Towards Detecting Inconsistencies in End-to-end Generated Task-Oriented
Dialogues: A Constraint Satisfaction Approach

Anonymous ACL submission

Abstract

Generative Al is profoundly transforming the
core technologies behind conversational sys-
tems, shifting from component-based to end-
to-end approaches. However, Large Language
Models (LLMs) may still generate inconsis-
tencies, a critical issue particularly in Task-
Oriented Dialogues (TODs), where system re-
sponses must strictly adhere to information
from a domain knowledge base (e.g., restau-
rants in a city). A single hallucination (e.g.,
suggesting a non-existent restaurant) can lead
to severe task failures. We investigate a method
for automatically detecting inconsistencies by
conceptualizing TODs as a Constraint Satisfac-
tion Problem (CSP), where variables represent
dialogue segments referencing the conversa-
tional domain, and constraints among variables
capture dialogue properties such as turn coher-
ence and adherence to domain knowledge. We
propose a pipeline that first identifies variables
in a target dialogue and then applies a CSP
solver to identify valid solutions. By compar-
ing the target dialogue with valid variable as-
signments, we can detect inconsistencies and
suggest minimal changes to ensure dialogue
consistency. We demonstrate the high accuracy
of the CSP-based approach in detecting incon-
sistencies, and provide a detailed analysis of
our findings.

1 Introduction

Task-oriented dialogue (TOD) systems (McTear,
2020; Budzianowski et al., 2018; Balaraman et al.,
2021; Qin et al., 2023) play a crucial role in human-
computer interaction, facilitating seamless com-
munication between users and machines to per-
form specific tasks. In recent years, transformer-
based neural models have become the core tech-
nology behind TODs. In particular, pre-trained
large language models (LLMs) allow end-to-end
approaches ((Bang et al., 2023; Lai et al., 2023; Qin
et al., 2023)) that greatly simplify the development

Knowledge Base

Food
spanish
spanish
lebanese

Price
cheap
moderate
cheap

Area

centre
centre
centre

ID | Name
R1 | Taberna
R2 | Espana
R3 | Beirut

Dialogue

User: I am looking for a restaurant serv-
ing Spanish food.

There are three restaurants serv-
ing Spanish food, one is cheap
and the other is moderate price
range. Which price range would
you prefer?

I am looking for a cheap restau-
rant in any area that serves Span-
ish food.

Beirut is cheap and serves
Lebanese food. Would you like
the location information?

System:

User:

System:

Figure 1: An inconsistent task-oriented dialogue (TOD)
and a restaurant KB with slot-value pairs (N = Name,
A = Area, F = Food, P = Price). Bold text highlights
slot values in the dialogue. Red values indicate dialogic
inconsistencies, while purple values indicate inconsis-
tencies with the KB.

of conversational systems, with respect to more
complex component-based pipelines ((Young et al.,
2013)). However, despite their impressive genera-
tive capabilities, it is well known that LLLMs exhibit
significant limitations in producing outputs that ad-
here to the requirements of task-specific domains
((Ji et al., 2022; Cho et al., 2022)). In a recent
study, (Labruna et al., 2024), it has been shown
that, when asked to generate a dialogue according
to a given knowledge base (K B), as required by
TODs, state-of-the-art open source LLMs produce

up to 59% of per dialogue disalignments with re-
spect to the underlying KB. Failing to align their
outputs with a domain K B, leads to inconsisten-
cies that undermine LLMs reliability in real-world
applications.

Figure 1 shows an example of a fragment of a
Knowledge Base (three restaurants in a city) and a
short TOD dialogue generated by a LLM. There are
two hallucinations in this dialogue: first, at turn S1,
the system mentions three restaurants serving Span-
ish food, which is not consistent with the knowl-
edge base, where there are two such restaurants
(this is a domain inconsistency). Second, at turn
S2, the system introduces a Lebanese restaurant,
which, although existing in the K B, it is not co-
herent with the previous dialogue turns, as a Span-
ish restaurant would have been expected (this is a
dialogic inconsistency). Intuitively, both domain
and dialogic inconsistencies need the whole dia-
logue context in order to be detected: for instance,
Lebanese appears inconsistent because the user is
looking for a Spanish restaurant since the begin-
ning of the conversation, while considering turn S2
alone would result in a well formed dialogue. In
addition, notice that three changes would make the
whole dialogue consistent: (i) changing three with
two at turn S1; (ii) changing Lebanese with Spanish
at turn S2; and (iii) changing Beirut with Taberna
at turn S2. Detecting TOD inconsistencies and, if
possible, suggesting how to solve them, is the goal
of this paper. The novel intuition of the paper is
to consider dialogue consistency as a kind of Con-
straint Satisfaction Problem (CSP (Brailsford et al.,
1999)), under the following working hypothesis: (i)
first, dialogue consistency can be modeled with a
limited number of domain independent constraints
that need to be respected by appropriate linguistic
realizations; (ii) such constraints can be well rep-
resented to define a CSP, whose allowed solutions
can be identified by a CSP solver; (iii) a TOD is
consistent if its linguistic realizations belong to the
set of solutions allowed by a CSP solver for that
dialogue. In the paper, we discuss how dialogue
constraints are defined, how they can be extracted
and modeled as a CSP, and how to set up an ex-
perimental setting where we can empirically prove
that a CSP solver can detect inconsistencies in a
dialogue and suggest possible changes that make
the dialogue consistent.

The contributions of the paper are the following:

* We model TOD consistency as a Constraint

Satisfaction Problem (CSP): to the best of our
knowledge, this is a fully original approach.

* We set up a reusable experimental setting
where TOD consistency can be automatically
evaluated against a CSP solver.

* We show that the proposed CSP approach al-
lows for effective detection of inconsistent
TODs, achieving an accuracy of 75.9%.

2 Dialogue Consistency as a Constraint
Satisfaction Problem

In this section, we explore the conceptualization of
dialogue consistency in the CSP framework. We
first describe the fundamental component of a con-
versational domain (Section 2.1), then we elucidate
the various constraints that contribute to dialogue
coherence (Section 2.2), encompassing linguistic,
dialogic, and domain-based considerations. We fi-
nally expound upon the formalization of dialogue
constraints as CSPs (Section 2.3), delineating the
process of modeling dialogue coherence as a con-
straint satisfaction task.

