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Abstract
Graph Neural Networks (GNNs) and Transformer-based models have been in-
creasingly adopted to learn the complex vector representations of spatio-temporal
graphs, capturing intricate spatio-temporal dependencies crucial for applications
such as traffic datasets. Although many existing methods utilize multi-head
attention mechanisms and message-passing neural networks (MPNNs) to capture
both spatial and temporal relations, these approaches encode temporal and spatial
relations independently, and reflect the graph’s topological characteristics in a
limited manner. In this work, we introduce the Cycle to Mixer (Cy2Mixer), a
novel spatio-temporal GNN based on topological non-trivial invariants of spatio-
temporal graphs with gated multi-layer perceptrons (gMLP). The Cy2Mixer
is composed of three blocks based on MLPs: A temporal block for capturing
temporal properties, a message-passing block for encapsulating spatial informa-
tion, and a cycle message-passing block for enriching topological information
through cyclic subgraphs. We bolster the effectiveness of Cy2Mixer with mathe-
matical evidence emphasizing that our cycle message-passing block is capable
of offering differentiated information to the deep learning model compared to
the message-passing block. Furthermore, empirical evaluations substantiate the
efficacy of the Cy2Mixer, demonstrating state-of-the-art performances across
various spatio-temporal benchmark datasets. The source code is available at
https://github.com/leemingo/cy2mixer.

1 Introduction
Spatio-temporal forecasting predicts future events or states involving both spatial and temporal com-
ponents, with traffic forecasting being one of the most representative examples among these problems.
Traffic data is frequently conceptualized as a spatio-temporal graph, where road connections and
traffic flows gleaned from sensors are represented as edges and nodes [1, 2], and traffic forecasting
aims to predict future traffic in road networks based on preceding traffic data [3–7]. Given this, many
turn to Graph Neural Networks (GNNs), especially those using Message Passing Neural Networks
(MPNNs), to study this data. GNNs based on MPNNs have been increasingly adopted to learn
the complex vector representations of spatio-temporal graphs, capturing intricate dependencies in
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Figure 1: Prediction example of Cy2Mixer in the PEMS04 dataset. While Cy2Mixer shows similar
performance between Node 170 and Node 173, which are connected via the adjacency matrix A,
Cy2Mixer exhibits superior performance at Node 0 when utilizing the clique adjacency matrix AC ,
indicating the effectiveness of the cycle block in capturing cyclic subgraph relationships.

traffic datasets [8–10]. However, traditional message passing-based methodologies have exhibited
limitations, including the inability to adequately account for temporal variations in traffic data and
over-smoothing problems [11]. Following the success of Transformers in various domains, they have
been employed either independently or synergetically with MPNNs to address these challenges in traf-
fic forecasting [11–13], some implementations of which are coupled with preprocessing techniques
like Dynamic Time Warping (DTW) [14], showcasing competitive performance outcomes [11].

Previous research efforts have predominantly focused on employing additional algorithms or incorpo-
rating intricate structures to capture the complex patterns inherent in spatio-temporal graphs. This
often results in heuristics that inflate the complexity of structure and computational costs. Addition-
ally, many of these studies have leaned heavily on experimental results to justify their performance
improvements, lacking comprehensive explanations or theoretical grounding. To address these chal-
lenges, we start with a mathematical hypothesis that leverages the topological non-trivial invariants
of a spatio-temporal graph to enhance the predictive performances of GNNs. This hypothesis aims
to discern the spatio-temporal relationships among nodes within the graph. We demonstrate that
topological features shed light on facets of temporal traffic data that might be overlooked when
focusing solely on the pre-existing edges in a traffic network.

Building on this mathematical foundation, we propose a simple yet unique model, Cycle to Mixer
(Cy2Mixer), that integrates gated Multi-Layer Perceptron (gMLP) [15] and MPNNs supplemented
with topological non-trivial invariants in graphs, to enhance predictive accuracy. Our Cy2Mixer layer
comprises of three key components: (a) Temporal block: Seizes the temporal characteristics of all
nodes. (b) Spatial message-passing block: Encompasses spatial relationships along with local neigh-
borhoods. (c) Cycle message-passing block: Captures supplementary information among nodes in
cyclic subgraphs. Notably, our cycle message-passing block aims to encapsulate topological features,
enabling a finer comprehension of the intricate connectivity patterns within the network inspired by
Cy2C-GNNs [16, 17]. We validate our methodology using traffic datasets, showcasing the competi-
tive edge of our proposed models. Furthermore, a qualitative assessment elucidates the efficacy of
topological invariants in enhancing the Cy2Mixer’s predictive performance as demonstrated in Figure
1, showing improved accuracy for nodes connected through cyclic subgraphs when using the clique
adjacency matrix. While our experiments focus on traffic datasets as representative spatio-temporal
datasets, we also conducted experiments to demonstrate that our methodology performs well on other
spatio-temporal datasets. Our work demonstrates that our approach is not limited to a single task but
performs effectively across various tasks, while also evaluating the efficiency of preprocessing time.

