loss for optimizing our model. The recon-
struction loss will guide the series-association to find the most informative associations. To further
amplify the difference between normal and abnormal time points, we also use an additional loss
to enlarge the association discrepancy. Due to the unimodal property of the prior-association, the
discrepancy loss will guide the series-association to pay more attention to the non-adjacent area,
which makes the reconstruction of anomalies harder and makes anomalies more identifiable. The
loss function for input series X € RV*9 is formalized as:

Lot (X, P, S, N X) = |X — X[|E — A x ||AssDis(P, S; X) |1 (4)
where X € RV *? denotes the reconstruction of X. |-||, ||- H % indicate the Frobenius and k-norm. A
is to trade off the loss terms. When A > 0, the optimization is to enlarge the association discrepancy.
A minimax strategy is proposed to make the association discrepancy more distinguishable.

Minimax Strategy Note that directly maximizing the association discrepancy will extremely re-
duce the scale parameter of the Gaussian kernel (Neal, 2007)), making the prior-association mean-
ingless. Towards a better control of association learning, we propose a minimax strategy (Flgure@
Concretely, for the minimize phase, we drive the prior-association P! to approximate the series-
association S’ that is learned from raw series. This process will make the prior-association adapt to
various temporal patterns. For the maximize phase, we optimize the series-association to enlarge
the association discrepancy. This process forces the series-association to pay more attention to the
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non-adjacent horizon. Thus, integrating the reconstruction loss, the loss functions of two phases are:
Minimize Phase: LTmal()? , P, Sdetach, —A; X)

Maximize Phase: ‘CTotal(/?a Pdetach; S, )\; X),

where A > 0 and *geacn Means to stop the gradient backpropagation of the association (Figure
[I). As P approximates Sgetach in the minimize phase, the maximize phase will conduct a stronger
constraint to the series-association, forcing the time points to pay more attention to the non-adjacent
area. Under the reconstruction loss, this is much harder for anomalies to achieve than normal time
points, thereby amplifying the normal-abnormal distinguishability of the association discrepancy.

(&)

Association-based Anomaly Criterion We incorporate the normalized association discrepancy
to the reconstruction criterion, which will take the benefits of both temporal representation and the
distinguishable association discrepancy. The final anomaly score of X € RV *? is shown as follows:

AnomalyScore(X) = Softmax( — AssDis(P, S; X)) ©) [||Xl - )?Z 3 (6)

i=1,-,N

where © is the element-wise multiplication. AnomalyScore(X) € RY*! denotes the point-wise
anomaly criterion of X'. Towards a better reconstruction, anomalies usually decrease the associa-
tion discrepancy, which will still derive a higher anomaly score. Thus, this design can make the
reconstruction error and the association discrepancy collaborate to improve detection performance.

4 EXPERIMENTS
We extensively evaluate Anomaly Transformer on six benchmarks for three practical applications.

Datasets Here is a description of the six experiment datasets: (1) SMD (Server Machine Dataset,
Su et al.| (2019)) is a 5-week-long dataset collected from a large Internet company with 38 dimen-
sions. (2) PSM (Pooled Server Metrics, |Abdulaal et al.| (2021))) is collected internally from multi-
ple application server nodes at eBay with 26 dimensions. (3) Both MSL (Mars Science Laboratory
rover) and SMAP (Soil Moisture Active Passive satellite) are public datasets from NASA (Hundman
et al.,|2018)) with 55 and 25 dimensions respectively, which contain the telemetry anomaly data de-
rived from the Incident Surprise Anomaly (ISA) reports of spacecraft monitoring systems. (4) SWaT
(Secure Water Treatment, Mathur & Tippenhauer| (2016)) is obtained from 51 sensors of the criti-
cal infrastructure system under continuous operations. (5) NeurIPS-TS (NeurIPS 2021 Time Series
Benchmark) is a dataset proposed by |Lai et al.| (2021)) and includes five time series anomaly scenar-
ios categorized by behavior-driven taxonomy as point-global, pattern-contextual, pattern-shapelet,
pattern-seasonal and pattern-trend. The statistical details are summarized in Table[I3]of Appendix.

Implementation details Following the well-established protocol in [Shen et al.| (2020), we adopt
a non-overlapped sliding window to obtain a set of sub-series. The sliding window is with a fixed
size of 100 for all datasets. We label the time points as anomalies if their anomaly scores (Equation
[6) are larger than a certain threshold §. The threshold § is determined to make a proportion r of
time points of the validation dataset labeled as anomalies. For the main results, we set r = 0.1%
for SWaT, 0.5% for SMD and 1% for other datasets. We adopt the widely-used adjustment strategy
(Xu et al.,[2018; |Su et al.L 2019} |Shen et al.| 2020): if a time point in a certain successive abnormal
segment is detected, all anomalies in this abnormal segment are viewed to be correctly detected.
This strategy is justified from the observation that an abnormal time point will cause an alert and
further make the whole segment noticed in real-world applications. Anomaly Transformer contains
3 layers. We set the channel number of hidden states dode1 as 512 and the number of heads h as
8. The hyperparameter \ (Equation [)) is set as 3 for all datasets to trade-off two parts of the loss
function. We use the ADAM (Kingma & Bal, 2015) optimizer with an initial learning rate of 10~
The training process is early stopped within 10 epochs with the batch size of 32. All the experiments
are implemented in Pytorch (Paszke et al.,[2019) with a single NVIDIA TITAN RTX 24GB GPU.