2.1 TOD Conversational Domain

TODs typically need specific knowledge about the
conversational domain (e.g., a database of restau-
rants, a playlist of songs, etc.). As in literature
(Henderson et al., 2014), we assume a domain on-
tology providing a schema of the concepts (e.g.,
RESTAURANT, HOTEL, MOVIE), a set of slots S
(e.g., FOOD, AREA, PRICE) for the concepts, and
the set of values that each slot can assume (e.g., EX-
PENSIVE, MODERATE, and CHEAP for the PRICE
slot). Then, a domain knowledge base (K B) com-
prises a collection of instances for the ontology
concepts, each consisting of [slot — value] pairs,
adhering to the domain ontology schema.

2.2 Dialogue Consistency

A TOD can be considered as a sequence of conver-
sational turns between a user and a system aimed
at achieving a specific goal. Within this framework,
ensuring the consistency of the dialogue is crucial
for effective communication between the user and
the system. We consider three types of constraints,
which need to be respected for a dialogue to be con-
sistent: linguistic, dialogic and domain constraints.

Linguistic Constraints. They are necessary to re-
spect general rules of language, including morpho-
syntactic rules (e.g., genre and number agreement)

Step 1:
VARIABLE

DIALOGUE

U: I'm looking for a Spanish restaurant
i S: There are 2 restaurants serving Spanish cousine.

IDENTIFICATION

Step 2: Step 3:

CONSTRAINTS csp
DEFINITION SOLUTIONS

Step 4:
DIALOGUE
CONSISTENCY
ASSESSMENT

©

KNOWLEDGE BASE

R1: N=Taberna A=centre F=spanish P=cheap
R2: N=Locos A=north F=spanish P=moderate

: I'm looking for a x1=F:Spanish restaurant
iS: There are x2=2 restaurants serving x3=F:Sp

x1=x3 = Spanish i

x1=x3
KB[x1] = x2

inish cousine, Consistent

i R3:N=Beirut A=centre F=lebanese P=cheap
i R4:N=Al-Athir A=south F=lebanese P=cheap

Figure 2: Overview of the CSP-based methodology. In step 1 GPT-4o0 is used to annotate the given dialogue for
variable identification. Step 2 allocates the constraints that need to be true for the dialogue to be consistent. Step 3
uses CSP to find the possible solutions, and in step 4 the original dialogue is matched with the CSP solutions to

assess its correctness.

and syntax-based rules (e.g., the correct use of a
preposition). For instance, consider the following
masked utterance:

U I look for a restaurant in <MASK>.

The choice of centre as a substitute for the masked
token is valid, whereas expensive would not be
suitable because the preposition in is rarely used to
introduce a price in English.

Dialogic Constraints. They maintain the seman-
tic coherence across successive turns of the dia-
logue, ensuring that each utterance logically aligns
with the preceding context, thereby facilitating a
seamless flow of information. As an example, sup-
pose the following masked dialogue turns:

U I would like an Italian restaurant.
S There is no <MASK> restaurant in the
centre.

Here both Italian and cheap would be eligible
choices from a linguistic point of view, but only
Italian would maintain the coherence with the pre-
vious turn in the dialogue.

Domain Constraints. They ensure alignment be-
tween the dialogue content and the knowledge base
of the system, thereby maintaining the dialogue’s
alignment with relevant factual information. Con-
sider, for instance, a K B with the following restau-
rants:

ID | Name | Area Food Price
R1 | Mario | east italian | expens.
R2 | Napoli | centre | italian | cheap

And the following piece of masked dialogue:

U I am looking for an Italian restaurant
in the centre.

S We have <MASK> restaurants available
for your preferences.

Then, the only admissible choice for the masked
token would be one, as selecting any other number
would introduce an inconsistency with the informa-
tion provided in the K B.

2.3 TOD Consistency as CSP

A Constraint Satisfaction Problem (CSP) (Brails-
ford et al., 1999; Kumar, 1992) imposes certain
conditions on a finite set of variables through con-
straints. Each variable has a finite set of possible
values, known as its domain, and constraints de-
fine the combinations of values allowed for specific
subsets of the variables. A constraint can be given
either explicitly, by enumerating the tuples allowed,
or implicitly, e.g., by an algebraic expression. The
solution of a CSP is an instantiation of all the vari-
ables for which all the constraints are satisfied. A
CSP is solvable if it has at least one solution, other-
wise it is unsolvable or overconstrained.

The hypothesis of this paper is that the dialogue
constraints outlined in Section 2.2 can be mod-
eled as CSPs. Intuitively, variables are the por-
tions of the dialogue that need to be constrained
(i.e., the M ASK tokens in our examples), while
the range of possible values for the variables are
expressed, either explicitly or implicitly, in the do-
main K B for that dialogue. The CSP task con-
sists of selecting variable assignments that com-
ply with linguistic, dialogic, and domain con-
straints. To formalize this notion, consider a di-
alogue d; for which n variables (i.e., masked to-
kens) x1,x9,...,x, have been defined. Let D;
denote the domain of possible values for variable
x;; let C be the set of constraints (i.e., linguistic,

dialogic, and domain constraints) over the dialogue
d;, and let ¢ represent a single constraint in C. The
CSP task is to determine if there exists an assign-
ment A = {(z1,a1), (z2,a2),...,(2n,a,)} with
a; € D; for 1 < ¢ < n, such that A satisfies all
constraints in C. This problem can be formulated
as follows:

Satisfies({(x1,a1), (x2,02), ..., (Tn,an)}, Cj)

VG, eC

where Satisfies(A, C;) denotes the binary relation-
ship between an assignment A and a constraint
C;, indicating whether the assignment satisfies the
constraint.

3 Methodology

This section outlines the process of modeling a
TOD as a CSP, and then to assess the dialogue
consistency using a CSP solver. The assessment
involves three key steps for a [d, K B] pair, where
d is a dialogue and K B is a Knowledge Base: (1)
identification of the variables within the dialogue d
(Section 3.1); (2) definition of dialogue constraints
and construction of a CSP solver for the [d, K B]
pair (Section 3.2); and (3) application of the CSP
solver to determine if the dialogue d represents a
feasible solution with respect to the defined con-
straints (Section 3.3). These phases of the method-
ology are illustrated in Figure 2.