The contributions of this work are as follows: (1) We use homotopy invariance of fundamental groups
and homology groups to deduce that topological non-trivial invariants of a spatio-temporal network
become a contributing factor for influencing the spatio-temporal forecast. (2) We propose a simple yet
novel network, Cy2Mixer, based on the gMLP and Cy2C-GNNs inspired from the theory of covering
spaces. (3) We show that the proposed model not only demonstrates efficiency in preprocessing time
but also consistently delivers superior performance across a variety of spatio-temporal datasets.
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2 Related Works
In recent years, deep learning approaches have emerged as powerful tools in the spatio-temporal
modeling by leveraging their ability to automatically learn complex, nonlinear spatio-temporal
patterns, and traffic forecasting is one of the primary applications of spatio-temporal modeling.
Convolutional Neural Networks (CNNs) have been effectively applied to traffic forecasting to
capture spatio-temporal patterns [3, 18, 19]. With the success of Transformers in fields like natural
language processing and computer vision, owing to their ability to model complex relationships
over long sequences without relying on recurrent structures, they have been effectively adapted to
traffic forecasting by leveraging self-attention mechanisms to capture long-range spatio-temporal
dependencies [11, 13, 20]. Meanwhile, to capture the dynamic spatial correlations within traffic
networks, Graph Neural Networks (GNNs) have become a prominent approach for traffic forecasting
due to their ability to model complex dependencies [8, 10, 21, 22], and some studies have integrated
self-attention mechanisms with GNNs to further enhance the modeling of spatial relationships
within traffic networks [12, 23]. Some recent studies adapt traffic graph structures through learnable
adjacency matrices and probabilistic modeling [24, 25] and integrate hierarchical topological views
to capture multi-level spatial patterns [26, 27]. However, many existing approaches that incorporate
spatial information in traffic networks have relied on either limited methods or overly heuristic
strategies with auxilary information from road networks, which may be challenging to apply to other
spatio-temporal tasks. These methods often struggle to comprehensively capture the full complexity
of spatial dependencies, leading to suboptimal modeling of traffic dynamics.

3 Preliminaries
In this section, we provide explanations for some notations and define the traffic prediction problem.

3.1 Message passing neural networks (MPNNs)

Each m-th layer H(m) of MPNNs and hidden node attributes h(m)
v with dimension km are given by:{

h
(m)
v := COMBINE(m)

(
h
(m−1)
v , h′

u

)
h
(0)
v := Xv

(1)

where h′
u = AGGREGATE(m)

v

({{
h(m−1)
u | u ∈ N(v)

}})
. (2)

Xv is the initial node attribute at v and N(v) is the set of neighborhood nodes. Note that
AGGREGATE(m)

v is a function that aggregates features of nodes adjacent to v, and COMBINE(m) is
a function which combines features of the node v with those of nodes adjacent to v.

3.2 gated Multi-Layer Perceptron (gMLP)

gMLP has been shown to achieve comparable performance to Transformer models across diverse
domains, including computer vision and natural language processing, with improved efficiency [15].
With the given input X ∈ Rn×d, where n denotes sequence length and d denotes dimension, it can
be defined as:

Z = σ(XU), Z̃ = s(Z), Y = Z̃V, (3)
where σ represents the activation function, which is GeLU [28] in this context, and U and V
correspond to linear projections based on the channel (feature) dimensions, serving roles similar
to the feed-forward network in Transformer. The layer s(·) corresponds to the Spatial Gating Unit,
which is responsible for capturing cross-token interactions. We construct the aforementioned layer as:

s(Z) = Z1 ⊙ fW,b(Z2), (4)
where fW,b denotes a linear projection fW,b(Z) = WZ+ b. Here, W and b refer to the weight matrix
and bias, respectively. Z1 and Z2 denote two independent components split from Z along the channel
dimension, and ⊙ denotes element-wise multiplication.

3.3 Traffic Prediction Problem

Traffic sensor. Traffic sensors are deployed within the traffic system to record essential information,
such as the flow of vehicles on roads and the speeds of these vehicles.
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Figure 2: An illustration of lifting a cyclic subgraph of the traffic network G to a temporal cyclic
subgraph of the topological space G × I representing the traffic dataset. Every temporal cyclic
subgraph of the traffic dataset G × I can be obtained from cyclic subgraph of the underlying traffic
network G by using Theorem 4.1. By transforming cyclic subgraphs into cliques by adding and
deleting edges suitably, Cy2Mixer effectively models how traffic signals measured in distinct nodes
and time can affect each other.

Traffic network. Traffic network can be represented as G = (V, E , A,AC), where V =
{v1, · · · , vN} denotes the set of N nodes representing sensors within the traffic network (|V | = N ).
Next, E ⊆ V × V represents the set of edges, and the adjacency matrix A of the network G can be
obtained based on the distances between nodes. Additionally, AC is the clique adjacency matrix
of the network, which is incorporated into the GNN architecture. The detailed procedure for ob-
taining the clique adjacency matrix is provided in Appendix A.7. The matrices A ∈ RN×N and
AC ∈ RN×N are time-independent input variables since the structure remains unchanged over time.
As will be noted in Section 4 and Appendix A.6, cyclic substructures of traffic network are crucial in
understanding additional conditions imposed in accurately predicting traffic signals. As demonstrated
in previous studies [16], utilizing clique adjacency matrices AC can effectively boost capabilities of
conventional deep learning architectures in incorporating cyclic substructures of traffic networks. As
such, we use the clique adjacency matrix AC as additional input to our traffic network data.

Traffic signal. The traffic signal Xt ∈ RN×C represents the data measured at time t across N
nodes in the network. In this context, C denotes the number of features being recorded by the sensors,
and in this study, it represents the flow of the road network.

Problem formalization. Our objective is to train a mapping function f to predict future traffic
signals by utilizing the data observed in the previous T steps, which can be illustrated as follows:[

X(t−T+1), · · · , Xt;G
] f−→

[
X(t+1), · · · , X(t+T ′)

]
. (5)