Baselines We extensively compare our model with 18 baselines, including the reconstruction-
based models: InterFusion (2021), BeatGAN (2019), OmniAnomaly (2019), LSTM-VAE (2018));
the density-estimation models: DAGMM (2018), MPPCACD (2017), LOF (2000); the clustering-
based methods: ITAD (2020), THOC (2020), Deep-SVDD (2018)); the autoregression-based mod-
els: CL-MPPCA (2019), LSTM (2018)), VAR (1976); the classic methods: OC-SVM (2004), Isola-
tionForest (2008)). Another 3 baselines from change point detection and time series segmentation are
deferred to Appendix E] InterFusion (2021) and THOC (2020) are the state-of-the-art deep models.
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Figure 3: ROC curves (horizontal-axis: false-positive rate; vertical-axis: true-positive rate) for the
five datasets. A higher AUC value (area under the ROC curve) indicates a better performance. The
predefined threshold proportion r is in {0.5%, 1.0%, 1.5%, 2.0%, 10%, 20%, 30%}.

Table 1: Quantitative results for Anomaly Transformer (Ours) in the five datasets. The P, R and F1
represent the precision, recall and Fl-score (as %) respectively. Fl-score is the harmonic mean of
precision and recall. For these three metrics, a higher value indicates a better performance.

Dataset | SMD MSL SMAP SWaT PSM
Metic | P R FI | P R FlI|P R Fl|P R FI|P R Fl

OCSVM 44.34 76.72 56.19|59.78 86.87 70.82|53.85 59.07 56.34|45.39 49.22 47.23|62.75 80.89 70.67
IsolationForest|42.31 73.29 53.64|53.94 86.54 66.45(52.39 59.07 55.53|49.29 44.95 47.02|76.09 92.45 83.48
LOF 56.34 39.86 46.68(47.72 85.25 61.18(58.93 56.33 57.60|72.15 65.43 68.62|57.89 90.49 70.61
Deep-SVDD |78.54 79.67 79.10|91.92 76.63 83.58|89.93 56.02 69.04|80.42 84.45 82.39|95.41 86.49 90.73
DAGMM  [67.30 49.89 57.30(89.60 63.93 74.62|86.45 56.73 68.51|89.92 57.84 70.40|93.49 70.03 80.08
MMPCACD |71.20 79.28 75.02(81.42 61.31 69.95|88.61 75.84 81.73|82.52 68.29 74.73|76.26 78.35 77.29
VAR 78.35 70.26 74.08|74.68 81.42 77.90(81.38 53.88 64.83|81.59 60.29 69.34|90.71 83.82 87.13
LSTM 78.55 85.28 81.78(85.45 82.50 83.95|89.41 78.13 83.39|86.15 83.27 84.69|76.93 89.64 82.80
CL-MPPCA |82.36 76.07 79.09(73.71 88.54 80.44(86.13 63.16 72.88|76.78 81.50 79.07|56.02 99.93 71.80
ITAD 86.22 73.71 79.48|69.44 84.09 76.07(82.42 66.89 73.85|63.13 52.08 57.08|72.80 64.02 68.13
LSTM-VAE |75.76 90.08 82.30|85.49 79.94 82.62|92.20 67.75 78.10(76.00 89.50 82.20(73.62 89.92 80.96
BeatGAN [72.90 84.09 78.10|89.75 85.42 87.53|92.38 55.85 69.61|64.01 87.46 73.92190.30 93.84 92.04
OmniAnomaly | 83.68 86.82 85.22(89.02 86.37 87.67(92.49 81.99 86.92|81.42 84.30 82.83|88.39 74.46 80.83
InterFusion |87.02 85.43 86.22|81.28 92.70 86.62|89.77 88.52 89.14|80.59 85.58 83.01|83.61 83.45 83.52
THOC 79.76 90.95 84.99(88.45 90.97 89.69(92.06 89.34 90.68|83.94 86.36 85.13|88.14 90.99 89.54

Ours ‘8940 95.45 92.33(92.09 95.15 93.59(94.13 99.40 96.69|91.55 96.73 94.07|96.91 98.90 97.89

