
Artificial Intelligence 320 (2023) 103924
Contents lists available at ScienceDirect

Artificial Intelligence

journal homepage: www.elsevier.com/locate/artint

Spectral clustering with robust self-learning constraints

Liang Bai, Minxue Qi, Jiye Liang ∗

Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, Institute of Intelligent Information
Processing, Shanxi University, Taiyuan, 030006, Shanxi, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 May 2022
Received in revised form 13 April 2023
Accepted 15 April 2023
Available online 19 April 2023

Keywords:
Cluster analysis
Spectral clustering
Self-learning constraints
Robustness

Spectral clustering is a leading unsupervised classification algorithm widely used to capture
complex clusters in unlabeled data. Additional prior information can further enhance
the quality of spectral clustering results to satisfy users’ expectations. However, it is
challenging for users to find the prior information under unsupervised scenes. To get
rid of the deficiency, we propose a spectral clustering model with robust self-learning
constraints. In this model, we first extend the optimization problem of spectral clustering
by seeing label constraints as variables to learn the constraints and the clustering result
simultaneously. Furthermore, we add a robust term to the proposed model so that we
can learn multiple groups of label constraints to guide the clustering process and find a
robust self-constrained spectral clustering result. The robust term can reduce the impact
of uncertainty in the quality of a single set of label constraints on the performance of the
proposed model. An iterative strategy with update formulas for variables is proposed to
solve the self-constrained spectral clustering problem. We provide the theoretical analysis
to explain the importance of the learned constraints in spectral clustering. Furthermore,
we analyze the convergence of our optimization scheme. Finally, we have done many
experiments on benchmark data sets to illustrate the effectiveness of the proposed
algorithm.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Clustering is an important field in machine learning and artificial intelligence [1]. The goal of clustering is to identify
objects that look similar into a common cluster and discover patterns from huge data like humans. To solve this problem,
various types of clustering algorithms have been developed in the literature (e.g., [2] and references therein).

Spectral clustering (SC) [3,4] is a representative of graph clustering. It has shown greater promise than other traditional
clustering algorithms in learning hidden nonlinear structures from data. It transforms a clustering problem into a graph-
partitioning problem and then uses the spectrum (eigenvalues) of the graph to learn the label features of data. Since it
exploits nonlinear pairwise similarity between data, it can recognize different shapes of clusters. Currently, many improved
spectral clustering methods have been developed to enhance the performance of spectral clustering, which can be found in
Section 2. However, since spectral clustering works without supervision information, its clustering result may differ from
the users’ expectations. Many studies [5] have demonstrated that even a small amount of supervision information can lead
to significant improvements in the performance of spectral clustering. In the field of machine learning, label and pairwise

* Corresponding author.
E-mail addresses: bailiang@sxu.edu.cn (L. Bai), qiminxuert@qq.com (M. Qi), ljy@sxu.edu.cn (J. Liang).
https://doi.org/10.1016/j.artint.2023.103924
0004-3702/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.artint.2023.103924
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2023.103924&domain=pdf
mailto:bailiang@sxu.edu.cn
mailto:qiminxuert@qq.com
mailto:ljy@sxu.edu.cn
https://doi.org/10.1016/j.artint.2023.103924

L. Bai, M. Qi and J. Liang Artificial Intelligence 320 (2023) 103924
Fig. 1. Self-constrained spectral clustering.

constraints are two widely used types of supervision information. The relationship between these two types of constraints
has been explored by [6], where it was shown that label constraints may be converted into pairwise constraints. Compared
to label constraints, pairwise constraints are weak supervision signals. Currently, many semi-supervised spectral clustering
algorithms with different types of supervision information have been developed, which are detailed in Section 2. The super-
vision information can provide additional discriminative information to improve the clustering accuracy in semi-supervised
clustering algorithms. Unfortunately, the semi-supervised clustering results are sensitive to the quality of prior supervision
information. Inexact supervision information often can not improve the clustering result but reduce its effectiveness. Be-
sides, it is very challenging for users to obtain some prior supervision information from a data set under an unsupervised
scene.

To solve the problem, we try to learn label constraints automatically from unlabeled data and then convert a spectral
clustering problem into a self-supervised clustering problem. Based on the idea, we develop a spectral clustering model
with self-learning constraints, where label constraints are seen as variables and learned by using a sparse regularization
term. After label constraints are extracted automatically, this model can make use of semi-supervised learning techniques
to improve the clustering results. However, the performance of this model is very sensitive to the quality of the learned
constraints. Since there is certain uncertainty in the learning process of label constraints, we can not guarantee that the
learned constraints are of high quality. To overcome the shortcoming, we further build a robust self-constrained spectral
clustering model which can learn multiple sets of label constraints to guide the clustering process. Compared to a single set
of self-learning constraints, multiple sets can help us to get a more robust clustering result. The diagram of self-constrained
spectral clustering with single and multiple sets of self-learning constraints is shown in Fig. 1. According to this figure, we
can see their difference. Furthermore, we provide the theoretical and experimental analysis to illustrate the effectiveness of
the proposed model.

The main contributions of this paper are described as follows:

• We build a robust self-constrained spectral clustering model which learns multiple sets of label constraints to guide the
spectral clustering process and obtain the robust clustering result.

• We derive the update formulas for different variables and propose an iterative method to solve the optimization problem
of spectral clustering with robust self-learning constraints.

• We provide the theoretical analysis to investigate the importance of the learned constraints for spectral clustering.
Furthermore, we analyze the convergence of the proposed algorithm.

• By the experimental analysis, we illustrate the effectiveness of the proposed algorithm on the benchmark data sets.

The outline of the rest of this paper is as follows. Section 2 reviews the related work of spectral clustering. Section 3
introduces the preliminaries of spectral clustering and label propagation. Sections 4 and 5 present spectral clustering with
single and multiple sets of self-learning constraints, respectively. Section 6 shows the description of the proposed algo-
rithm. Sections 7 and 8 provide the theoretical and convergence analysis for the proposed algorithm, respectively. Section 9
demonstrates the performance of the proposed algorithm. Section 10 concludes the paper with some remarks.