3.1 Identifying TOD Variables

At step 1 (see Figure 2), we consider a TOD d and
a KB (i.e., a set of entities described by slot-value
pairs) related to the conversational domain of the
dialogue. We do not assume any particular depen-
dency between d and K B: d could be either fully
covered by KB (i.e., all mentions of slot values
in d are present in K B), only partially covered, or
not covered at all. We consider CSP variables all
text portions in d either referring to a slot value in
K B or mentioning amounts of instances in K B.
The rationale is that both slot values and instance
amounts are elements that better characterize a
TOD and are responsible for its consistency. In
our example in Figure 1, we will obtain the follow-
ing variables with their assignments, corresponding
to highlighted tokens:

[x1 = Spanish|, [z = three], [x3 =
Spanish], [z4 = cheap] ... [x11 = Lebanese].

3.2 Defining TOD Constraints

We have established a set X of variables
i, x2, ..., Ty, Where each variable x; can assume a
value either from the slot values or from amounts of
instances in K B. Moving to step 2 in Figure 2, we
now define the set of constraints C over the values
that can be assigned to X variables. We consider
the three categories of constraints introduced in
Section 2.2: linguistic, dialogic, and domain-based
constraints, and for each category we define a set
of domain independent patterns, which are then
instantiated as actual constraints on a TOD.

Patterns for linguistic constraints. We model
linguistic constraints as the need for a variable de-
rived from a slot value to match the semantic type
of its slot type. For instance, given the utterance /
am looking for a restaurant at x1, the value of the
variable z; must belong to the AREA type. More
precisely, C'1 is defined as follows:

Cl:ix1 €V

where V is the set of values belonging to the same
slot type as the original value. Constraint C'1, is
meant to avoid that a variable can assume values
that are semantically non valid. For instance, avoid-
ing that 1=NORTH can be assigned to a FOOD, as
in I am looking for a restaurant at INDIAN, which
is ungrammatical in English.

Patterns for dialogic constraints. We consider
two dialogic constraints. C'2 ensures that variables
referring to the same slot-name and slot-value in
d are assigned to the same value. C'3 ensures that
variables with the same semantic type (i.e., same
slot-name) occurring in the same utterance are as-
signed to different values. Given the turn U: [want
an 1 restaurant. S: There are 3 restaurant that
serve xg, we define C'2 as follows:

CQZ.’E1:I‘2

where the aim is to keep internal coherence across
the dialogue turns. Given the utterance We have x1,
9, or x3 restaurants., we define C'3 as:

C3ia1 #x2, @1 # T3, T2 F# T3
which captures non redundancy at the utterance
level.

Patterns for domain-based constraints. We
consider three domain-based constraints. All of
them are meant to guarantee consistency between
the number of instances mentioned in d and the
actual number of instances present in K B. We
distinguish three cases: C'4 covers the cases when
an utterance in d states that there are no instances
in K B; C5 covers the cases where it is stated that
there is at least one instance; and C6 the cases
where there are exactly n instances.

As for C'4, consider an utterance indicating no
results for a search: There are no restaurants serv-
ing x1 food, assuming that there are no restaurants
with [FOOD=z] in K B. For this utterance, C'4 is
defined as:

C4 : —3i € KB with values x1

implying that the variable z; can not assume a
value that is present in an instance of the K B.

As for C'5, consider the utterance: We have many
T restaurants at r9, where at least one restaurant
with [FOOD=x] and [AREA=z3] is supposed to
exist in K B. For this utterance, C'5 is defined as:

C5 : 3i € K B with values x1, o

imposing the existence of at least one instance with
values x1 and xo. Finally, for C'6, consider the
utterance There are x1 restaurants at To. We define
the constraint as:

C6 : |{i € KB with value z2}| = x;

to check that the number of instances with value
xo is exactly equal to x;.

To sum up, we have defined six general, domain
independent (i.e., in principle they can be applied
to any TOD), constraint patterns over the variable
of a TOD.

3.3 Assessing Dialogue Consistency

After identifying all variables and constraints for
a dialogue d, a CSP solver computes all possible
solutions for the variables in d based on the knowl-
edge base (K B) (step 3 in Figure 2). If one of
these solutions matches the variable assignments
in d, the dialogue is consistent with K B (step 4
in Figure 2). For example, in Figure 1, the assign-
ment [x9 = three| violates C'6 (incorrect count of
Spanish instances in K B), while [x1; = Lebanese]
violates C'2 (lack of coherence with prior turns). If
the CSP solver finds at least one solution, the vari-
able assignments in the dialogue must match one

of those solutions to ensure all constraints are satis-
fied. Conversely, if no solution exists with respect
to K B, the variable assignments should either re-
main empty or include values not present in K B to
maintain consistency. When at least one solution is
found but none matches the variable assignments,
the solver identifies the most similar solution and
determines the minimal changes required to make
the dialogue consistent. This process provides a
detailed report highlighting specific inconsistencies
and suggesting corrections.

4 Validating CSP Performance

In this section we describe a controlled experiment
aiming at assessing the ability of the CSP-based
approach to detect inconsistencies in TODs, as
depicted in Figure 2. We first create a balanced
dataset of dialogues and corresponding K Bs, such
that half of the dialogues are inconsistent, and the
other half is consistent. All [d, K B] pairs are then
passed to a pipeline of components implementing
the procedure in Figure 2. At the end of the pro-
cess, the CSP component takes a binary decision
about a [d, K B] pair: either it is CONSISTENT or
NOT-CONSISTENT. The outcome is finally com-
pared with the ground-truth for that pair for final
assessment.

4.1 Dialogues and KB

As for [d, K B] pairs, we leverage MultiWoz 2.3
(MWoZ) (Han et al., 2020), a popular dataset for
TODs. For our experiments we focus on 108
restaurant-related dialogues, from which 50% are
randomly selected as the CONSISTENT ones (all
MWoZ dialogues are by default consistent, as they
were collected through human intervention)!. The
remaining 50% of dialogues were randomly modi-
fied to make them inconsistent with respect to the
MWoZ K B.

Then, for each dialogue d, a specific KB is
created selecting the pertinent restaurant instances
from the global MWoZ K B, so that K B is aligned
with the content of d. Few instances of a K B can
be seen both in Figure 1 and in Appendix C.