4.1 MAIN RESULTS

Real-world datasets We extensively evaluate our model on five real-world datasets with ten com-
petitive baselines. As shown in Table[I] Anomaly Transformer achieves the consistent state-of-the-
art on all benchmarks. We observe that deep models that consider the temporal information outper-
form the general anomaly detection model, such as Deep-SVDD (Ruff et al.| [2018) and DAGMM
(Zong et al., 2018)), which verifies the effectiveness of temporal modeling. Our proposed Anomaly
Transformer goes beyond the point-wise representation learned by RNNs and models the more infor-
mative associations. The results in Table[T] are persuasive for the advantage of association learning
in time series anomaly detection. In addition, we plot the ROC curve in Figure [3] for a complete
comparison. Anomaly Transformer has the highest AUC values on all five datasets. It means that
our model performs well in the false-positive and true-positive rates under various preset thresholds,
which is important for real-world applications.

71.31

NeurIPS-TS benchmark This benchmark is generated from 70
well-designed rules proposed by |Lai et al| (2021)), including all
types of anomalies and covering both the point-wise and pattern-

67.45

62.52

F1-Score (%)

wise anomalies. As shown in FigureEI, Anomaly Transformer can 60 o sl
still achieve state-of-the-art performance. This verifies the effec- ) o
tiveness of our model on various anomalies. " 5177
. . . . T N T .
Ablation study As shown in Table[2] we further investigate the ?{&@‘oﬁ@\‘oﬁﬁ«\o @N’“} & &
<& i

effect of each part in our model. Our association-based criterion
outperforms the widely-used reconstruction criterion consistently.
Specifically, the association-based criterion brings a remarkable 18.76% (76.20—94.96) averaged
absolute F1-score promotion. Also, directly taking the association discrepancy as the criterion still
achieves a good performance (F1-score: 91.55%) and surpasses the previous state-of-the-art model

Figure 4: Results for NeurIPS-TS.
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THOC (F1-score: 88.01% calculated from Table[T)). Besides, the learnable prior-association (corre-
sponding to o in Equation[2) and the minimax strategy can further improve our model and get 8.43%
(79.05—87.48) and 7.48% (87.48—94.96) averaged absolute promotions respectively. Finally, our
proposed Anomaly Transformer surpasses the pure Transformer by 18.34% (76.62—94.96) abso-
lute improvement. These verify that each module of our design is effective and necessary. More
ablations of association discrepancy can be found in Appendix

Table 2: Ablation results (F1-score) in anomaly criterion, prior-association and optimization strat-
egy. Recon, AssDis and Assoc mean the pure reconstruction performance, pure association dis-
crepancy and our proposed association-based criterion respectively. Fix is to fix Learnable scale
parameter o of prior-association as 1.0. Max and Minimax refer to the strategies for association
discrepancy in the maximization (Equation E[) and minimax (EquationE[) way respectively.

Architecture ‘AnOMaly - Prior-  Optimization | ¢\ry  \rop  gMAP SWaT  psM | AVEF]
Criterion  Association Strategy (as %)
Transformer  Recon X X | 7972 76.64 73774 7456 78.43 | 76.62

Recon Learnable Minmax | 7135 7861 69.12 81.53 80.40 | 76.20
Anomaly AssDis Learnable Minmax ‘87.57 90.50 90.98 93.21 95.47‘ 91.55

Transformer  Assoc Fix Max | 83.95 82.17 70.65 79.46 79.04 | 79.05
Assoc Learnable Max | 88.88 85.20 87.84 81.65 93.83 | 87.48
*final Assoc Learnable Minmax | 92.33 93.59 96.90 94.07 97.89 | 94.96

4.2 MODEL ANALYSIS

To explain how our model works intuitively, we provide the visualization and statistical results for
our three key designs: anomaly criterion, learnable prior-association and optimization strategy.
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Figure 5: Visualization of different anomaly categories (Lai et al., [2021). We plot the raw series
(first row) from NeurIPS-TS dataset, as well as their corresponding reconstruction (second row) and
association-based criteria (third row). The point-wise anomalies are marked by red circles and the
pattern-wise anomalies are in red segments. The wrongly detected cases are bounded by red boxes.

Anomaly criterion visualization To get more intuitive cases about how association-based crite-
rion works, we provide some visualization in Figure [5] and explore the criterion performance under
different types of anomalies, where the taxonomy is from [Lai et al.| (2021). We can find that our
proposed association-based criterion is more distinguishable in general. Concretely, the association-
based criterion can obtain the consistent smaller values for the normal part, which is quite contrasting
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in point-contextual and pattern-seasonal cases (Figure[3)). In contrast, the jitter curves of the recon-
struction criterion make the detection process confused and fail in the aforementioned two cases.
This verifies that our criterion can highlight the anomalies and provide distinct values for normal
and abnormal points, making the detection precise and reducing the false-positive rate.
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Figure 6: Learned scale parameter o for different types of anomalies (highlight in red).

