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ABSTRACT

Generative models, like flows and diffusions, have recently emerged as popular
and efficacious policy parameterizations in robotics. There has been much spec-
ulation as to the factors underlying their successes, ranging from capturing multi-
modal action distribution to expressing more complex behaviors. In this work,
we perform a comprehensive evaluation of popular generative control policies
(GCPs) on common behavior cloning (BC) benchmarks. We find that GCPs do
not owe their success to their ability to capture multi-modality or to express more
complex observation-to-action mappings. Instead, we find that their advantage
stems from iterative computation, as long as intermediate steps are supervised
during training and this supervision is paired with a suitable level of stochasticity.
As a validation of our findings, we show that a minimal iterative policy (MIP), a
lightweight two-step regression-based policy, essentially matches the performance
of flow GCPs. Our results suggest that the distribution-fitting component of GCPs
is less salient than commonly believed, and point toward new design spaces focus-
ing solely on control performance. Videos and supplementary materials are avail-
able at https://anonymous.4open.science/w/mip-anonymous/.

1 INTRODUCTION
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Figure 1: The design space of GCPs. This paper conducts a careful analysis of the design space of GCPs.
After careful ablation on each component over 27 common behavior cloning benchmarks with both state and
pixel-based observations (7 most challenging tasks’ average relative success rate to flow is reported in the
right plot), we find that the most important factor contributing to their success is the combination of stochastic
injection (C2) and supervised iterative computation (C3). Surprisingly, distribution learning (C1) is the least
important factor, due to the absence of learned multi-modality (Section 3.2) in single-task settings.

Long-horizon, dexterous manipulation tasks such as furniture assembly, food preparation, and man-
ufacturing have been a holy grail in robotics. Recent large robot action models (Team et al., 2025;
Black et al., 2024; Kim et al., 2024) have made substantial breakthroughs towards these goals by
imitating expert demonstrations of diverse qualities. We provide a more comprehensive review of re-
lated work in Appendix A, but highlight here a key trend: while supervised learning from demonstra-
tion, also known as behavior cloning (BC), has been applied across domains for decades (Pomerleau,
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1988), its recent success in robotic manipulation has coincided with the adoption of what we term
generative control policies (GCPs): robotic control policies that use generative modeling architec-
tures, such as diffusion models, flow models, and autoregressive transformers, as parameterizations
of the mapping from observation to action. Given the seemingly transformative nature of GCPs for
robot learning, there has been much speculation about the origin of their superior performance rela-
tive to policies trained with a regression loss, henceforth regression control policies (RCPs). GCPs,
by modeling conditional distributions over actions, are uniquely suited to the multi-task pretraining
paradigm popular in today’s large robotic models. However, a number of hypotheses regarding the
superiority of GCPs pertain even in the single task setting (Chi et al., 2023; Reuss et al., 2023):

H1. Better performance on pixel-based control
H2. Capturing multi-modality in the training data
H3. Greater expressivity due to iterative computation of the observation-to-action mapping
H4. Representation learning due to stochastic data augmentation
H5. Improved training stability and scalability

The gap between generative modeling and generative control. The objective for generative mod-
eling in text and image domains is fundamentally different from the goal in a control task. In the
former, one aims to generate high-quality and diverse samples from the original data distribution.
In the latter, it suffices to select any action that leads to better downstream performance. Whereas
much of the generative modeling literature has focused on the distribution of the generated variable
(Lee et al., 2023), we aim to understand if it is necessary to reproduce the expert data distribution—
for example by capturing any multi-modality—to attain strong control performance. If not, is most
salient to capture about the conditioning relationship mapping o→ a?

Contributions. This paper adopts careful experimental methodology to rigorously test the key
design components (Section 4) that contribute to the observed success of GCPs, and to account for
the key mechanisms by which they contribute to improved performance (Section 5). We focus on
a comprehensive study of the single-task setting in simulated environments, leaving evaluation in
multi-task settings and on physical hardware to future study. Moreover, we restrict our study to
flow-based GCPs trained via BC, given their popularity and adoption in industry (Black et al., 2024;
Physical Intelligence et al., 2025; NVIDIA et al., 2025).

We begin by first identifying which factors do not contribute to the advantage of GCPs over RCPs.

Contribution 1 (Neither multi-modality nor policy expressivity account for GCPs’ success, Sec-
tion 3). Through careful benchmarking, we show that RCPs with appropriate architectures are highly
competitive on both state- and image-based (H1) robot learning benchmarks (Section 3.1). Perfor-
mance gaps only arise on certain tasks requiring high precision. However, we show that neither
multi-modality (H2, Section 3.2) nor the ability to express more complex functions via multiple
integration steps (H3, Section 3.3) satisfactorily accounts for this phenomenon.

Essential to this finding is controlling for architecture: to our knowledge, we are the first work to
carefully benchmark expressive architectures popularized for Diffusion (Chi et al., 2023; Dasari
et al., 2024) as regression policies. To determine what contributes to GCPs performance on these
high-precision tasks (beyond architectural optimization), we parse the design space of generative
control policies into three components, depicted in Figure 1 (left).

Contribution 2 (Exposing the design space of GCPs, Section 4). We introduce a novel taxonomy
that parses the three essential design components of GCPs:
C1. Distributional Learning: matching a conditional distribution of actions given observations.

C2. Stochasticity Injection: injecting noise during training to improve the learning dynamics.

C3. Supervised Iterative Computation: generating output with multiple steps, each of which re-
ceives supervision during training.

With this taxonomy in hand, Section 4.1 introduces a family of algorithms, each of which lies along
a spectrum between GCPs and RCPs by exhibiting different combinations of the above components.
While we find that neither C2 nor C3 in isolation improve over regression, we find their combination
yields a policy whose performance is competitive with flow, leading to our next contribution.
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Contribution 3 (MIP: the power of C2+C3, Sections 4.1 and 4.2). As an algorithmic ablation that
only combines C2+C3, we devise a minimal iterative policy (MIP), which invokes only two itera-
tions, one-step of stochasticity during training, and deterministic inference. Despite its simplicity,
MIP essentially matches the performance of flow-based GCPs across state-, pixel- and 3D point-
cloud-based BC tasks, exposing that the combination of C2+C3 is responsible for the observed
success of GCPs.

As described in Remark 4.1, MIP is substantively distinct from flow-map-based models (Boffi
et al., 2025a;b), including consistency models (Song et al., 2023; Kim et al., 2023) and their ex-
tensions (Geng et al., 2025; Frans et al., 2024), in that the latter do satisfy C1, and require training
over a continuum of noise levels.

Contribution 4 (Attributing the benefits of C2+C3, Section 5). We identify that a property we
term manifold adherence captures the inductive bias of GCPs and MIP relative to RCPs, even in
the absence of lower validation loss. We explain how this property is a useful proxy for closed-loop
performance in control tasks. Finally, we expose how C3, through iterative computation, encourages
manifold adherence, but only if stochasticity during training (C2) is present to mitigate compounding
errors across iteration steps (as described in Section 5.2).

Manifold adherence in Section 5.1 measures the generated action’s plausibility given out of distri-
bution observations, where only off-manifold component is evaluated rather than the distance to the
neighbors (Pari et al., 2021). Note that manifold adherence reflects a favorable inductive bias during
learning, rather than brute expressivity of more complex behavior (H3). Moreover, C2 provides
more of a supporting role to C3, rather than enhancing data-augmentation in its own right (H4). In
addition, we find that C2+C3 also enhance scaling behavior (H5), likely due to better model uti-
lization through decoupling across iterations. Finally, we identify that the subtle interplay between
architecture choice, policy parameterization and task can affect performance by an even greater
magnitude than the choice of policy parametrization (Section 5.3).

Takeaway. In robotic applications, our findings suggest that the distributional formulation of
GCPs—sampling from a distribution of actions given observations—is the least important facet
that contributes to their success. Rather, our work highlights that C2+C3 offer an exciting and
under-explored sandbox for future algorithm design in continuous control and beyond.

2 PRELIMINARIES

We consider a continuous control setting with observations o ∈ O and actions a ∈ A where O is the
observation space and A is the action space. We learn a policy π : O → ∆(A) from observations
to (distributions over) actions to maximize the probability of success J(π) on a given task, which
we refer to as “performance.” We consider the performance of policies learned via BC—that
is, supervised learning from a distribution of (observation, actions pairs) drawn from a training
distribution ptrain. In applications, the actions a are often a short-open loop sequence of actions, or
action-chunks, which have been shown to work more effectively for complex tasks with end-effector
position commands (Zhao et al., 2023). See Appendix A for an unabridged related work.

Regression Control Policies (RCPs). A historically common policy choice for BC is regression
control policies (RCPs) (Pomerleau, 1988; Bain & Sammut, 1995; Ross et al., 2011; Osa et al.,
2018), given by a deterministic map π : O → A. In applications, it is parameterized by a neural
network πθ and trained so as to minimize the L2-loss on training data:

πθ ≈ argminθ E∥πθ(o)− a∥2, (o, a) ∼ ptrain. (2.1)

Generative Control Policies (GCPs). Generative control policies (GCPs) parameterize a distribu-
tion of actions a given an observation o. This is often accomplished in practice by representing the
policy πθ with a generative model such as a diffusion (Chi et al., 2023), flow (Zhang et al., 2024),
or tokenized autoregressive transformer (Shafiullah et al., 2022). Given their popularity, we focus
on flow-based GCPs (flow-GCPs). A flow-GCP learns a conditional flow field (Lipman et al., 2023;
Chisari et al., 2024; Nguyen et al., 2025) b : [0, 1]×A×O → A by minimizing the objective

bθ ≈ argminθ E∥bt(It | o)− İt∥2, t ∼ Unif([0, 1]), z ∼ N(0, I), (2.2)

3
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where again (o, a) ∼ ptrain, It = ta + (1 − t)z is the stochastic interpolant between the training
action a and noise variable z, and where İt = a− z is the time derivative of It. We note that this is
a special case of the stochastic interpolant framework (Albergo & Vanden-Eijnden, 2022; Albergo
et al., 2023; 2024), which permits a larger menu of design decisions. A flow model then predicts
an action by integrating a flow. In the limit of infinite discretization steps, this amounts to sampling
a ∼ πθ(· | o) by sampling z ∼ N(0, I), and then setting a = a1, where {at}t∈[0,1] solves the ODE:

d
dtat = bt(at | o) with initial condition a0 = z. (2.3)

In practical implementation, sampling is conducted via discretized Euler integration (see Ap-
pendix K.2 for details). This yields a policy a = πθ(z, o) which is a deterministic function of
the initial noise z and the observation o. All experiments, unless otherwise stated, perform 9 in-
tegration steps. We reiterate that other GCPs, e.g. based on diffusion models and autoregressive
transformers, have been studied elsewhere. We choose to focus on flow models due to their state-
of-the-art performance (Chi et al., 2023; Chisari et al., 2024; Zhang et al., 2024) and deployment in
industry (Black et al., 2024; Physical Intelligence et al., 2025; NVIDIA et al., 2025).

Multi-Modality in Robot Learning. Past work has conjectured that for salient robotic control
tasks, ptrain(a | o) exhibit multi-modality, i.e. the conditional distribution of a given o has multiple
modes (Shafiullah et al., 2022; Zhao et al., 2023; Florence et al., 2022). This motivated the earliest
use of GCPs (Chi et al., 2023) (H2). Section 3.2 calls into question the extent to which GCPs do in
fact learn multi-modal distributions of a | o on popular benchmarks.

