
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MUCH ADO ABOUT NOISING: DO FLOW MODELS
ACTUALLY MAKE BETTER CONTROL POLICIES?

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative models, like flows and diffusions, have recently emerged as popular
and efficacious policy parameterizations in robotics. There has been much spec-
ulation as to the factors underlying their successes, ranging from capturing multi-
modal action distribution to expressing more complex behaviors. In this work,
we perform a comprehensive evaluation of popular generative control policies
(GCPs) on common behavior cloning (BC) benchmarks. We find that GCPs do
not owe their success to their ability to capture multi-modality or to express more
complex observation-to-action mappings. Instead, we find that their advantage
stems from iterative computation, as long as intermediate steps are supervised
during training and this supervision is paired with a suitable level of stochasticity.
As a validation of our findings, we show that a minimal iterative policy (MIP), a
lightweight two-step regression-based policy, essentially matches the performance
of flow GCPs. Our results suggest that the distribution-fitting component of GCPs
is less salient than commonly believed, and point toward new design spaces focus-
ing solely on control performance. Videos and supplementary materials are avail-
able at https://anonymous.4open.science/w/mip-anonymous/.

1 INTRODUCTION

......

C1. Distributional

Learning

C2. Stochasticity

Injection

C3. Supervised

Iterative Compute

Taxonomy of GCPs What we found

Noise z

Action a

Obs o

Relative

Success Rate

RegressionRegression
Straight

Flow

(SF)*

SF*

Residual

Regression

(RR)

RR

GMM

ACT Implicit

BC

Flow

Flow

Minimal
Iterative

Policy (MIP)*

MIP*

0.74 0.74 0.73

1.02 1.00

C2 + >> C3 C1

Inject

Supervise

Figure 1: The design space of GCPs. This paper conducts a careful analysis of the design space of GCPs.
After careful ablation on each component over 27 common behavior cloning benchmarks with both state and
pixel-based observations (7 most challenging tasks’ average relative success rate to flow is reported in the
right plot), we find that the most important factor contributing to their success is the combination of stochastic
injection (C2) and supervised iterative computation (C3). Surprisingly, distribution learning (C1) is the least
important factor, due to the absence of learned multi-modality (Section 3.2) in single-task settings.

Long-horizon, dexterous manipulation tasks such as furniture assembly, food preparation, and man-
ufacturing have been a holy grail in robotics. Recent large robot action models (Team et al., 2025;
Black et al., 2024; Kim et al., 2024) have made substantial breakthroughs towards these goals by
imitating expert demonstrations of diverse qualities. We provide a more comprehensive review of re-
lated work in Appendix A, but highlight here a key trend: while supervised learning from demonstra-
tion, also known as behavior cloning (BC), has been applied across domains for decades (Pomerleau,

1

https://anonymous.4open.science/w/mip-anonymous/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1988), its recent success in robotic manipulation has coincided with the adoption of what we term
generative control policies (GCPs): robotic control policies that use generative modeling architec-
tures, such as diffusion models, flow models, and autoregressive transformers, as parameterizations
of the mapping from observation to action. Given the seemingly transformative nature of GCPs for
robot learning, there has been much speculation about the origin of their superior performance rela-
tive to policies trained with a regression loss, henceforth regression control policies (RCPs). GCPs,
by modeling conditional distributions over actions, are uniquely suited to the multi-task pretraining
paradigm popular in today’s large robotic models. However, a number of hypotheses regarding the
superiority of GCPs pertain even in the single task setting (Chi et al., 2023; Reuss et al., 2023):

H1. Better performance on pixel-based control
H2. Capturing multi-modality in the training data
H3. Greater expressivity due to iterative computation of the observation-to-action mapping
H4. Representation learning due to stochastic data augmentation
H5. Improved training stability and scalability

The gap between generative modeling and generative control. The objective for generative mod-
eling in text and image domains is fundamentally different from the goal in a control task. In the
former, one aims to generate high-quality and diverse samples from the original data distribution.
In the latter, it suffices to select any action that leads to better downstream performance. Whereas
much of the generative modeling literature has focused on the distribution of the generated variable
(Lee et al., 2023), we aim to understand if it is necessary to reproduce the expert data distribution—
for example by capturing any multi-modality—to attain strong control performance. If not, is most
salient to capture about the conditioning relationship mapping o→ a?

Contributions. This paper adopts careful experimental methodology to rigorously test the key
design components (Section 4) that contribute to the observed success of GCPs, and to account for
the key mechanisms by which they contribute to improved performance (Section 5). We focus on
a comprehensive study of the single-task setting in simulated environments, leaving evaluation in
multi-task settings and on physical hardware to future study. Moreover, we restrict our study to
flow-based GCPs trained via BC, given their popularity and adoption in industry (Black et al., 2024;
Physical Intelligence et al., 2025; NVIDIA et al., 2025).

We begin by first identifying which factors do not contribute to the advantage of GCPs over RCPs.

Contribution 1 (Neither multi-modality nor policy expressivity account for GCPs’ success, Sec-
tion 3). Through careful benchmarking, we show that RCPs with appropriate architectures are highly
competitive on both state- and image-based (H1) robot learning benchmarks (Section 3.1). Perfor-
mance gaps only arise on certain tasks requiring high precision. However, we show that neither
multi-modality (H2, Section 3.2) nor the ability to express more complex functions via multiple
integration steps (H3, Section 3.3) satisfactorily accounts for this phenomenon.

Essential to this finding is controlling for architecture: to our knowledge, we are the first work to
carefully benchmark expressive architectures popularized for Diffusion (Chi et al., 2023; Dasari
et al., 2024) as regression policies. To determine what contributes to GCPs performance on these
high-precision tasks (beyond architectural optimization), we parse the design space of generative
control policies into three components, depicted in Figure 1 (left).

Contribution 2 (Exposing the design space of GCPs, Section 4). We introduce a novel taxonomy
that parses the three essential design components of GCPs:
C1. Distributional Learning: matching a conditional distribution of actions given observations.

C2. Stochasticity Injection: injecting noise during training to improve the learning dynamics.

C3. Supervised Iterative Computation: generating output with multiple steps, each of which re-
ceives supervision during training.

With this taxonomy in hand, Section 4.1 introduces a family of algorithms, each of which lies along
a spectrum between GCPs and RCPs by exhibiting different combinations of the above components.
While we find that neither C2 nor C3 in isolation improve over regression, we find their combination
yields a policy whose performance is competitive with flow, leading to our next contribution.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Contribution 3 (MIP: the power of C2+C3, Sections 4.1 and 4.2). As an algorithmic ablation that
only combines C2+C3, we devise a minimal iterative policy (MIP), which invokes only two itera-
tions, one-step of stochasticity during training, and deterministic inference. Despite its simplicity,
MIP essentially matches the performance of flow-based GCPs across state-, pixel- and 3D point-
cloud-based BC tasks, exposing that the combination of C2+C3 is responsible for the observed
success of GCPs.

As described in Remark 4.1, MIP is substantively distinct from flow-map-based models (Boffi
et al., 2025a;b), including consistency models (Song et al., 2023; Kim et al., 2023) and their ex-
tensions (Geng et al., 2025; Frans et al., 2024), in that the latter do satisfy C1, and require training
over a continuum of noise levels.

Contribution 4 (Attributing the benefits of C2+C3, Section 5). We identify that a property we
term manifold adherence captures the inductive bias of GCPs and MIP relative to RCPs, even in
the absence of lower validation loss. We explain how this property is a useful proxy for closed-loop
performance in control tasks. Finally, we expose how C3, through iterative computation, encourages
manifold adherence, but only if stochasticity during training (C2) is present to mitigate compounding
errors across iteration steps (as described in Section 5.2).

Manifold adherence in Section 5.1 measures the generated action’s plausibility given out of distri-
bution observations, where only off-manifold component is evaluated rather than the distance to the
neighbors (Pari et al., 2021). Note that manifold adherence reflects a favorable inductive bias during
learning, rather than brute expressivity of more complex behavior (H3). Moreover, C2 provides
more of a supporting role to C3, rather than enhancing data-augmentation in its own right (H4). In
addition, we find that C2+C3 also enhance scaling behavior (H5), likely due to better model uti-
lization through decoupling across iterations. Finally, we identify that the subtle interplay between
architecture choice, policy parameterization and task can affect performance by an even greater
magnitude than the choice of policy parametrization (Section 5.3).

Takeaway. In robotic applications, our findings suggest that the distributional formulation of
GCPs—sampling from a distribution of actions given observations—is the least important facet
that contributes to their success. Rather, our work highlights that C2+C3 offer an exciting and
under-explored sandbox for future algorithm design in continuous control and beyond.

2 PRELIMINARIES

We consider a continuous control setting with observations o ∈ O and actions a ∈ A where O is the
observation space and A is the action space. We learn a policy π : O → ∆(A) from observations
to (distributions over) actions to maximize the probability of success J(π) on a given task, which
we refer to as “performance.” We consider the performance of policies learned via BC—that
is, supervised learning from a distribution of (observation, actions pairs) drawn from a training
distribution ptrain. In applications, the actions a are often a short-open loop sequence of actions, or
action-chunks, which have been shown to work more effectively for complex tasks with end-effector
position commands (Zhao et al., 2023). See Appendix A for an unabridged related work.

Regression Control Policies (RCPs). A historically common policy choice for BC is regression
control policies (RCPs) (Pomerleau, 1988; Bain & Sammut, 1995; Ross et al., 2011; Osa et al.,
2018), given by a deterministic map π : O → A. In applications, it is parameterized by a neural
network πθ and trained so as to minimize the L2-loss on training data:

πθ ≈ argminθ E∥πθ(o)− a∥2, (o, a) ∼ ptrain. (2.1)

Generative Control Policies (GCPs). Generative control policies (GCPs) parameterize a distribu-
tion of actions a given an observation o. This is often accomplished in practice by representing the
policy πθ with a generative model such as a diffusion (Chi et al., 2023), flow (Zhang et al., 2024),
or tokenized autoregressive transformer (Shafiullah et al., 2022). Given their popularity, we focus
on flow-based GCPs (flow-GCPs). A flow-GCP learns a conditional flow field (Lipman et al., 2023;
Chisari et al., 2024; Nguyen et al., 2025) b : [0, 1]×A×O → A by minimizing the objective

bθ ≈ argminθ E∥bt(It | o)− İt∥2, t ∼ Unif([0, 1]), z ∼ N(0, I), (2.2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where again (o, a) ∼ ptrain, It = ta + (1 − t)z is the stochastic interpolant between the training
action a and noise variable z, and where İt = a− z is the time derivative of It. We note that this is
a special case of the stochastic interpolant framework (Albergo & Vanden-Eijnden, 2022; Albergo
et al., 2023; 2024), which permits a larger menu of design decisions. A flow model then predicts
an action by integrating a flow. In the limit of infinite discretization steps, this amounts to sampling
a ∼ πθ(· | o) by sampling z ∼ N(0, I), and then setting a = a1, where {at}t∈[0,1] solves the ODE:

d
dtat = bt(at | o) with initial condition a0 = z. (2.3)

In practical implementation, sampling is conducted via discretized Euler integration (see Ap-
pendix K.2 for details). This yields a policy a = πθ(z, o) which is a deterministic function of
the initial noise z and the observation o. All experiments, unless otherwise stated, perform 9 in-
tegration steps. We reiterate that other GCPs, e.g. based on diffusion models and autoregressive
transformers, have been studied elsewhere. We choose to focus on flow models due to their state-
of-the-art performance (Chi et al., 2023; Chisari et al., 2024; Zhang et al., 2024) and deployment in
industry (Black et al., 2024; Physical Intelligence et al., 2025; NVIDIA et al., 2025).

Multi-Modality in Robot Learning. Past work has conjectured that for salient robotic control
tasks, ptrain(a | o) exhibit multi-modality, i.e. the conditional distribution of a given o has multiple
modes (Shafiullah et al., 2022; Zhao et al., 2023; Florence et al., 2022). This motivated the earliest
use of GCPs (Chi et al., 2023) (H2). Section 3.2 calls into question the extent to which GCPs do in
fact learn multi-modal distributions of a | o on popular benchmarks.

3 REPRESENTATIONAL CAPACITY DOES NOT EXPLAIN GCPS PERFORMANCE

This section demonstrates that neither advantages on pixel-based control (H1), nor multi-modality
(H2), nor improved expressivity (H3) fully account for the GCPs performance relative to RCPs.
Appendix H addresses other hypotheses, such as k-nearest neighbor approximation.

3.1 GCPS MAINLY OUTPERFORM RCPS ON A FEW, HIGH-PRECISION TASKS

We first isolate the tasks in which they exhibit stronger performance by comparing across 27 popular
BC benchmarks (detailed in Appendix D.1), encompassing diverse data quality, modalities (state,
point clouds and image), and domains (e.g., MetaWorld, Robomimic, Adroit, D4RL). Cru-
cially, we implement RCPs using the exact same architectures as their corresponding flow models
by simply setting the noise level and initial noise to zero: z = 0, t = 0, and study three widely-
used architectures (Chi-Transformer, Sudeep-DiT, Chi-UNet; detailed in Appendix D.2).
This architectural alignment enables RCPs to benefit from the sophisticated network designs typi-
cally reserved for GCPs, ensuring a truly fair comparison. Under this controlled comparison, we
discover GCPs and RCPs achieve comparable performance on the vast numerical majority of state-
and image-based imitation learning benchmarks, but performance gaps emerge on a few tasks that
require particularly high precision. To account for architecture’s substantial impact on final perfor-
mance, we report best-case results with optimal architecture selection in Fig. 2 and the worst-case
results using the poorest-performing architecture in Appendix D.3. Across both evaluations, GCPs
only outperform RCPs by more than a 5% on a handful of tasks that mainly require high precision.