Prior-association visualization During the minimax optimization, the prior-association is learned
to get close to the series-association. Thus, the learned o can reflect the adjacent-concentrating
degree of time series. As shown in Figure[6] we find that o changes to adapt to various data patterns
of time series. Especially, the prior-association of anomalies generally has a smaller o than normal
time points, which matches our adjacent-concentration inductive bias of anomalies.

Optimization strategy analysis Only with the reconstruction loss, the abnormal and normal time
points present similar behavior in the association weights to adjacent time points, corresponding to
a contrast value closed to 1 (Table [3). Maximizing the association discrepancy will force the series-
associations to pay more attention to the non-adjacent area. However, to obtain a better reconstruc-
tion, the anomalies must maintain much larger adjacent association weights than normal time points,
corresponding to a larger contrast value. But direct maximization will cause optimization difficulty
of Gaussian kernel, and cannot strongly amplify the difference between normal and abnormal time
points as expected (SMD:1.15—1.27). The minimax strategy optimizes the prior-association to
provide a stronger constraint to series-association, thereby obtaining more distinguishable contrast
values and better performance than the direct maximization (SMD:1.27—2.39).

Table 3: Results of adjacent association weights for Abnormal and Normal time points respectively.
Recon, Max and Minimax represent the association learning process that is supervised by reconstruc-

tion loss, direct maximization and minimax strategy respectively. A higher contrast value (ANbgf;'l‘;fl)
indicates a stronger distinguishability between normal and abnormal time points.
Dataset | SMD MSL SMAP SWaT PSM

Optimization ‘Recon Max Ours Recon Max Ours Recon Max Ours Recon Max Ours Recon Max Ours

Abnormal (%) | 1.08 0.95 0.86 1.01 0.65 0.35 1.29 1.18 0.70 1.27 0.89 0.37 1.02 0.56 0.29
Normal (%) 094 0.75 0.36 1.00 0.59 0.22 1.23 1.09 0.49 1.18 0.78 0.21 0.99 0.54 0.11

Contrast (52omaly| 115 1.27 2.39 1.01 1.10 1.59 1.05 1.08 1.43 1.08 1.14 1.76 1.03 1.04 2.64

Normal

5 CONCLUSION AND FUTURE WORK

This paper studies the unsupervised time series anomaly detection problem. Unlike previous works,
we learn the more informative time-point associations by Transformers. Based on the key obser-
vation of association discrepancy, we propose the Anomaly Transformer, including an Anomaly-
Attention with the two-branch structure to embody the association discrepancy. A minimax strategy
is adopted to further amplify the difference between normal and abnormal time points. By introduc-
ing the association discrepancy, we propose the association-based criterion, which makes the recon-
struction performance and association discrepancy collaborate. Anomaly Transformer achieves the
state-of-the-art results on an exhaustive set of empirical studies. Future work includes theoretical
study of Anomoly Transformer in light of classic analysis for autoregression and state space models.
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A PARAMETER SENSITIVITY

We set the window size as 100 throughout the main text, which considers the temporal informa-
tion, memory and computation efficiency. And we set the loss weight A based on the convergence
property of the training curve.

Furthermore, Figure [/| provides the model performance under different choices of the window size
and the loss weight. We present that our model is stable to the window size over extensive datasets
(Figure [7]left). Note that a larger window size indicates a larger memory cost and a smaller sliding
number. Especially, only considering the performance, its relationship to the window size can be
determined by the data pattern. For example, our model performs better when the window size is 50
for the SMD dataset. Besides, we adopt the loss weight A in Equation[3]to trade off the reconstruction
loss and the association part. We find that \ is stable and easy to tune in the range of 2 to 4. The
above results verify the sensitivity of our model, which is essential for applications.
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Figure 7: Parameter sensitivity for sliding window size (left) and loss weight A (right). The model
with A = 0 still adopts the association-based criterion but only supervised by reconstruction loss.

B IMPLEMENTATION DETAILS

We present the pseudo-code of Anomaly-Attention in Algorithm [I]

Algorithm 1 Anomaly-Attention Mechanism (multi-head version).

Input: X € RN Xdmoel: input; D = (( j— 2)2) { , € RVXN: relative distance matrix
i,j€{1,,N

Layer params: MLP;,: linear projector for input; MLP .y« : linear projector for output

1: Q, KV, 0= Split(MLPinput(X), dim=l) >Q, K,V € RVXdnwa 5 c RNXR
dﬂ\()e
2: for (Qum, Koy Vin, o) in (Q,KC, V, 0): > Qs Koy Vi € RV 6 e RVX1
3: om = Broadcast(o,,,dim=1) > oy, € RVXN
. _ 1 D NxN
4. Pm = 27TUmexp< — Tfn) [>Pm S R X
5: Pm = Pm/Broadcast (Sum(Pm, dim=1)> > Rescaled P,,, € RV*N
6: S, = Softmax( y hd : Q,,JCL) >S,, € RVxN
= = d’mue
7: Zm = SmVm > Z,, € RVx=5
8: Z = MLPoyrput (Concat([Zl, < 2l dim=1)) > Z € RNV *dmodel
9: Return Z > Keep the P, and S,,,, m =1,--- | h