4 Mathematical Backgrounds

One of the prominent ways to mathematically quantify the effectiveness and discerning capabilities of
GNNs is to interpret the graph dataset as a collection of 1-dimensional topological spaces G := {Gi}i,
and identify the given GNNs as a function GNN : G → Rk which represents graphs in a given
dataset as real k-dimensional vectors. These approaches were carefully executed in previous literature,
which focused on pinpointing the discernability of various architectural designs for improving GNNs,
as seen in [16, 29–32]. Throughout these references, the characterizations of topological invariants
of such 1-dimensional topological spaces provided grounds for verifying whether such GNNs can
effectively capture geometric non-trivial properties of graph datasets, such as cyclic substructures or
connected components of graphs. In light of these previous studies, it is hence of paramount interest
to reinterpret temporal graph datasets as a collection of higher dimensional topological spaces and
understand what non-trivial properties of such topological spaces the novel deep learning techniques
processing temporal graph datasets should encapsulate.
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Topological Space. We interpret the traffic dataset as a 2-dimensional topological space constructed
from the traffic network G, and traffic signals as a function defined over the 2-dimensional topological
space. To elaborate, the previous section indicates that we can identify a traffic network with a graph
G = (V, E , A,AC), and a traffic signal at time t, denoted by Xt ∈ RN×C , as a collection of functions
{ft : G → RN×C}t, each of which represents measurements taken over the graph G at time t. Notice
that the continuous time variable t parametrizes a closed interval I := [ts, te], where ts and te denote
the start and end time of the traffic dataset. This observation allows us to identify a temporal traffic
network as a topological space G × I , and the collection of traffic signals varying with respect to a
time variable t as a function over G × I satisfying the following condition:

X :G × I → RN×C

X(g, t) = Xt(g) for all t ∈ I.
(6)

Temporal cyclic structures. One of the prominent topological properties of a graph G is its cyclic
subgraphs. Cyclic substructures of traffic networks are crucial in determining additional obstructions
imposed on forecasting traffic signals. To see this, the existence of such cycles indicates that there
exists a pair of nodes v, w ∈ V which are connected by at least two distinct paths, obtained from
moving along the edges of the graph. In terms of traffic dataset, the existence of a cyclic subgraph
indicates that there are at least two paths that a flow of traffic can move along from one point to
another. Hence, it is crucial to understand how cyclic subgraphs of a given traffic network G affect
future traffic signals. This can be achieved by understanding possible cyclic substructures inherent in
a traffic signal X : G × I → RN×C . The following result shows that cyclic substructures of a traffic
signal can be fully understood from the cycle bases of a traffic network G. We leave the proof of the
theorem as well as remarks on mathematical relations between cyclic subgraphs and temporal traffic
data in Appendix A.6.
Theorem 4.1. Given any choice of t0 ∈ I , let πt0 : G × I → G × {t0} ∼= G be the projection map
which sends the interval I to a singleton set {t0}. Let CG×I := {C1, C2, · · · , Cn} be a cycle basis
of the topological space G × I . Then the set

πt0 (CG×I) := {πt0(C1), · · · , πt0(Cn)} (7)
is a cycle basis of the traffic network G.

Temporal cliques. Theorem 4.1 demonstrates that every cyclic structure of temporal graph datasets
G × I , originating from lifting the cyclic structures of the baseline traffic network G to any time
period, can be captured using the projection map πt0 . In fact, the lifting procedure does not require
that the cyclic structure over G × I has to be defined over a fixed time t. It can be lifted to a cyclic
subgraph of G × I such that its nodes represent traffic signals measured at different moments of time.

One of the topological invariants that conventional GNNs fail to incorporate effectively is the cyclic
substructures of graphs [29, 33]. This is because GNNs can only distinguish any pairs of two graphs
G and H up to isomorphism of their universal covers or unfolding trees. To overcome this issue,
one can substitute cyclic subgraphs with cliques. An approach inspired by the theory of covering
spaces, the strategy alters the geometry of universal covers to allow GNNs to encapsulate cyclic
structures effectively [16]. We implement the application of the analogous operation to temporal
traffic data by utilizing the clique adjacency matrix AC .The clique adjacency matrix AC allows room
for GNNs to determine whether additional interactions among nodes of G, whose measurements
are taken at varying moments of time, are relevant components for forecasting traffic signals. This
allows us to capture potential effects of topological invariants of traffic networks on temporal traffic
measurements, as suggested from Theorem 4.1. Figure 2 illustrates how lifting a cyclic subgraph of
G to a new cyclic subgraph of G × I of varying temporal instances can enrich our prediction of future
traffic signals. The two cycles are subgraphs colored in red. The temporal cyclic subgraph spans over
time t = t0 and the end time t = te of the dataset. By changing the colored cyclic subgraph into
cliques, we add edges to nodes on the cyclic subgraph lying in two different instances of time. These
edges establish relations among measurements taken at different nodes and time periods.

5 Methodology
In this section, we present the architecture of Cy2Mixer and elaborate on how it distinguishes itself
from other models. Figure 3 provides a comprehensive visualization of our model’s framework. This
architecture is primarily composed of three main components: the embedding layer, a stack of L
Cy2Mixer encoder layers, and the output layer.
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Figure 3: The overall framework of Cy2Mixer. Layers within the green box indicate the Cy2Mixer
encoder layer, which comprises a temporal block, spatial message-passing block, and cycle message-
passing block to ensure a comprehensive understanding of both temporal and spatial aspects.

5.1 Embedding Layer

Our model follows the structure of the embedding layer from Liu et al. [20]. Given the time-series
data Xt−T+1:t, the feature embedding is defined as Xfeat = FC(Xt−T+1:t), where FC represents
a fully connected layer and Xfeat ∈ RT×N×df . Additionally, to account for both weekly and
daily periodicities, the temporal embedding Xtemp ∈ RT×N×dt is produced. This is achieved by
referencing the day-of-week and timestamp-of-day data to extract two distinct embeddings, which are
subsequently concatenated and broadcasted to generate the final temporal embedding with dimension
dt. Furthermore, to address diverse temporal patterns specific to each node, a learnable parameter is
introduced in the form of an adaptive embedding of dimension da, represented as Xast ∈ RT×N×da ,
to capture and reflect latent, unobserved information within the temporal and spatial patterns of
each node. These three embeddings are concatenated, forming the output H ∈ RT×N×dh of the
embedding layer, where the dimension dh is equal to df + dt + da.