3.2 GCPS’ PERFORMANCE DOES NOT ARISE FROM MULTI-MODALITY

Earlier literature suggested that capturing multi-modality, as defined in Section 2, was precisely the
root of the observed performance benefits of GCPs (Chi et al., 2023; Reuss et al., 2023). However,
examining Fig. 2, we see that many tasks which have been understood to be multimodal (e.g., Push-
T) do not show substantial performance gaps between RCPs and GCPs. On the other hand, RCPs
and GCPs differ only on tasks that demand high precision (e.g. Tool-Hang, Transport). In this
section, we provide additional evidence that multimodality is not the main factor responsible for
witnessed performance advantages of GCPs.

Evidence A: GCPs exhibit unstructured action distributions. For fixed observations, we draw
multiple action samples by denoising from different initial latents and visualize the resulting action
set with their Q valuesQ(a, o). We deliberately choose symmetry-critical or high-ambiguity states to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Sq
ua
re
 (
MH
,
St
at
e)

Sq
ua
re
 (
PH
,
St
at
e)

Pu
sh
 T
 (
St
at
e)

Li
ft
 (
MH
,
St
at
e)

Li
ft
 (
PH
,
St
at
e)

Ki
tc
he
n
(S
ta
te
)

Ca
n
(P
H,
 S
ta
te
)

Ca
n
(M
H,
 S
ta
te
)

Tr
an
sp
or
t
(P
H,
 I
ma
ge
)

Pu
sh
 T
 (
Im
ag
e)

Li
ft
 (
PH
,
Im
ag
e)

Ca
n
(P
H,
 I
ma
ge
)

Ca
n
(M
H,
 I
ma
ge
)

Li
ft
 (
MH
,
Im
ag
e)

Sq
ua
re
 (
PH
,
Im
ag
e)

Sq
ua
re
 (
MH
,
Im
ag
e)

Tr
an
sp
or
t
(M
H,
 I
ma
ge
)

St
ic
k-
Pu
sh
 (
3D
)

Ad
ro
it
 D
oo
r
(3
D)

Ad
ro
it
 H
am
me
r
(3
D)

As
se
mb
ly
 (
3D
)

Di
sa
ss
em
bl
e
(3
D)

Ad
ri
ot
 P
en
 (
3D
)

To
ol
 H
an
g
(P
H,
 S
ta
te
)

Tr
an
sp
or
t
(P
H,
 S
ta
te
)

Tr
an
sp
or
t
(M
H,
 S
ta
te
)

To
ol
 H
an
g
(P
H,
 I
ma
ge
)

0.0

0.5

1.0

Be
st

Re
la
ti
ve

Su
cc
es
s

Regression
Flow

Figure 2: Relative performance of RCPs compared to GCPs across common benchmarks. For each task,
we implement Chi-Transformer, Sudeep-DiT and Chi-UNet. For each architecture, we average per-
formance of the best training checkpoint across three seeds. We then report the performance of the best-
performing architecture, chosen individually for both RCPs and GCPs. For Flow, we always do 9 step Euler
integrations, where its performance plateaued. For readability, RCPs success rates are plotted relative to flow,
with flow normalized to performance of 1 per task. Tasks are grouped by observation modality, and ordered by
relative RCPs performance. Red dashed line indicates threshold at which RCP attains < 95% success of GCPs.

(a)Push T (b)Kitchen (c)Tool Hang

0.0

0.5

1.0

Q

Figure 3: A. Visualized action dis-
tribution with Q values. Distinct
modes are not observed in planned
actions even at symmetric and am-
biguous states. (Kitchen and
Tool-Hang, t-SNE visualization.)
In Push-T, we all trajectories goes
to one side. For the rest, there is no
clear clustering of actions or Q.

Task z ≡ 0 N(0, I) Mean z

Push-T 0.97 0.97 0.95
Kitchen 0.99 0.99 0.97
Tool-Hang 0.78 0.80 0.76

Table 1: B. Performance compar-
ison of different sampling strate-
gies. We compare sampling z = 0,
z ∼ N(0, I), and mean over 64
z(i) ∼ N(0, I). Different sam-
pling strategies show minor per-
formance difference, indicating ab-
sence of distinct action modes.

Dataset Flow Reg.

Original 0.78 0.58
Deterministic 0.72 0.64

Table 2: C. GCPs outperforms
RCPs with deterministic experts.
Policy average success rate over 3
architectures, 3 seeds and 3 archi-
tectures given different dataset: one
from original human demonstration
and another collected by rolling out
a flow policy in deterministic mode
starting from zero noise.

maximize potential multi-modality: (a) Push-T at the symmetry axis of the T-shape, where taking
the left or right path is equivalent, (b) Kitchen from an initial state with multiple first-subtask
choices, and (c) Tool-Hang at the insertion pre-contact pose where human demonstrators pause for
varying durations. In (a-c) we observe single clusters rather than distinct modes (high-dimensional
actions visualized with t-SNE); see Fig. 3. Moreover, adherence to action cluster means do not
correlate with performance: We color-code actions by Q-value, i.e. Monte-Carlo-estimated rewards-
to-go (Appendix F.1). Highest returns are distributed evenly across samples.

Evidence B: Taking mean actions does not meaningfully degrade GCPs’ performance. We
evaluate flow policy’s performance with three sampling strategies: zero noise a = π(z = 0, o),
stochastic sampling a = π(z, o), z ∼ N(0, I), and mean action a = Ez∼N(0,I)[π(z, o)] (via Monte
Carlo approximation). If the learned distribution were strongly multi-modal, or if their distributions
lied on a manifold whose curvature was crucial to task success, the conditional mean would collapse
modes and severely degrade performance. However, Table 1 shows that replacing stochastic sam-
pling with the mean action only slightly affects performance, indicating absence of distinct action
modes.

Evidence C: GCPs outperform RCPs on certain tasks even with deterministic experts. To fully
remove any residual multi-modality, we recollect the dataset with trained flow policy evaluated in
deterministic mode (z = 0) detailed in Appendix F.2. The new dataset is fully deterministic because
action labels are provided by a deterministic policy evaluated in a deterministic environment. While
the gap in performance between GCPs and RCPs shrinks somewhat, we still find that GCPs still
outperforms RCPs, as in Table 2, suggesting that capturing some “hidden” stochasticity or multi-
modality in the data does not suffice to explain the gap between the two.

Multi-modality and data coverage. The absence of observed multimodality is likely attributable to
the large observation dimension of tasks relative to total number of demonstrations, such we rarely
see two “conflicting” actions for nearby observation vectors (note: to grid a space of dimension d
requires 2d points). Some degree of “hidden” multi-modality may still be present, as indicated by

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

the slight narrowing of the performance gap in Table 2. Still, our central claim is that multi-modality
is not sufficient to explain the full difference in performance.

3.3 LIMITATIONS OF THE EXPRESSIVITY OF GCPS IN THE ABSENCE OF MULTIMODALITY

Multi-step generative models are believed to leverage iterative computation to express more complex
probability distributions, both because more generation steps in outperform their few-step counter-
parts (Ho et al., 2020; Song et al., 2021a; Zhang & Chen, 2022; Nichol & Dhariwal, 2021), and via
analogies between iterative computation in generative models and neural network depth (Chen et al.,
2018). Yet for control, we need only capture the mapping from observation to a single effective ac-
tion, rather than the distribution over all possible actions. Our findings thus have suggested that to
represent such a mapping, we need not represent complex action distributions.

We now demonstrate that in the absence of multi-modality (as shown in Section 3.2), GCPs cannot
express more complex mappings from the conditioning variable o to the generated variable a than
RCPs can. We begin by considering a ground-truth conditional flow field b⋆t (o | a). Let π⋆θ(z, o)
represent the exactly integrated b⋆ from initial noise z to generated variable a. Given the absence of
multi-modality (Section 3.2), we assume that the distribution of a | o is κ-log-concave (Appendix I),
satisfied by many classical unimodal distributions. We prove that the Lipschitz constant of π⋆θ(z, o)
with respect to o, a measure of the expressivity of the o→ a mapping, is bounded by that of b⋆t :

Theorem 1 (Informal). Let ∥ · ∥ denote either the matrix operator or Frobenius norm, and suppose
that the distribution of a | o is κ-log-concave. Moreover, suppose that the flow field b⋆t (a | o) is L-
Lipschitz: ∥∇ob⋆t (a | o)∥ ≤ L. Then, with infinite integration steps, ∥∇oπ⋆θ(z, o)∥ ≤ L ·

√
1 + κ−1.

See Appendix I for a formal statement and proof. A classical example of a log concave distribution
is a | o ∼ N(µ(o), 1κ); as long as the variance 1/κ is bounded above (even in the limit of a Dirac),
there is at most a constant-multiplicative factor increase in the Lipschitz constant. When training a
flow, b⋆t (a | o) is approximated by the neural network. Thus, in the prototypical unimodal example
of κ-log-concave distributions, GCPs are not arbitrarily more expressive than RCPs. In fewer words:
more integration steps, even infinitely many, need not be equivalent to greater network depth.

Method Push-T Kitchen Tool-Hang

State Image State State Image

Regression 0.90 0.55 14.07 1.71 1.65

Flow 0.45 0.20 12.43 1.41 1.37

Table 3: Policy Lipschitz constant comparison. Lips-
chitz constant is averaged over 100 states.

To verify our theoretical prediction, we quan-
tify learned policies’ Lipchitz constants with a
zeroth-order proxy: starting from dataset states
st with observation ot, we inject small Gaus-
sian perturbations in the executed action to
reach a feasible nearby state s(i)t+1 with obser-
vation o(i)t+1, then measure input–output sensi-
tivity via finite differences of the policy around
the perturbed states (full algorithm and per-architecture results in Appendix E). This construction (i)
avoids reliance on noisy higher-order gradients in complex architectures, and (ii) keeps evaluations
on feasible observation to prevent conflating expressivity with model error on dynamically infeasi-
ble states. As predicted by our theory, GCPs are not strictly more expressive than RCPs as shown
in Table 3. On the contrary, RCPs show increased Lipschitz constants off the manifold of training
data, ruling out the assumption that GCPs win due to expressing policies with greater sensitivity
to the input variable. We note that our methodology, which perturbs actions rather than states, is
compatible pixel observations.

4 WHAT DESIGN COMPONENTS ENABLE THE SUCCESS OF GCPS?

Thus far, we have established that GCPs shine on high-precision, complex tasks, but that their per-
formance is not directly attributable to multi-modality or more complex o→ a mappings. To under-
stand the actual factors contributing to GCP success, we elucidate three key algorithmic components
(Fig. 1). Section 4.1 below proposes algorithmic variants which ablate these components. We find
that minimal iterative policy (MIP, Components 2 and 3) is the reduced variant which matches the
performance of flow (Section 4.2), whereas other variants match or perform worse than regression.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Component 1. Distributional learning denotes training a model to fit a conditional distribution
a ∼ πθ(o) of actions given observations, as opposed to deterministic predictions (i.e., a = πθ(o)). 1

Component 2. Stochasticity injection denotes the injection of additional stochastic inputs into the
neural network during training time (e.g., the variable z in Eq. (2.2)).

Component 3. Supervised Iterative Computation (SIC) denotes the iterative refinement of predic-
tions by feeding the previous outputs into the same network again during inference, and providing
supervision signals at every step of the generation procedure at training time. For example, in flow
GCPs, we integrate a supervised flow field bt(at | o) over time to get the final action a, and that bt
receives an independent supervisory signal for each t at training time (Eq. (2.2)).

4.1 INTERMEDIATES BETWEEN RCPS AND GCPS

We introduce a range of policies which lie along the spectrum between RCP and flow-based GCPs.
Our findings in Section 3.2 suggest that Component 1, capturing general a | o distributions, maybe
the least salient for performance. Hence, all of the variants that follow abandon Component 1 and
are not consistent for estimating a general conditional distributions of a | o. Instead, each variant
exhibits some combination of Components 2 and 3. In following exposition, we make explicit the
dependence of the network πθ on t, understanding that the networks predict actions, not velocities.

We derive all variants by starting with a two-step denoising (TSD) policy. As discussed in Re-
mark 4.1, this parametrization is superficially similar to, but substantively different than, popular
flow-map/consistency/shortcut models (Boffi et al., 2025b). TSD performs two steps of denoising,
one from zero, and a second from a fixed index t⋆ = .9:

πTSDθ ≈ argminθ E
(
∥(πθ(o, I0, t = 0)− (t⋆)

−1It⋆)∥2 + ∥(πθ(o, It⋆ , t⋆)− a)∥2
)
. (4.1)

where (o, a) ∼ ptrain, z ∼ N(0, I), and It = ta + (1 − t)z is the same interpolant used in flow
models, and where t⋆ = .9 is fixed. The normalization by t⋆ in Eq. (4.1) comes from the identity
t⋆a = Ez[It⋆]. We then sample âTSD0 ← πθ(o, z, 0) and âTSD ← πθ(o, t⋆â

TSD
0 + (1 − t⋆)z, t⋆). In

practice, we find that πTSD is equivalent to a minimal policy which only adds training noise in the
second step and has no stochasticity at inference time, which we call the minimal iterative policy.