C MORE SHOWCASES

To obtain an intuitive comparison of main results (Table E]), we visualize the criterion of various
baselines. Anomaly Transformer can present the most distinguishable criterion (Figure[§). Besides,

13
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for the real-world dataset, Anomaly Transformer can also detect the anomalies correctly. Especially
for the SWaT dataset (Figure Ekd)), our model can detect the anomalies in the early stage, which is
meaningful for real-world applications, such as the early warning of malfunctions.
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Figure 8: Visualization of learned criterion for the NeurIPS-TS dataset. Anomalies are labeled by
red circles and red segments (first row). The failure cases of the baselines are bounded by red boxes.
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Figure 9: Visualization of the model learned criterion in real-world datasets. We select one dimen-
sion of the data for visualization. These showcases are from the test set of corresponding datasets.

D ABLATION OF ASSOCIATION DISCREPANCY

We present the pseudo code of the calculation in Algorithm 2]
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D.1 ABLATION OF MULTI-LEVEL QUANTIFICATION

We average the association discrepancy from multiple layers for the final results (Equation [6). We
further investigate the model performance under the single-layer usage. As shown in Table 4] the
multiple-layer design achieves the best, which verifies the effectiveness of multi-level quantification.

Table 4: Model performance under difference selection of model layers for association discrepancy.

Dataset | SMD MSL SMAP SWaT PSM
Mewic | P R FI | P R FI|P R FI|P R FI|P R Fl

layer 1 87.15 92.87 89.92190.36 94.11 92.19|93.65 99.03 96.26|92.61 91.92 92.27/97.20 97.50 97.35
layer 2 87.22 95.17 91.02]90.82 92.41 91.60|93.69 98.75 96.15|92.48 92.50 92.49(96.12 98.62 97.35
layer 3 87.27 93.89 90.46/91.61 88.81 90.19|93.40 98.83 96.04|88.75 91.22 89.96|77.25 94.53 85.02

Multiple-layer|89.40 95.45 92.33]92.09 95.15 93.59 [94.13 99.40 96.69|91.55 96.73 94.07|96.91 98.90 97.89

D.2 ABLATION OF STATISTICAL DISTANCE
We select the following widely-used statistical distances to calculate the association discrepancy:

* Symmetrized Kullback-Leibler Divergence (Ours).
* Jensen—Shannon Divergence (JSD).

e Wasserstein Distance (Wasserstein).

* Cross-Entropy (CE).

e L2 Distance (L2).
Table 5: Model performance under different definitions of association discrepancy.

Dataset | SMD MSL SMAP SWaT PSM
Metic | P R FI| P R FI|P R FI|P R FI|P R Fl
L2 85.26 74.80 79.69|85.58 81.30 83.39|91.25 56.77 70.00[79.90 87.45 83.51|70.24 96.34 81.24

CE 88.23 81.85 84.92|90.07 86.44 88.22|92.37 64.08 75.67|62.78 81.50 70.93|70.71 94.68 80.96
Wasserstein | 78.80 71.86 75.17|60.77 36.47 45.58|90.46 57.62 70.40|92.00 71.63 80.55|68.25 92.18 78.43
JSD 85.33 90.09 87.64(91.19 92.42 91.80|94.83 95.14 94.98 |83.75 96.75 89.78|95.33 98.58 96.93

Ours  |89.40 95.45 92.33]92.09 95.15 93.59[94.13 99.40 96.69|91.55 96.73 94.07|96.91 98.90 97.89

As shown in Table [5] our proposed definition of association discrepancy still achieves the best per-
formance. We find that both the CE and JSD can provide fairly good results, which are close to
our definition in principle and can be used to represent the information gain. The L2 distance is not
suitable for the discrepancy, which overlooks the property of discrete distribution. The Wasserstein
distance also fails in some datasets. The reason is that the prior-association and series-association
are exactly matched in the position indexes. Still, the Wasserstein distance is not calculated point by
point and considers the distribution offset, which may bring noises to the optimization and detection.

Algorithm 2 Association Discrepancy AssDis(P, S; X) Calculation (multi-head version).

Input: time series length N; layers number L; heads number h; prior-association Py €

REXAXNXN . qories-association Sy € REXAXNXN.
1. P/ =Mean(P,dim=1) > P e REXNXN
2: &' =Mean(S,dim=1) > S € REXNxN
32 R = KL((P’,S’), dim=—1) + KL((S’,P’), dim=—l) >R € REXN
4: R = Mean(R’,dim=0) >R e RN
5: Return R > Represent the association discrepancy of each time point
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D.3 ABLATION OF PRIOR-ASSOCIATION

In addition to the Gaussian kernel with a learnable scale parameter, we also try to use the power-law
kernel P(x; ) = x~“ with a learnable power parameter « for prior-association, which is also a
unimodal distribution. As shown in Table [] power-law kernel can achieve a good performance in
most of the datasets. However, because the scale parameter is easier to optimize than the parameter
of power, Gaussian kernel still surpasses the power-law kernel consistently.