3 REPRESENTATIONAL CAPACITY DOES NOT EXPLAIN GCPS PERFORMANCE

This section demonstrates that neither advantages on pixel-based control (H1), nor multi-modality
(H2), nor improved expressivity (H3) fully account for the GCPs performance relative to RCPs.
Appendix H addresses other hypotheses, such as k-nearest neighbor approximation.

3.1 GCPS MAINLY OUTPERFORM RCPS ON A FEW, HIGH-PRECISION TASKS

We first isolate the tasks in which they exhibit stronger performance by comparing across 27 popular
BC benchmarks (detailed in Appendix D.1), encompassing diverse data quality, modalities (state,
point clouds and image), and domains (e.g., MetaWorld, Robomimic, Adroit, D4RL). Cru-
cially, we implement RCPs using the exact same architectures as their corresponding flow models
by simply setting the noise level and initial noise to zero: z = 0, t = 0, and study three widely-
used architectures (Chi-Transformer, Sudeep-DiT, Chi-UNet; detailed in Appendix D.2).
This architectural alignment enables RCPs to benefit from the sophisticated network designs typi-
cally reserved for GCPs, ensuring a truly fair comparison. Under this controlled comparison, we
discover GCPs and RCPs achieve comparable performance on the vast numerical majority of state-
and image-based imitation learning benchmarks, but performance gaps emerge on a few tasks that
require particularly high precision. To account for architecture’s substantial impact on final perfor-
mance, we report best-case results with optimal architecture selection in Fig. 2 and the worst-case
results using the poorest-performing architecture in Appendix D.3. Across both evaluations, GCPs
only outperform RCPs by more than a 5% on a handful of tasks that mainly require high precision.

3.2 GCPS’ PERFORMANCE DOES NOT ARISE FROM MULTI-MODALITY

Earlier literature suggested that capturing multi-modality, as defined in Section 2, was precisely the
root of the observed performance benefits of GCPs (Chi et al., 2023; Reuss et al., 2023). However,
examining Fig. 2, we see that many tasks which have been understood to be multimodal (e.g., Push-
T) do not show substantial performance gaps between RCPs and GCPs. On the other hand, RCPs
and GCPs differ only on tasks that demand high precision (e.g. Tool-Hang, Transport). In this
section, we provide additional evidence that multimodality is not the main factor responsible for
witnessed performance advantages of GCPs.

Evidence A: GCPs exhibit unstructured action distributions. For fixed observations, we draw
multiple action samples by denoising from different initial latents and visualize the resulting action
set with their Q valuesQ(a, o). We deliberately choose symmetry-critical or high-ambiguity states to
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Figure 2: Relative performance of RCPs compared to GCPs across common benchmarks. For each task,
we implement Chi-Transformer, Sudeep-DiT and Chi-UNet. For each architecture, we average per-
formance of the best training checkpoint across three seeds. We then report the performance of the best-
performing architecture, chosen individually for both RCPs and GCPs. For Flow, we always do 9 step Euler
integrations, where its performance plateaued. For readability, RCPs success rates are plotted relative to flow,
with flow normalized to performance of 1 per task. Tasks are grouped by observation modality, and ordered by
relative RCPs performance. Red dashed line indicates threshold at which RCP attains < 95% success of GCPs.

(a)Push T (b)Kitchen (c)Tool Hang

0.0

0.5

1.0

Q

Figure 3: A. Visualized action dis-
tribution with Q values. Distinct
modes are not observed in planned
actions even at symmetric and am-
biguous states. (Kitchen and
Tool-Hang, t-SNE visualization.)
In Push-T, we all trajectories goes
to one side. For the rest, there is no
clear clustering of actions or Q.

Task z ≡ 0 N(0, I) Mean z

Push-T 0.97 0.97 0.95
Kitchen 0.99 0.99 0.97
Tool-Hang 0.78 0.80 0.76

Table 1: B. Performance compar-
ison of different sampling strate-
gies. We compare sampling z = 0,
z ∼ N(0, I), and mean over 64
z(i) ∼ N(0, I). Different sam-
pling strategies show minor per-
formance difference, indicating ab-
sence of distinct action modes.

Dataset Flow Reg.

Original 0.78 0.58
Deterministic 0.72 0.64

Table 2: C. GCPs outperforms
RCPs with deterministic experts.
Policy average success rate over 3
architectures, 3 seeds and 3 archi-
tectures given different dataset: one
from original human demonstration
and another collected by rolling out
a flow policy in deterministic mode
starting from zero noise.

maximize potential multi-modality: (a) Push-T at the symmetry axis of the T-shape, where taking
the left or right path is equivalent, (b) Kitchen from an initial state with multiple first-subtask
choices, and (c) Tool-Hang at the insertion pre-contact pose where human demonstrators pause for
varying durations. In (a-c) we observe single clusters rather than distinct modes (high-dimensional
actions visualized with t-SNE); see Fig. 3. Moreover, adherence to action cluster means do not
correlate with performance: We color-code actions by Q-value, i.e. Monte-Carlo-estimated rewards-
to-go (Appendix F.1). Highest returns are distributed evenly across samples.

Evidence B: Taking mean actions does not meaningfully degrade GCPs’ performance. We
evaluate flow policy’s performance with three sampling strategies: zero noise a = π(z = 0, o),
stochastic sampling a = π(z, o), z ∼ N(0, I), and mean action a = Ez∼N(0,I)[π(z, o)] (via Monte
Carlo approximation). If the learned distribution were strongly multi-modal, or if their distributions
lied on a manifold whose curvature was crucial to task success, the conditional mean would collapse
modes and severely degrade performance. However, Table 1 shows that replacing stochastic sam-
pling with the mean action only slightly affects performance, indicating absence of distinct action
modes.

Evidence C: GCPs outperform RCPs on certain tasks even with deterministic experts. To fully
remove any residual multi-modality, we recollect the dataset with trained flow policy evaluated in
deterministic mode (z = 0) detailed in Appendix F.2. The new dataset is fully deterministic because
action labels are provided by a deterministic policy evaluated in a deterministic environment. While
the gap in performance between GCPs and RCPs shrinks somewhat, we still find that GCPs still
outperforms RCPs, as in Table 2, suggesting that capturing some “hidden” stochasticity or multi-
modality in the data does not suffice to explain the gap between the two.

Multi-modality and data coverage. The absence of observed multimodality is likely attributable to
the large observation dimension of tasks relative to total number of demonstrations, such we rarely
see two “conflicting” actions for nearby observation vectors (note: to grid a space of dimension d
requires 2d points). Some degree of “hidden” multi-modality may still be present, as indicated by
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the slight narrowing of the performance gap in Table 2. Still, our central claim is that multi-modality
is not sufficient to explain the full difference in performance.

3.3 LIMITATIONS OF THE EXPRESSIVITY OF GCPS IN THE ABSENCE OF MULTIMODALITY

Multi-step generative models are believed to leverage iterative computation to express more complex
probability distributions, both because more generation steps in outperform their few-step counter-
parts (Ho et al., 2020; Song et al., 2021a; Zhang & Chen, 2022; Nichol & Dhariwal, 2021), and via
analogies between iterative computation in generative models and neural network depth (Chen et al.,
2018). Yet for control, we need only capture the mapping from observation to a single effective ac-
tion, rather than the distribution over all possible actions. Our findings thus have suggested that to
represent such a mapping, we need not represent complex action distributions.

We now demonstrate that in the absence of multi-modality (as shown in Section 3.2), GCPs cannot
express more complex mappings from the conditioning variable o to the generated variable a than
RCPs can. We begin by considering a ground-truth conditional flow field b⋆t (o | a). Let π⋆θ(z, o)
represent the exactly integrated b⋆ from initial noise z to generated variable a. Given the absence of
multi-modality (Section 3.2), we assume that the distribution of a | o is κ-log-concave (Appendix I),
satisfied by many classical unimodal distributions. We prove that the Lipschitz constant of π⋆θ(z, o)
with respect to o, a measure of the expressivity of the o→ a mapping, is bounded by that of b⋆t :

Theorem 1 (Informal). Let ∥ · ∥ denote either the matrix operator or Frobenius norm, and suppose
that the distribution of a | o is κ-log-concave. Moreover, suppose that the flow field b⋆t (a | o) is L-
Lipschitz: ∥∇ob⋆t (a | o)∥ ≤ L. Then, with infinite integration steps, ∥∇oπ⋆θ(z, o)∥ ≤ L ·

√
1 + κ−1.

See Appendix I for a formal statement and proof. A classical example of a log concave distribution
is a | o ∼ N(µ(o), 1κ ); as long as the variance 1/κ is bounded above (even in the limit of a Dirac),
there is at most a constant-multiplicative factor increase in the Lipschitz constant. When training a
flow, b⋆t (a | o) is approximated by the neural network. Thus, in the prototypical unimodal example
of κ-log-concave distributions, GCPs are not arbitrarily more expressive than RCPs. In fewer words:
more integration steps, even infinitely many, need not be equivalent to greater network depth.

Method Push-T Kitchen Tool-Hang

State Image State State Image

Regression 0.90 0.55 14.07 1.71 1.65

Flow 0.45 0.20 12.43 1.41 1.37

Table 3: Policy Lipschitz constant comparison. Lips-
chitz constant is averaged over 100 states.

To verify our theoretical prediction, we quan-
tify learned policies’ Lipchitz constants with a
zeroth-order proxy: starting from dataset states
st with observation ot, we inject small Gaus-
sian perturbations in the executed action to
reach a feasible nearby state s(i)t+1 with obser-
vation o(i)t+1, then measure input–output sensi-
tivity via finite differences of the policy around
the perturbed states (full algorithm and per-architecture results in Appendix E). This construction (i)
avoids reliance on noisy higher-order gradients in complex architectures, and (ii) keeps evaluations
on feasible observation to prevent conflating expressivity with model error on dynamically infeasi-
ble states. As predicted by our theory, GCPs are not strictly more expressive than RCPs as shown
in Table 3. On the contrary, RCPs show increased Lipschitz constants off the manifold of training
data, ruling out the assumption that GCPs win due to expressing policies with greater sensitivity
to the input variable. We note that our methodology, which perturbs actions rather than states, is
compatible pixel observations.

4 WHAT DESIGN COMPONENTS ENABLE THE SUCCESS OF GCPS?

Thus far, we have established that GCPs shine on high-precision, complex tasks, but that their per-
formance is not directly attributable to multi-modality or more complex o→ a mappings. To under-
stand the actual factors contributing to GCP success, we elucidate three key algorithmic components
(Fig. 1). Section 4.1 below proposes algorithmic variants which ablate these components. We find
that minimal iterative policy (MIP, Components 2 and 3) is the reduced variant which matches the
performance of flow (Section 4.2), whereas other variants match or perform worse than regression.
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Component 1. Distributional learning denotes training a model to fit a conditional distribution
a ∼ πθ(o) of actions given observations, as opposed to deterministic predictions (i.e., a = πθ(o)). 1

Component 2. Stochasticity injection denotes the injection of additional stochastic inputs into the
neural network during training time (e.g., the variable z in Eq. (2.2)).