2. Related work

According to the supervision scenarios, we introduce the related works from three parts, i.e., unsupervised spectral
clustering, semi-supervised spectral clustering, and self-supervised clustering, which are reviewed as follows.

(1) Unsupervised spectral clustering: There are two key factors influencing the performance of the spectral clustering al-
gorithm, namely, the quality of the pairwise similarity matrix and the expensive computational cost. Different definitions
of the similarity matrix often result in spectral clustering outputs of varying qualities. To address this issue, many studies
2

L. Bai, M. Qi and J. Liang Artificial Intelligence 320 (2023) 103924
have focused on learning an appropriate pairwise similarity matrix from data for spectral clustering. For instance, sparse
subspace clustering [7–10] utilizes a self-representation optimization model to learn a sparse similarity matrix. In [11], a
low-rank similarity matrix was learned for subspace clustering. Zhang et al. [12] further extended this method to learn the
affinity matrix from the low-dimensional space of the original data. In [13–15], the authors proposed to learn a Laplacian-
rank similarity matrix with precisely connected components. In addition to improving the similarity matrix, many studies
focus on how to reduce the calculation cost for spectral clustering. Dhillon et al. [16] demonstrated the equivalence between
spectral clustering and kernel k-means, and used the iterative optimization method of kernel k-means instead of Eigen de-
composition to solve the spectral clustering problem. Liu et al. [17] applied this technique to the cluster ensemble problem.
Moreover, various methods have been proposed to compress the original graph into a sparse sub or bipartite graph, in order
to reduce the time cost of spectral clustering, such as [18–25].

(2) Semi-supervised spectral clustering: Currently, different types of semi-supervised spectral clustering algorithms have
been developed, which can make use of additional prior information to improve the spectral clustering results. For example,
Zhou et al. [5] proposed a label propagation algorithm that can be seen as spectral clustering with Positive-Label constraints.
Zoidi et al. further extended the label propagation algorithm to propose a version with Negative-Label constraints [26].
Bai et al. proposed a label propagation with pairwise constraints [24]. Furthermore, they developed a spectral clustering
algorithm with the integration of different types of constraints [6]. Besides, other types of constrained spectral clustering
algorithms have also been developed in [27–29]. Although these methods can improve the spectral clustering results, their
performance depends on the quality of prior information. Poor supervision information often brings bad clustering results.
However, finding high-quality prior information requires high costs. Besides, it is difficult for users to discover good prior
information in many scenarios, especially unsupervised scenarios.

(3) Self-supervised clustering: Different self-learning paradigms, such as label learning and pairwise learning, have been
developed to tackle the insufficiency of discriminative information [30]. Each paradigm has its own application scenarios.
Pairwise learning, for example, is suitable when the number of clusters is unknown on a dataset. When learning pairwise
relations between objects, we do not need to know the number of clusters and only consider whether they belong to the
same clusters. However, if the number of clusters is given and is much smaller than the number of objects in a dataset,
the computational cost of learning labels is lower than that of pairwise learning. Based on these paradigms, several deep
clustering algorithms have been proposed that self-learn label or pairwise constraints from unlabeled data to train deep
neural networks for clustering tasks [31–34]. Deep embedded clustering (DEC) [34] and joint unsupervised learning (JULE)
[35] are the early representatives of deep clustering models based on label learning. Lv et al. [36] learned pseudo-labels
to train deep subspace clustering network [37]. Li et al. [38] adopted a confidence-based criterion to select pseudo-labels
for boosting contrastive clustering. In [39], a deep spectral clustering network was proposed to learn pairwise similarity
between data points to enhance the performance of spectral clustering. Chang et al. proposed a deep self-evolutionary clus-
tering (DSEC) [40] which uses the similarity between points as supervision information. Compared to traditional clustering
algorithms, these deep methods can enhance the clustering results’ effectiveness by self-supervision. However, their per-
formance strongly depends on the capability of deep neural networks for data representation, which requires expensive
training costs, such as parameter tuning, sufficient data, large storage space, and time costs.

3. Preliminaries

In this section, we first give some notations used in this paper. For any matrix M , its element of the ith row and the jth
column is represented by [M]i j , its ith row is represented by [M]i. , its jth column is represented by [M]. j . The trace of M
is denoted as T r(M), and the transpose of M is denoted as MT . diag(M) is the diagonal matrix of M . ||M||F is Frobenius
norm of M . Next, we briefly introduce some base concepts of spectral clustering and label propagation.

3.1. Spectral clustering

Let X be a n × d data matrix with n objects and d features, xi be the ith row of X which is used to represent the ith
object. Given X , people can use a similarity measure to get its affinity matrix A. In general, Gaussian kernel is used to define
A as follows.

Aij = exp

(
−||[X]i. − [X] j.||2

δ

)
, (1)

where δ is a kernel parameter. Spectral clustering is to see A as a graph and find its partition such that the sum of weights
of edges between the two sets is minimized. Its objective function is described as

min
H

T r(H T LH), s.t., H T H = I, (2)

where L = I − Â is a normalized Laplacian matrix and H is a n × k membership matrix. Â is the normalized similarity
matrix D−1/2 AD−1/2 or D−1 A, D is a diagonal matrix whose entries are row sums of A. The spectral clustering problem
is the standard trace minimization problem which is solved by the matrix H by containing the first k eigenvectors of L as
columns.
3

L. Bai, M. Qi and J. Liang Artificial Intelligence 320 (2023) 103924
3.2. Semi-supervised spectral clustering

Label propagation [5] is the representative of semi-supervised spectral clustering methods, which uses additional prior
information, i.e., label constraints, to enhance the performance of spectral clustering. Its optimization function � is described
as

min
H

T r(H T LH) + α||H − Y ||2F , (3)

where Y is a n × k pre-given label constraint matrix, which reflects the relations between objects and clusters. If the ith
object belongs to the lth cluster, Yil is set to 1; otherwise, 0. α is a parameter that is used to balance the importance of
each term in the objective function. It is set to 0.01 by default. If α = 0, the function is equivalent to spectral clustering.
In [5], the authors provided the optimal solution of Eq. (3), which is described as follows. Differentiating � with respect to
H , we have

∂�

∂ H
= 2(H − ÂH) + 2α(H − Y) = 0. (4)

Its closed-form solution H̃ is

H̃ = α

1 + α
(I − 1

1 + α
Â)−1Y . (5)

Based on Eq. (5), we can get a clustering result H with pre-given label constraints Y . In general, people do not directly
compute (I − 1

1+α Â)−1 but get H̃ by iterative updating formula

H = 1

1 + α
ÂH + α

1 + α
Y . (6)

According to Eq. (6), we can see H is a non-negative matrix if Y is required to be non-negative. The non-negative property
corresponds to the meanings represented by H and Y . Because each element in H or Y reflects the membership of an
object to a cluster, which is assumed to be non-negative in many clustering algorithms.