Table 6: Model performance under different definitions of prior-association. Our Anomaly Trans-
former adopts the Gaussian kernel as the prior. Power-law refers to the power-law kernel.

Dataset | SMD MSL SMAP SWaT PSM
Mettic | P R FI | P R FI | P R FI|P R Fl|P R Fl

Power-law | 89.41 92.46 90.91|90.95 85.87 88.34|91.95 58.24 71.31[92.52 93.29 92.90|96.46 98.15 97.30
Ours 89.40 95.45 92.33|92.09 95.15 93.59|94.13 99.40 96.69|91.55 96.73 94.07|96.91 98.90 97.89

E ABLATION OF ASSOCIATION-BASED CRITERION

E.1 CALCULATION

We present the pseudo-code of association-based criterion in Algorithm

Algorithm 3 Association-based Criterion AnomalyScore(X’) Calculation

Input: time series length N; input time series X € RV *%; reconstruction time series X € RV*?;

association discrepancy AssDis(P, S; X) € RV*1;

1: Cap = Softmax(—AssDis(P,S; X),dim=0) > Cap € RV*1
2: CRecon = Mean((?(' — /\?)2, dim=l) > Crecon € RVX1
3: C = Cap X CRecon >C e RVx1
4: Return C > Anomaly score for each time point

E.2 ABLATION OF CRITERION DEFINITION

We explore the model performance under different definitions of anomaly criterion, including the
pure association discrepancy, pure reconstruction performance and different combination methods
for association discrepancy and reconstruction performance: addition and multiplication.

Association Discrepancy: AnomalyScore(X) = Softmax( — AssDis(P,S; X )),

s

Reconstruction: AnomalyScore(X) = [||XZ - X ||§} ,
i=1,--,N

s s

Addition: AnomalyScore(X) = Softmax( — AssDis(P, S; X)) + [||Xl — X, ||§} e

=1,
Multiplication (Ours): AnomalyScore(X') = Softmax( — AssDis(P, S; X)) ©) [H)Q — /'E Hg}
(7N

i=1,--,

From Table [/} we find that directly using our proposed association discrepancy can also achieve a
good performance, which surpasses the competitive baseline THOC (Shen et al.,2020) consistently.
Besides, the multiplication combination that we used in Equation [6| performs the best, which can
bring a better collaboration to the reconstruction performance and association discrepancy.
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Table 7: Ablation of criterion definition. We also include the state-of-the-art deep model THOC
(Shen et al., 2020) for comparison. AssDis and Recon represent the pure association discrepancy
and the pure reconstruction performance respectively. Ours refers to our proposed association-based
criterion with the multiplication combination.

Dataset | SMD MSL SMAP SWaT PSM Avg
Mettic | P R FI | P R FI| P R FI|P R FI|P R Fl|FI(%)
THOC |79.76 90.95 84.99|88.45 90.97 89.69]92.06 89.34 90.68|83.94 86.36 85.13|88.14 90.99 89.54| 88.01

78.63 65.29 71.35|79.15 78.07 78.61(89.38 56.35 69.12|76.81 86.89 81.53|69.84 94.73 80.40| 76.20
86.74 88.42 87.57|91.20 89.81 90.50|91.56 90.41 90.98|97.27 89.48 93.21|97.80 93.25 95.47| 91.55

88.08 87.37 87.72|91.28 55.97 69.39|84.34 81.98 83.14|97.60 97.61 97.61| 82.32
92.09 95.15 93.59|94.13 99.40 96.69|91.55 96.73 94.07|96.91 98.90 97.89| 94.96

Recon
AssDis

Addition
Ours

77.16 70.58 73.73
89.40 95.45 92.33

F CONVERGENCE OF MINIMAX OPTIMIZATION

The total loss of our model (Equation[d)) contains two parts: the reconstruction loss and the associa-
tion discrepancy. Towards a better control of association learning, we adopt a minimax strategy for
optimization (Equation [5). During the minimization phase, the optimization trends to minimize the
association discrepancy and the reconstruction error. During the maximization phase, the optimiza-
tion trends to maximize the association discrepancy and minimize the reconstruction error.

We plot the change curve of the above two parts during the training procedure. As shown in Figures
[I0]and[IT] both parts of the total loss can converge within limited iterations on all the five real-world
datasets. This nice convergence property is essential for the optimization of our model.