Minimal Iterative Policy (MIP, ours). MIP, representing Components 2 and 3, is trained via

πMIPθ ≈ argmin
θ

E(∥(πθ(o, I0 = 0, t = 0)− a)∥2 + ∥(πθ(o, It⋆ , t⋆)− a)∥2), (4.2)

where (o, a) ∼ ptrain, z ∼ N(0, I), t⋆ := .9. At inference time, we compute:

âMIP0 ← πMIPθ (o, 0, t = 0), âMIP ← πMIPθ (o, t⋆â
MIP
0 , t⋆). (4.3)

Minimal iterative policy provides a minimal implementation that still exhibits competitive perfor-
mance with flow. Starting, with TSD and replace (t⋆)

−1It⋆ in the first term of the loss in Eq. (4.1)
with its expectation a = (t⋆)

−1E[It⋆]. We set the initial noise I0 = 0 to be zero, so that z only
contributes to the second training loss. Finally, we sample with z = 0 to isolate the effect of adding
stochasticity at training time, without stochasticity at inference time (c.f. Table 1) . Since we provide
supervision for both first step πMIPθ (o, I0 = 0, t = 0) and second step πMIPθ (o, I0 = It⋆ , t = t⋆) with
ground truth action a, MIP also exemplifies SIC in its simplest form.

Remark 4.1. (MIP v.s. Shortcut Models (Boffi et al., 2025a;b; Song et al., 2023; Geng et al., 2025))
While TSD and MIP share properties of a flow model while only conducting inference, these are
fundamentally different than few-step shortcut/flow-map models. The latter integrate a flow field
across a continuum of noise levels t ∈ [0, 1], and therefore can correctly learn general distributions
(i.e. they satisfy Component 1). On the other hand, TSD and MIP are trained to predict the condi-
tional mean of the interpolant, which is not a valid objective for distribution fitting. The performance
of MIP supports our overall theme that, in robotic control applications, faithfully capturing the full
conditional distribution over actions is not needed for control performance.

1Note that Component 1 refers to training a model to fit a conditional distribution, not necessarily to the
sampling. For example, training bθ via flow model but conducting deterministic inference with Φθ,eul(z = 0 |
o) is still considered distributional learning.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Additional methods. Straight Flow (SF, ours), representing only Component 2, further simplifies
MIP to a single stage by setting the interpolation index t⋆ = 1 and removing the second term: πSFθ ≈
E∥πθ(o, z, t = 0) − a∥2. Inference is performed in a single step, by setting a = πSFθ (o, z, t = 0).
Like RCPs, the optimal SF policy is the conditional mean of a | o. The only difference between the
two is injection of stochastic input z during training. Our experiments with SF precisely isolate this
effect—for example, determining if the additional stochasticity during training improves learning
dynamics, or behaves like data augmentation. As with MIP, we set z = 0, as stochasticity at
inference time has little effect on policy performance. Finally, we study residual regression (RR),
which replaces It⋆ in Eq. (4.2) with its expectation over z: E[It⋆] = t⋆a. This preserves SIC
(Component 3) yet removes stochasticity injection. Full details are provided in Appendix C.

To summarize, minimal iterative policy (MIP), straight-flow (SF) and residual regression (RR) rep-
resent all combinations of Components 2 and 3 without exhibiting Component 1.

4.2 COMPONENTS 2 AND 3 DRIVE PERFORMANCE: MIP MATCHES FLOW

Tool
 Han

g (P
H, S

.)

Tran
spor

t (P
H, S

.)

Tran
spor

t (M
H, S

.)

Push
 T (

S.)

Kitc
hen

(S.)

Tool
 Han

g (P
H, I

.)

Tran
spor

t (P
H, I

.)
0.0

0.5

1.0

Av
er

ag
e

Re
la

ti
ve

Su
cc

es
s

Tool
 Han

g (P
H, S

.)

Tran
spor

t (P
H, S

.)

Tran
spor

t (M
H, S

.)

Push
 T (

S.)

Kitc
hen

(S.)

Tool
 Han

g (P
H, I

.)

Tran
spor

t (P
H, I

.)
0.0

0.5

1.0

Be
st

Re
la

ti
ve

Su
cc

es
s

Regression Straight Flow Residual Regression MIP Flow

Figure 4: Performance comparison between MIP and its variants. Average relative success rate on worst
architecture and the best relative success rate on optimal architecture are reported. “S”: state; “I”: image.

Based on the design space parsing in Section 4, we are able to systematically ablate different de-
sign components’ contribution to the final performance in Fig. 4. Our evaluation shows that either
stochasticity injection (Component 2, exhibit by SF) or supervised iterative computation (Compo-
nent 3, exhibited by RR) in isolation do not match the success of GCPs. MIP, being the only method
which combines supervised iterative computation and stochasticity injection, achieves success on
par with flow. Thus we conclude: the performance of GCPs comes from combining stochastic
injection and iterative computation. Distributional training appears to be the least important factor.

Remark 4.2. Appendix C.2 exhibits two further variants which preserve Components 2 and 3: one
that does not supervise intermediate steps, and a second which does not condition a time step t⋆.
The latter does not enable network to learn separate functions across time steps. Both perform
even worse than regression, confirming the importance of supervision of intermediate steps and
decoupling network behavior across time steps.

5 EXPLAINING THE PERFORMANCE OF MIP

5.1 MANIFOLD DDHERENCE, NOT RECONSTRUCTION, DRIVES PERFORMANCE

Metric Regression SF RR MIP Flow

Off-manifold L2 0.067 0.063 0.062 0.054 0.042
Validation L2 0.290 0.234 0.224 0.195 0.217

Table 4: Comparison of different methods on mani-
fold adherence and reconstruction error. Results are
averaged across 3 different architectures and 32 states
on state-based Tool-Hang with deterministic dataset.

MIP, and the absence of multimodality, sug-
gest a better ability to approximate the expert
more accurately on training data. We test this
by evaluating the L2-error, i.e., reconstruction
error, on validation set. Surprisingly, we find
that MIP, Flow, and RCP exhibit the same val-
idation loss; hence validation loss does predict
their relative performance. Appendix G.1 re-
veals that validation loss doesn’t correlate with
performance across other axes of variation. In-
deed, policy performance requires taking good actions on o.o.d. states under compounding error at
deployment time (Simchowitz et al., 2025).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Thus, we study a proxy which reflects performance in o.o.d. situations. We perturb expert trajecto-
ries in dataset as described in Appendix E.1, and evalute a novel metric that we call the off-manifold
norm. Informally, this measures the projection error of a predicted action a onto the space spanned
by expert actions at neighboring states; see Appendix G.2 a for formal definition. Our metric as-
sesses the quality of actions under simulated compounding error. Table 4 reports both L2 validation
loss and off-manifold L2 norm for different methods: while all methods achieve low validation loss,
only MIP and Flow are able to achieve low off-manifold L2 norm, indicating their better manifold
adherence. As SF does not exhibit the same benefit, we conclude that supervised iterative com-
putation facilitates projection onto the manifold of expert actions by refining the prediction across
sequential steps. Appendix J provides additional confirmation of this hypothesis: GCPs are no better
than RCP at fitting high frequency functions, but exhibit lower on-manifold error, suitably defined.

5.2 STOCHASTICITY STABILIZES ITERATIVE COMPUTATION

SF matching regression, whilst RR underperforming regression, suggests that sequential action gen-
eration is highly brittle in the absence of stochasticity (Permenter & Yuan, 2024). Our findings
support the hypothesis that stochasticity injection serves to provide “coverage” of the generative
process. Specifically, we can think of learning to perform two-stage action generation as an “in-
ternal” behavior cloning problem (Ren et al., 2024) under the dynamics induced by the generative
process. Injecting stochasticity amounts to enhancing coverage of the action â0 in the first step of
MIP, thus enable iterative improvement with more NFEs (Appendix D.6). Its benefits are analogous
to trajectory noising effective in other behavior cloning applications (Laskey et al., 2017; Block
et al., 2023; 2024; Simchowitz et al., 2025). Similar benefits are found in the improved sensitivity
analysis of diffusion relative to flows (Albergo et al., 2024).

5.3 SUPERVISED ITERATIVE COMPUTATION SCALES BETTER WITH MODEL CAPACITY, IF THE
ARCHITECTURE IS RIGHT

Regression, enjoys stronger relative performance at the smallest model sizes but scales more poorly
than flow and MIP with increased model capacity (Fig. 5). We conjecture that supervised iterative
computation can better utilize larger models, both by introducing more supervision steps at training,
and by providing more parameters to represent different computations at successive generation steps.

We conclude by emphasizing the role of architecture design. To showcase its importance, we ablate
the performance of different method’s average performance across both the 3 architectures above,
and the more traditional MLP and RNN architectures, implemented with modern best practices in-
cluding FiLM conditioning (Perez et al., 2018), and skip-connections (He et al., 2016)/LayerNorm
(Ba et al., 2016) where appropriate (details in Appendix D.2). As demonstrated in Fig. 5, the com-
bination of training method and architecture design has a strong yet somewhat erratic effect on both
GCPs and RCP performance. In Tool-Hang, RCP achieves the best performance with an MLP
architecture. In Transport, MLP with flow can even outperform more expressive architectures
like Chi-Transformer. The coupling between training and architecture choice highlights the
importance of controlling architecture design when comparing across methods.

Sud
eep

-Di
T

Chi
-TF

M

Chi
-UN

et MLP RNN

Architecture

0.00

0.25

0.50

0.75

Av
er
ag
e
Su
cc
es
s

Transport (PH, State)

Sud
eep

-Di
T

Chi
-TF

M

Chi
-UN

et MLP RNN

Architecture

0.00

0.25

0.50

0.75

Tool Hang (PH, State)

32 64 128 256 512
Model Size (M)

0.0

0.2

0.4

0.6

Transport (PH, State)

32 64 128 256 512
Model Size (M)

0.0

0.2

0.4

0.6

Tool Hang (PH, State)

Regression MIP Flow

Figure 5: Architecture and model size ablation. Success rate are averaged across 3 seeds and 5 checkpoints
on Tool-Hang and Transport tasks. Left 2 plots: architecture ablation. Right 2 plots: Model size ablation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Michael S. Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic inter-
polants. arXiv preprint arXiv:2209.15571, 2022.

Michael S. Albergo, Nicholas M. Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unify-
ing framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Michael Samuel Albergo, Mark Goldstein, Nicholas Matthew Boffi, Rajesh Ranganath, and Eric
Vanden-Eijnden. Stochastic interpolants with data-dependent couplings. In Proceedings of the
41st International Conference on Machine Learning, 2024.

Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning
from demonstration. Robotics and Autonomous Systems, 2009.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Michael Bain and Claude Sammut. A framework for behavioural cloning. Machine Intelligence,
1995.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. π0: A vision-language-action flow
model for general robot control. arXiv preprint arXiv:2410.24164, 2024.

Adam Block, Dylan J Foster, Akshay Krishnamurthy, Max Simchowitz, and Cyril Zhang. Butterfly
effects of sgd noise: Error amplification in behavior cloning and autoregression. arXiv preprint
arXiv:2310.11428, 2023.

Adam Block, Ali Jadbabaie, Daniel Pfrommer, Max Simchowitz, and Russ Tedrake. Provable guar-
antees for generative behavior cloning: Bridging low-level stability and high-level behavior. Ad-
vances in Neural Information Processing Systems, 2024.

Nicholas M. Boffi, Michael S. Albergo, and Eric Vanden-Eijnden. Flow map matching with
stochastic interpolants: A mathematical framework for consistency models. arXiv preprint
arXiv:2406.07507, 2025a.

Nicholas M. Boffi, Michael S. Albergo, and Eric Vanden-Eijnden. How to build a consistency
model: Learning flow maps via self-distillation. arXiv preprint arXiv:2505.18825, 2025b.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large Scale GAN Training for High Fidelity
Natural Image Synthesis. arXiv preprint arXiv:1809.11096, 2019.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 2020.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. arXiv preprint arXiv:2106.01345, 2021.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 2018.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R. Zhang. Sampling is as
easy as learning the score: Theory for diffusion models with minimal data assumptions. arXiv
preprint arXiv:2209.11215, 2023.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shu-
ran Song. Diffusion policy: Visuomotor policy learning via action diffusion. arXiv preprint
arXiv:2303.04137, 2023.

Cheng Chi, Zhenjia Xu, Chuer Pan, Eric Cousineau, Benjamin Burchfiel, Siyuan Feng, Russ
Tedrake, and Shuran Song. Universal manipulation interface: In-the-wild robot teaching without
in-the-wild robots. arXiv preprint arXiv:2402.10329, 2024.

Eugenio Chisari, Nick Heppert, Max Argus, Tim Welschehold, Thomas Brox, and Abhinav Valada.
Learning robotic manipulation policies from point clouds with conditional flow matching. In
Conference on Robot Learning (CoRL), 2024.