4.2 CSP Variables and Constraints

Given a [d, K B] pair, as described in the previ-
ous section, step 1 in Figure 2 involves variable

"Running the CSP approach, we discovered that 10% of
MWoZ dialogues were actually inconsistent with the K B,
because of human errors. Those dialogues were removed from
the dataset.

identification.

As for constraints definition (step 2 in Figure 2)
we instantiate the six constraint patterns introduced
in Section 3.2 on the final set of variables identified
by GPT-40” in the dialogue d and considering the
K B associate to d.

4.3 MiniZinc Constraint Solver

For the CSP solver (step 3 in Figure 2), we use
MiniZinc (Nethercote et al., 2007), an open-source
constraint programming language designed for
modeling and solving constraint satisfaction prob-
lems. MiniZinc offers a high-level modeling lan-
guage that enables users to define problem con-
straints and objectives, supporting a wide range
of constraint types. This versatility makes it well-
suited for diverse problem domains.

For our evaluation, we employed MiniZinc to
obtain solutions that satisfy the dialogue con-
straints. Among its suite of solvers, we uti-
lized Chuffed (Chu et al., 2018), a state-of-the-
art solver renowned for its efficiency in solving
CSPs. Chuffed’s time-optimization capabilities are
particularly advantageous for handling complex,
large-scale optimization problems.

4.4 Methods and Evaluation Metrics

We employ four methods for classifying a [d, K B]
pair either as a CONSISTENT or NOT-CONSISTENT.
For all methods, results are calculated using accu-
racy, i.e., the proportion of correct guesses with
respect to the total [d, K B] pairs to be classified.

Random baseline. By design, our dataset
is balanced between CONSISTENT and NOT-
CONSISTENT dialogues, therefore the random ac-
curacy is 50%.

MWoZ global variables + CSP. In this method
variables in d are identified according to the se-
mantic annotations provided by MWoZ and then
passed to the CSP solver with the six constraints de-
scribed in Section 5. If there is no valid assignment,
then the dialogue is classified as NOT-CONSISTENT.
This method, being based on the human annota-
tions in MWoZ, is an upper-bound of the CSP per-
formance.

MWoZ local variables + CSP. This baseline
takes a decision considering variables in each turn
in d independently of the other turns. If at least one
turn is inconsistent (i.e., the CSP solver does not

https://openai.com/index/hello-gpt-40/

find any valid assignment), then the whole dialogue
is NOT-CONSISTENT. As in the previous method,
variables are identified through MWoZ annotations.

GPT4-o global variables + CSP. This process
uses GPT-4o, prompting the model to generate a
JSON output closely aligned with the MWoZ anno-
tation format. To ensure reliable variable extraction,
we employ a prompt chain for each dialogue turn.
The first prompt extracts candidate variables, while
the second prompt verifies and refines them. More
details on the prompts and the process are provided
in Appendix B. The variables are identified at the
global level, considering all turns in the dialogue.
The intuition is that complex constraints need a
context larger than a single turn.

Method accuracy (%)
RANDOM BASELINE 50.0
MWO0Z GLOBAL VARIABLES + CSP 91.6
MWOZ LOCAL VARIABLES + CSP 79.0
GPT4-0 GLOBAL VARIABLES + CSP 75.9

Table 1: Results on assessing CSP performance.

4.5 The CSP-pipeline Effectiveness

Table 1 shows the results of the experiments. The
upper-bound method based on MWoZ variables
achieves 91.6 accuracy, correctly classifying 45 di-
alogues as CONSISTENT (83%) and 54 correctly as
NOT-CONSISTENT (100%). At manual inspection,
the 9 false negative dialogues show a misalignment
between d and the associated K B, due to human
errors in labeling MWoZ. These results suggest
that the CSP method is highly effective and pro-
vide a clear indication that the coverage of our six
constraint template is very high. Notice that the
same method on local variables drop performance
to 79%, showing that TOD consistency require
global approaches. Finally, the end-to-end CSP
pipeline based on GPT-40 achieves 75.9% of ac-
curacy. The drop in accuracy when using GPT-40
vs. MWoZ variable annotations is expected since
GPT-40 is not perfect in the variable identification
within the dialogues. As a result, this method pro-
duces 26 (25%) false negatives, highlighting an
over application of constraints.

There are two main findings resulting from the
presented experiments: (i) we implemented an end-
to-end CSP-based pipeline able to achieve high
accuracy in a task of dialogue inconsistency detec-
tion; (ii) the whole set of six constraint patterns

https://openai.com/index/hello-gpt-4o/

Dataset # dialogues # variables
ALL 950 9281

1 SOLUTION 18 54
2-10 SOLUTIONS 134 868
11-100 SOLUTIONS 286 2332
101+ SOLUTIONS 306 3151

Table 2: Dialogue distribution based on CSP solutions
(MiniZinc).

defined in Section 3.2 has proven to be effective.

5 Analysing LLM Behavior

We analyse LLLM behavior while generating dia-
logue inconsistencies. The main research ques-
tions are: (i) how do state-of-the-art LLMs behave
when asked to generate consistent task-oriented di-
alogues (TODs)? (ii) How are the six constraint
patterns involved in solving the CSP? (iii) Can we
accurately localize the constraints responsible for
TOD inconsistencies?

In the experiment, we use a corpus of 950 Multi-
WOZ dialogues across attractions, hotel, restaurant,
and train domains. For each dialogue d, CSP vari-
ables are identified from MultiWOZ annotations,
yielding a de-lexicalized dialogue dgeje,- A LLM
is then prompted to re-lexicalize d g, consistent
with a knowledge base K B associated with d, pro-
ducing a re-lexicalized dialogue d,.¢j.,. Finally,
the output is checked against the MiniZinc CSP
solver (Section 4.3) to assess the model’s capacity
to satisfy our six constraints. This controlled setup
investigates LLMs’ ability to respect dialogue con-
straints.

5.1 Language Models

We evaluate four language models: LLaMA-3.1 8B
(Dubey et al., 2024), GPT-3.5-Turbo (Achiam et al.,
2023), GPT-40 (Hurst et al., 2024), and GPT-01°.
All models receive as input d e, and its associated
K B to generate consistent dialogues. Inference
is zero-shot without fine-tuning, using the official
APIs for closed-source models and HuggingFace
checkpoints for open ones (details in Appendix
A.l).