From Eq. (6), it is evident that H is non-negative when we require Y to be non-negative. The non-negative property
corresponds to the meanings represented by H and Y . This is because each element in either H or Y represents an object’s
membership in a cluster, which is assumed to be non-negative in many clustering algorithms.

4. Spectral clustering with self-learning constraints

We can extend the objective function of spectral clustering by seeing label constraints as variables to simultaneously
learn the label constraints and the clustering result. The new objective function is defined as

min
H,Y

T r(H T LH) + α||H − Y ||2F + η||Y ||2,1, (7)

where ||Y ||2,1 is a regularization norm of L2,1 to make Y sparse and η is a parameter. L2,1-norm regularization was pro-
posed for multi-task feature selection [41,42]. It is a combination between L2-norm and L1-norm to control the sparsity of
columns and rows of a feature matrix, respectively. For variable Y , each of its columns represents a class label. Since there
is some overlap between class labels, we need a smooth regular term, i.e., L2-norm, to sparse the column values in each
row. Each row of Y represents an object. We only require some objects to get high-credible label constraints, and the label
constraints of other objects are deleted. Then we choose a strongly sparse regularization, i.e., the norm of L1, to constrain
each row of Y .

This optimization problem forms a class of nonconvex optimization problems. To minimize it, we can randomly initialize
Y and iteratively update H and Y to get its approximate solution. Next, we introduce the specific update formulas for H
and Y , respectively.

Updating H : When Y is fixed, the optimization problem (7) becomes a label propagation problem [5], i.e., Eq. (3).
Therefore, the update formula of H equals to Eq. (5).

Updating Y : When H is fixed, the optimization problem (7) is reduced to a problem

min
V

� = α||H − Y ||2F + η||Y ||2,1. (8)

Thus, minimizing it becomes a classical problem of L2,1-norm regularization whose solving method is described as follows
[11]. Differentiating Eq. (8) with respect to Y , we have

∂� = 2α(Y − H) + 2ηU Y , (9)

∂Y

4

L. Bai, M. Qi and J. Liang Artificial Intelligence 320 (2023) 103924
where U = diag(1/||[Y]i.||2). Therefore, for 1 ≤ l ≤ e, Y is updated by the following formula

[Y]i. =

⎧⎪⎨
⎪⎩

(
1 − η

α||[H]i.||2
)

[H]i., α||[H]i.||2 > η,

0, otherwise.

(10)

As seen from Eq. (10), the updating formula of Y is equal to the sparsification of H . This operation enables us to extract
reliable label constraints from H , which we use to update Y . Moreover, we note that if the initial value of Y is non-negative,
then both the updated Y and H are non-negative.

5. Spectral clustering with robust self-learning constraints

The solution of self-constrained spectral clustering is sensitive to the initialization of Y . Before the proposed model runs,
we need to randomly initialize Y which will provide the first guidance for the clustering task. However, a poor initialization
may result in incorrect guidance and subsequently low-quality learned label constraints. If we only learn a group of label
constraints, the clustering result of the proposed model is sensitive to the quality of the learned label constraints. Therefore,
to mitigate this issue, we incorporate a robust function into Eq. (7). Learning multiple sets (groups) of label constraints can
correct erroneous initialization information to some extent that can guide the spectral clustering process in a more accurate
and robust manner.

The robust function is defined as

� = min
F ,G

T r(F T L F) + β

e∑
l=1

||Yl − F Gl||2F , (11)

where β is a parameter, e is the number of learned label constraints, Yl is the lth matrix of label constraints, F is the final
clustering result, G = [Gl]e

l=1 where Gl is a relation matrix between F and Yl .
∑e

l=1 ||Yl − F Gl||2F is a consensus measure to
evaluate the difference between the final clustering result F and each matrix of the learned label constraints Yl . We wish
to minimize the robust function to find the most consensus clustering result with all the label constraints.

Based on Eqs. (7) and (11), the objective function of robust self-constrained spectral clustering is defined as

min
H,Y ,F ,G

� =
e∑

l=1

[
T r(H T

l LHl) + α||Hl − Yl||2F
]
+ η||Y ||2,1

+ T r(F T L F) + β

e∑
l=1

||Yl − F Gl||2F ,

(12)

s.t., F ≥ 0, Hl ≥ 0, Yl ≥ 0, Gl ≥ 0,

where H = [Hl]e
l=1 and Hl is the eth clustering result based on Yl .

We need to iteratively update these variables to minimize Eq. (12). Next, we introduce the specific optimization process
of their update formulas, respectively.

Updating H : When updating H , other variables are fixed. In this case, each
l for Hl is independent and nonnegative,
where

l =T r(H T
l LHl) + α||Hl − Yl||2F

+ β||Yl − F Gl||2F .
(13)

Thus, the optimization problem is equal to minimizing each
l . Differentiating
l with respect to Hl , we can obtain

∂
l

∂ Hl
= 2LHl + 2α(Hl − Yl) = 0. (14)

Thus, for 1 ≤ l ≤ e, Hl is computed by the same equation as Eq. (5), i.e.,

Hl = α

1 + α
(I − 1

1 + α
Â)−1Yl. (15)

Updating Y : Given other variables, the optimization problem becomes minimizing

� = α

e∑
l=1

||Hl − Yl||2F + β

e∑
l=1

||F Gl − Yl||2F + η||Y ||2,1. (16)

Since
5

L. Bai, M. Qi and J. Liang Artificial Intelligence 320 (2023) 103924
e∑
l=1

||Hl − Yl||2F = ||H − Y ||2F (17)

and

e∑
l=1

||F Gl − Yl||2F = ||F G − Y ||2F , (18)

we have

� = α||H − Y ||2F + β||F G − Y ||2F + η||Y ||2,1. (19)

Thus, minimizing � becomes a classical problem of L2,1-norm regularization whose solving method is described as [11].
Differentiating � with respect to Y , we have

∂�

∂Y
= 2α(Y − H) + 2β(Y − F G) + 2ηU Y , (20)

where U = diag(1/||[Y]i.||2). Therefore, for 1 ≤ l ≤ e, Yl is updated by the following formula

[Yl]i. =

⎧⎪⎨
⎪⎩

(
1 − η

||[W]i.||2
)

[Wl]i., ||[W]i.||2 > η,

0, otherwise,

(21)

where Wl = αHl + β F Gl and W = [Wl]e
l=1.