Max Daniels. On the contractivity of stochastic interpolation flow. arXiv preprint arXiv:2504.10653,
2025.

Sudeep Dasari, Oier Mees, Sebastian Zhao, Mohan Kumar Srirama, and Sergey Levine. The ingre-
dients for robotic diffusion transformers. arXiv preprint arXiv:2410.10088, 2024.

Zibin Dong, Yifu Yuan, Jianye Hao, Fei Ni, Yi Ma, Pengyi Li, and Yan Zheng. CleanDiffuser:
An easy-to-use modularized library for diffusion models in decision making. arXiv preprint
arXiv:2406.09509, 2024.

Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs, Adrian
Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning. In
Conference on robot learning. PMLR, 2022.

Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
models. arXiv preprint arXiv:2410.12557, 2024.

Zhengyang Geng, Mingyang Deng, Xingjian Bai, J. Zico Kolter, and Kaiming He. Mean flows for
one-step generative modeling. arXiv preprint arXiv:2505.13447, 2025.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 2020.

Chengyang He, Xu Liu, Gadiel Sznaier Camps, Guillaume Sartoretti, and Mac Schwager. Demys-
tifying diffusion policies: Action memorization and simple lookup table alternatives, 2025. URL
https://arxiv.org/abs/2505.05787.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances
in Neural Information Processing Systems, 2020.

Xixi Hu, Qiang Liu, Xingchao Liu, and Bo Liu. Adaflow: Imitation learning with variance-adaptive
flow-based policies. Advances in Neural Information Processing Systems, 2024.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 2022.

11

https://arxiv.org/abs/2505.05787

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tsung-Wei Ke, Nikolaos Gkanatsios, and Katerina Fragkiadaki. 3D diffuser actor: Policy diffusion
with 3d scene representations. arXiv preprint arXiv:2402.10885, 2024.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,
Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning proba-
bility flow ode trajectory of diffusion. arXiv preprint arXiv:2310.02279, 2023.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. OpenVLA: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Michael Laskey, Jonathan Lee, Roy Fox, Anca Dragan, and Ken Goldberg. Dart: Noise injection
for robust imitation learning. In Conference on robot learning. PMLR, 2017.

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence of score-based generative modeling for
general data distributions. In International Conference on Algorithmic Learning Theory. PMLR,
2023.

Fanqi Lin, Yingdong Hu, Pingyue Sheng, Chuan Wen, Jiacheng You, and Yang Gao. Data scaling
laws in imitation learning for robotic manipulation. arXiv preprint arXiv:2410.18647, 2024.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. In International Conference on Learning Representations (ICLR), 2023.

Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu,
Hang Su, and Jun Zhu. RDT-1B: A diffusion foundation model for bimanual manipulation. arXiv
preprint arXiv:2410.07864, 2024.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-Solver++: Fast
solver for guided sampling of diffusion probabilistic models. Machine Intelligence Research,
2025.

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
Fei, Silvio Savarese, Yuke Zhu, and Roberto Martín-Martín. What matters in learning from offline
human demonstrations for robot manipulation. In Conference on Robot Learning (CoRL), 2021.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and
Tim Salimans. On distillation of guided diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2023.

Khang Nguyen et al. Flowmp: Learning motion fields for robot planning with conditional flow
matching. arXiv preprint arXiv:2503.06135, 2025.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International conference on machine learning. PMLR, 2021.

NVIDIA, Johan Bjorck, Fernando Castaneda, N Cherniadev, X Da, R Ding, L Fan, Y Fang, D Fox,
F Hu, S Huang, et al. Gr00t n1: An open foundation model for generalist humanoid robots. arXiv
preprint arXiv:2503.14734, 2025.

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel, Jan Peters, et al.
An algorithmic perspective on imitation learning. Foundations and Trends in Robotics, 2018.

Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In 2024 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jyothish Pari, Nur Muhammad Shafiullah, Sridhar Pandian Arunachalam, and Lerrel Pinto.
The surprising effectiveness of representation learning for visual imitation. arXiv preprint
arXiv:2112.01511, 2021.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. In Proceedings of the AAAI conference on artificial
intelligence, 2018.

Frank Permenter and Chenyang Yuan. Interpreting and improving diffusion models from an opti-
mization perspective. arXiv preprint arXiv:2306.04848, 2024.

Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,
Chelsea Finn, and Sergey Levine. FAST: Efficient Action Tokenization for Vision-Language-
Action Models. arXiv preprint arXiv:2501.09747, 2025.

Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
et al. π0.5: A Vision-Language-Action Model with Open-World Generalization. arXiv preprint
arXiv:2504.16054, 2025.

Dean A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In Advances in
Neural Information Processing Systems, 1988.

Aaditya Prasad, Kevin Lin, Jimmy Wu, Linqi Zhou, and Jeannette Bohg. Consistency Policy: Ac-
celerated Visuomotor Policies via Consistency Distillation. arXiv preprint arXiv:2405.07503,
2024.

Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majum-
dar, Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimiza-
tion. arXiv preprint arXiv:2409.00588, 2024.

Moritz Reuss, Maximilian Xiling Li, Xiaogang Jia, and Rudolf Lioutikov. Goal-conditioned im-
itation learning using score-based diffusion policies. In Proceedings of Robotics: Science and
Systems (RSS), 2023.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of the fourteenth international con-
ference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings,
2011.

Nur Muhammad Shafiullah, Zichen Cui, Ariuntuya Arty Altanzaya, and Lerrel Pinto. Behavior
transformers: Cloning k modes with one stone. Advances in neural information processing sys-
tems, 2022.

Juyi Sheng, Ziyi Wang, Peiming Li, and Mengyuan Liu. MP1: Meanflow tames policy learning in
1-step for robotic manipulation. arXiv preprint arXiv:2507.10543, 2025.

Max Simchowitz, Daniel Pfrommer, and Ali Jadbabaie. The pitfalls of imitation learning when
actions are continuous. arXiv preprint arXiv:2503.09722, 2025.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021a.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Diffusion Implicit Models. arXiv
preprint arXiv:2010.02502, 2022.

Yang Song and Prafulla Dhariwal. Improved Techniques for Training Consistency Models. arXiv
preprint arXiv:2310.14189, 2023.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-Based Generative Modeling through Stochastic Differential Equations. arXiv
preprint arXiv:2011.13456, 2021b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, Jianlan Luo, You Liang Tan, Lawrence Yun-
liang Chen, Pannag Sanketi, Quan Vuong, Ted Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey
Levine. Octo: An open-source generalist robot policy. arXiv preprint arXiv:2405.12213, 2024.

TRI LBM Team, Jose Barreiros, Andrew Beaulieu, Aditya Bhat, Rick Cory, Eric Cousineau,
Hongkai Dai, et al. A Careful Examination of Large Behavior Models for Multitask Dexterous
Manipulation. arXiv preprint arXiv:2507.05331, 2025.

Jingyun Yang, Zi-ang Cao, Congyue Deng, Rika Antonova, Shuran Song, and Jeannette Bohg.
EquiBot: Sim(3)-equivariant diffusion policy for generalizable and data efficient learning. arXiv
preprint arXiv:2407.01479, 2024.

Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3D diffusion
policy: Generalizable visuomotor policy learning via simple 3d representations. arXiv preprint
arXiv:2403.03954, 2024.

Qinglun Zhang, Zhen Liu, Haoqiang Fan, Guanghui Liu, Bing Zeng, and Shuaicheng Liu. Flow-
policy: Enabling fast and robust 3d flow-based policy via consistency flow matching for robot
manipulation. arXiv preprint arXiv:2412.04987, 2024.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
arXiv preprint arXiv:2204.13902, 2022.

Tony Z. Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

Zuyuan Zhu and Huosheng Hu. Robot learning from demonstration in robotic assembly: A survey.
Robotics, 2018.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowl-
edge to robotic control. In Conference on Robot Learning. PMLR, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A RELATED WORKS

Robotic Behavior Cloning. Behavior cloning (BC), also known as learning from demonstrations
(LfD), has become a popular paradigm to enable robots to conduct complex, diverse and long-
horizon manipulation tasks by learning from expert demonstrations (Argall et al., 2009; Zhu & Hu,
2018; Zhao et al., 2023; Chi et al., 2024; Lin et al., 2024). In parallel, “robot foundation mod-
els” scale BC with internet-pretrained vision-language transformer-based backbones (Brohan et al.,
2022; Zitkovich et al., 2023; O’Neill et al., 2024) and large-scale teleoperation datasets (Kim et al.,
2024; Team et al., 2024). More recently, to better model continuous actions, generative models like
diffusion and flow have been adopted to replace the tokenization method in transformers to achieve
more expressive policies (NVIDIA et al., 2025; Black et al., 2024; Physical Intelligence et al., 2025;
Liu et al., 2024). This work focuses on the generative modeling part of the behavior cloning pipeline,
ablating the key design choices that lead to the success of generative control policies.

Generative Modeling. The recent success of behavior cloning policies is built upon a rapid evo-
lution of generative modeling techniques, starting from tokenization methods (Brown et al., 2020;
Chen et al., 2021; Pertsch et al., 2025) and adversarial methods (Brock et al., 2019; Goodfellow
et al., 2020; Ho & Ermon, 2016). Later, probabilistic generative models with iterative computation
like diffusion models (Ho et al., 2020; Song et al., 2021b; Lu et al., 2025; Song et al., 2022; Nichol
& Dhariwal, 2021; Karras et al., 2022) became a popular choice for generative modeling thanks to
their better training stability and sampling quality. Flow models (Lipman et al., 2023; Albergo &
Vanden-Eijnden, 2022; Liu et al., 2022) and consistency/shortcut models (Song et al., 2023; Song
& Dhariwal, 2023; Meng et al., 2023; Boffi et al., 2025a; Geng et al., 2025) were later developed
to achieve faster sampling while maintaining the expressivity of diffusion models. Though there
have been extensive studies on probabilistic generative modeling’s effectiveness in image and text
generation (Lee et al., 2023; Chen et al., 2023), its mechanism in control, especially the key design
choices, are still opaque in decision making.

Generative Control Policies. To model diverse and complex behaviors, GCPs parameterize the
relationship between observations and actions as a distribution rather than a deterministic function.
Early works use transformers with tokenizers (Chen et al., 2021; Shafiullah et al., 2022), energy
functions (Florence et al., 2022; Dasari et al., 2024) and VAEs (Zhao et al., 2023) to parameterize
the distribution. Diffusion models (Reuss et al., 2023; Chi et al., 2023; Ke et al., 2024; Dong et al.,
2024; Janner et al., 2022; Yang et al., 2024) were introduced for their better expressivity of complex
and multi-modal behaviors, followed by flow-based (Zhang et al., 2024; Black et al., 2024; Phys-
ical Intelligence et al., 2025) and flow-map/consistency-model/shortcut-model-based acceleration
methods (Hu et al., 2024; Prasad et al., 2024; Sheng et al., 2025).

Theoretical Literature on GCPs. Block et al. (2024) established that GCPs can imitate arbitrary
expert distributions. Given our findings on the absence of multi-modality, a more closely related
theoretical findings is that of Simchowitz et al. (2025), which elucidates how GCPs can circumvent
certain worst-case compounding error phenomena in continuous-control imitation learning. Though
the proposed mechanism is different, that finding is conceptually similar to our own: GCPs benefits
arise from their favorable out-of-distribution properties, rather than raw expressivity of fitting in-
distribution expert behavior.

B PREVIOUS WORKS’ CONNECTION WITH GCP’S TAXONOMY.

We classify GCPs into three components: distributional learning, stochasticity injection, and su-
pervised iterative computation. Starting from regression, it has none of the three components. To
model a more complex distribution, Gaussian Mixture Model (GMM) (Zhu & Hu, 2018) was used
to parameterize the distribution, trained with cross entropy loss. To make the network be able to
represent more complex distirbutions, prior to diffusion, non-parametric method like VAEs (Zhao
et al., 2023) was used to parameterize the distribution, trained with reconstruction loss. During the
training, a latent variables is predicted to predict the style the motion by mapping it from a noise
z. Another line of work try to improve the policy expressivity by introducing iterative compute,
like implicit behavior cloning (Florence et al., 2022; Dasari et al., 2024). The idea is to allow the
network predict the energy function of the action rather the action itself. Compared to diffusion,
the major difference is that they do not explicitly injecting noise during training. Lastly, flow-based

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

GCPs (Zhang et al., 2024; Black et al., 2024; Physical Intelligence et al., 2025), which holds all
the three components and demonstrate state-of-the-art performance on popular benchmarks. In this
paper, we look into a new combination that haven’t been explored before, which is the combination
of stochasticity injection and supervised iterative computation.

C ADDITIONAL POLICY PARAMETRIZATIONS

This section further elaborates the design space of MIP in stochasticity injection, iterative computa-
tion and intermediate supervision.

C.1 FULL ABALATION OF MIP VARIANTS

This section formally describes the training process of all MIP with different stochasticity injection
and supervised iterative computation design.

Residual Regression (RR) removes all stochasticity in training and the training objective is:

πRRθ ≈ argminθ E(o,a)∼ptrain,z∼N(0,I)(
∥(πθ(o, I0 = 0, t = 0)− t⋆a)∥2 + ∥(πθ(o, sg(πθ(o, I0 = 0, t = 0)), t⋆)− a)∥2

)
.