Component 3. Supervised Iterative Computation (SIC) denotes the iterative refinement of predic-
tions by feeding the previous outputs into the same network again during inference, and providing
supervision signals at every step of the generation procedure at training time. For example, in flow
GCPs, we integrate a supervised flow field bt(at | o) over time to get the final action a, and that bt
receives an independent supervisory signal for each t at training time (Eq. (2.2)).

4.1 INTERMEDIATES BETWEEN RCPS AND GCPS

We introduce a range of policies which lie along the spectrum between RCP and flow-based GCPs.
Our findings in Section 3.2 suggest that Component 1, capturing general a | o distributions, maybe
the least salient for performance. Hence, all of the variants that follow abandon Component 1 and
are not consistent for estimating a general conditional distributions of a | o. Instead, each variant
exhibits some combination of Components 2 and 3. In following exposition, we make explicit the
dependence of the network πθ on t, understanding that the networks predict actions, not velocities.

We derive all variants by starting with a two-step denoising (TSD) policy. As discussed in Re-
mark 4.1, this parametrization is superficially similar to, but substantively different than, popular
flow-map/consistency/shortcut models (Boffi et al., 2025b). TSD performs two steps of denoising,
one from zero, and a second from a fixed index t⋆ = .9:

πTSDθ ≈ argminθ E
(
∥(πθ(o, I0, t = 0)− (t⋆)

−1It⋆)∥2 + ∥(πθ(o, It⋆ , t⋆)− a)∥2
)
. (4.1)

where (o, a) ∼ ptrain, z ∼ N(0, I), and It = ta + (1 − t)z is the same interpolant used in flow
models, and where t⋆ = .9 is fixed. The normalization by t⋆ in Eq. (4.1) comes from the identity
t⋆a = Ez[It⋆ ]. We then sample âTSD0 ← πθ(o, z, 0) and âTSD ← πθ(o, t⋆â

TSD
0 + (1 − t⋆)z, t⋆). In

practice, we find that πTSD is equivalent to a minimal policy which only adds training noise in the
second step and has no stochasticity at inference time, which we call the minimal iterative policy.

Minimal Iterative Policy (MIP, ours). MIP, representing Components 2 and 3, is trained via

πMIPθ ≈ argmin
θ

E(∥(πθ(o, I0 = 0, t = 0)− a)∥2 + ∥(πθ(o, It⋆ , t⋆)− a)∥2), (4.2)

where (o, a) ∼ ptrain, z ∼ N(0, I), t⋆ := .9. At inference time, we compute:

âMIP0 ← πMIPθ (o, 0, t = 0), âMIP ← πMIPθ (o, t⋆â
MIP
0 , t⋆). (4.3)

Minimal iterative policy provides a minimal implementation that still exhibits competitive perfor-
mance with flow. Starting, with TSD and replace (t⋆)

−1It⋆ in the first term of the loss in Eq. (4.1)
with its expectation a = (t⋆)

−1E[It⋆ ]. We set the initial noise I0 = 0 to be zero, so that z only
contributes to the second training loss. Finally, we sample with z = 0 to isolate the effect of adding
stochasticity at training time, without stochasticity at inference time (c.f. Table 1) . Since we provide
supervision for both first step πMIPθ (o, I0 = 0, t = 0) and second step πMIPθ (o, I0 = It⋆ , t = t⋆) with
ground truth action a, MIP also exemplifies SIC in its simplest form.

Remark 4.1. (MIP v.s. Shortcut Models (Boffi et al., 2025a;b; Song et al., 2023; Geng et al., 2025))
While TSD and MIP share properties of a flow model while only conducting inference, these are
fundamentally different than few-step shortcut/flow-map models. The latter integrate a flow field
across a continuum of noise levels t ∈ [0, 1], and therefore can correctly learn general distributions
(i.e. they satisfy Component 1). On the other hand, TSD and MIP are trained to predict the condi-
tional mean of the interpolant, which is not a valid objective for distribution fitting. The performance
of MIP supports our overall theme that, in robotic control applications, faithfully capturing the full
conditional distribution over actions is not needed for control performance.

1Note that Component 1 refers to training a model to fit a conditional distribution, not necessarily to the
sampling. For example, training bθ via flow model but conducting deterministic inference with Φθ,eul(z = 0 |
o) is still considered distributional learning.
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Additional methods. Straight Flow (SF, ours), representing only Component 2, further simplifies
MIP to a single stage by setting the interpolation index t⋆ = 1 and removing the second term: πSFθ ≈
E∥πθ(o, z, t = 0) − a∥2. Inference is performed in a single step, by setting a = πSFθ (o, z, t = 0).
Like RCPs, the optimal SF policy is the conditional mean of a | o. The only difference between the
two is injection of stochastic input z during training. Our experiments with SF precisely isolate this
effect—for example, determining if the additional stochasticity during training improves learning
dynamics, or behaves like data augmentation. As with MIP, we set z = 0, as stochasticity at
inference time has little effect on policy performance. Finally, we study residual regression (RR),
which replaces It⋆ in Eq. (4.2) with its expectation over z: E[It⋆ ] = t⋆a. This preserves SIC
(Component 3) yet removes stochasticity injection. Full details are provided in Appendix C.

To summarize, minimal iterative policy (MIP), straight-flow (SF) and residual regression (RR) rep-
resent all combinations of Components 2 and 3 without exhibiting Component 1.

4.2 COMPONENTS 2 AND 3 DRIVE PERFORMANCE: MIP MATCHES FLOW
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Figure 4: Performance comparison between MIP and its variants. Average relative success rate on worst
architecture and the best relative success rate on optimal architecture are reported. “S”: state; “I”: image.

Based on the design space parsing in Section 4, we are able to systematically ablate different de-
sign components’ contribution to the final performance in Fig. 4. Our evaluation shows that either
stochasticity injection (Component 2, exhibit by SF) or supervised iterative computation (Compo-
nent 3, exhibited by RR) in isolation do not match the success of GCPs. MIP, being the only method
which combines supervised iterative computation and stochasticity injection, achieves success on
par with flow. Thus we conclude: the performance of GCPs comes from combining stochastic
injection and iterative computation. Distributional training appears to be the least important factor.

Remark 4.2. Appendix C.2 exhibits two further variants which preserve Components 2 and 3: one
that does not supervise intermediate steps, and a second which does not condition a time step t⋆.
The latter does not enable network to learn separate functions across time steps. Both perform
even worse than regression, confirming the importance of supervision of intermediate steps and
decoupling network behavior across time steps.

5 EXPLAINING THE PERFORMANCE OF MIP

5.1 MANIFOLD DDHERENCE, NOT RECONSTRUCTION, DRIVES PERFORMANCE

Metric Regression SF RR MIP Flow

Off-manifold L2 0.067 0.063 0.062 0.054 0.042
Validation L2 0.290 0.234 0.224 0.195 0.217

Table 4: Comparison of different methods on mani-
fold adherence and reconstruction error. Results are
averaged across 3 different architectures and 32 states
on state-based Tool-Hang with deterministic dataset.

MIP, and the absence of multimodality, sug-
gest a better ability to approximate the expert
more accurately on training data. We test this
by evaluating the L2-error, i.e., reconstruction
error, on validation set. Surprisingly, we find
that MIP, Flow, and RCP exhibit the same val-
idation loss; hence validation loss does predict
their relative performance. Appendix G.1 re-
veals that validation loss doesn’t correlate with
performance across other axes of variation. In-
deed, policy performance requires taking good actions on o.o.d. states under compounding error at
deployment time (Simchowitz et al., 2025).
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Thus, we study a proxy which reflects performance in o.o.d. situations. We perturb expert trajecto-
ries in dataset as described in Appendix E.1, and evalute a novel metric that we call the off-manifold
norm. Informally, this measures the projection error of a predicted action a onto the space spanned
by expert actions at neighboring states; see Appendix G.2 a for formal definition. Our metric as-
sesses the quality of actions under simulated compounding error. Table 4 reports both L2 validation
loss and off-manifold L2 norm for different methods: while all methods achieve low validation loss,
only MIP and Flow are able to achieve low off-manifold L2 norm, indicating their better manifold
adherence. As SF does not exhibit the same benefit, we conclude that supervised iterative com-
putation facilitates projection onto the manifold of expert actions by refining the prediction across
sequential steps. Appendix J provides additional confirmation of this hypothesis: GCPs are no better
than RCP at fitting high frequency functions, but exhibit lower on-manifold error, suitably defined.

5.2 STOCHASTICITY STABILIZES ITERATIVE COMPUTATION

SF matching regression, whilst RR underperforming regression, suggests that sequential action gen-
eration is highly brittle in the absence of stochasticity (Permenter & Yuan, 2024). Our findings
support the hypothesis that stochasticity injection serves to provide “coverage” of the generative
process. Specifically, we can think of learning to perform two-stage action generation as an “in-
ternal” behavior cloning problem (Ren et al., 2024) under the dynamics induced by the generative
process. Injecting stochasticity amounts to enhancing coverage of the action â0 in the first step of
MIP, thus enable iterative improvement with more NFEs (Appendix D.6). Its benefits are analogous
to trajectory noising effective in other behavior cloning applications (Laskey et al., 2017; Block
et al., 2023; 2024; Simchowitz et al., 2025). Similar benefits are found in the improved sensitivity
analysis of diffusion relative to flows (Albergo et al., 2024).

5.3 SUPERVISED ITERATIVE COMPUTATION SCALES BETTER WITH MODEL CAPACITY, IF THE
ARCHITECTURE IS RIGHT

Regression, enjoys stronger relative performance at the smallest model sizes but scales more poorly
than flow and MIP with increased model capacity (Fig. 5). We conjecture that supervised iterative
computation can better utilize larger models, both by introducing more supervision steps at training,
and by providing more parameters to represent different computations at successive generation steps.

We conclude by emphasizing the role of architecture design. To showcase its importance, we ablate
the performance of different method’s average performance across both the 3 architectures above,
and the more traditional MLP and RNN architectures, implemented with modern best practices in-
cluding FiLM conditioning (Perez et al., 2018), and skip-connections (He et al., 2016)/LayerNorm
(Ba et al., 2016) where appropriate (details in Appendix D.2). As demonstrated in Fig. 5, the com-
bination of training method and architecture design has a strong yet somewhat erratic effect on both
GCPs and RCP performance. In Tool-Hang, RCP achieves the best performance with an MLP
architecture. In Transport, MLP with flow can even outperform more expressive architectures
like Chi-Transformer. The coupling between training and architecture choice highlights the
importance of controlling architecture design when comparing across methods.
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Figure 5: Architecture and model size ablation. Success rate are averaged across 3 seeds and 5 checkpoints
on Tool-Hang and Transport tasks. Left 2 plots: architecture ablation. Right 2 plots: Model size ablation.
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A RELATED WORKS

Robotic Behavior Cloning. Behavior cloning (BC), also known as learning from demonstrations
(LfD), has become a popular paradigm to enable robots to conduct complex, diverse and long-
horizon manipulation tasks by learning from expert demonstrations (Argall et al., 2009; Zhu & Hu,
2018; Zhao et al., 2023; Chi et al., 2024; Lin et al., 2024). In parallel, “robot foundation mod-
els” scale BC with internet-pretrained vision-language transformer-based backbones (Brohan et al.,
2022; Zitkovich et al., 2023; O’Neill et al., 2024) and large-scale teleoperation datasets (Kim et al.,
2024; Team et al., 2024). More recently, to better model continuous actions, generative models like
diffusion and flow have been adopted to replace the tokenization method in transformers to achieve
more expressive policies (NVIDIA et al., 2025; Black et al., 2024; Physical Intelligence et al., 2025;
Liu et al., 2024). This work focuses on the generative modeling part of the behavior cloning pipeline,
ablating the key design choices that lead to the success of generative control policies.