Updating F and G: According to Eq. (18), we have

tr(F T L F) + β

e∑
l=1

||Yl − F Gl||2F = tr(F T L F) + β||Y − F G||2F . (22)

When H and Y are fixed, the optimization problem becomes minimizing

min
F ,G

tr(F T L F) + β||Y − F G||2F , s.t. F ≥ 0, G ≥ 0. (23)

This problem can be seen as a non-negative matrix factorization with graph regularization [43]. Therefore, we can get the
update formulas for F and G as follows.

[F]i j ← [F]i j

[Y G T + 1
β

Â F]i j

[F GG T + 1
β

F]i j
(24)

and

[Gl]i j ← [Gl]i j
[F T Yl]i j

[F T F Gl]i j
. (25)

Based on the above updating formulas of H , Y , F , and G , we can iteratively solve the optimization problem in Eq. (12).

6. Algorithm description

A spectral clustering with robust self-learning constraints (RSLC) algorithm is summarized in Algorithm 1. In this algo-
rithm, we consider two cases, i.e., e > 1 and e = 1. If e = 1, we only need to learn a set of label constraints. Thus, in this
case, we only update H and Y to return H as the clustering results. If e > 1, we need to update H , Y , F , and G to learn
multiple sets of constraints and return F as a robust clustering result. For the initialization of Yl , we only randomly select k
objects from a data set and assign different labels for them.

The time complexity of the proposed algorithm is made up of three parts, computing similarity matrix O (n2m), self-
label propagation O (n2ket), non-negative matrix factorization O (nket), where t is the number of iterations. Therefore, its
overall time complexity is O (n2ket + nket + n2m). We know that the time complexity of classical spectral clustering with
fast eigenvalue decomposition is O (n2m + n2k). We can see that the proposed algorithm needs more computational costs
than traditional spectral clustering. These additional costs are used to iteratively compute update formulas, which can help
us to improve the performance of spectral clustering. However, since the time complexity is quadratic with the number
of objects on a data set, it can not efficiently deal with large-scale data sets. Therefore, we need to study the acceleration
mechanism of the proposed algorithm in future work to make it suitable for large-scale data.
6

L. Bai, M. Qi and J. Liang Artificial Intelligence 320 (2023) 103924
Algorithm 1: The RSLC algorithm.
Input: A, k, α, β , η, e and t
Output: F
Randomly initialize Yl , for 1 ≤ l ≤ e;
Repeat

If e > 1
Update H and Y by Eqs. (15) and (21);
Update F and G by Eqs. (24) and (25);

Else
Update H and Y by Eqs. (5) and (10);
F = H ;

End
Until the desired number of iterations is reached;
Return F ;

7. Theoretical analysis

In this section, we try to answer two questions: (1) Why do the learned constraints can improve the performance of spectral
clustering? (2) Is spectral clustering with multiple sets of constraints better than that with a single set of constraints? To address
these questions, we provide the generalization and robustness analysis to show the importance of the learned constraints.

7.1. Importance of single set of the learned constraints

We first use the relations between stability and generalization of a learning algorithm (which can be found in [44]) to
analyze the role of a single set of the learned constraints in spectral clustering. We first give the notations for the analysis.

Let X = {x1, x2, · · · , xn} and X (i) = {x1, · · · , xi−1, x′, xi+1, · · · , xn} which differ at just the ith data point from X . We
assume all the data points in {x1, · · · , xn, x′} are independent and identically distributed and subject to the same data
distribution Z . For a data point xi , its prediction loss of spectral clustering is described as

f (H, xi) =L(H, xi) + αR(H, xi),

where L(H, xi) =
n∑

j=1

[A]i j|| H(xi)√[D]ii
− [H] j.√[D] j j

||2,

R(H, xi) =||H(xi) − [Y]i.||2,

(26)

where H(xi) is the representation of data xi in gained Hilbert space formed by H , and we have H(xi) = ∑n
j=1[Ã]i j[H] j. .

The overall prediction loss is the mean value of f (H, xi) for all the data points, which is described as

f (H, X) =1

n

∑
xi∈X

f (H, xi) = L(H, X) + αR(H, X),

where L(H, X) =1

n

∑
xi∈X

L(H, xi), and R(H, X) = 1

n

∑
xi∈X

R(H, xi).

(27)

It is easy to verify that this loss function f (H, X) is strongly convex, so we have

f (H, X) − f (H ′, X) ≥ α||H − H ′||2F (28)

where H and H ′ are two different clustering results for spectral clustering. For H and H ′ , we have

f (H, X) − f (H ′, X) =[L(H, X) + αR(H, X)] − [L(H ′, X) + αR(H ′, X)]
=[L(H, X (i)) + αR(H, X (i)) + f (H, xi) − f (H, x′)

n
]

− [L(H ′, X (i)) + αR(H ′, X (i)) + f (H ′, xi) − f (H ′, x′)
n

]
=[L(H, X (i)) + αR(H, X (i))] − [L(H ′, X (i)) + αR(H ′, X (i))]

+ f (H, xi) − f (H ′, xi)

n
+ f (H ′, x′) − f (H, x′)

n

=[f (H, X (i)) − f (H ′, X (i))] + L(H, xi) −L(H ′, xi) + L(H ′, x′) −L(H, x′)

(29)
n n

7

L. Bai, M. Qi and J. Liang Artificial Intelligence 320 (2023) 103924
Furthermore, we suppose H X is a matrix that minimizes f (H, X), then H X(i) stands for the optimal result for minimizing
f (H, X (i)). Let H = H X(i) and H ′ = H X in (29). In this case, it is obvious that f X(i) (H) ≤ f X(i) (H ′).