Two-Step Denoising (TSD) The training objective is:

πTSDθ ≈ argminθ E(o,a)∼ptrain,z∼N(0,I)(
∥(πθ(o, I0, t = 0)− t⋆a)∥2 + ∥(πθ(o, sg(πθ(o, I0, t = 0)) + (1− t⋆)z, t⋆)− a)∥2

)
.

where I0 = z. Compared to MIP, TSD adds stochasticity to both first step training.

MIP with Data Augmentation (MIP-Dagger) To understand the importance of decoupling for
enabling iterative computation, we propose an additional variant of MIP that lies between MIP and
RR, where the two steps are partially coupled. Since the training method of second iteration is
similar to data augmentation, we call this variant MIP-Dagger:

πMIP-Daggerθ ≈ argmin
θ

E
(o,a)∼ptrain,z∼N(0,I)

(∥(πθ(o, I0 = 0, t = 0)− t⋆a)∥2 + ∥(πθ(o, t⋆sg(πθ(o, I0 = 0, t = 0)) + (1− t⋆)z, t⋆)− a)∥2),

where the major difference compared to MIP is the second step takes in the interpolant between first
step output and noise rather than the action and noise.

MIP without intermediate supervision (MIP-NoSupervision) To understand the effect of
intermediate supervision on iterative computation, we propose one variant of MIP that removes the
supervision of intermediate computation steps while preserving stochasticity injection at training
time, named MIP-NoSupervision:

πMIP-NoSupervisionθ ≈ argmin
θ

E
(o,a)∼ptrain,z∼N(0,I)

(∥(πθ(o, t⋆sg(πθ(o, I0 = 0, t = 0)) + (1− t⋆)z, t⋆)− a)∥2),

where the first step’s output is unsupervised.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

MIP without t conditioning By removing t conditioning in MIP, it degenerates to SF. Here we
present the multi-step integration process for straight flow when action distribution is Dirac delta.
The integrator from s to t is:

at =
t− s
1− s

πθ(o, s · as) +
1− t
1− s

as

C.2 EXPERIMENT RESULTS

We benchmark all methods on the Tool-Hang task, given it is the one with the largest gap between
RCP and GCPs. From Table 5, we can see that the important part is to add stochasticity injection
between two iterations, and intermediate supervision is also important to realize the potential of
iterative computation.

Method NFEs Success Rate
TSD 2 0.80
MIP 2 0.80
MIP-NoSupervision 2 0.42
MIP-Dagger 2 0.64
RR 2 0.54
SF 1 0.54
SF 3 0.55
SF 9 0.52

Table 5: Success rates across different MIP variants and RR on Tool-Hang task over 5 checkpoints across 3
architectures.

D CONTROL EXPERIMENTS

D.1 TASK SETTINGS

This section introduces all the tasks presented in the main paper. To reach a sound conclusion, use
common benchmarks appears in previous works:

Robomimic Robomimic (Mandlekar et al., 2021) is a large-scale robotic manipulation bench-
mark designed to study imitation learning and offline reinforcement learning. It contains five ma-
nipulation tasks (Lift, Can, Square, Transport, Tool-Hang) with proficient human (PH)
teleoperated demonstrations, and for four of them, additional mixed proficient/non-proficient human
(MH) demonstration datasets are provided (9 variants in total). We report results on both state-
based and image-based observations, since these two modalities pose distinct challenges. Among
the tasks, Tool-Hang requires extremely precise end-effector positioning and fine-grained con-
tact control, while Transport demands high-dimensional control and coordination over extended
horizons.

Push-T Push-T (Florence et al., 2022) is adapted from the Implicit Behavior Cloning (IBC).
The task involves pushing a T-shaped block to a fixed target location using a circular end-effector.
Randomized initializations of both the block and the end-effector introduce significant variability.
The task is contact-rich and requires modeling complex object dynamics for precise block place-
ment. Two observation variants are considered: (i) raw RGB image observations and (ii) state-based
observations containing object pose and end-effector position.

Kitchen The Franka Kitchen environment is designed to test the ability of IL and offline RL
methods to perform long-horizon, multi-task manipulation. It includes 7 interactive objects, with
human demonstration data consisting of 566 sequences, each completing 4 sub-tasks in arbitrary
order (e.g., opening a cabinet, turning a knob). Success is measured by completing as many of
the demonstrated sub-tasks as possible, regardless of order. This setup explicitly introduces both

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

short-horizon and long-horizon multimodality, requiring policies to generalize across compositional
tasks.

MetaWorld MetaWorld is a large-scale suite of diverse manipulation tasks built in MuJoCo,
where agents must perform challenging object interactions using a robotic gripper. We adopt the
3D observation setting using point cloud representations, ported from the DP3 framework (Ze et al.,
2024), to better evaluate geometric reasoning and spatial generalization. Tasks in MetaWorld are
categorized into different difficulty levels, with benchmarks testing few-shot adaptation and multi-
task transfer learning.

Adroit Adroit is a suite of dexterous manipulation tasks featuring a 24-DoF anthropomor-
phic robotic hand. Tasks include pen rotation, door opening, and object relocation, all of which
demand precise, coordinated multi-finger control. Following DP3 (Ze et al., 2024), we use point
cloud observations to capture fine-grained 3D object-hand interactions. Policies are trained using
VRL3, highlighting the challenges of high-dimensional control and sim-to-real transfer in dexterous
manipulation.

D.2 ARCHITECTURE DESIGN

We study four policy backbones—Chi-Transformer, Sudeep-DiT, Chi-UNet, RNN, and
MLP —under a common training recipe and data interface. Unless otherwise specified, all models
are capacity-matched to ∼20M parameters to enable fair comparison.

Chi-UNet is adopted from Diffusion Policy (Chi et al., 2023) which built on top of 1D temporal
U-Net (Janner et al., 2022) with FiLM conditioning (Perez et al., 2018) on observation o and flow
time t. Chi-UNet has a strong inductive bias for the temporal structure of the action and tends to
smooth out the action.

Chi-Transformer follows the time–series diffusion transformer from Diffusion Policy (Chi
et al., 2023), where the noisy action tokens at form the input sequence and a positional embed-
ding of the flow time t is prepended as the first token; observations o are mapped by a shared
MLP into an observation-embedding sequence that conditions the decoder stack. Compared to
Chi-UNet, Chi-Transformer uses token-wise self-attention over the whole action sequence,
thus can model less-smooth and more complex actions.

Sudeep-DiT is a DiT-style (Diffusion Transformer) conditional noise network specialized for
policies adopted from DiT-Policy (Dasari et al., 2024): observation o are first encoded into observa-
tion vectors; the flow time t is embedded via positional embedding; an encoder–decoder transformer
then fuses these with initial noise z to predict next action. The key ingredient of Sudeep-DiT is re-
placing standard cross-attention with adaLN-Zero blocks—adaptive LayerNorm modulation using
the mean encoder embedding and the time embedding, with zero-initialized output-scale projec-
tions—stabilizing diffusion training at scale. Compared to Chi-Transformer, Sudeep-DiT
has adaLN-based conditioning (instead of vanilla cross-attention) and an explicit encoder-decoder
split, yielding better training stability.

RNN The RNN backbone processes sequences with a stacked LSTM/GRU. For each action time
step in the chunk, the input vector concatenates: the current noised action at, a time embed-
ding for t, and a observation embedding for o. The RNN outputs are fed to a MLP head with
LayerNorm+ApproxGELU+Dropout blocks before output the action with final linear head. All
linear and recurrent weights use orthogonal initialization (biases zero), and RNN layer dropout is
applied when depth>1.

MLP The MLP backbone flattens the action and observation, appending the time embedding. Each
mlp block has LayerNorm, ApproxGELU and Dropout blocks with residual connection and orthog-
onal weight initialization throughout. Each block output is then modulated with FiLM conditioning.

DP3 built on top of Chi-UNet with extra 3d perception encoder. We use the exact same archi-
tecture as 3D diffusion policy (Ze et al., 2024).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Model hyperparameters In the main experiments, we align the model capacity to 20M parame-
ters for default if not specified, with detailed hyperparameters report in Table 6.

Backbone Heads Layers Embedding dim Dropout

Sudeep-DiT 8 8 256 0.1
Chi-UNet – – 256 –
Chi-Transformer 4 8 – 0.1
RNN – 8 512 0.1
MLP – 8 512 –

Table 6: Model hyperparameters.

D.3 FULL RESULTS FOR FLOW AND REGRESSION COMPARISON

In the paper, we only present the aggregated results across 3 architectures. Figure 6 present the full
results across all architectures with different training methods.

Tr
an
sp
or
t
(M
H,
 I
ma
ge
)

Di
sa
ss
em
bl
e
(3
D)

St
ic
k-
Pu
sh
 (
3D
)

Ad
ro
it
 H
am
me
r
(3
D)

Li
ft
 (
MH
,
St
at
e)

Pu
sh
 T
 (
Im
ag
e)

As
se
mb
ly
 (
3D
)

Sq
ua
re
 (
MH
,
Im
ag
e)

Li
ft
 (
PH
,
St
at
e)

Ca
n
(P
H,
 I
ma
ge
)

Li
ft
 (
PH
,
Im
ag
e)

Ca
n
(P
H,
 S
ta
te
)

Li
ft
 (
MH
,
Im
ag
e)

Ad
ri
ot
 P
en
 (
3D
)

Ca
n
(M
H,
 S
ta
te
)

Sq
ua
re
 (
PH
,
St
at
e)

Ad
ro
it
 D
oo
r
(3
D)

Sq
ua
re
 (
PH
,
Im
ag
e)

Ki
tc
he
n
(S
ta
te
)

Tr
an
sp
or
t
(P
H,
 I
ma
ge
)

Pu
sh
 T
 (
St
at
e)

Ca
n
(M
H,
 I
ma
ge
)

Sq
ua
re
 (
MH
,
St
at
e)

Tr
an
sp
or
t
(P
H,
 S
ta
te
)

To
ol
 H
an
g
(P
H,
 S
ta
te
)

Tr
an
sp
or
t
(M
H,
 S
ta
te
)

To
ol
 H
an
g
(P
H,
 I
ma
ge
)

0.0

0.5

1.0

Av
er
ag
e

Re
la
ti
ve

Su
cc
es
s

Regression
Flow

Figure 6: Relative performance of RCP compared to GCP across common benchmarks (worst-case ar-
chitecture). For each task, we implement Chi-Transformer, Sudeep-DiT and Chi-UNet. For each
architecture, we average performance of the last 5 training checkpoints across three seeds. We then report the
performance of the worst-performing architecture, chosen individually for both RCP and GCP, to demonstrate
method robustness. For Flow, we always do 9 step Euler integrations, where its performance plateaued. For
readability, RCP success rates are plotted relative to flow, with flow normalized to performance of 1 per task.
Tasks are grouped by observation modality, and ordered by relative RCP performance. Red dashed line indi-
cates threshold at which RCP attains < 95% success of GCP.

D.4 DATASET QUALITY ABLATION

GCPs are believed to handle data with diverse quality better. To test that assumption, we manually
corrupt the expert dataset and inject stochactity and multi-modality in to the dataset. In Table 7, we
compare 4 different datasets (3 of them collected by ourselves). In the collected dataset, we manually
inject noise to the policy and add delay the policy from time to time to introduce multi-modality that
is common in the real world.

D.5 FULL RESULTS FOR MIP AND ITS VARIANTS

For Kitchen, the task has multiple stages. In the main results, we only report the performance
of the last stage since it is the most challenging one. Table 11 shows the performance comparison
across different design choices on Kitchen task.

D.6 DIFFERENT METHOD’S PERFORMANCE WITH DIFFERENT NUMBER OF FUNCTION
EVALUATIONS

We also provide detailed evaluation on different method’s scaling behavior given different amount
of online computation budgets. Table 12 highlights that only MIP and Flow benefit from iterative
computate.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Architecture Method NFEs Delayed & Noisy Policy Delayed Policy Zero-Flow Proficient Human
(Worst Quality) (Mixed Quality) (Better Quality) (Good Quality)

Chi-UNet Regression 1 0.70/0.63 0.80/0.72 0.76/0.65 0.76/0.62
Chi-UNet SF 1 0.70/0.62 0.82/0.76 0.84/0.77 0.62/0.38
Chi-UNet MIP 2 0.80/0.72 0.82/0.61 0.74/0.64 0.80/0.68
Chi-UNet Flow 9 0.76/0.68 0.74/0.50 0.76/0.54 0.84/0.70

Chi-Transformer Regression 1 0.38/0.22 0.40/0.31 0.42/0.26 0.50/0.24
Chi-Transformer SF 1 0.46/0.35 0.68/0.50 0.56/0.41 0.62/0.48
Chi-Transformer MIP 2 0.56/0.49 0.70/0.54 0.64/0.56 0.72/0.68
Chi-Transformer Flow 9 0.56/0.34 0.54/0.48 0.62/0.49 0.68/0.54

Sudeep-DiT Regression 1 0.42/0.29 0.36/0.28 0.42/0.32 0.30/0.19
Sudeep-DiT SF 1 0.66/0.41 0.60/0.54 0.72/0.57 0.68/0.50
Sudeep-DiT MIP 2 0.66/0.56 0.74/0.58 0.70/0.61 0.86/0.78
Sudeep-DiT Flow 9 0.56/0.45 0.66/0.58 0.72/0.65 0.78/0.68

Table 7: Performance comparison across different methods and data quality levels. We evaluate on the task
Tool-Hang with state observations using 10M parameter networks. Success rates are reported as averages
over 5 checkpoints across 3 seeds.