5.2 Baselines

We introduce four baselines for dialogue re-
lexicalization (see Appendix A.2 for full de-

3https ://openai.com/o1/

Constraint # variables % coverage

C1 9281 100%
C2 6084 66%
C3 1124 12%
C4 301 3%
C5 2369 26%
C6 4257 46%

Table 3: Number and proportion of variables affected
by each constraint.

tails): RANDOM-ALL, RANDOM-SLOT, MOST
FREQUENT-ALL, and MOST FREQUENT-SLOT.
These baselines vary in how they assign slot values
randomly or by frequency, either across all slots or
restricted by slot type.

5.3 Evaluation Metrics

We use Global Consistency Accuracy (GCA) and
Variable Consistency Accuracy (VCA) to evaluate
adherence to constraints. GCA measures the pro-
portion of dialogues fully satisfying all constraints,
while VCA evaluates accuracy at the variable as-
signment level by comparing with the closest CSP
solution (formal definitions in Appendix A.3).

Higher GCA and VCA indicate better dialogue
consistency, beyond traditional metrics like BLEU
or ROUGE. VCA can also localize specific errors
by identifying slot-value assignments that cause
violations.

5.4 Results

Table 2 shows the distribution of dialogues by the
number of CSP solutions and the number of vari-
ables per group. Table 3 reports the impact of each
constraint on the dialogue variables, showing C'1
affects all variables, while C'4 applies to fewer in-
stances.

Table 4 compares baselines and LLM perfor-
mance on re-lexicalizing TODs. GPT-40 and GPT-
ol outperform others significantly. Table 5 shows
GPT-40’s performance by CSP solution group, with
higher solution counts correlating with better con-
sistency.

Table 6 (in Appendix A.4) shows an ablation
study of constraints’ impact on consistency metrics,
highlighting the critical role of C'6 (exact match
with the number of K B instances).

https://openai.com/o1/

Method GCA VCA
RANDOM-ALL 0.01 0.02
RANDOM-SLOT 0.01 0.12
MoOST FREQUENT-ALL 0.01 0.11
MOST FREQUENT-SLOT 0.06 0.23
LLaMA-3.1 8B 0.03 0.08
GPT-3.5-TURBO 0.11 0.37
GPT-40 0.14 041
GPT-01 0.14 042

Table 4: Baselines and model performance on re-
lexicalizing TODs.

5.5 Discussion

The results highlight that GPT-40 and GPT-o1 out-
perform other models, though absolute GCA and
VCA values remain moderate, indicating dialogue
consistency remains challenging. Higher numbers
of CSP solutions correlate with better consistency,
suggesting that dialogues with multiple valid as-
signments are easier for LLMs to generate cor-
rectly. The ablation study confirms domain-based
constraints as especially critical.

The detailed prompt format, baseline method-
ologies, extended metric definitions, and ablation
study results are provided in Appendix A.

6 Related Work

TOD systems have been extensively investigated
in NLP (Allen et al., 2001). Recent research has
explored the use of neural network architectures for
dialogue state tracking (Wu et al., 2020; Zhao et al.,
2021) and policy learning (Su et al., 2016; Liu and
Lane, 2017). Several metrics have been proposed to
assess the performance of TOD systems, including
task completion rates, user satisfaction scores, and
objective measures for system components, such as
precision, recall, and F1-score (Chen et al., 2017;
Santhanam and Shaikh, 2019; Deriu et al., 2021).
Recent studies have emphasized the importance of
holistic evaluation frameworks that consider multi-
ple aspects of dialogue quality (Zhang et al., 2021).

Maintaining consistency and coherence in di-
alogues is essential for effective communication
between users and dialogue systems. Previous
research has investigated various approaches to
ensure dialogue coherence, including coherence
modeling (Cervone et al., 2018), and coherence-
based response generation (Cervone and Riccardi,
2020), aiming to enhance the naturalness and flu-

Split GCA VCA
1 SOLUTION 0.67 0.54
2-10 SOLUTIONS 0.28 0.65
11-100 soLuTIONS 0.19 0.64
101+ SOLUTIONS 0.11 0.64

Table 5: Re-lexicalizing TODs with GPT-40 across so-
lution groups.

ency of generated dialogues. Finally, several stud-
ies have explored the application of CSPs to lan-
guage. These include early attempts to ensure co-
herence in generated text (Kibble and Power, 2004),
model preposition lexicalization using constraints
(Moriceau and Saint-Dizier, 2004), guide lexi-
cal choices through constraints (McKeown et al.,
1997), and treat context-sensitive utterance genera-
tion as a CSP (Popescu et al., 2009). Differently to
these works, our approach focuses on detecting in-
consistencies in already generated TOD dialogues
using CSP.

7 Conclusion

Generative LLMs may produce inconsistent TODs,
due to misalignment between parametric memory
and the TOD K B. We have introduced a novel
approach to detect TOD inconsistencies based
on Constraint Satisfaction. Several experiments
demonstrate the feasibility of the approach, en-
abling to effectively identify and quantify inconsis-
tencies present in TODs with high accuracy (75.9%
with GPT-40 and CSP solver). We also analysed the
LLM inconsistencies when tasked to re-lexicalize
TODs, finding that they primarily concern domain
knowledge adherence, resulting in an overall accu-
racy of only 0.14 at the dialogue level. Our study
highlights the potential of CSP-based methodolo-
gies in evaluating dialogue consistency and identi-
fying areas for improvement in automated dialogue
generation systems. Future research should further
explore the application of CSP in task-oriented di-
alogues and investigate strategies to enhance the
coherence of LLM-generated dialogues, particu-
larly in applications with strong domain knowledge
requirements.

Limitations

While the proposed Constraint Satisfaction Prob-
lem (CSP)-based approach offers a novel and effec-
tive method for detecting inconsistencies in task-

oriented dialogues (TODs), it presents several limi-
tations.

The system relies on the explicit mapping of
dialogues into variable-constraint representations.
Although our method is domain-independent in
principle, the process of extracting variables and
constraints from dialogues may require customiza-
tion or adaptation for new domains or dialogue
schemas.

Our method focuses on identifying inconsisten-
cies and suggesting minimal changes for correc-
tion, but it does not automatically regenerate fluent
or user-aligned responses after such modifications.
This leaves the generation of corrected natural lan-
guage utterances as future work.