Recon loss
S =
o -
= i

°
=

Recon loss
Recon loss

o

o
o

0.2
0 100 200 300 400 0 200 400 600 0 200 400 600 800 0 200 400 600 0 200 400 600
iterations. iterations iterations iterations iterations

(a) SMD (b) MSL (c) SMAP (d) SWaT (e) PSM

Figure 10: Change curve of reconstruction loss || X' — X||2 in real-world datasets during training.

Assg s loss
As;st loss
Assi)\s loss
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Assgws loss
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(a) SMD (b) MSL (c) SMAP (d) SwaT (e) PSM

Figure 11: Change curve of association discrepancy ||AssDis(P,S;X)||; in real-world datasets
during the training process.

G MODEL PARAMETER SENSITIVITY

In this paper, we set the hyper-parameters L and dy,04e following the convention of Transformers
(Vaswani et al., 2017 Zhou et al., 2021).

Furthermore, to evaluate model parameter sensitivity, we investigate the performance and efficiency
under different choices for the number of layers L and hidden channels dy,0qe. Generally, increasing
the model size can obtain better results but with larger memory and computation costs.
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Table 8: Model performance under different choices of the number of layers L.

Dataset | SMD MSL SMAP SWaT PSM
Metric| P R FI | P R FI|P R FI|P R Fl|P R FlI

L =1{89.24 93.73 91.43|91.99 97.59 94.71|93.58 99.35 96.38|91.57 95.33 93.42|96.74 98.09 97.41
L = 2|89.26 94.33 91.72|91.89 94.73 93.29(93.79 98.91 96.28|92.37 94.59 93.47|97.22 98.23 97.72
L = 3(89.40 95.45 92.33(92.09 95.15 93.59(94.13 99.40 96.69|91.55 96.73 94.0796.91 98.90 97.89
L = 489.59 95.76 92.58(91.88 95.40 93.61(93.75 99.13 96.37|93.37 93.45 93.41(97.30 97.58 97.44

Table 9: Model performance under different choices of the number of hidden channels dy,oge1. Mem
means the averaged GPU memory cost. Time is the averaged running time of 100 iterations during
the training process.

Dataset | SMD MSL SMAP SWaT PSM Mem Time
Mewic | P R FI|P R FI|P R FI|P R FI|P R Fl|GB)(s)

dmodel = 256 (88.83 91.82 90.30(91.96 97.60 94.70(93.74 99.47 96.52(93.91 93.99 93.95(97.38 98.16 97.77| 4.9 0.12
dmodel = 512 [89.40 95.45 92.33(92.09 95.15 93.59(94.13 99.40 96.69(91.55 96.73 94.07(96.91 98.90 97.89| 5.5 0.15
dmodel = 1024(89.44 96.33 92.76(91.80 94.99 93.37(93.58 99.47 96.43|92.02 95.01 93.49(95.78 98.12 96.94| 6.6 0.27

H PROTOCOL OF THRESHOLD SELECTION

Our paper focuses on unsupervised time series anomaly detection. Experimentally, each dataset
includes training, validation and testing subsets. Anomalies are only labeled in the testing subset.
Thus, we select the hyper-parameters following the Gap Statistic method (Tibshirani et al.,2001)
in K-Means. Here is the selection procedure:

* After the training phase, we apply the model to the validation subset (without label) and
obtain the anomaly scores (Equation [6) of all time points.

e We count the frequency of the anomaly scores in the validation subset. It is observed that
the distribution of anomaly scores is separated into two clusters. We find that the cluster
with a larger anomaly score contains 7 time points. And for our model, r is closed to 0.1%,
0.5%, 1% for SWaT, SMD and other datasets respectively (Table .

* Due to the size of the test subset being still inaccessible in real-world applications, we have
to fix the threshold as a fixed value §, which can gaurantee that the anomaly scores of r
time points in the validation set are larger than § and thus detected as anomalies.

Table 10: Statistical results of anomaly score distribution on the validation set. We count the number
of time points with corresponding values in several intervals.

(a) SMD, MSL and SWaT datasets. (b) SMAP and PSM datasets.
Anomaly Score Interval | SMD ~ MSL ~ SWaT Anomaly Score Interval | SMAP  PSM
(0, +00] | 141681 11664 99000 (0, 400] | 27037 26497
[0,1072] 140925 11537 98849 [0, ‘10’3} 26732 26223
(1072,0.1] 2 8 17 (107%,1072] 0 5
(0.1, +00] 754 119 134 (1072, +o0] 305 269
Ratio of (0.1, +00] | 0.53% 1.02% 0.14% Ratio of (1072, +00] | 1.12% 1.01%

Note that, directly setting the § is also feasible. According to the intervals in Table we can fix
the 6 as 0.1 for the SMD, MSL and SWaT datasets, 0.01 for the SMAP and PSM datasets, which
yield a quite close performance to setting r.
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Table 11: Model performance. Choose by 6 means that we fix § as 0.1 for the SMD, MSL and
SWaT datasets, 0.01 for the SMAP and PSM datasets. Choose by r means that we select r as 0.1%
for SWaT, 0.5% for SMD and 1% for the other datasets.