Then, we have

f (H X(i) , X) − f (H X , X) ≤ L(H X(i) , xi) −L(H X , xi)

n
+ L(H X , x′) −L(H X(i) , x′)

n
(30)

Comparing this equation with (28), we can get

α||H X(i) − H X ||2F ≤ L(H X(i) , xi) −L(H X , xi)

n
+ L(H X , x′) −L(H X(i) , x′)

n
(31)

The loss term L(H, xi) is bounded for given data point xi and clustering matrix H , which is easy to verify, and we
assume the upper bound is M . Next, we analyze the upper bound for the right two terms in (31). The notations H and H ′
are reused to clarify the following derivation.

L(H, xi) −L(H ′, xi) =
n∑
j

[A]i j

(
|| H(xi)√[D]ii

− [H] j.√[D] j j
||2 − || H ′(xi)√[D]ii

− [H ′] j.√[D] j j
||2

)

≤
n∑
j

[A]i j[(H(xi)√[D]ii
− [H] j.√[D] j j

) + (
H ′(xi)√[D]ii

− [H ′] j.√[D] j j
)]T

[(H ′(xi)√[D]ii
− [H ′] j.√[D] j j

) − (
H ′(xi)√[D]ii

− [H ′] j.√[D] j j
)]

≤ 2
√

M
n∑
j

√[A]i j||(
n∑

r=1

γr[H]r. − β j[H] j.) − (

n∑
r=1

γk[H ′]r. − β j[H ′] j.)||

≤ 2
√

M
n∑

r=1

γ̂r ||[H]r. − [H ′]r.||

≤ 2
√

Mσi ||H − H ′||F

(32)

where γr = √[A]i j/
√[D]ii , β j = 1/

√[D] j j , γ̂r = ∑n
j=1

√[A]i jγr − √[A]irβr , σi = max(γ̂r), and i, j, r ∈ {1, 2, · · · , n}.
Then for H = H X(i) and H ′ = H X , we have

L(H X(i) , xi) −L(H X , xi) ≤ 2
√

Mσi||H X(i) − H X ||F , (33)

L(H X , x′) −L(H X(i) , x′) ≤ 2
√

Mσ ′||H X(i) − H X ||F , (34)

where σi and σ ′ are concerned with the data set, and we represent the biggest one as σ∗ = max{σ1, · · · , σn, σ ′}.
Utilizing the above two equations, we can reformulate Eq. (31) as

α||H X(i) − H X ||2F ≤ 4
√

Mσ∗
n

||H X(i) − H X ||F (35)

which yields

||H X(i) − H X ||F ≤ 4
√

Mσ∗
nα

(36)

Taking this back into Eq. (32), we have

L(H X(i) , xi) −L(H X , xi) ≤ 8Mσ 2∗
nα

(37)

Since this equation holds for all data points X , using the theorem in [44], we have the following equation

E
X∼Zn

[L[(H X , Z) −L(H X , X)] = E
(X,x′)∼Zn+1,i∼U (n)

[L(H X(i) , xi) −L(H X , xi)] (38)

In our derivation, each data point xi is assumed to be chosen randomly and subject to a uniform distribution. Thus,
based on Eq. (38), we can calculate the expectations on the Eq. (37) to conclude

E
X∼Zn

[L(H X , Z) −L(H X , X)] ≤ 8Mσ 2∗
nα

. (39)

The above conclusion shows that the constraint term influences the upper generalization bounds of the spectral clus-
tering loss. As α increases, the upper bounds decreases, which means that the learned constraints can promote the
generalization ability of the spectral clustering model.
8

L. Bai, M. Qi and J. Liang Artificial Intelligence 320 (2023) 103924
7.2. Importance of multiple sets of the learned constraints

Next, we analyze the role of multiple sets of the learned constraints in spectral clustering. The proposed algorithm uses
the robust function � to integrate multiple self-learning constraints to obtain the final clustering result F . If we assume

[F]i j =
⎧⎨
⎩

1√|Cl| , i f [X]i ∈ Cl

0, otherwise,

(40)

where Cl is a set of objects belonging to the lth cluster, for 1 ≤ l ≤ k.
By minimizing �, we can obtain Gl = F T Yl . In this case, we have

||Yl − F Gl||2 = T r(YlY
T
l) − T r(F T YlY

T
l F)

≤ 1

2
T r(I) + T r(YlY

T
l) − T r(F T YlY

T
l F)

= 1

2
T r(YlY

T
l) + 1

2
||YlY

T
l − F F T ||2F .

(41)

According to Eqs. (40) and (41), we have

� = tr(F T L F) + β

e∑
l=1

||Yl − F Gl||2F

= T r(I) + β

e∑
l=1

T r(YlY
T
l) − T r(F T (Â + 2β

e∑
l=1

YlY
T
l)F)

≤ T r(I) + T r(Â) + β

e∑
l=1

T r(YlY
T
l) − T r(F T (Â + 2β

e∑
l=1

YlY
T
l)F)

= 1

2
T r(I + Â + β

e∑
l=1

YlY
T
l) + 1

2
||

e∑
l=1

(
1

e
Â + 2βYlY

T
l) − F F T ||2F .

(42)

When each Yl is given, minimizing � is equivalent to minimizing

�′ = ||1

e

e∑
l=1

(Â + γ YlY
T
l) − F F T ||2F . (43)

If we replace β with a parameter γ and assume β = 1
2e γ , �′ can be seen as

�′ = ||1

e

e∑
l=1

(Â + γ YlY
T
l) − F F T ||2F . (44)

If E(B) = F F T and Bl = Â +γ YlY T
l are seen as the expectation and estimation of the final clustering result, respectively, we

have

�′ = ||1

e

e∑
l=1

Bl −E(B)||2F . (45)

According to the above equation, we can see that the larger e, the closer the mean of Bl is to the expectation of B , and the
lower the value of �′ . Thus, we can conclude that the proposed algorithm with multiple sets of self-learning constraints
can better learn the final clustering result compared to that with a single set of self-learning constraints.