Finally, although our experimental results are
promising, they are based on controlled datasets
and manually designed inconsistencies. Further
work is needed to assess robustness in more com-
plex or organically generated dialogues.

Ethical Considerations

Use of Scientific Artifacts. We used publicly
available task-oriented dialogue datasets for ex-
perimentation. These datasets include MultiwOZ
(Budzianowski et al., 2018) and variations based
on it. Additionally, we used off-the-shelf large lan-
guage models (LLMs) to generate new dialogues
with intentional inconsistencies for controlled eval-
uation. All code developed for the CSP-based in-
consistency detection pipeline is our original con-
tribution and will be made publicly available for
research purposes under an open-source license.

Licensing and Intended Use. All external
datasets and models used in this work were em-
ployed in accordance with their licenses. Our use
was consistent with the intended purpose of the
datasets (research), and we explicitly specify that
the CSP-based system and associated data artifacts
are intended solely for research and educational use.
Any derivative dataset created using our framework
also inherits this research-only restriction.

Privacy and Data Integrity. The dialogue data
used in this study does not include personally iden-
tifiable information (PII), and no effort was made to
collect or infer such data. We manually verified the
synthetic and benchmark dialogues for inappropri-
ate or offensive content, and none was found. Our
system does not involve any human annotation be-
yond the authors, so no consent or risk disclaimers
were required.

Documentation and Statistics. All artifacts, in-
cluding the experimental codebase, constraint tem-
plates, and synthetic dialogue generation scripts,
are provided with the submission. This includes
coverage across domains, types of slot-value in-
consistencies, and linguistic patterns. We report
the number of dialogue examples used in each ex-
periment, as well as their train/test splits, in the
experimental section. We also provide accuracy
scores as descriptive statistics for the evaluation.

Computational Resources. Model generation
and evaluation were conducted using a single
NVIDIA A40 GPU, with a total budget of approx-
imately 40 GPU hours. We do not fine-tune any
large models; our work only uses them in inference
mode.

Use of Existing Software. Our system uses stan-
dard NLP libraries such as Hugging Face Trans-
formers and MiniZinc ‘constraint* solver library.
All packages were used with default or explicitly
documented parameters.

Human Participants. No human participants
were recruited for this study, and no user studies
or annotation tasks involving external contributors
were conducted. Therefore, issues such as com-
pensation or informed consent do not apply in our
setting.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

James Allen, George Ferguson, and Amanda Stent.
2001. An architecture for more realistic conversa-
tional systems. In Proceedings of the 6th interna-
tional conference on Intelligent user interfaces, pages
1-8.

Vevake Balaraman, Seyedmostafa Sheikhalishahi, and
Bernardo Magnini. 2021. Recent neural methods on
dialogue state tracking for task-oriented dialogue sys-
tems: A survey. In Proceedings of the 22nd Annual
Meeting of the Special Interest Group on Discourse
and Dialogue, SIGdial 2021, Singapore and Online,
July 29-31, 2021, pages 239-251. Association for
Computational Linguistics.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wen-
liang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei
Ji, Tiezheng Yu, Willy Chung, and 1 others. 2023.
A multitask, multilingual, multimodal evaluation of
chatgpt on reasoning, hallucination, and interactivity.
arXiv preprint arXiv:2302.04023.

https://aclanthology.org/2021.sigdial-1.25
https://aclanthology.org/2021.sigdial-1.25
https://aclanthology.org/2021.sigdial-1.25
https://aclanthology.org/2021.sigdial-1.25
https://aclanthology.org/2021.sigdial-1.25

Sally C. Brailsford, Chris N. Potts, and Barbara M.
Smith. 1999. Constraint satisfaction problems: Algo-
rithms and applications. European Journal of Opera-
tional Research, 119(3):557-581.

Pawet Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Inigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gasi¢. 2018. Multiwoz—a
large-scale multi-domain wizard-of-oz dataset for
task-oriented dialogue modelling. arXiv preprint
arXiv:1810.00278.

Alessandra Cervone and Giuseppe Riccardi. 2020. Is
this dialogue coherent? learning from dialogue acts
and entities. arXiv preprint arXiv:2006.10157.

Alessandra Cervone, Evgeny Stepanov, and Giuseppe
Riccardi. 2018. Coherence models for dialogue.
arXiv preprint arXiv:1806.08044.

Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang
Tang. 2017. A survey on dialogue systems: Re-
cent advances and new frontiers. Acm Sigkdd Ex-
plorations Newsletter, 19(2):25-35.

Hyundong Cho, Chinnadhurai Sankar, Christopher Lin,
Kaushik Ram Sadagopan, Shahin Shayandeh, Asli
Celikyilmaz, Jonathan May, and Ahmad Beirami.
2022. Know thy strengths: Comprehensive dialogue
state tracking diagnostics. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2022,
pages 5345-5359, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Geoffrey Chu, Peter J. Stuckey, Anthony Schutt,
Thorsten Ehlers, Graeme Gange, and Keith Fran-
cis. 2018. Chuffed, a lazy clause generation solver.
https://github.com/chuffed/chuffed.

Jan Deriu, Alvaro Rodrigo, Arantxa Otegi, Guillermo
Echegoyen, Sophie Rosset, Eneko Agirre, and Mark
Cieliebak. 2021. Survey on evaluation methods for
dialogue systems. Artificial Intelligence Review,
54:755-810.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, and 1 others. 2024. The 1lama 3 herd of models.
arXiv preprint arXiv:2407.21783.

Ting Han, Ximing Liu, Ryuichi Takanobu, Yixin
Lian, Chongxuan Huang, Wei Peng, and Minlie
Huang. 2020. Multiwoz 2.3: A multi-domain task-
oriented dataset enhanced with annotation correc-
tions and co-reference annotation. arXiv preprint
arXiv:2010.05594.

Matthew Henderson and 1 others. 2014. The second
dialog state tracking challenge. In Proceedings of the
15th Annual Meeting of the Special Interest Group on
Discourse and Dialogue (SIGDIAL), pages 263-272,
Philadelphia, PA, U.S.A. Association for Computa-
tional Linguistics.

10

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,
Akila Welihinda, Alan Hayes, Alec Radford, and 1
others. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Ziwei Ji and 1 others. 2022. Survey of hallucination
in natural language generation. ACM Computing
Surveys.