H = Xfeat||Xtemp||Xast. (8)

5.2 Cy2Mixer Encoder Layer

The core architecture of the Cy2Mixer encoder layer consists of three distinct blocks, each of which
calculates the projection values of Z based on the output H from the embedding layer. In this
context, Z corresponds to the output of the projection layer applied to H , analogous to how X in
Section 2.2 undergoes projection in the gMLP, and Z ∈ RT×N×2dh is split into Z1 ∈ RT×N×dh and
Z2 ∈ RT×N×dh in each blocks. However, unlike the single application of the Spatial Gating Unit
in the gMLP, each block in Cy2Mixer employs a specialized gating mechanism designed to capture
temporal, spatial, or topological dependencies, utilizing convolution or message-passing networks
with different adjacency matrices in each block.

Temporal Block. This block employs a 3× 3 convolution network to get the projection values of
Z2. This is subsequently element-wise multiplied with Z1, generating the output of the Gating Unit:

Z̃temporal = Ztemporal,1 ⊙ Conv(Ztemporal,2), (9)
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Table 1: Traffic flow prediction results for PEMS04, PEMS07, PEMS08, NYTaxi, TDrive, and
CHBike. All prediction results in gray are cited from available results obtained from pre-existing
publications [20]. Highlighted are the top first and second results.

Datasets Metric GWNET STGNCDE GMAN ASTGNN PDFormer STAEFormer w/o Cycle block Cy2Mixer

PEMS04
MAE 19.36 19.21 19.14 18.60 18.36 18.22 18.81 18.14

RMSE 31.72 31.09 31.60 31.03 30.03 30.18 30.65 30.02
MAPE 13.30% 12.77% 13.19% 12.63% 12.00% 11.98% 12.86% 11.93%

PEMS07
MAE 21.22 20.62 20.97 20.62 19.97 19.14 19.51 19.45

RMSE 34.12 34.04 34.10 34.02 32.95 32.60 33.02 32.89
MAPE 9.08% 8.86% 9.05% 8.86% 8.55% 8.01% 8.16% 8.11%

PEMS08
MAE 15.06 15.46 15.31 14.97 13.58 13.46 13.71 13.53

RMSE 24.86 24.81 24.92 24.71 23.41 23.25 23.63 23.22
MAPE 9.51% 9.92% 10.13% 9.49% 9.05% 8.88% 9.01% 8.86%

NYTaxi
MAE 13.30 13.28 13.27 12.98 12.36 12.61 12.61 12.59

RMSE 21.71 21.68 21.66 21.19 20.18 20.53 20.53 20.45
MAPE 13.94% 13.93% 13.89% 13.65% 12.79% 12.96% 13.06% 13.03%

TDrive
MAE 19.55 19.29 19.10 18.79 17.79 16.97 17.48 16.99

RMSE 36.18 36.12 36.05 33.93 31.55 31.02 31.31 30.82
MAPE 16.56% 16.50% 16.45% 15.84% 14.68% 13.81% 13.95% 13.56%

CHBike
MAE 4.13 4.11 4.10 4.02 3.89 4.03 3.89 3.80

RMSE 5.81 5.80 5.79 5.71 5.48 5.70 5.46 5.37
MAPE 30.92% 30.87% 30.91% 30.91% 30.06% 31.49% 30.10% 29.20%

where Z̃temporal ∈ RT×N×dh . Here, Ztemporal,1 and Ztemporal,2 represent Z1 and Z2 for the Temporal
block, respectively.

Spatial Message-Passing & Cycle Message-Passing Blocks. These blocks employ the MPNN
for their projection function in the Gating Unit. Notably, the spatial message-passing block uses the
standard adjacency matrix, A, whereas the cycle message-passing block operates with the clique
adjacency matrix, AC . The clique adjacency matrix, proposed by [16], represents the bases of
cycles (or the first homological invariants of the graph [34]) in a suitable form that enables GNNs
to effectively process the desired topological features. Following a process similar to the Temporal
block, the Z̃ values for both blocks are expressed as:

Z̃spatial = Zspatial,1 ⊙ MPNN(Zspatial,2, A), (10)

Z̃cycle = Zcycle,1 ⊙ MPNN(Zcycle,2, AC), (11)

where Z̃spatial ∈ RT×N×dh and Z̃cycle ∈ RT×N×dh . The final output of each block, denoted as Y , is
calculated by applying a linear projection to the output of Gating Unit Z̃, similar to the process in
Section 2.2. Considering the effective performance outcomes of incorporating tiny attention into each
block in prior research [15], we have adopted the same structure in our model. Then we concatenate
all of three outputs, namely, Ytemporal, Ycycle, and Yspatial, using a feed-forward network as:

Yout = FC (Ytemporal||Ycycle||Yspatial) , Yout ∈ RT×N×dh . (12)

5.3 Output Layer

After progressing through the stacked sequence of L Cy2Mixer encoder layers, the output layer
extracts the final predictions from the hidden state Yout. Here, T ′ represents the number of time steps
to be predicted, and do signifies the dimension of the output features.

Ŷ = FC(Yout), Y ∈ RT ′×N×do . (13)

6 Experiments
Dataset. We evaluated Cy2Mixer on six public traffic datasets: PEMS04, PEMS07, and PEMS08,
which contain only traffic data, and NYTaxi, CHBike, and TDrive, which include inflow and outflow
data. For PEMS datasets, the model uses the previous hour’s data (12 time steps) to predict the next
hour, while for NYTaxi, CHBike, and TDrive, it uses six steps to predict the next step. Additional
details are in Appendix A.2.
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Table 2: Ablation study on effect of cycle message-passing block for PEMS04, PEMS07, and
PEMS08. Note that w/ stands for with and w/o stands for without. Time (s) refers to the preprocessing
time taken to create each matrix.