Generative Modeling. The recent success of behavior cloning policies is built upon a rapid evo-
lution of generative modeling techniques, starting from tokenization methods (Brown et al., 2020;
Chen et al., 2021; Pertsch et al., 2025) and adversarial methods (Brock et al., 2019; Goodfellow
et al., 2020; Ho & Ermon, 2016). Later, probabilistic generative models with iterative computation
like diffusion models (Ho et al., 2020; Song et al., 2021b; Lu et al., 2025; Song et al., 2022; Nichol
& Dhariwal, 2021; Karras et al., 2022) became a popular choice for generative modeling thanks to
their better training stability and sampling quality. Flow models (Lipman et al., 2023; Albergo &
Vanden-Eijnden, 2022; Liu et al., 2022) and consistency/shortcut models (Song et al., 2023; Song
& Dhariwal, 2023; Meng et al., 2023; Boffi et al., 2025a; Geng et al., 2025) were later developed
to achieve faster sampling while maintaining the expressivity of diffusion models. Though there
have been extensive studies on probabilistic generative modeling’s effectiveness in image and text
generation (Lee et al., 2023; Chen et al., 2023), its mechanism in control, especially the key design
choices, are still opaque in decision making.

Generative Control Policies. To model diverse and complex behaviors, GCPs parameterize the
relationship between observations and actions as a distribution rather than a deterministic function.
Early works use transformers with tokenizers (Chen et al., 2021; Shafiullah et al., 2022), energy
functions (Florence et al., 2022; Dasari et al., 2024) and VAEs (Zhao et al., 2023) to parameterize
the distribution. Diffusion models (Reuss et al., 2023; Chi et al., 2023; Ke et al., 2024; Dong et al.,
2024; Janner et al., 2022; Yang et al., 2024) were introduced for their better expressivity of complex
and multi-modal behaviors, followed by flow-based (Zhang et al., 2024; Black et al., 2024; Phys-
ical Intelligence et al., 2025) and flow-map/consistency-model/shortcut-model-based acceleration
methods (Hu et al., 2024; Prasad et al., 2024; Sheng et al., 2025).

Theoretical Literature on GCPs. Block et al. (2024) established that GCPs can imitate arbitrary
expert distributions. Given our findings on the absence of multi-modality, a more closely related
theoretical findings is that of Simchowitz et al. (2025), which elucidates how GCPs can circumvent
certain worst-case compounding error phenomena in continuous-control imitation learning. Though
the proposed mechanism is different, that finding is conceptually similar to our own: GCPs benefits
arise from their favorable out-of-distribution properties, rather than raw expressivity of fitting in-
distribution expert behavior.

B PREVIOUS WORKS’ CONNECTION WITH GCP’S TAXONOMY.

We classify GCPs into three components: distributional learning, stochasticity injection, and su-
pervised iterative computation. Starting from regression, it has none of the three components. To
model a more complex distribution, Gaussian Mixture Model (GMM) (Zhu & Hu, 2018) was used
to parameterize the distribution, trained with cross entropy loss. To make the network be able to
represent more complex distirbutions, prior to diffusion, non-parametric method like VAEs (Zhao
et al., 2023) was used to parameterize the distribution, trained with reconstruction loss. During the
training, a latent variables is predicted to predict the style the motion by mapping it from a noise
z. Another line of work try to improve the policy expressivity by introducing iterative compute,
like implicit behavior cloning (Florence et al., 2022; Dasari et al., 2024). The idea is to allow the
network predict the energy function of the action rather the action itself. Compared to diffusion,
the major difference is that they do not explicitly injecting noise during training. Lastly, flow-based
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GCPs (Zhang et al., 2024; Black et al., 2024; Physical Intelligence et al., 2025), which holds all
the three components and demonstrate state-of-the-art performance on popular benchmarks. In this
paper, we look into a new combination that haven’t been explored before, which is the combination
of stochasticity injection and supervised iterative computation.

C ADDITIONAL POLICY PARAMETRIZATIONS

This section further elaborates the design space of MIP in stochasticity injection, iterative computa-
tion and intermediate supervision.

C.1 FULL ABALATION OF MIP VARIANTS

This section formally describes the training process of all MIP with different stochasticity injection
and supervised iterative computation design.

Residual Regression (RR) removes all stochasticity in training and the training objective is:

πRRθ ≈ argminθ E(o,a)∼ptrain,z∼N(0,I)(
∥(πθ(o, I0 = 0, t = 0)− t⋆a)∥2 + ∥(πθ(o, sg(πθ(o, I0 = 0, t = 0)), t⋆)− a)∥2

)
.

Two-Step Denoising (TSD) The training objective is:

πTSDθ ≈ argminθ E(o,a)∼ptrain,z∼N(0,I)(
∥(πθ(o, I0, t = 0)− t⋆a)∥2 + ∥(πθ(o, sg(πθ(o, I0, t = 0)) + (1− t⋆)z, t⋆)− a)∥2

)
.

where I0 = z. Compared to MIP, TSD adds stochasticity to both first step training.

MIP with Data Augmentation (MIP-Dagger) To understand the importance of decoupling for
enabling iterative computation, we propose an additional variant of MIP that lies between MIP and
RR, where the two steps are partially coupled. Since the training method of second iteration is
similar to data augmentation, we call this variant MIP-Dagger:

πMIP-Daggerθ ≈ argmin
θ

E
(o,a)∼ptrain,z∼N(0,I)

(∥(πθ(o, I0 = 0, t = 0)− t⋆a)∥2 + ∥(πθ(o, t⋆sg(πθ(o, I0 = 0, t = 0)) + (1− t⋆)z, t⋆)− a)∥2),

where the major difference compared to MIP is the second step takes in the interpolant between first
step output and noise rather than the action and noise.

MIP without intermediate supervision (MIP-NoSupervision) To understand the effect of
intermediate supervision on iterative computation, we propose one variant of MIP that removes the
supervision of intermediate computation steps while preserving stochasticity injection at training
time, named MIP-NoSupervision:

πMIP-NoSupervisionθ ≈ argmin
θ

E
(o,a)∼ptrain,z∼N(0,I)

(∥(πθ(o, t⋆sg(πθ(o, I0 = 0, t = 0)) + (1− t⋆)z, t⋆)− a)∥2),

where the first step’s output is unsupervised.
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MIP without t conditioning By removing t conditioning in MIP, it degenerates to SF. Here we
present the multi-step integration process for straight flow when action distribution is Dirac delta.
The integrator from s to t is:

at =
t− s
1− s

πθ(o, s · as) +
1− t
1− s

as

C.2 EXPERIMENT RESULTS

We benchmark all methods on the Tool-Hang task, given it is the one with the largest gap between
RCP and GCPs. From Table 5, we can see that the important part is to add stochasticity injection
between two iterations, and intermediate supervision is also important to realize the potential of
iterative computation.

Method NFEs Success Rate
TSD 2 0.80
MIP 2 0.80
MIP-NoSupervision 2 0.42
MIP-Dagger 2 0.64
RR 2 0.54
SF 1 0.54
SF 3 0.55
SF 9 0.52

Table 5: Success rates across different MIP variants and RR on Tool-Hang task over 5 checkpoints across 3
architectures.

D CONTROL EXPERIMENTS

D.1 TASK SETTINGS

This section introduces all the tasks presented in the main paper. To reach a sound conclusion, use
common benchmarks appears in previous works:

Robomimic Robomimic (Mandlekar et al., 2021) is a large-scale robotic manipulation bench-
mark designed to study imitation learning and offline reinforcement learning. It contains five ma-
nipulation tasks (Lift, Can, Square, Transport, Tool-Hang) with proficient human (PH)
teleoperated demonstrations, and for four of them, additional mixed proficient/non-proficient human
(MH) demonstration datasets are provided (9 variants in total). We report results on both state-
based and image-based observations, since these two modalities pose distinct challenges. Among
the tasks, Tool-Hang requires extremely precise end-effector positioning and fine-grained con-
tact control, while Transport demands high-dimensional control and coordination over extended
horizons.

Push-T Push-T (Florence et al., 2022) is adapted from the Implicit Behavior Cloning (IBC).
The task involves pushing a T-shaped block to a fixed target location using a circular end-effector.
Randomized initializations of both the block and the end-effector introduce significant variability.
The task is contact-rich and requires modeling complex object dynamics for precise block place-
ment. Two observation variants are considered: (i) raw RGB image observations and (ii) state-based
observations containing object pose and end-effector position.

Kitchen The Franka Kitchen environment is designed to test the ability of IL and offline RL
methods to perform long-horizon, multi-task manipulation. It includes 7 interactive objects, with
human demonstration data consisting of 566 sequences, each completing 4 sub-tasks in arbitrary
order (e.g., opening a cabinet, turning a knob). Success is measured by completing as many of
the demonstrated sub-tasks as possible, regardless of order. This setup explicitly introduces both
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short-horizon and long-horizon multimodality, requiring policies to generalize across compositional
tasks.

MetaWorld MetaWorld is a large-scale suite of diverse manipulation tasks built in MuJoCo,
where agents must perform challenging object interactions using a robotic gripper. We adopt the
3D observation setting using point cloud representations, ported from the DP3 framework (Ze et al.,
2024), to better evaluate geometric reasoning and spatial generalization. Tasks in MetaWorld are
categorized into different difficulty levels, with benchmarks testing few-shot adaptation and multi-
task transfer learning.

Adroit Adroit is a suite of dexterous manipulation tasks featuring a 24-DoF anthropomor-
phic robotic hand. Tasks include pen rotation, door opening, and object relocation, all of which
demand precise, coordinated multi-finger control. Following DP3 (Ze et al., 2024), we use point
cloud observations to capture fine-grained 3D object-hand interactions. Policies are trained using
VRL3, highlighting the challenges of high-dimensional control and sim-to-real transfer in dexterous
manipulation.

D.2 ARCHITECTURE DESIGN

We study four policy backbones—Chi-Transformer, Sudeep-DiT, Chi-UNet, RNN, and
MLP —under a common training recipe and data interface. Unless otherwise specified, all models
are capacity-matched to ∼20M parameters to enable fair comparison.

Chi-UNet is adopted from Diffusion Policy (Chi et al., 2023) which built on top of 1D temporal
U-Net (Janner et al., 2022) with FiLM conditioning (Perez et al., 2018) on observation o and flow
time t. Chi-UNet has a strong inductive bias for the temporal structure of the action and tends to
smooth out the action.

Chi-Transformer follows the time–series diffusion transformer from Diffusion Policy (Chi
et al., 2023), where the noisy action tokens at form the input sequence and a positional embed-
ding of the flow time t is prepended as the first token; observations o are mapped by a shared
MLP into an observation-embedding sequence that conditions the decoder stack. Compared to
Chi-UNet, Chi-Transformer uses token-wise self-attention over the whole action sequence,
thus can model less-smooth and more complex actions.