Rodger Kibble and Richard Power. 2004. Optimizing
referential coherence in text generation. Computa-
tional Linguistics, 30(4):401-416.

Vipin Kumar. 1992. Algorithms for constraint-
satisfaction problems: A survey. Al magazine,
13(1):32-32.

Tiziano Labruna, Sofia Brenna, Giovanni Bonetta, and
Bernardo Magnini. 2024. Are you a good assistant?
assessing 1lm trustability in task-oriented dialogues.
Clic-1t 2024.

Tuan M Lai, Giuseppe Castellucci, Saar Kuzi, Heng
Ji, and Oleg Rokhlenko. 2023. External knowledge
acquisition for end-to-end document-oriented dialog
systems. In Proceedings of the 17th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, pages 3633-3647.

Bing Liu and Ian Lane. 2017. Iterative policy learning
in end-to-end trainable task-oriented neural dialog
models. In 2017 IEEE Automatic Speech Recognition
and Understanding Workshop (ASRU), pages 482—
489. IEEE.

Kathleen McKeown, Michael Elhadad, and Jacques
Robin. 1997. Floating constraints in lexical choice.

Michael McTear. 2020. Conversational ai: Dialogue
systems, conversational agents, and chatbots. Syn-
thesis Lectures on Human Language Technologies,

13(3):1-251.

Véronique Moriceau and Patrick Saint-Dizier. 2004. A
constraint-based model for preposition choice in nat-
ural language generation. Constraint Solving and
Language Processing, page 124.

Nicholas Nethercote, Peter J. Stuckey, Rowan Becket,
Simon Brand, Greg J. Duck, and Guido Tack. 2007.
Minizinc: Towards a standard cp modelling language.
In CP 2007, volume 4741 of LNCS, pages 529-543.
Springer.

Vladimir Popescu, Jean Caelen, and Corneliu Burileanu.
2009. A constraint satisfaction approach to context-
sensitive utterance generation in multi-party dialogue
systems. International Journal of Speech Technology,
12:95-112.

Libo Qin, Wenbo Pan, Qiguang Chen, Lizi Liao, Zhou
Yu, Yue Zhang, Wanxiang Che, and Min Li. 2023.
End-to-end task-oriented dialogue: A survey of tasks,
methods, and future directions. In Proceedings of the
2023 Conference on Empirical Methods in Natural

https://doi.org/10.1016/S0377-2217(98)00364-6
https://doi.org/10.1016/S0377-2217(98)00364-6
https://doi.org/10.1016/S0377-2217(98)00364-6
https://doi.org/10.18653/v1/2022.findings-emnlp.391
https://doi.org/10.18653/v1/2022.findings-emnlp.391
https://doi.org/10.18653/v1/2022.findings-emnlp.391
https://github.com/chuffed/chuffed
https://doi.org/10.3115/v1/W14-4337
https://doi.org/10.3115/v1/W14-4337
https://doi.org/10.3115/v1/W14-4337
http://www.minizinc.org/
https://doi.org/10.18653/v1/2023.emnlp-main.363
https://doi.org/10.18653/v1/2023.emnlp-main.363
https://doi.org/10.18653/v1/2023.emnlp-main.363

Language Processing, pages 5925-5941, Singapore.
Association for Computational Linguistics.

Sashank Santhanam and Samira Shaikh. 2019. Towards
best experiment design for evaluating dialogue sys-
tem output. arXiv preprint arXiv:1909.10122.

Pei-Hao Su, Milica Gasic, Nikola Mrksic, Lina Rojas-
Barahona, Stefan Ultes, David Vandyke, Tsung-
Hsien Wen, and Steve Young. 2016. On-line active
reward learning for policy optimisation in spoken
dialogue systems. arXiv preprint arXiv:1605.07669.

Peng Wu, Bowei Zou, Ridong Jiang, and AiTi Aw. 2020.
Gedst: A graph-based and copy-augmented multi-
domain dialogue state tracking. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 1063-1073.

Steve Young, Milica Gasi¢, Blaise Thomson, and Ja-
son D Williams. 2013. Pomdp-based statistical spo-
ken dialog systems: A review. Proceedings of the
IEEE, 101(5):1160-1179.

Chen Zhang, Grandee Lee, Luis Fernando D’Haro, and
Haizhou Li. 2021. D-score: Holistic dialogue evalua-
tion without reference. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 29:2502—
2516.

Jeffrey Zhao, Mahdis Mahdieh, Ye Zhang, Yuan Cao,
and Yonghui Wu. 2021. Effective sequence-to-
sequence dialogue state tracking. arXiv preprint
arXiv:2108.13990.

A Detailed Experimental Setup and
Additional Results

A.1 Prompting Details and Inference Setup

For dialogue re-lexicalization we employed four
language models: LLaMA-3.1 8B, GPT-3.5-Turbo,
GPT-40, and GPT-ol. LLaMA-3.1 8B is a large-
scale model fine-tuned for handling complex dia-
logue contexts and maintaining coherence in text
generation (Dubey et al., 2024). GPT-3.5-Turbo is
a model specifically designed for conversational
tasks (Achiam et al., 2023). GPT-40 is an ad-
vanced language model recognized for its robust
performance in various natural language process-
ing tasks (Hurst et al., 2024). GPT-ol is one of
the latest update of the GPT series, designed to
reason through complex tasks to solve harder prob-
lems*. All models were prompted with both the
de-lexicalized dialogue, d e, and its associated
K B as input, ensuring a comprehensive context
for producing dialogues that adhered to implicit
constraints. Inference was conducted in zero-shot

*https://openai.com/o1/

11

mode (see Appendix C) without fine-tuning, lever-
aging the respective APIs for closed source models
and the huggingface checkpoints for the open ones:
GPT-3.5-Turbo (2023-05-15), GPT-40 and GPT-o01
(2024-05-13), and LLaMA-3.1 8B (2023-07-10).

A.2 Baselines

We introduce four dialogue re-lexicalization base-
lines:

* RANDOM-ALL generates a re-lexicalized di-
alogue d, ;¢ by randomly assigning variables
in dgejeq to any slot values present in the K B,
regardless of their slot type.

* RANDOM-SLOT also assigns variables ran-
domly but restricts the selection to values asso-
ciated with the same slot type as the original.