Dataset PEMS04 PEMS07 PEMS08
Metric MAE RMSE MAPE Time (s) MAE RMSE MAPE Time (s) MAE RMSE MAPE Time (s)

w/o Cycle block 18.81 30.65 12.86% - 19.74 33.46 8.19% - 13.56 23.45 8.97% -
w/ DTW 18.44 30.66 12.16% 67.9732 19.72 33.35 8.31% 562.4729 13.65 23.50 8.94% 20.9622
w/ RWSE 18.29 30.00 11.98% 0.1839 19.57 34.35 8.07% 11.3208 13.68 24.00 8.95% 0.0187
w/ LapPE 18.22 29.97 11.91% 0.1573 21.45 35.25 11.08% 0.9720 13.57 23.65 8.91% 0.0045
Cy2Mixer 18.14 30.02 11.93% 0.0006 19.50 33.28 8.19% 0.0281 13.53 23.22 8.86% 0.0006

Table 3: Case study on the structure of Cy2Mixer for PeMS04. Temporal Block, Spatial Block, and
Cycle Block refer to the temporal message-passing block, spatial message-passing block, and cycle
message-passing block, respectively.

Cy2Mixer (PEMS04) MAE RMSE MAPETemporal Block Spatial Block Cycle Block A AC Tiny attention
✓ ✓ 18.55 30.31 12.20%

✓ ✓ ✓ 22.53 36.33 15.36%
✓ ✓ ✓ ✓ 18.81 30.65 12.86%
✓ ✓ ✓ ✓ 18.85 30.68 12.72%

✓ ✓ ✓ ✓ ✓ 18.56 30.33 12.32%
✓ ✓ ✓ ✓ ✓ 18.29 30.05 11.95%
✓ ✓ ✓ ✓ ✓ 18.36 30.15 12.05%
✓ ✓ ✓ ✓ ✓ ✓ 18.14 30.02 11.93%

Baseline models. In this study, we evaluate our proposed approach against various established
baseline methods in traffic forecasting. We include GNN-based methods such as GWNet [22] and
STGNCDE [10]. We also include GMAN [12], ASTGNN [23], PDFormer [11] and STAEFormer [20],
all of which are self-attention-based models designed for the same task as ours.

Experimental settings. We configured our experiments following standard settings for fair com-
parisons, with data splits of 6:2:2 for PEMS datasets and 7:1:2 for NYTaxi, TDrive, and CHBike.
Conducted on an NVIDIA A100 GPU (80GB), with Python 3.10.4 and PyTorch, we used a hyperpa-
rameter search to optimize the model on validation data. Evaluation metrics included MAE, RMSE,
and MAPE, averaged over 12 forecasted time steps, as detailed in Appendix A.2.

Results from benchmark datasets. The comparison results between our proposed method and
various baselines on traffic datasets can be found in Table 1. Cy2Mixer outperforms the baseline
models across the majority of datasets. Comparing the results in PEMS04, it can be observed that
Cy2Mixer demonstrates notable improvements, with MAE decreasing from 18.22 to 18.14, RMSE
from 30.18 to 30.02, and MAPE from 11.98% to 11.93%. In the case of the PEMS07 dataset, the
proposed model shows lower performance than STAEFormer in contrast to other datasets. This is
because there are no cyclic subgraphs for the PEMS07 dataset, as observed in the Appendix A.1.
This outcome underscores the substantial impact of the cycle message-passing block on the model
while demonstrating that the proposed model can compete favorably with other models even without
utilizing AC to cycle message-passing block. The robust performance observed in the results of other
datasets also demonstrates that Cy2Mixer performs well regardless of the number of predicted time
steps or the number of features.

7 Ablation study
Effectiveness of cycle message-passing block. We conducted an ablation study to evaluate the
effect of the cycle message-passing block by testing five model variations: Cy2Mixer with the clique
adjacency matrix (AC), with the DTW matrix from PDFormer [11] for long-range dependencies,
with alternative structural encodings, including Random-Walk Structural Encoding (RWSE) [35]
and Laplacian Eigenvectors Encoding (LapPE) [36], and without the cycle block. Using datasets
PEMS04, PEMS07, and PEMS08, results indicated that Cy2Mixer achieved the best performance
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Table 4: Air pollution prediction results for KnowAir datasets. All prediction results in gray are
cited from available results obtained from pre-existing publications. Highlighted are the top first and
second results.

Dataset Sub-dataset 1 Sub-dataset 2 Sub-dataset 3
Metric RMSE↓ CSI(%)↑ RMSE↓ CSI(%)↑ RMSE↓ CSI(%)↑
GRU 21.00 ± 0.17 45.38 ± 0.52 32.59 ± 0.16 51.07 ± 0.81 45.25 ± 0.85 59.40 ± 0.01

GC-LSTM 20.84 ± 0.11 45.83 ± 0.43 32.10 ± 0.29 51.24 ± 0.13 45.01 ± 0.81 60.58 ± 0.14
PM2.5-GNN 19.93 ± 0.11 48.52 ± 0.48 31.37 ± 0.34 52.33 ± 1.06 43.29 ± 0.79 61.91 ± 0.78

PM2.5-GNN no PBL 20.46 ± 0.18 47.43 ± 0.37 32.44 ± 0.36 51.05 ± 1.15 44.71 ± 1.02 60.64 ± 0.84
PM2.5-GNN no export 20.54 ± 0.16 45.73 ± 0.58 31.91 ± 0.32 51.54 ± 1.27 43.72 ± 1.03 61.52 ± 0.95
w/o Cycle block 19.76 ± 0.13 47.95 ± 0.33 31.31 ± 0.20 52.03 ± 0.95 43.27 ± 0.41 61.65 ± 0.52

Cy2Mixer 19.34 ± 0.13 48.58 ± 0.56 31.29 ± 0.19 51.64 ± 0.90 43.19 ± 0.98 62.06 ± 0.69

when the cycle block included AC . Additionally, generating AC is significantly faster than other
methods like the DTW matrix, highlighting Cy2Mixer’s efficiency for spatio-temporal tasks.