Architecture Method Lift Can Square Transport Tool-Hang Push-T Kitchen

mh ph mh ph mh ph mh ph

Sudeep-DiT Flow 1.00/0.99 1.00/1.00 1.00/0.94 1.00/1.00 0.88/0.75 1.00/0.94 0.40/0.27 0.80/0.70 0.86/0.75 1.00/1.00 0.98/0.96
Sudeep-DiT Regression 1.00/0.99 1.00/1.00 0.92/0.90 1.00/0.98 0.72/0.53 0.94/0.86 0.12/0.06 0.50/0.44 0.52/0.39 1.00/1.00 0.98/0.92
Sudeep-DiT SF 1.00/0.99 1.00/1.00 0.94/0.90 1.00/0.98 0.84/0.70 0.96/0.88 0.18/0.14 0.56/0.48 0.70/0.59 1.00/1.00 0.96/0.91
Sudeep-DiT MIP 1.00/0.99 1.00/1.00 0.98/0.95 1.00/1.00 0.90/0.81 0.98/0.94 0.44/0.38 0.76/0.68 0.92/0.88 1.00/1.00 1.00/0.97
Chi-Transformer Flow 1.00/1.00 1.00/1.00 1.00/0.93 1.00/0.98 0.78/0.74 0.96/0.89 0.44/0.34 0.88/0.64 0.68/0.54 1.00/1.00 1.00/0.96
Chi-Transformer Regression 1.00/0.99 1.00/0.99 0.98/0.92 1.00/0.96 0.74/0.61 0.92/0.85 0.28/0.20 0.68/0.51 0.40/0.36 1.00/1.00 0.98/0.91
Chi-Transformer SF 1.00/1.00 1.00/1.00 0.98/0.94 1.00/0.99 0.76/0.70 0.94/0.84 0.30/0.24 0.62/0.54 0.60/0.55 1.00/1.00 0.96/0.92
Chi-Transformer MIP 1.00/1.00 1.00/1.00 0.96/0.95 1.00/1.00 0.86/0.73 0.96/0.89 0.42/0.37 0.80/0.68 0.76/0.69 1.00/1.00 0.98/0.96
Chi-UNet Flow 1.00/1.00 1.00/1.00 1.00/0.98 1.00/1.00 0.90/0.78 0.98/0.94 0.52/0.40 0.80/0.73 0.84/0.70 1.00/1.00 1.00/0.97
Chi-UNet Regression 1.00/1.00 1.00/1.00 1.00/0.96 1.00/0.99 0.94/0.82 1.00/0.91 0.22/0.16 0.64/0.55 0.68/0.64 1.00/1.00 0.92/0.88
Chi-UNet SF 1.00/1.00 1.00/1.00 1.00/0.97 1.00/0.99 0.88/0.76 0.96/0.89 0.26/0.18 0.64/0.52 0.58/0.42 1.00/1.00 0.86/0.79
Chi-UNet MIP 1.00/1.00 1.00/1.00 1.00/0.98 1.00/0.99 0.92/0.81 1.00/0.94 0.62/0.46 0.80/0.69 0.80/0.64 1.00/1.00 1.00/0.96

Table 8: Performance comparison of Flow and Regression methods across different state-based robotic ma-
nipulation tasks. For each task, we report the best checkpoint performance / averaged performance over last 5
checkpoints. Each experiment is run with 3 seeds and we report the average performance across all seeds.

E LIPSCHITZ CONSTANT STUDY DETAILS

E.1 LIPSCHITZ EVLUATION METHOD

We note that not all inputs o are dynamically feasible, and our dataset lies only on a narrow manifold
of the observation space. Therefore, we must carefully evaluate the Lipschitz constant on the feasible
observation space to avoid conflating model expressivity with errors arising from infeasible states.
To ensure feasibility, instead of directly perturbing the state, we perturb the action and then roll it
out in the environment. This guarantees that both the perturbed state and the resulting observation
remain feasible.

In practice, we identify states that exhibit the highest ambiguity of actions in the dataset, referred to
as critical states. For each critical state, we inject Gaussian noise η ∼ N (0, ϵ2I) into the normalized
action, unnormalize it, and then roll it out. We select 100 critical states from the dataset. For each
state, we perturb the corresponding expert action a with 64 independent Gaussian samples.

Let o denote the next nominal observation after applying the nominal action a. After rolling out
the perturbed actions, we obtain perturbed observations o(1), . . . , o(Nperturb). The policy then predicts
the perturbed actions a(i) = π(o(i)). To ensure comparability across different states and tasks, we
evaluate the Lipschitz constant with respect to normalized observations ō = o−µo

σo
and normalized

actions ā = a−µa

σa
. Finally, the Lipschitz constant is estimated using a zeroth-order approximation:

L ≈ max
i

∥ā(i) − ā∥2
∥η∥2

. (E.1)

Full version of above process is stated in Algorithm 1.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Architecture Method Lift Can Square Transport Tool-Hang Push-T

mh ph mh ph mh ph mh ph

Sudeep-DiT Flow 1.00/1.00 1.00/1.00 0.96/0.94 1.00/0.99 0.82/0.76 0.96/0.94 0.32/0.20 0.84/0.83 0.78/0.57 1.00/1.00
Sudeep-DiT Regression 1.00/0.99 1.00/1.00 0.92/0.81 1.00/1.00 0.74/0.67 0.94/0.84 0.14/0.08 0.74/0.56 0.28/0.18 1.00/1.00
Sudeep-DiT SF 1.00/0.99 1.00/1.00 0.94/0.90 1.00/0.98 0.84/0.70 0.96/0.88 0.14/0.10 0.76/0.63 0.46/0.40 1.00/1.00
Sudeep-DiT MIP 1.00/0.99 1.00/1.00 0.98/0.95 1.00/1.00 0.90/0.81 0.98/0.94 0.34/0.28 0.90/0.84 0.76/0.66 1.00/1.00
Chi-Transformer Flow 1.00/0.99 1.00/1.00 1.00/0.93 1.00/0.99 0.70/0.66 0.98/0.93 0.22/0.13 0.80/0.77 0.74/0.61 1.00/1.00
Chi-Transformer Regression 1.00/0.98 1.00/0.98 1.00/0.94 1.00/0.96 0.90/0.72 0.98/0.90 0.40/0.27 0.94/0.87 0.44/0.36 1.00/1.00
Chi-Transformer SF 1.00/0.99 1.00/1.00 0.98/0.94 1.00/0.99 0.76/0.70 0.94/0.84 0.30/0.24 0.86/0.70 0.34/0.31 1.00/1.00
Chi-Transformer MIP 1.00/0.98 1.00/1.00 0.96/0.91 0.98/0.68 0.72/0.28 0.90/0.25 0.16/0.04 0.86/0.69 0.52/0.40 1.00/1.00
Chi-UNet Flow 1.00/1.00 1.00/1.00 1.00/0.97 1.00/0.98 0.90/0.79 0.96/0.90 0.34/0.32 0.80/0.64 0.70/0.62 1.00/1.00
Chi-UNet Regression 1.00/0.96 1.00/0.99 0.84/0.70 0.98/0.87 0.74/0.66 0.94/0.86 0.16/0.12 0.78/0.64 0.30/0.23 1.00/1.00
Chi-UNet SF 1.00/1.00 1.00/1.00 1.00/0.97 1.00/0.99 0.78/0.66 0.96/0.89 0.26/0.18 0.46/0.13 0.06/0.02 1.00/1.00
Chi-UNet MIP 1.00/1.00 1.00/1.00 1.00/0.95 1.00/0.98 0.86/0.81 0.96/0.92 0.58/0.42 0.96/0.91 0.56/0.50 1.00/1.00

Table 9: Performance comparison of Flow and Regression methods across different image-based robotic ma-
nipulation tasks. For each task, we report the best checkpoint performance / averaged performance over last 5
checkpoints. Each experiment is run with 3 seeds and we report the average performance across all seeds.

Architecture Method Adroit MetaWorld

Hammer Door Pen Stick-Push Assembly Disassemble

DP3 Flow 0.96 ± 0.02 0.60 ± 0.06 0.54 ± 0.11 0.92 ± 0.04 0.98 ± 0.03 0.72 ± 0.14
Regression 0.97 ± 0.04 0.52 ± 0.16 0.47 ± 0.08 0.95 ± 0.06 0.98 ± 0.03 0.78 ± 0.08

Table 10: Performance comparison of Flow and Regression methods using DP3 architecture across different
point-cloud-based robotic manipulation tasks. For each task, we report the best checkpoint performance /
averaged performance over last 5 checkpoints. Each experiment is run with 3 seeds and we report the average
performance across all seeds.

Architecture Method P1 P2 P3 P4

Chi-UNet

Flow 1.0 1.0 1.0 0.98
MIP 1.0 1.0 1.0 0.94
Regression 0.98 0.94 0.94 0.86

Chi-Transformer

Flow 1.0 1.0 1.0 1.0
MIP 1.00 0.98 0.98 0.96
Regression 1.0 1.0 0.98 0.94

Sudeep-DiT

Flow 1.0 1.0 1.0 0.98
MIP 1.00 1.00 1.00 0.98
Regression 1.0 0.98 0.96 0.88

Table 11: Performance comparison across different design choices on kitchen task. Kitchen task has
multiple stages and we report the success rate of finishing n tasks in the table. For the performance reported in
the main paper and previous tables, we report the success rate of finishing 4 tasks.

Algorithm 1 Lipschitz Constant Estimation via Action Perturbation

Require: Dataset D, policy π, noise scale ϵ, number of critical states Ns=100, number of pertur-
bations Np=64

Ensure: Estimated Lipschitz constant L
1: S ← identify Ns critical states from D ▷ Select states with highest action ambiguity
2: for all critical state s ∈ S do
3: (a, o)← expert action and nominal next observation for s ▷ Get ground truth

action-observation pair
4: (ā, ō)← normalize (a, o) using dataset statistics ▷ Ensure comparability across states/tasks
5: for i = 1 to Np do
6: η ∼ N (0, ϵ2I) ▷ Sample Gaussian perturbation
7: apert ← unnormalize(ā+ η) ▷ Create perturbed action in original scale
8: o(i) ← rollout(apert) in environment ▷ Execute perturbed action to get feasible state
9: ō(i) ← normalize(o(i)) ▷ Normalize perturbed observation

10: a(i) ← π(o(i)) ▷ Get policy prediction on perturbed state
11: ā(i) ← normalize(a(i)) ▷ Normalize predicted action

12: ri ← ∥ā(i)−ā∥2

∥η∥2
▷ Compute finite difference approximation

13: Ls ← maxi ri ▷ Local Lipschitz constant for state s
14: L← 1

Ns

∑Ns

s=1 Ls ▷ Average across all critical states
15: return L

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Method Reg. SF RR MIP Flow

NFEs 1 1 3 9 1 2 1 2 1 3 9

S.R. 0.46 0.54 0.55 0.52 0.31 0.33 0.50 0.74 0.32 0.55 0.66

Table 12: Comparison of methods and their corresponding number of function evaluations (NFEs). Eval-
uated on state-based Tool-Hang task over Chi-UNet. Average success rate is reported across 3 seeds and 5
checkpoints.

E.2 FULL LIPSCHITZ EVALUATION RESULTS

In the main text, we only report the average Lipschitz constant on critical states across 3 archi-
tectures. Here, we report the full Lipschitz constant evaluation reuslt in Table 13 with different
architectures and tasks.

Task Architecture Method Lipschitz Constant (Policy)

Push-T (State)

Chi-UNet Regression 0.85± 0.58
Flow 0.31± 0.01

Sudeep-DiT Regression 0.52± 0.11
Flow 0.22± 0.02

Chi-Transformer Regression 1.33± 1.14
Flow 0.82± 0.26

Kitchen (State)

Chi-UNet Regression 13.47± 2.80
Flow 13.31± 4.13

Sudeep-DiT Regression 15.37± 3.69
Flow 12.54± 5.09

Chi-Transformer Regression 13.37± 4.00
Flow 11.44± 4.10

Tool-Hang (PH, State) Chi-UNet Regression 1.63± 0.79
Flow 1.53± 1.01

Sudeep-DiT Regression 1.86± 0.81
Flow 1.34± 0.97

Chi-Transformer Regression 1.76± 1.02
Flow 1.40± 0.99

Table 13: Detailed: Per-architecture policy Lipschitz.

F MULTI-MODALITY STUDY DETAILS

F.1 Q FUNCTION ESTIMATION

To rule out the possibility of hidden multi-modality, we also plot Q functions for each action to see
if there is any clear clustering pattern of Q w.r.t. different actions in t-SNE visualization. Since we
only have access to expert actions rather than their policy, we estimate the Q function by Monte
Carlo sampling with the learned flow policy. The detailed procedure is as follows:

Starting from one “critical state”, we first sample N actions

a(i) = Φ(o, z(i), s = 0, t = 1), i = 1, . . . , N, z(i) ∼ N(0, I).