Sudeep-DiT is a DiT-style (Diffusion Transformer) conditional noise network specialized for
policies adopted from DiT-Policy (Dasari et al., 2024): observation o are first encoded into observa-
tion vectors; the flow time t is embedded via positional embedding; an encoder–decoder transformer
then fuses these with initial noise z to predict next action. The key ingredient of Sudeep-DiT is re-
placing standard cross-attention with adaLN-Zero blocks—adaptive LayerNorm modulation using
the mean encoder embedding and the time embedding, with zero-initialized output-scale projec-
tions—stabilizing diffusion training at scale. Compared to Chi-Transformer, Sudeep-DiT
has adaLN-based conditioning (instead of vanilla cross-attention) and an explicit encoder-decoder
split, yielding better training stability.

RNN The RNN backbone processes sequences with a stacked LSTM/GRU. For each action time
step in the chunk, the input vector concatenates: the current noised action at, a time embed-
ding for t, and a observation embedding for o. The RNN outputs are fed to a MLP head with
LayerNorm+ApproxGELU+Dropout blocks before output the action with final linear head. All
linear and recurrent weights use orthogonal initialization (biases zero), and RNN layer dropout is
applied when depth>1.

MLP The MLP backbone flattens the action and observation, appending the time embedding. Each
mlp block has LayerNorm, ApproxGELU and Dropout blocks with residual connection and orthog-
onal weight initialization throughout. Each block output is then modulated with FiLM conditioning.

DP3 built on top of Chi-UNet with extra 3d perception encoder. We use the exact same archi-
tecture as 3D diffusion policy (Ze et al., 2024).
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Model hyperparameters In the main experiments, we align the model capacity to 20M parame-
ters for default if not specified, with detailed hyperparameters report in Table 6.

Backbone Heads Layers Embedding dim Dropout

Sudeep-DiT 8 8 256 0.1
Chi-UNet – – 256 –
Chi-Transformer 4 8 – 0.1
RNN – 8 512 0.1
MLP – 8 512 –

Table 6: Model hyperparameters.

D.3 FULL RESULTS FOR FLOW AND REGRESSION COMPARISON

In the paper, we only present the aggregated results across 3 architectures. Figure 6 present the full
results across all architectures with different training methods.
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Figure 6: Relative performance of RCP compared to GCP across common benchmarks (worst-case ar-
chitecture). For each task, we implement Chi-Transformer, Sudeep-DiT and Chi-UNet. For each
architecture, we average performance of the last 5 training checkpoints across three seeds. We then report the
performance of the worst-performing architecture, chosen individually for both RCP and GCP, to demonstrate
method robustness. For Flow, we always do 9 step Euler integrations, where its performance plateaued. For
readability, RCP success rates are plotted relative to flow, with flow normalized to performance of 1 per task.
Tasks are grouped by observation modality, and ordered by relative RCP performance. Red dashed line indi-
cates threshold at which RCP attains < 95% success of GCP.

D.4 DATASET QUALITY ABLATION

GCPs are believed to handle data with diverse quality better. To test that assumption, we manually
corrupt the expert dataset and inject stochactity and multi-modality in to the dataset. In Table 7, we
compare 4 different datasets (3 of them collected by ourselves). In the collected dataset, we manually
inject noise to the policy and add delay the policy from time to time to introduce multi-modality that
is common in the real world.

D.5 FULL RESULTS FOR MIP AND ITS VARIANTS

For Kitchen, the task has multiple stages. In the main results, we only report the performance
of the last stage since it is the most challenging one. Table 11 shows the performance comparison
across different design choices on Kitchen task.

D.6 DIFFERENT METHOD’S PERFORMANCE WITH DIFFERENT NUMBER OF FUNCTION
EVALUATIONS

We also provide detailed evaluation on different method’s scaling behavior given different amount
of online computation budgets. Table 12 highlights that only MIP and Flow benefit from iterative
computate.
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Architecture Method NFEs Delayed & Noisy Policy Delayed Policy Zero-Flow Proficient Human
(Worst Quality) (Mixed Quality) (Better Quality) (Good Quality)

Chi-UNet Regression 1 0.70/0.63 0.80/0.72 0.76/0.65 0.76/0.62
Chi-UNet SF 1 0.70/0.62 0.82/0.76 0.84/0.77 0.62/0.38
Chi-UNet MIP 2 0.80/0.72 0.82/0.61 0.74/0.64 0.80/0.68
Chi-UNet Flow 9 0.76/0.68 0.74/0.50 0.76/0.54 0.84/0.70

Chi-Transformer Regression 1 0.38/0.22 0.40/0.31 0.42/0.26 0.50/0.24
Chi-Transformer SF 1 0.46/0.35 0.68/0.50 0.56/0.41 0.62/0.48
Chi-Transformer MIP 2 0.56/0.49 0.70/0.54 0.64/0.56 0.72/0.68
Chi-Transformer Flow 9 0.56/0.34 0.54/0.48 0.62/0.49 0.68/0.54

Sudeep-DiT Regression 1 0.42/0.29 0.36/0.28 0.42/0.32 0.30/0.19
Sudeep-DiT SF 1 0.66/0.41 0.60/0.54 0.72/0.57 0.68/0.50
Sudeep-DiT MIP 2 0.66/0.56 0.74/0.58 0.70/0.61 0.86/0.78
Sudeep-DiT Flow 9 0.56/0.45 0.66/0.58 0.72/0.65 0.78/0.68

Table 7: Performance comparison across different methods and data quality levels. We evaluate on the task
Tool-Hang with state observations using 10M parameter networks. Success rates are reported as averages
over 5 checkpoints across 3 seeds.

Architecture Method Lift Can Square Transport Tool-Hang Push-T Kitchen

mh ph mh ph mh ph mh ph

Sudeep-DiT Flow 1.00/0.99 1.00/1.00 1.00/0.94 1.00/1.00 0.88/0.75 1.00/0.94 0.40/0.27 0.80/0.70 0.86/0.75 1.00/1.00 0.98/0.96
Sudeep-DiT Regression 1.00/0.99 1.00/1.00 0.92/0.90 1.00/0.98 0.72/0.53 0.94/0.86 0.12/0.06 0.50/0.44 0.52/0.39 1.00/1.00 0.98/0.92
Sudeep-DiT SF 1.00/0.99 1.00/1.00 0.94/0.90 1.00/0.98 0.84/0.70 0.96/0.88 0.18/0.14 0.56/0.48 0.70/0.59 1.00/1.00 0.96/0.91
Sudeep-DiT MIP 1.00/0.99 1.00/1.00 0.98/0.95 1.00/1.00 0.90/0.81 0.98/0.94 0.44/0.38 0.76/0.68 0.92/0.88 1.00/1.00 1.00/0.97
Chi-Transformer Flow 1.00/1.00 1.00/1.00 1.00/0.93 1.00/0.98 0.78/0.74 0.96/0.89 0.44/0.34 0.88/0.64 0.68/0.54 1.00/1.00 1.00/0.96
Chi-Transformer Regression 1.00/0.99 1.00/0.99 0.98/0.92 1.00/0.96 0.74/0.61 0.92/0.85 0.28/0.20 0.68/0.51 0.40/0.36 1.00/1.00 0.98/0.91
Chi-Transformer SF 1.00/1.00 1.00/1.00 0.98/0.94 1.00/0.99 0.76/0.70 0.94/0.84 0.30/0.24 0.62/0.54 0.60/0.55 1.00/1.00 0.96/0.92
Chi-Transformer MIP 1.00/1.00 1.00/1.00 0.96/0.95 1.00/1.00 0.86/0.73 0.96/0.89 0.42/0.37 0.80/0.68 0.76/0.69 1.00/1.00 0.98/0.96
Chi-UNet Flow 1.00/1.00 1.00/1.00 1.00/0.98 1.00/1.00 0.90/0.78 0.98/0.94 0.52/0.40 0.80/0.73 0.84/0.70 1.00/1.00 1.00/0.97
Chi-UNet Regression 1.00/1.00 1.00/1.00 1.00/0.96 1.00/0.99 0.94/0.82 1.00/0.91 0.22/0.16 0.64/0.55 0.68/0.64 1.00/1.00 0.92/0.88
Chi-UNet SF 1.00/1.00 1.00/1.00 1.00/0.97 1.00/0.99 0.88/0.76 0.96/0.89 0.26/0.18 0.64/0.52 0.58/0.42 1.00/1.00 0.86/0.79
Chi-UNet MIP 1.00/1.00 1.00/1.00 1.00/0.98 1.00/0.99 0.92/0.81 1.00/0.94 0.62/0.46 0.80/0.69 0.80/0.64 1.00/1.00 1.00/0.96

Table 8: Performance comparison of Flow and Regression methods across different state-based robotic ma-
nipulation tasks. For each task, we report the best checkpoint performance / averaged performance over last 5
checkpoints. Each experiment is run with 3 seeds and we report the average performance across all seeds.

E LIPSCHITZ CONSTANT STUDY DETAILS

E.1 LIPSCHITZ EVLUATION METHOD

We note that not all inputs o are dynamically feasible, and our dataset lies only on a narrow manifold
of the observation space. Therefore, we must carefully evaluate the Lipschitz constant on the feasible
observation space to avoid conflating model expressivity with errors arising from infeasible states.
To ensure feasibility, instead of directly perturbing the state, we perturb the action and then roll it
out in the environment. This guarantees that both the perturbed state and the resulting observation
remain feasible.

In practice, we identify states that exhibit the highest ambiguity of actions in the dataset, referred to
as critical states. For each critical state, we inject Gaussian noise η ∼ N (0, ϵ2I) into the normalized
action, unnormalize it, and then roll it out. We select 100 critical states from the dataset. For each
state, we perturb the corresponding expert action a with 64 independent Gaussian samples.