Case study. We conducted a case study on PEMS04 to evaluate each component’s impact in
Cy2Mixer by testing variations with only the temporal or spatial message-passing blocks, and
comparing models with or without the cycle message-passing block and the tiny attention mechanism.
Results in Table 3 show that the combined use of adjacency matrix A and clique adjacency matrix
AC in the spatial and cycle message-passing blocks significantly improves performance, as evidenced
by reductions in MAE, RMSE, and MAPE. Additionally, using AC rather than A in the cycle
block further validated its effectiveness in enhancing Cy2Mixer’s predictive accuracy. We compared
the model’s performance using A instead of AC in the cycle message-passing block to assess if
the performance improvement was due to increased parameters or the influence of AC , and this
comparison demonstrated the effectiveness of AC in Cy2Mixer, with visualized results provided in
the Appendix A.4.

Additional experiments for different spatio-temporal learning tasks. We conducted additional
experiments to validate the proposed Cy2Mixer not only for traffic forecasting but also for other
various spatio-temporal tasks. Among these tasks, we specifically verified the performance of our
model in the context of air pollution prediction. A whole 4-year dataset KnowAir was used for
predicting particles smaller than 2.5µm (PM2.5) concentrations [37]. The dataset covers in total 184
cities expressed as nodes, and is split into 3 sub-datasets based on dates. Since the comparison models
in this context differ from the models used in the main text, Cy2Mixer was compared with models
designed for air pollution prediction; GRU, GC-LSTM [38], and PM2.5-GNN [37]. The results of
this comparison were evaluated using root mean squre error (RMSE) and critical success index (CSI),
which are commonly used meteorological metrics, are presented in Table 4. Cy2Mixer consistently
demonstrated the highest predictive performance across most datasets and notably, it achieved this
without relying on specific domain knowledge.

8 Conclusion
In this paper, we have mathematically investigated the effects of topological non-trivial invariants
on capturing the complex dependencies of spatio-temporal graphs. Through our investigation, we
gained insight into how the homotopy invariance of fundamental groups and homology groups can be
a contributing factor in influencing the predictive performance of spatio-temporal graphs. We then
introduce a simple yet novel model, Cy2Mixer, based on the mathematical background and inspired
by gMLP. Cy2Mixer comprises of three major components: a temporal block, a spatial message-
passing block, and a cycle message-passing block. Notably, the cycle message-passing block enriches
topological information in each of the Cy2Mixer encoder layers, drawn from cyclic subgraphs. Indeed,
Cy2Mixer achieves state-of-the-art or second-best performance on traffic forecast benchmark datasets.
We further investigate the effects of the cycle message-passing block on benchmark datasets by
comparing with the DTW method, which makes a new adjacency matrix based on the time-dependent
similarity for each node. Compared to the DTW method, the cycle message-passing block captures
the spatio-temporal dependency more effectively with a significantly lower computational cost.
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A Appendix
A.1 Dataset description

Detailed statistical information of six traffic datasets are outlined in Table 5. The first three datasets
are graph-based datasets, each with a single feature, while the latter three are grid-based datasets with
two features. The node counts for the grid-based datasets are 75 (15×5), 270 (15×18), and 1,024
(32×32), respectively. The term “# Cycles" indicates the number of the cycle bases of graphs, and the
term “Average Magnitude # Cycles" denotes the average number of nodes present in a cycle subgraph
of each graph.

Table 5: Description of statistical information of six traffic datasets.

Datasets # Nodes # Edges # Timesteps # Time Interval Time range # Features # Cycles Average Magnitude # Cycles

PEMS04 307 340 16,992 5 min 01/01/2018-02/28/2018 1 45 4.9111
PEMS07 883 866 28,224 5 min 05/01/2017-08/31/2017 1 0 0
PEMS08 170 295 17,856 5 min 07/01/2016-08/31/2016 1 105 7.8571

NYTaxi 75 484 17,520 30 min 01/01/2014-12/31/2014 2 168 4.8810
TDrive 1,024 7,812 3,600 60 min 02/01/2015-06/30/2015 2 714 7.9174
CHBike 270 1,966 4,416 30 min 07/01/2020-09/30/2020 2 2883 14.4707

A.2 Hyperparameter search

We conducted a hyperparameter search to find the optimal model, and hyperparameters for each
datasets are listed in Table 6. Note that the embedding dimensions, df , dt, and da, followed the
settings of previous research [20]. The search ranges were {16, 32, 64, 128} for hidden dimension
dh, {2, 3, 4, 5, 6} for number of layers, and {0, 0.2, 0.4, 0.6, 0.8} for dropout rate, respectively.
Considering previous research has demonstrated the effectiveness of incorporating tiny attention, we
conducted experiments in our study to compare the performance when tiny attention is added and
when it is not. The selection of the optimal model was based on its performance on the validation set.
We performed experiments on STAEFormer [20] framework.

Table 6: Hyperparameters for six traffic datasets.

Datasets # Layers df dt da dh Batch size Dropout Weight decay Learning rate Learning rate decay Tiny attention

PEMS04 3 24 24 80 152 16 0.4 0.0005 0.001 0.1 O
PEMS07 4 24 24 80 152 16 0.4 0.001 0.001 0.1 X
PEMS08 3 24 24 80 152 16 0.1 0.0015 0.001 0.1 O

NYTaxi 5 24 24 80 256 16 0.4 0.05 0.001 0.1 X
TDrive 6 24 24 80 256 16 0.4 0.05 0.001 0.1 X
CHBike 3 24 24 80 256 16 0.4 0.05 0.001 0.1 O

A.3 Comparison of the adjacency matrix, clique adjacency matrix, and DTW matrix.