For each sampled action a(i), we execute one environment step to obtain the next observation o′(i)

and immediate reward r(o, a(i)). Then, starting from o′(i), we rollout the learned policy for NMC
episodes until termination (horizon H), and average the cumulative returns to obtain an estimate of
the continuation value. Thus, the Q-value for action a(i) is approximated as:

QΦ(a
(i), o) = r(o, a(i)) +

1

NMC

NMC∑
j=1

H∑
t=1

r
(
o
(j)
t , a

(j)
t

)
. (F.1)

We set the discount factor γ = 1.0 since rewards are sparse and triggered only at task completion.
The reward for Tool-Hang and Kitchen is defined by the final success signal (with Kitchen

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

’s success requiring all 4 subtasks to be completed). The reward for Push-T is defined by final
coverage.

Algorithm 2 Q Function Estimation via Monte Carlo Sampling

Require: Dataset D, flow policy Φ, reward function r, number of critical states Ns=100, number
of action samples N , Monte Carlo samples NMC

Ensure: For each state o, pairs {(a(i), QΦ(a
(i), o))}Ni=1

1: S ← identify Ns critical states from D ▷ Select states with highest action ambiguity
2: for all critical state s ∈ S do
3: o← observation for state s
4: for i = 1 to N do ▷ Sample actions and compute Q estimates
5: z(i) ∼ N(0, I)
6: a(i) ← Φ(o, z(i), s=0, t=1)
7: Execute (o, a(i)) in env→ obtain o′(i), r(i) = r(o, a(i))
8: for j = 1 to NMC do ▷ Monte Carlo rollouts from o′(i)

9: Rollout Φ from o′(i) until horizon H to get cumulative return R(i)
j

10: QΦ(a
(i), o)← r(i) + 1

NMC

∑NMC
j=1 R

(i)
j

11: Store {(a(i), QΦ(a
(i), o))}Ni=1 for state s

The procedure above explicitly computes Q-values by rolling out trajectories separately for each
sampled action.

F.2 DETERMINISTIC DATASET GENERATION

To generate a deterministic dataset that completely eliminates any potential multi-modality, we fol-
low a systematic process:

First, we train a flow expert policy Φ on the original dataset. Then, we collect a new dataset by
rolling out this expert policy from different initial states (using different random seeds than those
used during testing). Crucially, during rollout, we always evaluate the flow policy deterministically
by setting the initial noise to zero: z = 0. This ensures that the policy produces deterministic actions
given any observation, completely removing any stochasticity from the action generation process.

During data collection, we discard all failed trajectories to maintain the same success rate as the
original dataset. We continue collecting until we reach the target number of trajectories Ntraj.

Algorithm 3 Deterministic Dataset Generation

Require: Trained flow policy Φ, target number of trajectories Ntraj, maximum episode steps Tmax

Ensure: Deterministic dataset Ddet
1: Ddet ← ∅
2: ncollected ← 0
3: while ncollected < Ntraj do
4: Reset environment with new random seed
5: o0 ← initial observation
6: τ ← [(o0, ·)] ▷ Initialize trajectory
7: for t = 0 to Tmax − 1 do
8: at ← Φ(z = 0, ot, s = 0, t = 1) ▷ Deterministic action
9: ot+1, rt, done← env.step(at)

10: τ ← τ ∪ [(ot, at)]
11: if done then
12: break
13: if trajectory τ is successful then
14: Ddet ← Ddet ∪ {τ}
15: ncollected ← ncollected + 1

16: return Ddet

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

G MANIFOLD ADHERENCE STUDY DETAILS

G.1 VALIDATION LOSS IS NOT A GOOD PROXY FOR POLICY PERFORMANCE

To investigate whether validation loss serves as a reliable proxy for policy performance, we exam-
ine its relationship with success rates on Tool-Hang across different architectures given different
training methods. Evidence that validation loss is poorly correlated with success rate can be seen by
comparing flow policies with varying numbers of function evaluations (NFEs) and their correspond-
ing validation losses. Table 14 demonstrates that increasing NFEs does not reduce validation loss,
yet policy performance consistently improves. We hypothesize that higher NFEs introduce stronger
inductive bias and regularization, which projects actions back onto the data manifold, thereby en-
hancing generalization.

Architecture Method NFEs Average Success Rate L2 Validation Loss

Chi-UNet

Regression 1 0.54 0.063
Flow 1 0.36 0.053
Flow 3 0.44 0.052
Flow 9 0.58 0.053

Chi-Transformer

Regression 1 0.18 0.084
Flow 1 0.06 0.093
Flow 3 0.72 0.092
Flow 9 0.68 0.089

Sudeep-DiT

Regression 1 0.20 0.063
Flow 1 0.62 0.082
Flow 3 0.76 0.080
Flow 9 0.76 0.080

Table 14: Comparison of validation loss and success rate across different architectures and methods on state-
based Tool-Hang. The results show that validation loss is not a reliable proxy for policy performance.

G.2 MANIFOLD ADHERENCE EVALUATION METHOD

To evaluate the manifold adherence, we compute the projection error of a predicted action a onto
the space spanned by expert actions at neighboring states. Concretely, given a state, we compute its
ℓ2 distance to all states in the training set. Then, we pick k nearest neighbor states and gather their
corresponding actions A = [a(0), a(1), . . . , a(k)]. Lastly, we compute projection error by projecting
a to the column space of A: ∥a− PA(a)∥2 = minc ∥a−Ac∥2.

H NEAREST NEIGHBOR HYPOTHESIS STUDY

Another popular hypothesis is that GCPs are learning a lookup table of observation-to-action map-
pings (Pari et al., 2021; He et al., 2025). This might be true for relatively simple tasks that do
not require high precision and complex generalization, such as Can. However, for tasks that re-
quire higher precision and more contact, such as Tool-Hang, the nearest-neighbor/lookup-table
assumption is insufficient to explain the success of GCPs. We evaluate the performance of a nearest-
neighbor policy (VINN (Pari et al., 2021)) on state-based Tool-Hang and find that it achieves a
success rate of only 12% as shown in Table 15. This is significantly lower than both flow and re-
gression methods, indicating that the action manifold is not linearly spanned by the expert actions.
Nevertheless, nearest-neighbor can still serve as a proxy for the expert action manifold, as it captures
the general trend of actions—even though linear combinations of actions in the dataset cannot di-
rectly produce the correct action, the expert action manifold should not be too distant. Therefore, in
this paper, we use nearest-neighbor as a proxy for the linearized expert action manifold rather than
directly computing the distance between expert actions in the validation set and predicted actions.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Action Chunk Size Success Rate (%)
1 0
8 4

16 12
32 2

Table 15: Performance of k-nearest neighbor policy on state-based Tool-Hang task. Using the same method
as VINN with softmax over k=5 nearest neighbors.

I THEORETICAL ANALYSIS OF GCP’S EXPRESSIVITY

I.1 FORMAL STATEMENT OF THEOREM 1

In this section, we introduce the notation and definition required for the subsequent proofs and
provide the formal statement of Theorem 1 from the main text. Throughout, let ∥ · ∥◦ denote any
matrix norm satisfying the property ∥X1X2∥◦ ≤ ∥X1∥op∥X2∥◦. In contrast to the notation used in
the main text, we define Φs,t(a, o) as the solution at time t of the ODE:

d

dt
at = b⋆t (at | o), with initial condition as = a. (I.1)

Note that Φ0,1(a0 = z, o) coincides with the definition of π⋆θ(z, o) in the main text. Next, we define
the notion of κ-log-concavity.

Definition I.1 (κ-log-concavity). A distribution with density ρ = e−V (x) is said to be κ-log-concave
if V ∈ C2(Rd) and its Hessian satisfies∇2V (x) ≽ κI for all x ∈ Rd and some κ > 0.

With this notation in place, we now state the formal version of Theorem 1.

Theorem 2. Suppose that

b⋆t = E[İt | It, o], where It = (1− t)a0 + ta1, a0 ∼ N(0, I), a1 ∼ ρ1, (I.2)
where ρ1 is κ-log-concave. Then, we have

∥∇oΦ0,t(a0, o)∥◦ ≤
∫ t

0

√
κ(1− t)2 + t2

κ(1− s)2 + s2
· ∥∇ob⋆s(as | o)∥◦ds. (I.3)

In particular, for t = 1 we obtain

∥∇oΦ0,1(a0, o)∥◦ ≤
√
1 + κ−1

∫ 1

0

∥∇ob⋆s(as | o)∥◦ds. (I.4)

Remark I.1. Theorem 1 follows immediately from the fact that both the operator and the Frobenius
norms satisfy ∥X1X2∥◦ ≤ ∥X1∥op∥X2∥◦ together with the inequality Eq. (I.4).

I.2 SUPPORTING LEMMAS

We state the supporting lemmas for proving Theorem 2 below and provide their proofs immediately
for completeness. As a first step, we analyze the dynamical system satisfied by∇oΦs,t(a, o).
Lemma I.1. Define at := Φ0,t(a0, o) where a0 is the initial condition, and define the matrices

Mt := ∇oΦ0,t(a0, o), At := (∇ab⋆t)(at | o), Et := (∇ob⋆t)(at | o) (I.5)
Then,

d

dt
Mt = AtMt + Et, M0 = 0 (I.6)

Proof. Since Φ0,0(a0, o) = a0, M0 = 0. Moreover,
d

dt
∇oΦ0,t(a0, o) = ∇o

d

dt
Φ0,t(a0, o) = ∇o(b⋆t (Φ0,t(a0, o) | o)) (I.7)

= (∇ab⋆t)(at | o) · ∇oΦ0,t(a0, o) + (∇ob⋆t)(at | o) (I.8)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Note that, from the previous lemma, we may introduce Λs,t as the solution to the matrix ODE
d

dt
Λs,t = AtΛs,t, Λs,s = I. (I.9)

Moreover, it follows that

Λs,t = ∇aΦs,t(as, o). (I.10)

We are now ready to state the relation between Mt and Λs,t.

Lemma I.2.

Mt =

∫ t

0

Λs,tEsds. (I.11)

Proof. Using d
dtΛ

−1
0,t = −Λ

−1
0,tAt and we consider the time derivative of Λ−1

0,tMt:

d

dt
(Λ−1

0,tMt) = (
d

dt
Λ−1
0,t)Mt + Λ−1

0,t (
d

dt
Mt) (I.12)

= −Λ−1
0,tAtMt + Λ−1

0,tAtMt + Λ−1
0,tEt (I.13)

= Λ−1
0,tEt. (I.14)

Note that Λ0,t is invertible by uniqueness of the ODE solution in Eq. (I.9). Integrating both sides
with respect to t gives

Λ−1
0,tMt =

∫ t

0

Λ−1
0,sEsds. (I.15)

Hence, we have

Mt = Λ0,t

∫ t

0

Λ−1
0,sEsds. (I.16)

Note that Λ−1
0,s = Λs,0 and Λ0,t · Λs,0 = Λs,t, we obtain

Mt =

∫ t

0

Λs,tEsds. (I.17)

An immediate application of the triangle inequality and the property of ∥ · ∥◦ yields

∥Mt∥◦ ≤
∫ t

0

∥Λs,t∥op∥Es∥◦ds. (I.18)

Moreover, ∥Λs,t∥op admits the bound:

Lemma I.3.

∥Λs,t∥op ≤ exp

(∫ t

s

∥As′∥opds′
)
. (I.19)

Proof. Define fω(s, t) = Λs,tω. We have
d

dt
∥fω(s, t)∥2 =

1

∥fω(s, t)∥2
fω(s, t)

⊤ d

dt
fω(s, t) (I.20)

=
1

∥fω(s, t)∥2
ω⊤Λ⊤

s,tAtΛs,tω (I.21)

≤ ∥At∥op∥fω(s, t)∥2. (I.22)

By Gronwall’s theorem and ∥fω(s, s)∥2 = ∥ω∥2, we obtain

∥fω(s, t)∥2 ≤ ∥ω∥2 exp(
∫ t

s

∥As′∥opds′). (I.23)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

To bound exp
(∫ t

s
∥As′∥opds′

)
, we use the following result from (Daniels, 2025), included here for

completeness.

Theorem 3 (Restated; Theorem 6 in (Daniels, 2025)). Suppose µ0 ∼ N(0, I) and µ1 is a κ-log-
concave distribution with κ > 0. Define

It = αtX0 + βtX1, X0 ∼ µ0, X1 ∼ µ1, (I.24)

and let vt(x) denote the corresponding flow field. Then,

∇xvt(x) ≼
καtα̇t + βtβ̇t
κα2

t + β2
t

I. (I.25)

With the result, we can bound exp
(∫ t

s
∥As′∥opds′

)
as follows.