Dataset |  SMD MSL SMAP SWaT PSM
Mewic | P R FI|P R FI|P R FI|P R Fl|P R Fl

Choose by 0|88.65 97.17 92.71]91.86 95.15 93.47|97.69 98.24 97.96[86.02 95.01 90.29|97.69 98.24 97.96
Choose by 7[89.40 95.45 92.33]92.09 95.15 93.59|94.13 99.40 96.69|91.55 96.73 94.07|96.91 98.90 97.89

In real-world applications, the number of selected anomalies is always decided up to human re-
sources. Under this consideration, setting the number of detected anomalies by the ratio r is more
practical and easier to decide according to the available resources.

I MORE BASELINES

In addition to the time series anomaly detection methods, the methods for change point detection and
time series segmentation can also perform as valuable baselines. Thus, we also include the BOCPD
(Adams & MacKayl, [2007) and TS-CP2 (Deldari et al., 2021)) from change point detection and U-
Time (Perslev et al., 2019) from time series segmentation for comparison. Anomaly Transformer
still achieves the best performance.

Table 12: Additional quantitative results for Anomaly Transformer (Ours) in five real-world datasets.
The P, R and F1 represent the precision, recall and Fl-score (as %) respectively. Fl-score is the har-
monic mean of precision and recall. For these metrics, a higher value indicates a better performance.

Dataset | SMD MSL SMAP SWaT PSM
Mettic | P R FI | P R FI | P R FlI| P R FI|P R Fl

BOCPD
TS-CP2
U-Time

70.90 82.04 76.07
87.42 66.25 75.38
65.95 74.75 70.07

80.32 87.20 83.62
86.45 68.48 76.42
57.20 71.66 63.62

84.65 85.85 85.24
87.65 83.18 85.36
49.71 56.18 52.75

89.46 70.75 79.01
81.23 74.10 77.50
46.20 87.94 60.58

80.22 75.33 77.70
82.67 78.16 80.35
82.85 79.34 81.06

Ours |89.40 9545 92.33]|92.09 95.15 93.59|94.13 99.40 96.69 |91.55 96.73 94.07|96.91 98.90 97.89

J  LIMITATIONS AND FUTURE WORK

Window size As shown in the Figure [7] of Appendix [A] the model may fail if the window size
is too small for association learning. But the Transformers is with quadratic complexity w.r.t. the
window size. The trade-off is needed for real-world applications.

Theoretical analysis As a well-established deep model, the performance of Transformers has been
explored in previous works. But it is still under-exploring for the theory of complex deep models.

In the future, we will explore the theorem of Anomaly Transformer for better justifications in light
of classic analysis for autoregression and state space models.

K DATASET

Here is the statistical details of experiment datasets.

Table 13: Details of benchmarks. AR represents the truth abnormal proportion of the whole dataset.

Benchmarks ‘ Applications ‘ Dimension Window ‘ #Training #Validation #Test (labeled) ‘ AR (Truth)

SMD Server 38 100 566,724 141,681 708,420 0.042
PSM Server 25 100 105,984 26,497 87,841 0.278
MSL Space 55 100 46,653 11,664 73,729 0.105
SMAP Space 25 100 108,146 27,037 427,617 0.128
SWaT Water 51 100 396,000 99,000 449,919 0.121
NeurIPS-TS | Various Anomalies 1 100 20,000 10,000 20,000 0.018
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L UCR DATASET

UCR Dataset is a very challenging and comprehensive dataset provided by the Multi-dataset Time
Series Anomaly Detection Competition of KDD2021 (Keogh et al. (Competition of International
Conference on Knowledge Discovery & Data Mining 2021). The whole dataset contains 250 sub-
datasets, covering various real-world scenarios. Each sub-dataset of UCR has only one anomaly
segment and only has one dimension. These sub-datasets range in length from 6,684 to 900,000 and
are pre-divided into training and test sets.

We also experiment on the UCR dataset for a wide evaluation. As show in Table [I4] our Anomaly
Transformer still achieves the state-of-the-art in this challenging benchmark.

Table 14: Quantitative results in UCR Dataset. IF refers to the IsolationForest (2008). Ours is our
Anomaly Transformer. P, R and FI represent the precison, recall and F1-score (%) respectively.

Metric ‘ LSTM-VAE InterFusion OmniAnomaly THOC Deep-SVDD BeatGAN LOF OC-SVM IF ‘ Ours

P 62.08 60.74 64.21 54.61 47.08 4520 4147 41.14 40.77 | 72.80
R 97.60 95.20 86.93 80.83 88.91 88.42 98.80 94.00 93.60|99.60
F1 | 75.89 74.16 73.86 65.19 61.56 59.82 5842 5723 56.80|84.12
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