In this section, a detailed comparison is conducted between the adjacency matrix and clique adjacency
matrix used in Cy2Mixer, and the DTW matrix employed in PDFormer [11]. The three matrices
constructed from the traffic network are visually demonstrated in Fig. 4. DTW algorithm is a similarity
measure between two time-series that allows for non-linear alignment of the time series. In the
context of PDFormer, DTW is used to compute the similarity of the historical traffic flow between
nodes to identify the semantic neighbors of each node by calculating a pairwise distance matrix
encompassing all combinations of historical traffic flow sequences. This distance matrix enables
the computation of a cumulative distance matrix, representing the minimum distance between two
time-series up to a specific point. Finally, the cumulative distance matrix facilitates the determination
of the optimal warping path, signifying the most favorable alignment between two time-series. DTW
algorithm allows the model to capture complex traffic patterns that are not easily captured by linear
alignment methods, but has significant drawbacks: it is computationally time-consuming to compute
and often relies on heuristic thresholds and parameters. To overcome these limitations and capture
the desired spatio-temporal dependencies, we employ the use of the clique adjacency matrix. The
clique adjacency matrix can be computed more efficiently than DTW since it is not dependent on
time. Furthermore, it provides the model with richer topological information within the graph. The
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figure demonstrates that the clique adjacency matrix we use can capture topological information
different from the standard adjacency matrix and DTW matrix.
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Figure 4: Three matrices of PEMS04: (a) Adjacency matrix A, (b) Clique adjacency matrix AC ,
and (c) Matrix constructed by DTW algorithm, respectively. The figure demonstrates that the clique
adjacency matrix we use can capture topological information different from the standard adjacency
matrix and DTW matrix.

A.4 Visualization of prediction results for each node

In this section, we present the actual prediction results for each node in Cy2Mixer, as shown in
Fig 5. To determine whether the cycle block had significant impact on predictions, we compare the
results of Cy2Mixer and a model that uses adjacency matrix A instead of clique adjacency matrix
AC in the cycle block. The experiment was conducted on 36 time steps, for Node 170, Node 173
connected to Node 170 through the adjacency matrix, and Node 0 and 169 connected through the
clique adjacency matrix. While both models show similar performance for Node 170 and 173,
Cy2Mixer demonstrates better prediction accuracy for Node 0 and 169. This indicates that the cycle
block effectively incorporates information from the clique adjacency matrix.

Figure 5: Visualization of prediction results for Node 170, Node 173 (connected to Node 170 in the
adjacency matrix), and Nodes 0 and 169 (connected to Node 170 in the clique adjacency matrix) in
the PEMS04 dataset.
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A.5 Comparison of the influence of the predefined adjacency matrix

In this section, we compared whether a predefined adjacency matrix, calculated based on the distances
between nodes, makes a significant difference in the model’s performance. Recent studies in traffic
prediction problems have explored not using a predefined adjacency matrix, instead learning it
alongside the model [24]. To conduct this comparison, we adopted methods from previous studies
to create an adjacency matrix and then generated a clique adjacency matrix from it for training in
Cy2Mixer. The results of this approach are presented in Table 7. The findings indicate that Cy2Mixer
does not show significant differences in performance between using a predefined A and a learned
A. Particularly, since learning A and subsequently generating AC is costly, this study utilized a
predefined A.

Table 7: Ablation study on effect of predefined adjacency matrix PEMS04, PEMS07, and PEMS08.
Note that w/ stands for with and w/o stands for without.

Dataset PEMS04 PEMS07 PEMS08

Metric MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

w/o Cycle block 18.81 30.65 12.86% 19.74 33.46 8.19% 13.56 23.45 8.97%
w/ learned A, AC 18.81 30.54 12.22% 19.74 33.37 8.33% 13.56 23.46 8.92%

Cy2Mixer 18.14 30.02 11.93% 19.50 33.28 8.19% 13.53 23.22 8.86%

A.6 Proof of Theorem 4.1

The theorem is a corollary of Hatcher [39][Proposition 1.18, Corollary 2.11]. To elaborate, the map
πt0 : G× I → G is a homotopy equivalence between the space G× I representing the temporal traffic
data and the space G representing the traffic network. The map induces an isomorphism between the
fundamental groups and the homology groups of two topological spaces with rational coefficients.
That is, these two maps are isomorphisms of groups for all indices i ≥ 0:

(πt0)∗ : π1(G × I) → π1(G)
(πt0)∗ : Hi(G × I,Q) → Hi(G,Q)

The isomorphisms between the fundamental groups π1 and the first homology groups H1 indicate
that the set πt0(CG×I) has to be a cycle basis of G.

Mathematical relevance of Theorem 4.1 to temporal traffic data. Theorem 4.1 shows in
particular that any cyclic subgraph of the traffic signal G × I is comprised of nodes of form
(c1, t1), (c2, t2), · · · , (cn, tn) ∈ G × I , where the nodes c1, c2, · · · , cn are on a common cyclic
subgraph of G, and the coordinates ti correspond to different temporal instances. Theorem 4.1
mathematically demonstrates that the topological non-trivial invariants of a traffic network G can
become a contributing factor for influencing the temporal variations measured among the nodes
of traffic dataset, a potential aspect of temporal traffic data that may not be fully addressed from
solely analyzing the set of pre-existing edges connecting the nodes of a traffic network. To elaborate,
topological non-trivial invariants of G elucidate restrictions associated to constructing a global traffic
signal X : G × I → RN×C from coherently gluing a series of local temporal traffic signals {Xt}
measured at each time t. This originates from previously studied mathematical insights that obstruc-
tions in gluing continuous functions fα : Uα → Rk defined over collections of open covers Uα ⊂ Y
of a topological space (such that ∪αUα = Y ) to a continuous function f : Y → Rk can be detected
from topological (or cohomological) invariants of the topological space Y (see for example Chapter
2 or 3 of [40]). Given that traffic forecasting beyond time t = te requires a thorough understanding
of traffic signals X : G × [0, te] → RN×C , we can hence conclude that a potential candidate to boost
performances of traffic forecasting algorithms is to effectively incorporate topological invariants of
traffic networks G.