Lemma I.4.

b⋆t = E[İt | It, o], where It = (1− t)a0 + ta1, a0 ∼ N(0, I), a1 ∼ ρ1, (I.26)

where ρ1 is κ-log-concave. Then, we have∫ t

s

∥∇xb⋆s′(as′ | o)∥opds′ ≤ log

√
κ(1− t)2 + t2

κ(1− s)2 + s2
(I.27)

Proof. By leveraging Theorem 3 for each condition o, we have

∇ab⋆s′(as′ | o) ≼
καs′ α̇s′ + βs′ ˙βs′

κα2
s′ + β2

s′
I, (I.28)

then we have

∥∇ab⋆s′(as′ | o)∥op ≤
καs′ α̇s′ + βs′ ˙βs′

κα2
s′ + β2

s′
. (I.29)

Integrating both sides, we obtain∫ t

s

∥∇ab⋆s′(as′ | o)∥opds′ ≤
∫ t

s

καs′ α̇s′ + βs′ β̇′
s

κα2
s′ + β2

s′
ds′ (I.30)

=
1

2
log(κα2

s′ + β2
s′)
∣∣∣t
s

(I.31)

= log

√
κα2

t + β2
t

κα2
s + β2

s

. (I.32)

By substitute αt = 1− t and βt = t, we have∫ t

s

∥∇ab⋆s′(as′ | o)∥opds′ ≤ log

√
κ(1− t)2 + t2

κ(1− s)2 + s2
. (I.33)

With the preceding components in place, we now establish Theorem 2.

I.3 PROOF OF THEOREM 2

By combining Eq. (I.18), Lemma I.3, and Lemma I.4, we have

∥∇oΦ0,t(a0, o)∥◦ ≤
∫ t

0

√
κ(1− t)2 + t2

κ(1− s)2 + s2
· ∥∇ob⋆s(as | o)∥◦ds. (I.34)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

For t = 1, the function s 7→ κ(1 − s)2 + s2 attains its minimum at s = κ
κ+1 . Applying Holder’s

inequality then yields

∥∇oΦ0,1(a0, o)∥◦ ≤
∫ 1

0

√
1

κ(1− s)2 + s2
· ∥∇ob⋆s(as | o)∥◦ds (I.35)

≤ max
s∈[0,1]

(√
1

κ(1− s)2 + s2

)
·
∫ 1

0

∥∇ob⋆s(as | o)∥◦ds (I.36)

=
√
1 + κ−1

∫ 1

0

∥∇ob⋆s(as | o)∥◦ds. (I.37)

J TOY EXPERIMENTS: TESTING THE FUNCTION APPROXIMATION
CAPABILITIES OF REGRESSION AND FLOW MODELS

J.1 EXPERIMENTAL SETUP: REGRESSION FUNCTIONS

In this section, we introduce a number of functions that determine the ability of our model to fit
high-frequency data. In accordance with the standard regression nomenclature, we use x as input
space and y as the output.

J.1.1 MIXTURE OF SINES

Given weight, frequency and phase shift vectors α = (α1, . . . , αm),ω = (ω1, . . . , ωm),ϕ =
(ϕ1, . . . , ϕm) ∈ Rm, we define the parameter ψ = (α, ω,ϕ).

gψ(x) :=
∑
i

αi sin(ωix+ ϕi) : R→ R. (J.1)

We consider two regimes: In fixed-weight regime, we set αi ≡ 1 for all i. In the fixed-Lipschitz
regime, we take αi ≡ 1

ωi
. The latter choice ensures that the Lipschitz constant of gψ(x) is bounded

by m, the number of distinct components. This allows us to test the fitting of high-frequency func-
tions without an increase in Lipschitz constant, and captures the natural regime where we expect
that high-frequency components contribute less to the overall functions.

For the mixture-of-sines experiments, we include both the fixed-Lipschitz and fixed-weight
regimes. We m = 10 and sample ω,ϕ from the set of primes. When sampling this way, we ensure
that frequencies and phase shifts remain uncorrelated across the high-frequency components.

J.1.2 PROJECTED MIXTURE OF SINES

In our next experiment, we consider maps from R → Rd, with d = 8 with a projection operator
applied. Formally, for each j = 1, . . . , 10, we let

Pj ∈ Rd×d, rank(Pj) = 3 (J.2)

by a uniformly-at-random chosen rank 3 projection matrix. We then define our target function as

f(x) = Pj(x)g⃗(x) : Rd → R. (J.3)

where g⃗(x) = (gψ1(x), . . . , gψ8(x)) is a vector whose entries are functions of the form of that in
Eq. (J.1), and where j(x) is the index such that

x ∈
[
j(x)− 1

10
,
j(x)

10

]
. (J.4)

These experiments fit a function along a x-dependent projection (see below for our evaluations that
account for the projection discontinuity in a fair manner).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

J.1.3 PROJECTED MIXTURE OF SINES UNDER NONLINEAR TRANSFORMATION

Finally, we take the function g⃗(x) = (gψ1(x), . . . , gψd
(x)), where now we take d = 32. Again, ψi

are generated as Appendix J.1.1. Now we consider the function

h(x) = ϕ−1
(
Pj(x)ϕ(g⃗(x))

)
, (J.5)

where, as above, Pj(x) is an x-dependent projection, but we include composition with the function
ϕ(u) = u3, broadcast entrywise.

J.2 EXPERIMENTAL SETUP: NETWORK ARCHITECTURE

We use MLP architecture with and without FiLM conditioning. We restrict ourselves to two- and
three-layer MLPs with widths of 32 or 64, so that we are squarely in the low network expressivity
regime.

J.3 EXPERIMENTAL SETUP: DATA GENERATION AND EVALUATION METRICS

Data generation. We intentionally constrain the dataset to be a low data regime. We typically
choose no more data points than what is required for the reconstruction of these high frequency
functions based on Nyquist sampling theorem. In our experiments this number is typically around
120, with c ∼ Unif[0, 1]. We train for 50000 epochs with batch size 32 and learning rate 0.001

L2 Error. We evaluate the function approximation abilities of both regression and flow using the
L2 error on the test set. We use flow with NFEs = 1.

Projection Metric. To demonstrate this, we define a new projection metric. Let cj ∈
{0.1, 0.2, . . . , 0.9} define the interval boundary points and let Īj = [cj − 0.03, cj + 0.03] be
small neighborhoods around each boundary. We define Pj as the projection operator onto the sub-
space spanned by function evaluations in interval [cj−1, cj], and Pj+1 as the projection onto interval
[cj , cj+1]. The combined projection Pj,j+1 projects onto the joint span of both adjacent subspaces.
This is computed by performing SVD on the concatenated basis functions from both and retain-
ing the top 2k singular vectors while accounting for numerical stability. Finally, we evaluate the
normalized projection error onto the orthogonal complement of Pj,j+1:

∥(I−Pj,j+1)(f̂ − ftrue)∥
∥f̂ − ftrue∥

(J.6)

This metric quantifies how much of the prediction error lies outside the subspace spanned by the
two adjacent intervals, providing insight into the model’s ability to capture local structure at interval
boundaries.

J.4 FINDINGS

• When measured in the L2 reconstruction error, we find that regression consistently outper-
forms flow.

• When measured in projection metric, in Projected Mixture of Sines and Projected Mix-
ture of Sines under Nonlinear Transformation, we find that flow consistently outperforms
regression.

Experiment L2 Error Projection Metric
Mixture of Sines R NA
Projected Mixture of Sines R F
Projected Mixture of Sines under Nonlinear Transformation R F

Table 16: Summary of experimental findings. R = Regression outperforms, F = Flow outperforms.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

J.5 ANALYSIS OF FINDINGS: MANIFOLD ADHERENCE DISTINGUISHES FLOW OVER
REGRESSION

• In Section 5 we conjecture that one of the factors that could explain superior performance
of flow, is its superiority in approximating the expert more accurately in some measure
of reconstruction error. However, the performance on L2 reconstruction error for these to
Mixture of Sines functions shows that flow is not any better at approximating functions as
compared to regression.

• In Appendix G we study the projection error of error of a predicted action a onto the space
spanned by expert actions at neighboring states. This was done to assess how well our
policies can generate plausible actions under simulated compounding error.

• We designed our projection of mixture of sines experiments along the same lines, to further
verify manifold adherence. Flow’s consistently better performance on projection metric
especially under nonlinear transformation as compared to regression further lends credence
to the idea that manifold adherence is reason for flow’s superior performance.

Mixture of Sines, d = 1,m = 10

Architecture Regression Flow

MLP 2 layer 32 wide 2.20 2.19
MLP 2 layer 64 wide 2.07 2.13
MLP 3 layer 32 wide 2.16 2.16
MLP 3 layer 64 wide 1.76 1.84

Table 17: No FiLM conditioning

Architecture Regression Flow

MLP 2 layer 32 wide 1.99 1.99
MLP 2 layer 64 wide 1.69 1.98
MLP 3 layer 32 wide 1.62 1.53
MLP 3 layer 64 wide 1.25 1.54

Table 18: With FiLM conditioning

Table 19: L2 reconstruction error

Projected Mixture of Sines, d = 32, k = 3,m = 10

Architecture Regression Flow

MLP 2 layer 32 wide 0.59 0.60
MLP 2 layer 64 wide 0.55 0.58
MLP 3 layer 32 wide 0.55 0.59
MLP 3 layer 64 wide 0.50 0.56

Table 20: No FiLM conditioning

Architecture Regression Flow

MLP 2 layer 32 wide 0.56 0.59
MLP 2 layer 64 wide 0.55 0.52
MLP 3 layer 32 wide 0.50 0.57
MLP 3 layer 64 wide 0.44 0.55

Table 21: With FiLM conditioning

Table 22: L2 reconstruction error

Architecture Regression Flow

MLP 2 layer 32 wide 0.909 0.904
MLP 2 layer 64 wide 0.911 0.908
MLP 3 layer 32 wide 0.910 0.903
MLP 3 layer 64 wide 0.914 0.904

Table 23: No FiLM conditioning

Architecture Regression Flow

MLP 2 layer 32 wide 0.910 0.903
MLP 2 layer 64 wide 0.915 0.904
MLP 3 layer 32 wide 0.914 0.902
MLP 3 layer 64 wide 0.918 0.913

Table 24: With FiLM conditioning

Table 25: Mean Projection Error - ∥(I−P)(f̂−ftrue)∥
∥f̂−ftrue∥

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Projected Mixture of Sines under Nonlinear Transformation -
d = 32, k = 3,m = 10, ϕ(u) = u3

Architecture Regression Flow

MLP 2 layer 32 wide 1.67 1.76
MLP 2 layer 64 wide 1.63 1.70
MLP 3 layer 32 wide 1.58 1.72
MLP 3 layer 64 wide 1.45 1.67

Table 26: No FiLM conditioning

Architecture Regression Flow

MLP 2 layer 32 wide 1.60 1.75
MLP 2 layer 64 wide 1.39 1.65
MLP 3 layer 32 wide 1.54 1.70
MLP 3 layer 64 wide 1.17 1.55

Table 27: With FiLM conditioning

Table 28: L2 reconstruction error

Architecture Regression Flow

MLP 2 layer 32 wide 0.90 0.87
MLP 2 layer 64 wide 0.89 0.85
MLP 3 layer 32 wide 0.88 0.82
MLP 3 layer 64 wide 0.87 0.83

Table 29: No FiLM conditioning

Architecture Regression Flow

MLP 2 layer 32 wide 0.89 0.84
MLP 2 layer 64 wide 0.86 0.82
MLP 3 layer 32 wide 0.88 0.81
MLP 3 layer 64 wide 0.86 0.79

Table 30: With FiLM conditioning

Table 31: Mean Projection Error - ∥(I−P)(f̂−ftrue)∥
∥f̂−ftrue∥

K APPENDIX FOR SECTION 2

K.1 MARKOV DECISION PROCESSES CONFIGURATION

We consider a Markov Decision ProcessM = (S,A, R, P, P0)
2 with the state space S, the action

space A, the reward R(s, a)3 obtained by taking action a in state s, the transition dynamics P :
S × A → ∆(S), and the initial-state distribution P0 ∈ ∆(S) . To formulate the success rate (i.e.,
performance) in this setting, we define the reward function as:

R(s, a) =

{
1, if the task is successful under (s, a),
0, otherwise.

(K.1)

Under this definition of rewards, the expected return of a policy π is J(π) = E[
∑
tR(st, at)], which

reduces to P[success under π]. Hence, J(π) exactly equals the success rate of policy π.

K.2 INTEGRATED FLOW PREDICTION

For completeness, we provide the flow ODE as
d
dtat = bt(at | o) starting from a0 = z. (K.2)

The associated integrated flow prediction is given by

Φθ(z | o) = z +

∫ 1

0

bt(at | o)dt. (K.3)

In practice, to approximate the ODE solution for sampling, we employ the following discretized
Euler integration.

Definition K.1 (Discretized Euler Integration). We discretize the time interval [0, 1] to N steps with
step size h = 1/N . The iterates are then updated according to

ak+1 = ak + h bhk(ak | o), k = 0, 1, . . . , N − 1. (K.4)

2For simplicity, we consider the MDP case in this context by identifying the state with the observation
defined in 2. More generally, one may consider a Partially Observable Markov Decision Process (POMDP),
where the agent receives observation o emitted by an underlying latent state s.

3For ease of exposition, we use the same notation for rewards defined on random variables and their distri-
butions.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

The final iterate aN serves as the Euler approximation Φθ,eul(z | o). We also refer to N as the
Number of Function Evaluations (NFEs).

L LLM USAGE

We used LLMs only for minor language polishing (grammar and wording) and to assist with liter-
ature search. All technical content, experiments, and conclusions were created and verified by the
authors.

32