* MOST FREQUENT-ALL baseline assigns vari-
ables in dgeje, to the most frequent slot values
found across all slots in the K B.

e MOST FREQUENT-SLOT baseline selects the
most frequent value from the same slot type
as the original.

A.3 Evaluation Metrics

Global Consistency Accuracy (GCA) and Variable
Consistency Accuracy (VCA) are the two metrics
used to evaluate the adherence of a dialogue to a
specific set of constraints. Given a re-lexicalized
dialogue d,..;.,, where CSP variables are assigned
to values, GCA measures the overall accuracy of
the assignments for each variable. The average
GCA is calculated as the proportion of dialogues
that fully comply with all defined constraints:

Zf\il (H]]Vil Satisfies(A;, Cj))
N

where N is the total number of dialogues, and
Satisfies(A;, C;) is a binary indicator function that
returns 1 if and only if all variable assignments in
dialogue d; comply with the constraint j, O other-
wise. On the other hand, VCA assesses the assign-
ment accuracy on individual variables within the
dialogue. We compare the dialogue assignment to
the solutions of the CSP solver and find the most
similar solution; then, we count how many variable
assignments coincide with the assignments of the
most similar solution. We formally define VCA as
follows:

GCA =

SN | [CorrectAssignments(d;)|

VCA = %

where N is the total number of dialogues, M is
the total number of variables in the dialogues,
and CorrectAssignments(d;) are the variable as-
signments in dialogue d; that coincide with the
assignments of the most similar solution provided
by the CSP solver. GCA and VCA provide in-
sights into the ability of the dialogue generation
system to maintain coherence and fidelity to the
underlying domain knowledge while generating re-
sponses. Higher values of GCA and VCA indicate
better performance in terms of dialogue quality and
consistency, unlike traditional dialogue evaluation
metrics (e.g., BLEU, ROUGE, or perplexity).

Additionally, the process used for computing
VCA can be extended to identify specific errors
within a dialogue. In cases where a dialogue is not
among the solutions identified by the CSP, the most
similar solution can be used to detect erroneous
slot-value assignments. Specifically, errors are de-
fined as slot-values that, if corrected, would result
in a solution satisfying all constraints. This enables
the generation of detailed reports pinpointing the
errors in the dialogue, facilitating more targeted
improvements.

A.4 Ablation Study

Table 6 presents the results of an ablation study
we conducted. The ablation study removes one
constraint at a time to measure impact on GCA and
VCA. Results indicate that C'6 (exact match with
KB instances) is the most critical, followed by C'1
(hard constraints on slot values).

Constraint GCA VCA
ALL EXCEPTC1 0.15 045
ALL EXCEPTC2 0.15 042
ALL EXCEPTC3 0.15 045
ALL EXCEPT C4 0.15 046
ALL EXCEPTC5 0.15 045
ALL EXCEPTC6 0.21 048
ALL EXCEPT 015 045
DIALOGIC

ALL EXCEPT 023 056
DOMAIN

Table 6: Ablation study: global and variable consistency
under different constraint configurations.

12

B Variable Identification Prompt

The prompt chain used to annotate the dialogue
turns consists of the following two prompts:

* Prompt-1: Analyze the given user utterance
and extract any slot-value pairs. The possible
slot types are: Area, Food, Price, Depart, Des-
tination. Return the output as JSON with the
dialog-act format.

Prompt-2: Refine the given annotation for the
user utterance. Ensure that only slots related
to Area, Food, and Price are included. Cor-
rect any errors in the provided annotation, add
missing slots, and remove any irrelevant slots.
Return the output as JSON with the updated
dialog-act format.

The GPT-40 response to Prompt-1 is used as in-
put within Prompt-2, and the final output is a JSON
file containing annotations about slot variables.

The dialog-act referred to in the two prompts is
a JSON schema that guides GPT-40 in structured
output mode and resembles the MultiwOZ JSON
annotation schema.

C Re-Lexicalization Prompt

Below is an instruction that outlines a task, along
with a Knowledge Base containing domain-specific
information to be utilized, and a dialogue for you
to work on (see Figure 3).

Instruction:

Fill in the [MASK] placeholders in the dialogue
based on the information provided in the Knowl-
edge Base. Provide the updated dialogue exactly as
it was given, but with the placeholders replaced by
the appropriate values for each turn in the dialogue.
If a turn does not contain any placeholders, leave
the sentence unchanged. Turns should start with
either User or System. Be aware of leaving blank
spaces before punctuation as in the original (e.g.,
“Hi ,” instead of “Hi,”).

ID | Name | Area Food Price

R1 | Mario | east italian | expens.

R2 | Napoli | centre | italian | cheap

U I’m looking for a restaurant serving
<MASK> food in any area.

S There are no <MASK> restaurants in the
area.

U Well, can I get the phone number to a
<MASK> restaurant?

S Restaurant R2 serves <MASK> food.
Their phone number is 01223
355166. Can I help you with any-
thing else?

U That’s it, goodbye.

You’re welcome, goodbye.

U I’m looking for a restaurant serving
italian food in any area.

S There are no italian restaurants in the
area.

U Well, can I get the phone number to a
cheap restaurant?

S Restaurant R2 serves italian food.
Their phone number is 01223
355166. Can I help you with any-
thing else?

U That’s it, goodbye.

Figure 3: Example restaurants table and dialogue inter-

actions.

You’re welcome, goodbye.

13

	Introduction
	Dialogue Consistency as a Constraint Satisfaction Problem
	TOD Conversational Domain
	Dialogue Consistency
	TOD Consistency as CSP

	Methodology
	Identifying TOD Variables
	Defining TOD Constraints
	Assessing Dialogue Consistency

	Validating CSP Performance
	Dialogues and KB
	CSP Variables and Constraints
	MiniZinc Constraint Solver
	Methods and Evaluation Metrics
	The CSP-pipeline Effectiveness

	Analysing LLM Behavior
	Language Models
	Baselines
	Evaluation Metrics
	Results
	Discussion

	Related Work
	Conclusion
	Detailed Experimental Setup and Additional Results
	Prompting Details and Inference Setup
	Baselines
	Evaluation Metrics
	Ablation Study

	Variable Identification Prompt
	Re-Lexicalization Prompt