Exemplary Illustration. We provide an exemplary illustration on how cycle structures are closely
relevant to determining the range of traffic data (or traffic signals) that can be measured on a given
traffic network.
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Figure 6: An exemplary illustration of obstructions cycle structures may impose on the range of
traffic data or signals that can be measured in a given traffic network.

As shown in Figure 6, suppose we are given with two local traffic networks (graphs) without cycles
H1 (the red graph) and H2 (the blue graph). The dotted lines above the graphs represent an example
of a traffic signal that can be measured over each local traffic network. Let G1 and G2 be two
global traffic networks (graphs) which can be obtained from gluing the two local traffic networks
in a different manner. The traffic network G1 glues two nodes and one edge of H1 and H2 together
(along the subnetwork notated as A), which does not add new cyclic subgraph to G1. On the other
hand, the traffic network G2 glues three nodes and one edge of H1 and H2 together (along the
subnetworks notated as B1 and B2), which adds a new cyclic subgraph to G2. By gluing the two
local traffic networks together, we introduce a new obstruction to traffic signals that can be measured
over G1 and G2. The signals measured over subnetworks of local traffic network H1 and H2 must be
identical to one another. Figure 6 clearly shows that G2 has more obstructions on the traffic signal
that can be measured in comparison to G1. To elaborate, any traffic signal that can be measured on
G2 must satisfy the identical signals over the subnetworks B1 and B2, whereas G1 only requires to
satisfy the identical signals over the subnetworks A, which is isomorphic to the subnetwork B2. This
illustration hints that demonstrates that determining cycle structures inherent in a traffic network is
crucial to understanding additional obstructions imposed over traffic signals that can be measured or
predicted in the given network. Because conventional graph neural networks have limited capabilities
in discerning cyclic substructures of graph datasets (as shown in [16]), adding additional architectural
component which can detect cycle structures of traffic networks to the algorithm can be of crucial
importance in improving accuracies in forecasting traffic signals over any traffic networks.

A.7 Clique adjacency matrix

The motivation for using the clique adjacency matrix in Cy2Mixer stems from recent advances
in distinguishing graph structures through the theory of covering spaces [16]. Traditional GNNs
represent graphs G and H as identical if their universal covers—essentially infinite graphs created
by unfolding the original graphs at each node—are isomorphic, and their node features match upon
this unfolding. However, these universal covers inherently lack cyclic subgraphs, which are crucial
structures in the original graphs. To improve the ability of GNNs to discern these cyclic features, the
clique adjacency matrix (AC) is used in Cy2Mixer. This matrix effectively transforms the geometry
of the universal covers, incorporating cyclic subgraph information and thereby enhancing the model’s
ability to capture and leverage topological nuances within the graph structure. The clique adjacency
matrix AC is generated as follows: given an undirected graph G := (V,E), we first establish a cycle
basis BG of G, representing a set of cyclic subgraphs that form a basis for the cycle space (or the first
homology group) of G. The clique adjacency matrix AC is then constructed as the adjacency matrix
of the union of complete subgraphs formed by each cycle in BG. This is achieved by adding all
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Table 8: Traffic flow prediction results for METR-LA. Highlighted are the top first and second
results.

Dataset Metric STGNCDE GMAN PDFormer HGCN HIEST MTGNN STAEFormer Cy2Mixer
M

E
T

R
-L

A
Horizon 3

MAE 3.35 3.53 2.83 2.80 2.71 2.66 2.68 2.70
RMSE 7.10 6.12 5.55 5.40 5.20 5.12 5.22 5.30
MAPE 8.07% 10.36% 7.46% 7.38% 6.97% 6.83% 7.01% 7.13%

Horizon 6
MAE 4.00 3.95 3.23 3.23 3.13 3.03 3.00 3.03

RMSE 8.59 6.93 6.64 6.48 6.23 6.09 6.12 6.22
MAPE 9.86% 11.79% 9.16% 9.06% 8.62% 8.26% 8.34% 8.48%

Horizon 12
MAE 4.84 4.46 3.64 3.68 3.59 3.45 3.37 3.39

RMSE 10.52 7.81 7.67 7.53 7.37 7.15 7.09 7.21
MAPE 12.34% 13.55% 10.87% 10.84% 10.42% 9.99% 9.94% 9.96%

possible edges among the nodes within each cycle basis element B ∈ BG, enabling AC to represent
cyclic structures comprehensively in Cy2Mixer.

A.8 Performance Analysis of Cy2Mixer on the METR-LA Dataset

We also performed an experiment in the METR-LA dataset [41], which is a traffic speed dataset that
records the average vehicle speeds across various sensors in Los Angeles. In our experiments on
METR-LA, we evaluated the model’s performance at different forecasting horizons, specifically for
time steps at horizons of 3, 6, and 12, which correspond to 15, 30, and 60 minutes into the future.
The data was split into training, validation, and testing sets with ratios of 7:1:2, respectively. Table
8 presents the comparison results between our proposed method, Cy2Mixer, and various baseline
models on the METR-LA dataset. Cy2Mixer demonstrates competitive performance across different
forecasting horizons when compared to existing models. While Cy2Mixer does not consistently
outperform all baseline models on the METR-LA dataset, it delivers results that are on par with the
leading methods. The slight differences in performance metrics could be attributed to the specific
characteristics of the METR-LA dataset, including its network structure and traffic patterns. Addi-
tionally, Cy2Mixer shows consistent performance across Horizons 3, 6, and 12, unlike MTGNN [24]
and HIEST [27], whose performance deteriorates at Horizon 12.
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