Let o denote the next nominal observation after applying the nominal action a. After rolling out
the perturbed actions, we obtain perturbed observations o(1), . . . , o(Nperturb). The policy then predicts
the perturbed actions a(i) = π(o(i)). To ensure comparability across different states and tasks, we
evaluate the Lipschitz constant with respect to normalized observations ō = o−µo

σo
and normalized

actions ā = a−µa

σa
. Finally, the Lipschitz constant is estimated using a zeroth-order approximation:

L ≈ max
i

∥ā(i) − ā∥2
∥η∥2

. (E.1)

Full version of above process is stated in Algorithm 1.
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Architecture Method Lift Can Square Transport Tool-Hang Push-T

mh ph mh ph mh ph mh ph

Sudeep-DiT Flow 1.00/1.00 1.00/1.00 0.96/0.94 1.00/0.99 0.82/0.76 0.96/0.94 0.32/0.20 0.84/0.83 0.78/0.57 1.00/1.00
Sudeep-DiT Regression 1.00/0.99 1.00/1.00 0.92/0.81 1.00/1.00 0.74/0.67 0.94/0.84 0.14/0.08 0.74/0.56 0.28/0.18 1.00/1.00
Sudeep-DiT SF 1.00/0.99 1.00/1.00 0.94/0.90 1.00/0.98 0.84/0.70 0.96/0.88 0.14/0.10 0.76/0.63 0.46/0.40 1.00/1.00
Sudeep-DiT MIP 1.00/0.99 1.00/1.00 0.98/0.95 1.00/1.00 0.90/0.81 0.98/0.94 0.34/0.28 0.90/0.84 0.76/0.66 1.00/1.00
Chi-Transformer Flow 1.00/0.99 1.00/1.00 1.00/0.93 1.00/0.99 0.70/0.66 0.98/0.93 0.22/0.13 0.80/0.77 0.74/0.61 1.00/1.00
Chi-Transformer Regression 1.00/0.98 1.00/0.98 1.00/0.94 1.00/0.96 0.90/0.72 0.98/0.90 0.40/0.27 0.94/0.87 0.44/0.36 1.00/1.00
Chi-Transformer SF 1.00/0.99 1.00/1.00 0.98/0.94 1.00/0.99 0.76/0.70 0.94/0.84 0.30/0.24 0.86/0.70 0.34/0.31 1.00/1.00
Chi-Transformer MIP 1.00/0.98 1.00/1.00 0.96/0.91 0.98/0.68 0.72/0.28 0.90/0.25 0.16/0.04 0.86/0.69 0.52/0.40 1.00/1.00
Chi-UNet Flow 1.00/1.00 1.00/1.00 1.00/0.97 1.00/0.98 0.90/0.79 0.96/0.90 0.34/0.32 0.80/0.64 0.70/0.62 1.00/1.00
Chi-UNet Regression 1.00/0.96 1.00/0.99 0.84/0.70 0.98/0.87 0.74/0.66 0.94/0.86 0.16/0.12 0.78/0.64 0.30/0.23 1.00/1.00
Chi-UNet SF 1.00/1.00 1.00/1.00 1.00/0.97 1.00/0.99 0.78/0.66 0.96/0.89 0.26/0.18 0.46/0.13 0.06/0.02 1.00/1.00
Chi-UNet MIP 1.00/1.00 1.00/1.00 1.00/0.95 1.00/0.98 0.86/0.81 0.96/0.92 0.58/0.42 0.96/0.91 0.56/0.50 1.00/1.00

Table 9: Performance comparison of Flow and Regression methods across different image-based robotic ma-
nipulation tasks. For each task, we report the best checkpoint performance / averaged performance over last 5
checkpoints. Each experiment is run with 3 seeds and we report the average performance across all seeds.

Architecture Method Adroit MetaWorld

Hammer Door Pen Stick-Push Assembly Disassemble

DP3 Flow 0.96 ± 0.02 0.60 ± 0.06 0.54 ± 0.11 0.92 ± 0.04 0.98 ± 0.03 0.72 ± 0.14
Regression 0.97 ± 0.04 0.52 ± 0.16 0.47 ± 0.08 0.95 ± 0.06 0.98 ± 0.03 0.78 ± 0.08

Table 10: Performance comparison of Flow and Regression methods using DP3 architecture across different
point-cloud-based robotic manipulation tasks. For each task, we report the best checkpoint performance /
averaged performance over last 5 checkpoints. Each experiment is run with 3 seeds and we report the average
performance across all seeds.

Architecture Method P1 P2 P3 P4

Chi-UNet

Flow 1.0 1.0 1.0 0.98
MIP 1.0 1.0 1.0 0.94
Regression 0.98 0.94 0.94 0.86

Chi-Transformer

Flow 1.0 1.0 1.0 1.0
MIP 1.00 0.98 0.98 0.96
Regression 1.0 1.0 0.98 0.94

Sudeep-DiT

Flow 1.0 1.0 1.0 0.98
MIP 1.00 1.00 1.00 0.98
Regression 1.0 0.98 0.96 0.88

Table 11: Performance comparison across different design choices on kitchen task. Kitchen task has
multiple stages and we report the success rate of finishing n tasks in the table. For the performance reported in
the main paper and previous tables, we report the success rate of finishing 4 tasks.

Algorithm 1 Lipschitz Constant Estimation via Action Perturbation

Require: Dataset D, policy π, noise scale ϵ, number of critical states Ns=100, number of pertur-
bations Np=64

Ensure: Estimated Lipschitz constant L
1: S ← identify Ns critical states from D ▷ Select states with highest action ambiguity
2: for all critical state s ∈ S do
3: (a, o)← expert action and nominal next observation for s ▷ Get ground truth

action-observation pair
4: (ā, ō)← normalize (a, o) using dataset statistics ▷ Ensure comparability across states/tasks
5: for i = 1 to Np do
6: η ∼ N (0, ϵ2I) ▷ Sample Gaussian perturbation
7: apert ← unnormalize(ā+ η) ▷ Create perturbed action in original scale
8: o(i) ← rollout(apert) in environment ▷ Execute perturbed action to get feasible state
9: ō(i) ← normalize(o(i)) ▷ Normalize perturbed observation

10: a(i) ← π(o(i)) ▷ Get policy prediction on perturbed state
11: ā(i) ← normalize(a(i)) ▷ Normalize predicted action

12: ri ← ∥ā(i)−ā∥2

∥η∥2
▷ Compute finite difference approximation

13: Ls ← maxi ri ▷ Local Lipschitz constant for state s
14: L← 1

Ns

∑Ns

s=1 Ls ▷ Average across all critical states
15: return L
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Method Reg. SF RR MIP Flow

NFEs 1 1 3 9 1 2 1 2 1 3 9

S.R. 0.46 0.54 0.55 0.52 0.31 0.33 0.50 0.74 0.32 0.55 0.66

Table 12: Comparison of methods and their corresponding number of function evaluations (NFEs). Eval-
uated on state-based Tool-Hang task over Chi-UNet. Average success rate is reported across 3 seeds and 5
checkpoints.

E.2 FULL LIPSCHITZ EVALUATION RESULTS

In the main text, we only report the average Lipschitz constant on critical states across 3 archi-
tectures. Here, we report the full Lipschitz constant evaluation reuslt in Table 13 with different
architectures and tasks.

Task Architecture Method Lipschitz Constant (Policy)

Push-T (State)

Chi-UNet Regression 0.85± 0.58
Flow 0.31± 0.01

Sudeep-DiT Regression 0.52± 0.11
Flow 0.22± 0.02

Chi-Transformer Regression 1.33± 1.14
Flow 0.82± 0.26

Kitchen (State)

Chi-UNet Regression 13.47± 2.80
Flow 13.31± 4.13

Sudeep-DiT Regression 15.37± 3.69
Flow 12.54± 5.09

Chi-Transformer Regression 13.37± 4.00
Flow 11.44± 4.10

Tool-Hang (PH, State) Chi-UNet Regression 1.63± 0.79
Flow 1.53± 1.01

Sudeep-DiT Regression 1.86± 0.81
Flow 1.34± 0.97

Chi-Transformer Regression 1.76± 1.02
Flow 1.40± 0.99

Table 13: Detailed: Per-architecture policy Lipschitz.

F MULTI-MODALITY STUDY DETAILS

F.1 Q FUNCTION ESTIMATION

To rule out the possibility of hidden multi-modality, we also plot Q functions for each action to see
if there is any clear clustering pattern of Q w.r.t. different actions in t-SNE visualization. Since we
only have access to expert actions rather than their policy, we estimate the Q function by Monte
Carlo sampling with the learned flow policy. The detailed procedure is as follows:

Starting from one “critical state”, we first sample N actions

a(i) = Φ(o, z(i), s = 0, t = 1), i = 1, . . . , N, z(i) ∼ N(0, I).

For each sampled action a(i), we execute one environment step to obtain the next observation o′(i)

and immediate reward r(o, a(i)). Then, starting from o′(i), we rollout the learned policy for NMC
episodes until termination (horizon H), and average the cumulative returns to obtain an estimate of
the continuation value. Thus, the Q-value for action a(i) is approximated as:

QΦ(a
(i), o) = r(o, a(i)) +

1

NMC

NMC∑
j=1

H∑
t=1

r
(
o
(j)
t , a

(j)
t

)
. (F.1)

We set the discount factor γ = 1.0 since rewards are sparse and triggered only at task completion.
The reward for Tool-Hang and Kitchen is defined by the final success signal (with Kitchen
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’s success requiring all 4 subtasks to be completed). The reward for Push-T is defined by final
coverage.

Algorithm 2 Q Function Estimation via Monte Carlo Sampling

Require: Dataset D, flow policy Φ, reward function r, number of critical states Ns=100, number
of action samples N , Monte Carlo samples NMC

Ensure: For each state o, pairs {(a(i), QΦ(a
(i), o))}Ni=1

1: S ← identify Ns critical states from D ▷ Select states with highest action ambiguity
2: for all critical state s ∈ S do
3: o← observation for state s
4: for i = 1 to N do ▷ Sample actions and compute Q estimates
5: z(i) ∼ N(0, I)
6: a(i) ← Φ(o, z(i), s=0, t=1)
7: Execute (o, a(i)) in env→ obtain o′(i), r(i) = r(o, a(i))
8: for j = 1 to NMC do ▷ Monte Carlo rollouts from o′(i)

9: Rollout Φ from o′(i) until horizon H to get cumulative return R(i)
j

10: QΦ(a
(i), o)← r(i) + 1

NMC

∑NMC
j=1 R

(i)
j

11: Store {(a(i), QΦ(a
(i), o))}Ni=1 for state s

The procedure above explicitly computes Q-values by rolling out trajectories separately for each
sampled action.

F.2 DETERMINISTIC DATASET GENERATION

To generate a deterministic dataset that completely eliminates any potential multi-modality, we fol-
low a systematic process:

First, we train a flow expert policy Φ on the original dataset. Then, we collect a new dataset by
rolling out this expert policy from different initial states (using different random seeds than those
used during testing). Crucially, during rollout, we always evaluate the flow policy deterministically
by setting the initial noise to zero: z = 0. This ensures that the policy produces deterministic actions
given any observation, completely removing any stochasticity from the action generation process.

During data collection, we discard all failed trajectories to maintain the same success rate as the
original dataset. We continue collecting until we reach the target number of trajectories Ntraj.

Algorithm 3 Deterministic Dataset Generation

Require: Trained flow policy Φ, target number of trajectories Ntraj, maximum episode steps Tmax

Ensure: Deterministic dataset Ddet
1: Ddet ← ∅
2: ncollected ← 0
3: while ncollected < Ntraj do
4: Reset environment with new random seed
5: o0 ← initial observation
6: τ ← [(o0, ·)] ▷ Initialize trajectory
7: for t = 0 to Tmax − 1 do
8: at ← Φ(z = 0, ot, s = 0, t = 1) ▷ Deterministic action
9: ot+1, rt, done← env.step(at)

10: τ ← τ ∪ [(ot, at)]
11: if done then
12: break
13: if trajectory τ is successful then
14: Ddet ← Ddet ∪ {τ}
15: ncollected ← ncollected + 1

16: return Ddet
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G MANIFOLD ADHERENCE STUDY DETAILS

G.1 VALIDATION LOSS IS NOT A GOOD PROXY FOR POLICY PERFORMANCE

To investigate whether validation loss serves as a reliable proxy for policy performance, we exam-
ine its relationship with success rates on Tool-Hang across different architectures given different
training methods. Evidence that validation loss is poorly correlated with success rate can be seen by
comparing flow policies with varying numbers of function evaluations (NFEs) and their correspond-
ing validation losses. Table 14 demonstrates that increasing NFEs does not reduce validation loss,
yet policy performance consistently improves. We hypothesize that higher NFEs introduce stronger
inductive bias and regularization, which projects actions back onto the data manifold, thereby en-
hancing generalization.