8. Convergence analysis

Minimization of the proposed objective function � forms a class of constrained nonlinear optimization problems whose
solutions are unknown. Therefore, we provide an iterative method to solve this optimization problem. In this section, we
apply Zangwill’s theorem [45] to discuss the convergence of the proposed algorithm. The theorem and its generalizations
can be used to obtain convergence proofs for almost all of the classical iterative optimization algorithms, e.g., steepest
descent, Newton’s method, etc. [46], by using this approach as an alternative to more conventional arguments. The theorem
is described as follows.
9

L. Bai, M. Qi and J. Liang Artificial Intelligence 320 (2023) 103924
Theorem 1. [45] Let f : D f ⊂ Rm → R, S = {x∗ ∈ D F : f (x∗) < f (y) ∀y ∈ B0(x∗, r)}, where B0(x∗, r) = {y ∈ Rm :‖ x∗ − y ‖<
r}, ‖ · ‖ any norm on Rm, A : D f → D f be an iterative algorithm, xk+1 = A(xk), and g be attached to sequences of iterations
generated by A to monitor the progress of A in seeking a solution x∗ ∈ S. If the following conditions hold, g is a descent function
for {A, S}, A is continuous on D f \ S, and the iterative sequence {A(xk) : k = 1, 2, · · · ; x1 ∈ D f } ⊂ K are contained in a compact
set K ⊆ D f for arbitrary x1 ∈ D f , then for each iterative sequence {xk} generated by A, we have either {xk} terminates at a solution
x∗ ∈ S or ∃ a sequence {xk j } ⊆ {xk} so that {xk j } → x∗ ∈ S.

According to the theorem above, the optimization algorithm needs to satisfy three conditions, i.e., non-increasing,
continuous, and compact set properties, to ensure that the algorithm can converge. In order to prove that the pro-
posed algorithm satisfies the three conditions, we give some symbolic definitions for clarity of proof. We assume that
A� represents the proposed algorithm in the paper. Since the algorithm is updated by iteration with four matrices
(H (t), Y (t), F (t), G(t)), and the iteration of variables produces corresponding sequences {(H (t), Y (t), F (t), G(t)) : t = 1, 2, · · · }.
We define the domains of H, Y , F , G as Mh, M y, M f , Mg . As the updating formula of each variable is based on fixing all
the other three variables, we define Nh as the ranges of the fixed vectors Y , F , G . Similarly, we have N y, N f , Ng . Then we
define the updating functions for H as �h : Nh → Mh , i.e., �h(Y , F , G) = H , and H in calculated by the Eq. (15). Likewise,
we can define the updating functions �y, � f , �g for Y , F , G . Now we have the updating algorithm A� be defined as
A� : (Mh × M y × M f × Mg) → (Mh × M y × M f × Mg), A� = �h ◦ �y ◦ � f ◦ �g .

Based on the Theorem 1, we will provide some theorems to prove the convergence of the proposed algorithm, i.e., it can
converge in the limited number of iterations. In the following, Theorems 2-5 show the descending property of the objective
function. Theorem 6 proves the iterative algorithm A� is continuous on the (Mh × M y × M f × Mg), and Theorem 7 asserts
the iterative sequences calculated by the proposed algorithm are in the compact set.

8.1. Non-increasing property

To prove that the objective function is non-increasing under the updating rules, we essentially follow the idea in the
proof of NMF [47] and GNMF [43]. Our proof will make use of their auxiliary function and the corresponding lemma which
are described as follows.

Definition 1. [47] Q (v, v ′) is an auxiliary function for F(v) if the conditions

Q (v, v ′) ≥ F(v), Q (v, v) = F(v) (46)

are satisfied.

Lemma 1. [47] If Q is an auxiliary function of F , then F is non-increasing under the update formula:

v(t+1) = arg min
v

Q (v, v(t)), (47)

where t denotes the tth iteration.

Proof.

F(v(t+1)) ≤ Q (v(t+1), v(t)) ≤ Q (v(t), v(t)) = F(v(t)) � (48)

Next, based on the above auxiliary function and lemma, we provide four theorems to prove that the objective function
is non-increasing under each updating rule.

Theorem 2. The optimization function in Eq. (22) is non-increasing under the update formula of F in Eq. (24).

Proof. The proof is mainly about designing a suitable auxiliary function that satisfies the inequality in Eq. (47). First, we
represent the objective function in Eq. (22) as
F and the element-wise objective function as
[F]i j . We rewrite the update
formula for F as

[F]i j ← [F]i j
[βY G T + Â F]i j

[β F GG T + F]i j
(49)

It is easy to get the derivatives of
[F]i j as

′[F]i j
= ∂
F

∂[F]i j
= [2L F + 2β F GG T − 2βY G T]i j (50)

′′[F]i j
= ∂2
F

∂[F]2
= 2β[GG T] j j + 2[L]ii (51)
i j

10

L. Bai, M. Qi and J. Liang Artificial Intelligence 320 (2023) 103924
We set the auxiliary function for
F as

Q F (f , [F](t)i j) =
[F](t)i j
+
′

[F](t)i j

(f − [F](t)i j) + [β F GG T + F](t)i j

[F](t)i j

(f − [F](t)i j)2 (52)

It is obvious that Q F ([F](t)i j , [F](t)i j) =
[F](t)i j
. Then we need to prove that Q F (f , [F](t)i j) ≥
 f . It can be derived using Taylor’s

expansion of
 f as follows.

Q F (f , [F](t)i j) ≥
 f =
[F](t)i j
+
′

[F](t)i j

(f − [F](t)i j) + 1

2

′′

f ∗(f − [F](t)i j)2

=
[F](t)i j
+
′

[F](t)i j

(f − [F](t)i j) + (β[GG T] j j + [L]ii)(f − [F](t)i j)2.