Architecture Method NFEs Average Success Rate L2 Validation Loss

Chi-UNet

Regression 1 0.54 0.063
Flow 1 0.36 0.053
Flow 3 0.44 0.052
Flow 9 0.58 0.053

Chi-Transformer

Regression 1 0.18 0.084
Flow 1 0.06 0.093
Flow 3 0.72 0.092
Flow 9 0.68 0.089

Sudeep-DiT

Regression 1 0.20 0.063
Flow 1 0.62 0.082
Flow 3 0.76 0.080
Flow 9 0.76 0.080

Table 14: Comparison of validation loss and success rate across different architectures and methods on state-
based Tool-Hang. The results show that validation loss is not a reliable proxy for policy performance.

G.2 MANIFOLD ADHERENCE EVALUATION METHOD

To evaluate the manifold adherence, we compute the projection error of a predicted action a onto
the space spanned by expert actions at neighboring states. Concretely, given a state, we compute its
ℓ2 distance to all states in the training set. Then, we pick k nearest neighbor states and gather their
corresponding actions A = [a(0), a(1), . . . , a(k)]. Lastly, we compute projection error by projecting
a to the column space of A: ∥a− PA(a)∥2 = minc ∥a−Ac∥2.

H NEAREST NEIGHBOR HYPOTHESIS STUDY

Another popular hypothesis is that GCPs are learning a lookup table of observation-to-action map-
pings (Pari et al., 2021; He et al., 2025). This might be true for relatively simple tasks that do
not require high precision and complex generalization, such as Can. However, for tasks that re-
quire higher precision and more contact, such as Tool-Hang, the nearest-neighbor/lookup-table
assumption is insufficient to explain the success of GCPs. We evaluate the performance of a nearest-
neighbor policy (VINN (Pari et al., 2021)) on state-based Tool-Hang and find that it achieves a
success rate of only 12% as shown in Table 15. This is significantly lower than both flow and re-
gression methods, indicating that the action manifold is not linearly spanned by the expert actions.
Nevertheless, nearest-neighbor can still serve as a proxy for the expert action manifold, as it captures
the general trend of actions—even though linear combinations of actions in the dataset cannot di-
rectly produce the correct action, the expert action manifold should not be too distant. Therefore, in
this paper, we use nearest-neighbor as a proxy for the linearized expert action manifold rather than
directly computing the distance between expert actions in the validation set and predicted actions.
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Action Chunk Size Success Rate (%)
1 0
8 4

16 12
32 2

Table 15: Performance of k-nearest neighbor policy on state-based Tool-Hang task. Using the same method
as VINN with softmax over k=5 nearest neighbors.

I THEORETICAL ANALYSIS OF GCP’S EXPRESSIVITY

I.1 FORMAL STATEMENT OF THEOREM 1

In this section, we introduce the notation and definition required for the subsequent proofs and
provide the formal statement of Theorem 1 from the main text. Throughout, let ∥ · ∥◦ denote any
matrix norm satisfying the property ∥X1X2∥◦ ≤ ∥X1∥op∥X2∥◦. In contrast to the notation used in
the main text, we define Φs,t(a, o) as the solution at time t of the ODE:

d

dt
at = b⋆t (at | o), with initial condition as = a. (I.1)

Note that Φ0,1(a0 = z, o) coincides with the definition of π⋆θ(z, o) in the main text. Next, we define
the notion of κ-log-concavity.

Definition I.1 (κ-log-concavity). A distribution with density ρ = e−V (x) is said to be κ-log-concave
if V ∈ C2(Rd) and its Hessian satisfies∇2V (x) ≽ κI for all x ∈ Rd and some κ > 0.

With this notation in place, we now state the formal version of Theorem 1.

Theorem 2. Suppose that

b⋆t = E[İt | It, o], where It = (1− t)a0 + ta1, a0 ∼ N(0, I), a1 ∼ ρ1, (I.2)
where ρ1 is κ-log-concave. Then, we have

∥∇oΦ0,t(a0, o)∥◦ ≤
∫ t

0

√
κ(1− t)2 + t2

κ(1− s)2 + s2
· ∥∇ob⋆s(as | o)∥◦ds. (I.3)

In particular, for t = 1 we obtain

∥∇oΦ0,1(a0, o)∥◦ ≤
√
1 + κ−1

∫ 1

0

∥∇ob⋆s(as | o)∥◦ds. (I.4)

Remark I.1. Theorem 1 follows immediately from the fact that both the operator and the Frobenius
norms satisfy ∥X1X2∥◦ ≤ ∥X1∥op∥X2∥◦ together with the inequality Eq. (I.4).

I.2 SUPPORTING LEMMAS

We state the supporting lemmas for proving Theorem 2 below and provide their proofs immediately
for completeness. As a first step, we analyze the dynamical system satisfied by∇oΦs,t(a, o).
Lemma I.1. Define at := Φ0,t(a0, o) where a0 is the initial condition, and define the matrices

Mt := ∇oΦ0,t(a0, o), At := (∇ab⋆t )(at | o), Et := (∇ob⋆t )(at | o) (I.5)
Then,

d

dt
Mt = AtMt + Et, M0 = 0 (I.6)

Proof. Since Φ0,0(a0, o) = a0, M0 = 0. Moreover,
d

dt
∇oΦ0,t(a0, o) = ∇o

d

dt
Φ0,t(a0, o) = ∇o(b⋆t (Φ0,t(a0, o) | o)) (I.7)

= (∇ab⋆t )(at | o) · ∇oΦ0,t(a0, o) + (∇ob⋆t )(at | o) (I.8)

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Note that, from the previous lemma, we may introduce Λs,t as the solution to the matrix ODE
d

dt
Λs,t = AtΛs,t, Λs,s = I. (I.9)

Moreover, it follows that

Λs,t = ∇aΦs,t(as, o). (I.10)

We are now ready to state the relation between Mt and Λs,t.

Lemma I.2.

Mt =

∫ t

0

Λs,tEsds. (I.11)

Proof. Using d
dtΛ

−1
0,t = −Λ

−1
0,tAt and we consider the time derivative of Λ−1

0,tMt:

d

dt
(Λ−1

0,tMt) = (
d

dt
Λ−1
0,t )Mt + Λ−1

0,t (
d

dt
Mt) (I.12)

= −Λ−1
0,tAtMt + Λ−1

0,tAtMt + Λ−1
0,tEt (I.13)

= Λ−1
0,tEt. (I.14)

Note that Λ0,t is invertible by uniqueness of the ODE solution in Eq. (I.9). Integrating both sides
with respect to t gives

Λ−1
0,tMt =

∫ t

0

Λ−1
0,sEsds. (I.15)

Hence, we have

Mt = Λ0,t

∫ t

0

Λ−1
0,sEsds. (I.16)

Note that Λ−1
0,s = Λs,0 and Λ0,t · Λs,0 = Λs,t, we obtain

Mt =

∫ t

0

Λs,tEsds. (I.17)

An immediate application of the triangle inequality and the property of ∥ · ∥◦ yields

∥Mt∥◦ ≤
∫ t

0

∥Λs,t∥op∥Es∥◦ds. (I.18)

Moreover, ∥Λs,t∥op admits the bound:

Lemma I.3.

∥Λs,t∥op ≤ exp

(∫ t

s

∥As′∥opds′
)
. (I.19)

Proof. Define fω(s, t) = Λs,tω. We have
d

dt
∥fω(s, t)∥2 =

1

∥fω(s, t)∥2
fω(s, t)

⊤ d

dt
fω(s, t) (I.20)

=
1

∥fω(s, t)∥2
ω⊤Λ⊤

s,tAtΛs,tω (I.21)

≤ ∥At∥op∥fω(s, t)∥2. (I.22)

By Gronwall’s theorem and ∥fω(s, s)∥2 = ∥ω∥2, we obtain

∥fω(s, t)∥2 ≤ ∥ω∥2 exp(
∫ t

s

∥As′∥opds′). (I.23)
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To bound exp
(∫ t

s
∥As′∥opds′

)
, we use the following result from (Daniels, 2025), included here for

completeness.

Theorem 3 (Restated; Theorem 6 in (Daniels, 2025)). Suppose µ0 ∼ N(0, I) and µ1 is a κ-log-
concave distribution with κ > 0. Define

It = αtX0 + βtX1, X0 ∼ µ0, X1 ∼ µ1, (I.24)

and let vt(x) denote the corresponding flow field. Then,

∇xvt(x) ≼
καtα̇t + βtβ̇t
κα2

t + β2
t

I. (I.25)

With the result, we can bound exp
(∫ t

s
∥As′∥opds′

)
as follows.

Lemma I.4.

b⋆t = E[İt | It, o], where It = (1− t)a0 + ta1, a0 ∼ N(0, I), a1 ∼ ρ1, (I.26)

where ρ1 is κ-log-concave. Then, we have∫ t

s

∥∇xb⋆s′(as′ | o)∥opds′ ≤ log

√
κ(1− t)2 + t2

κ(1− s)2 + s2
(I.27)

Proof. By leveraging Theorem 3 for each condition o, we have

∇ab⋆s′(as′ | o) ≼
καs′ α̇s′ + βs′ ˙βs′

κα2
s′ + β2

s′
I, (I.28)

then we have

∥∇ab⋆s′(as′ | o)∥op ≤
καs′ α̇s′ + βs′ ˙βs′

κα2
s′ + β2

s′
. (I.29)

Integrating both sides, we obtain∫ t

s

∥∇ab⋆s′(as′ | o)∥opds′ ≤
∫ t

s

καs′ α̇s′ + βs′ β̇′
s

κα2
s′ + β2

s′
ds′ (I.30)

=
1

2
log(κα2

s′ + β2
s′)
∣∣∣t
s

(I.31)

= log

√
κα2

t + β2
t

κα2
s + β2

s

. (I.32)

By substitute αt = 1− t and βt = t, we have∫ t

s

∥∇ab⋆s′(as′ | o)∥opds′ ≤ log

√
κ(1− t)2 + t2

κ(1− s)2 + s2
. (I.33)

With the preceding components in place, we now establish Theorem 2.

I.3 PROOF OF THEOREM 2

By combining Eq. (I.18), Lemma I.3, and Lemma I.4, we have

∥∇oΦ0,t(a0, o)∥◦ ≤
∫ t

0

√
κ(1− t)2 + t2

κ(1− s)2 + s2
· ∥∇ob⋆s(as | o)∥◦ds. (I.34)
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For t = 1, the function s 7→ κ(1 − s)2 + s2 attains its minimum at s = κ
κ+1 . Applying Holder’s

inequality then yields

∥∇oΦ0,1(a0, o)∥◦ ≤
∫ 1

0

√
1

κ(1− s)2 + s2
· ∥∇ob⋆s(as | o)∥◦ds (I.35)

≤ max
s∈[0,1]

(√
1

κ(1− s)2 + s2

)
·
∫ 1

0

∥∇ob⋆s(as | o)∥◦ds (I.36)

=
√
1 + κ−1

∫ 1

0

∥∇ob⋆s(as | o)∥◦ds. (I.37)

J TOY EXPERIMENTS: TESTING THE FUNCTION APPROXIMATION
CAPABILITIES OF REGRESSION AND FLOW MODELS

J.1 EXPERIMENTAL SETUP: REGRESSION FUNCTIONS

In this section, we introduce a number of functions that determine the ability of our model to fit
high-frequency data. In accordance with the standard regression nomenclature, we use x as input
space and y as the output.