(53)

Based on the derivation, Q F (f , [F](t)i j) ≥
 f can be transformed as

[β F GG T + F](t)i j

[F](t)i j

≥ (β[GG T] j j + [L]ii). (54)

It is easy to obtain that

[β F GG T](t)i j = β

n∑
l=1

[F](t)il [GG T](t)l j ≥ β[F](t)i j [GG T](t)j j (55)

and

[F](t)i j ≥ [L]ii[F](t)i j (56)

Therefore, Eq. (54) is clearly true, i.e., Q F (f , [F]i j) ≥
 f . We conclude that the optimization function is non-increasing
under the update formula for F . �
Theorem 3. The optimization function
l in Eq. (13) is non-increasing under the update formula in Eq. (15).

Proof. We set
H as the objective function for H and
[H]i j as the objective function with respect to the matrix element
[H]i j in H . Then the first and the second derivatives can be calculated as

′[H]i j
= ∂
H

∂[H]i j
= [2LH + 2αH − 2αY]i j (57)

′′[H]i j
= ∂2
H

∂[H]2
i j

= [2L + 2α I]ii (58)

We design the auxiliary function as follows.

Q H (h, [H](t)i j) =
[H](t)i j
+
′

[H](t)i j

(h − [H](t)i j) + [αH + H](t)i j

[H](t)i j

(h − [H](t)i j)2 (59)

Similar to the analysis in
F , we can conclude that the optimization function is non-increasing under the update formula
of H . �
Theorem 4. The optimization function � in Eq. (16) is non-increasing under the update formula in Eq. (21).

Proof. For the convenience of proof, we use the symbol
Y for Y ’s loss function and
[Y]i j for [Y]i j ’s loss function. We can
rewrite the update formula of Y in the element-wise form as

[Y]i j ← [Y]i j
[αH + β F G]i j

[(α + β)I + ηU Y]i j
(60)

The derivative of
Y for each variable Yij in Y can be calculated as

′[Y]i j
= ∂
Y

∂[Y] = [2(α + β)Y + 2ηU Y − 2αH − 2β F G]i j (61)

i j

11

L. Bai, M. Qi and J. Liang Artificial Intelligence 320 (2023) 103924

′′[Y]i j
= ∂2
Y

∂[Y]2
i j

= [2(α + β)I + 2ηU]ii (62)

Then we assume the corresponding auxiliary function for Y is

Q Y (y, [Y](t)i j) =
[Y](t)i j
+
′

[Y](t)i j

(y − [Y](t)i j) + [(α + β)Y + ηU Y](t)i j

[Y](t)i j

(y − [Y](t)i j)2 (63)

Like the proof in Q F , we can conclude that the given formula of Y in Eq. (16) can guarantee the non-increasing property of
the optimization function. �
Theorem 5. The optimization function in Eq. (64) is non-increasing under the update formula of G in Eq. (25).

Proof. We have the following optimization function
G for G

G = β||Y − F G||2F (64)

that is similar to the NMF model in [47]. Then we can utilize the convergence analysis in [47] to prove the above theo-
rem. �

Given these theorems, we have

�(t+1) =T r([H T](t+1)LH (t+1)) + α||H (t+1) − Y (t+1)||2F + η||Y (t+1)||2,1

+ T r([F T](t+1)L F (t+1)) + β||Y (t+1) − F (t+1)G(t+1)||2F
≤T r([H T](t)LH (t)) + α||H (t) − Y (t)||2F + η||Y (t)||2,1

+ T r([F T](t)L F (t)) + β||Y (t) − F (t)G(t)||2F .

(65)

According to Eq. (65), we conclude that the objective function in Eq. (12) is non-increasing with the updating formulas of
the H, Y , F , and G .

8.2. Continuous property

The second requirement of the Theorem 1 is to make sure that the algorithm A� is continuous on the domain (M f h).
We give the following theorem to prove the continuous property.

Theorem 6. The algorithm A� is continuous on (Mh × M y × M f × Mg).

Proof. Since A� = �h ◦ �y ◦ � f ◦ �g , and the composition of the continuous functions is also continuous, it suffices to
show that �h, �y, � f , �g are each continuous. Then we prove that �h is continuous in the (kn) variables {[H]l j}. Note that
�h is a vector field, with the resolution by (kn) scalar field like the domain of H . Thus, it can be described as

�h = [�(11)

h ,�
(12)

h , · · · ,�
(l j)
h , · · · ,�

(kn)

h] : Rkn → Rkn, (66)

where �(l j)
h :Rkn →R defined in Eq. (15) can be calculated as

�
(l j)
h ← [H]l j

[αY T + ÂH]l j

[αH + H]l j
. (67)

It is evident that [H]l j , [αY T + ÂH]l j , [αH + H]l j are element-wise functions and are continuous, and the denominator of
�h never vanishes under the given constraints of H . Therefore, the �h is a continuous function. Next, we prove that �y is
also a continuous function of the (2kn + k2) variables {[Y]l j}. �y is a vector field with the resolution by (kn) variables

�y = [�(11)
y ,�

(12)
y , · · · ,�

(l j)
y , · · · ,�

(kn)
y] : Rk(2n+k) → Rkn (68)

where �(l j)
y : Rk(2n+k) → R is given in Eq. (60). Likewise, we know that each part of such element-wise updating function

is continuous, so the �y is continuous on their entire domains. Next we show that � f is also a continuous function of the
(kn + kk) variables {[F]l j}, and � f is a vector field with the resolution by (kn) variables

� f = [�(11)
,�

(12)
, · · · ,�

(l j)
, · · · ,�

(kn)] : Rk(n+k) → Rkn (69)
f f f f

12

L. Bai, M. Qi and J. Liang Artificial Intelligence 320 (2023) 103924
Table 1
Description of benchmark data sets.

Data sets Objects Dimensions Clusters

ORL 400 1024 40
Umist 575 1024 20
COIL20 1440 1024 20
Yale-B 2424 5120 38
OpticDigits 5620 10 63
Statlog 6435 36 6
COIL100 7200 1024 100
MNIST 10000 728 10
PenDigits 10992 16 10
USPS 11000 256 10

where �(l j)
f :Rk(n+k) →R is given in Eq. (24). Likewise, since each part of such element-wise updating function is continu-

ous, � f is continuous on their entire domains. Next we prove that �g is also a continuous function of the (2kn) variables
{[G]l j}, and �g is a vector field with the resolution by (k2) variables

�g = [�(11)
g ,�

(12)
g , · · · ,�

(l j)
g , · · · ,�

(kn)
g] : R(2kn) → Rk2

(70)

where �(l j)
g :R(2kn) →R is given in Eq. (25). Likewise, since each part of such element-wise updating function is continuous,

�g is continuous on their entire domains. Hence, A� = �h ◦ �y ◦ � f ◦ �g is continuous on (Mh × M y × M f × Mg). �
8.3. Compact set property

The third condition in the Theorem 1 is to judge the compactness of (Mh × M y × M f × Mg), which contains all of the
possible iterate sequences generated by A� . Based on the idea of [48], we give the following theorem to prove the compact
set property.