J.1.1 MIXTURE OF SINES

Given weight, frequency and phase shift vectors α = (α1, . . . , αm),ω = (ω1, . . . , ωm),ϕ =
(ϕ1, . . . , ϕm) ∈ Rm, we define the parameter ψ = (α, ω,ϕ).

gψ(x) :=
∑
i

αi sin(ωix+ ϕi) : R→ R. (J.1)

We consider two regimes: In fixed-weight regime, we set αi ≡ 1 for all i. In the fixed-Lipschitz
regime, we take αi ≡ 1

ωi
. The latter choice ensures that the Lipschitz constant of gψ(x) is bounded

by m, the number of distinct components. This allows us to test the fitting of high-frequency func-
tions without an increase in Lipschitz constant, and captures the natural regime where we expect
that high-frequency components contribute less to the overall functions.

For the mixture-of-sines experiments, we include both the fixed-Lipschitz and fixed-weight
regimes. We m = 10 and sample ω,ϕ from the set of primes. When sampling this way, we ensure
that frequencies and phase shifts remain uncorrelated across the high-frequency components.

J.1.2 PROJECTED MIXTURE OF SINES

In our next experiment, we consider maps from R → Rd, with d = 8 with a projection operator
applied. Formally, for each j = 1, . . . , 10, we let

Pj ∈ Rd×d, rank(Pj) = 3 (J.2)

by a uniformly-at-random chosen rank 3 projection matrix. We then define our target function as

f(x) = Pj(x)g⃗(x) : Rd → R. (J.3)

where g⃗(x) = (gψ1(x), . . . , gψ8(x)) is a vector whose entries are functions of the form of that in
Eq. (J.1), and where j(x) is the index such that

x ∈
[
j(x)− 1

10
,
j(x)

10

]
. (J.4)

These experiments fit a function along a x-dependent projection (see below for our evaluations that
account for the projection discontinuity in a fair manner).
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J.1.3 PROJECTED MIXTURE OF SINES UNDER NONLINEAR TRANSFORMATION

Finally, we take the function g⃗(x) = (gψ1(x), . . . , gψd
(x)), where now we take d = 32. Again, ψi

are generated as Appendix J.1.1. Now we consider the function

h(x) = ϕ−1
(
Pj(x)ϕ(g⃗(x))

)
, (J.5)

where, as above, Pj(x) is an x-dependent projection, but we include composition with the function
ϕ(u) = u3, broadcast entrywise.

J.2 EXPERIMENTAL SETUP: NETWORK ARCHITECTURE

We use MLP architecture with and without FiLM conditioning. We restrict ourselves to two- and
three-layer MLPs with widths of 32 or 64, so that we are squarely in the low network expressivity
regime.

J.3 EXPERIMENTAL SETUP: DATA GENERATION AND EVALUATION METRICS

Data generation. We intentionally constrain the dataset to be a low data regime. We typically
choose no more data points than what is required for the reconstruction of these high frequency
functions based on Nyquist sampling theorem. In our experiments this number is typically around
120, with c ∼ Unif[0, 1]. We train for 50000 epochs with batch size 32 and learning rate 0.001

L2 Error. We evaluate the function approximation abilities of both regression and flow using the
L2 error on the test set. We use flow with NFEs = 1.

Projection Metric. To demonstrate this, we define a new projection metric. Let cj ∈
{0.1, 0.2, . . . , 0.9} define the interval boundary points and let Īj = [cj − 0.03, cj + 0.03] be
small neighborhoods around each boundary. We define Pj as the projection operator onto the sub-
space spanned by function evaluations in interval [cj−1, cj ], and Pj+1 as the projection onto interval
[cj , cj+1]. The combined projection Pj,j+1 projects onto the joint span of both adjacent subspaces.
This is computed by performing SVD on the concatenated basis functions from both and retain-
ing the top 2k singular vectors while accounting for numerical stability. Finally, we evaluate the
normalized projection error onto the orthogonal complement of Pj,j+1:

∥(I−Pj,j+1)(f̂ − ftrue)∥
∥f̂ − ftrue∥

(J.6)

This metric quantifies how much of the prediction error lies outside the subspace spanned by the
two adjacent intervals, providing insight into the model’s ability to capture local structure at interval
boundaries.

J.4 FINDINGS

• When measured in the L2 reconstruction error, we find that regression consistently outper-
forms flow.

• When measured in projection metric, in Projected Mixture of Sines and Projected Mix-
ture of Sines under Nonlinear Transformation, we find that flow consistently outperforms
regression.

Experiment L2 Error Projection Metric
Mixture of Sines R NA
Projected Mixture of Sines R F
Projected Mixture of Sines under Nonlinear Transformation R F

Table 16: Summary of experimental findings. R = Regression outperforms, F = Flow outperforms.
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J.5 ANALYSIS OF FINDINGS: MANIFOLD ADHERENCE DISTINGUISHES FLOW OVER
REGRESSION

• In Section 5 we conjecture that one of the factors that could explain superior performance
of flow, is its superiority in approximating the expert more accurately in some measure
of reconstruction error. However, the performance on L2 reconstruction error for these to
Mixture of Sines functions shows that flow is not any better at approximating functions as
compared to regression.

• In Appendix G we study the projection error of error of a predicted action a onto the space
spanned by expert actions at neighboring states. This was done to assess how well our
policies can generate plausible actions under simulated compounding error.

• We designed our projection of mixture of sines experiments along the same lines, to further
verify manifold adherence. Flow’s consistently better performance on projection metric
especially under nonlinear transformation as compared to regression further lends credence
to the idea that manifold adherence is reason for flow’s superior performance.

Mixture of Sines, d = 1,m = 10

Architecture Regression Flow

MLP 2 layer 32 wide 2.20 2.19
MLP 2 layer 64 wide 2.07 2.13
MLP 3 layer 32 wide 2.16 2.16
MLP 3 layer 64 wide 1.76 1.84

Table 17: No FiLM conditioning

Architecture Regression Flow

MLP 2 layer 32 wide 1.99 1.99
MLP 2 layer 64 wide 1.69 1.98
MLP 3 layer 32 wide 1.62 1.53
MLP 3 layer 64 wide 1.25 1.54

Table 18: With FiLM conditioning

Table 19: L2 reconstruction error

Projected Mixture of Sines, d = 32, k = 3,m = 10

Architecture Regression Flow

MLP 2 layer 32 wide 0.59 0.60
MLP 2 layer 64 wide 0.55 0.58
MLP 3 layer 32 wide 0.55 0.59
MLP 3 layer 64 wide 0.50 0.56

Table 20: No FiLM conditioning

Architecture Regression Flow

MLP 2 layer 32 wide 0.56 0.59
MLP 2 layer 64 wide 0.55 0.52
MLP 3 layer 32 wide 0.50 0.57
MLP 3 layer 64 wide 0.44 0.55

Table 21: With FiLM conditioning

Table 22: L2 reconstruction error

Architecture Regression Flow

MLP 2 layer 32 wide 0.909 0.904
MLP 2 layer 64 wide 0.911 0.908
MLP 3 layer 32 wide 0.910 0.903
MLP 3 layer 64 wide 0.914 0.904

Table 23: No FiLM conditioning

Architecture Regression Flow

MLP 2 layer 32 wide 0.910 0.903
MLP 2 layer 64 wide 0.915 0.904
MLP 3 layer 32 wide 0.914 0.902
MLP 3 layer 64 wide 0.918 0.913

Table 24: With FiLM conditioning

Table 25: Mean Projection Error - ∥(I−P)(f̂−ftrue)∥
∥f̂−ftrue∥
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Projected Mixture of Sines under Nonlinear Transformation -
d = 32, k = 3,m = 10, ϕ(u) = u3

Architecture Regression Flow

MLP 2 layer 32 wide 1.67 1.76
MLP 2 layer 64 wide 1.63 1.70
MLP 3 layer 32 wide 1.58 1.72
MLP 3 layer 64 wide 1.45 1.67

Table 26: No FiLM conditioning

Architecture Regression Flow

MLP 2 layer 32 wide 1.60 1.75
MLP 2 layer 64 wide 1.39 1.65
MLP 3 layer 32 wide 1.54 1.70
MLP 3 layer 64 wide 1.17 1.55

Table 27: With FiLM conditioning

Table 28: L2 reconstruction error

Architecture Regression Flow

MLP 2 layer 32 wide 0.90 0.87
MLP 2 layer 64 wide 0.89 0.85
MLP 3 layer 32 wide 0.88 0.82
MLP 3 layer 64 wide 0.87 0.83

Table 29: No FiLM conditioning

Architecture Regression Flow

MLP 2 layer 32 wide 0.89 0.84
MLP 2 layer 64 wide 0.86 0.82
MLP 3 layer 32 wide 0.88 0.81
MLP 3 layer 64 wide 0.86 0.79

Table 30: With FiLM conditioning

Table 31: Mean Projection Error - ∥(I−P)(f̂−ftrue)∥
∥f̂−ftrue∥

K APPENDIX FOR SECTION 2

K.1 MARKOV DECISION PROCESSES CONFIGURATION

We consider a Markov Decision ProcessM = (S,A, R, P, P0)
2 with the state space S, the action

space A, the reward R(s, a)3 obtained by taking action a in state s, the transition dynamics P :
S × A → ∆(S), and the initial-state distribution P0 ∈ ∆(S) . To formulate the success rate (i.e.,
performance) in this setting, we define the reward function as:

R(s, a) =

{
1, if the task is successful under (s, a),
0, otherwise.

(K.1)

Under this definition of rewards, the expected return of a policy π is J(π) = E[
∑
tR(st, at)], which

reduces to P[success under π]. Hence, J(π) exactly equals the success rate of policy π.

K.2 INTEGRATED FLOW PREDICTION

For completeness, we provide the flow ODE as
d
dtat = bt(at | o) starting from a0 = z. (K.2)

The associated integrated flow prediction is given by

Φθ(z | o) = z +

∫ 1

0

bt(at | o)dt. (K.3)

In practice, to approximate the ODE solution for sampling, we employ the following discretized
Euler integration.

Definition K.1 (Discretized Euler Integration). We discretize the time interval [0, 1] to N steps with
step size h = 1/N . The iterates are then updated according to

ak+1 = ak + h bhk(ak | o), k = 0, 1, . . . , N − 1. (K.4)

2For simplicity, we consider the MDP case in this context by identifying the state with the observation
defined in 2. More generally, one may consider a Partially Observable Markov Decision Process (POMDP),
where the agent receives observation o emitted by an underlying latent state s.

3For ease of exposition, we use the same notation for rewards defined on random variables and their distri-
butions.
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The final iterate aN serves as the Euler approximation Φθ,eul(z | o). We also refer to N as the
Number of Function Evaluations (NFEs).

L LLM USAGE

We used LLMs only for minor language polishing (grammar and wording) and to assist with liter-
ature search. All technical content, experiments, and conclusions were created and verified by the
authors.
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