Theorem 7. (Mh × M y × M f × Mg) is a compact set.

Proof. Given the initial values of H (0) ∈ Mh, Y (0) ∈ M y, F (0) ∈ M f , G(0) ∈ Mg . Then we can iteratively calculate the values of
the vector F (t+1) as

[F](t+1)
i j = [F](t)i j

[βY G T + Â F](t)i j

[β F GG T + F](t)i j

. (71)

According to Eq. (12), we know M f = {F : [F]i j ≥ 0} and F (t) ∈ M f . We also can see that each element in Y (t) , G(t) and Â is
non-negative, according to their definitions. Therefore, from Eq. (71), we have [F (t+1)]i j ≥ 0 and F (t+1) ∈ M f . Based on the
same way, we can infer that H (t+1) ∈ Mh, Y (t+1) ∈ M y, G(t+1) ∈ Mg . Therefore, we can conclude that Mh, M y, M f , Mg are all
compact sets. Then according to the Heine-Borel theorem [48], we can conclude that (Mh × M y × M f × Mg) is a compact
set. �
9. Experiment analysis

9.1. Experiment settings

To examine the performance of the proposed algorithm, we compare it with other eight versions of spectral cluster-
ing algorithms, including standard spectral clustering (SC) [3], bipartite graph clustering (ESCG) [18], spectral clustering
using k-means-based landmark selection (LSC-K) [20], spectral clustering with approximate eigenvectors (FastESC) [22],
ultra-scalable spectral clustering (U-SPEC) [25], constrained Laplacian rank clustering (CLR) [14], low-rank representation
clustering (LRR) [11], graph regularized nonnegative matrix factorization (GNMF) [43]. Besides, we also compare the pro-
posed algorithm with label propagation with different sizes of label information [5].

The comparisons are carried out on ten widely used benchmark data sets [49] whose detailed information is described in
Table 1. We employ three clustering indices [2]: accuracy measure (ACC), the adjusted rand index (ARI) and the normalized
mutual information (NMI) to evaluate the effectiveness of clustering results on each data set. If the clustering result is close
to the true partition, its ACC, NMI, and ARI values are high. The experiment equipment is a personal computer with Intel
i9-10900K, 64G RAM, Matlab R2018a, and windows 10.

Before the comparisons, we need to set some parameters as follows. For each algorithm, we set the number of clusters
k to its true number of classes on a data set, and use the Gaussian kernel function to produce the similarity matrix and test
each of these algorithms with different γ value of the kernel parameter, i.e., δ = εX/g , g ∈ [10, 100] with a step length of
13

Fig. 2. Comparison of the proposed algorithm with semi-supervised spectral clustering. (For interpretation of the colors in the figure(s), the reader is
referred to the web version of this article.)

Table 2
ACC values of different algorithms on benchmark data sets.

Dataset SC ESCG LSC-K Fast-ESC U-SPEC CLR LRR GNMF RSLC

ORL 61.36 ± 1.26 60.51 ± 1.41 58.13 ± 1.67 59.64 ± 3.24 57.78 ± 1.61 64.75 ± 0.00 61.14 ± 1.53 59.22 ± 1.52 67.88 ± 1.65
Umist 71.04 ± 0.44 60.09 ± 1.35 60.21 ± 3.31 52.03 ± 2.69 50.17 ± 1.08 75.10 ± 1.15 38.26 ± 0.76 71.09 ± 2.41 77.37 ± 2.40
COIL-20 73.70 ± 1.24 74.23 ± 0.98 72.25 ± 2.46 61.12 ± 3.88 61.95 ± 3.04 78.35 ± 2.23 55.04 ± 1.19 84.30 ± 1.33 88.86 ± 0.61
Yale-B 36.13 ± 0.75 29.33 ± 1.42 16.24 ± 0.88 23.48 ± 1.08 10.56 ± 0.38 32.27 ± 0.56 40.62 ± 1.30 27.06 ± 1.25 42.12 ± 1.38
OpticDigits 95.25 ± 0.00 98.21 ± 0.01 92.08 ± 1.23 77.98 ± 3.47 82.88 ± 5.07 96.53 ± 0.00 80.53 ± 0.02 93.76 ± 3.20 98.27 ± 0.19
Stalog 66.16 ± 0.01 76.00 ± 0.03 74.69 ± 0.82 68.80 ± 3.60 74.96 ± 0.72 66.08 ± 0.00 67.79 ± 0.00 60.78 ± 4.55 82.17 ± 0.72
COIL-100 49.86 ± 1.01 59.61 ± 0.58 60.82 ± 1.26 42.62 ± 2.31 53.10 ± 1.26 66.64 ± 0.94 47.22 ± 0.99 67.30 ± 1.32 75.13 ± 0.81
MNIST 47.90 ± 0.01 70.73 ± 0.81 68.66 ± 1.98 56.50 ± 3.22 59.69 ± 2.58 72.62 ± 0.20 48.67 ± 0.03 63.67 ± 3.14 85.52 ± 3.16
PenDigits 71.51 ± 0.00 73.41 ± 0.01 80.18 ± 3.39 68.66 ± 1.70 74.36 ± 2.47 67.79 ± 0.00 72.59 ± 0.01 76.39 ± 4.10 86.90 ± 2.33
USPS 56.13 ± 0.02 61.81 ± 2.36 54.38 ± 2.02 49.04 ± 2.20 48.60 ± 1.90 64.60 ± 1.17 54.40 ± 0.00 54.35 ± 4.24 74.87 ± 2.94

10, where εX is the variance of data set X , to select the highest ACC, ARI and NMI values for comparisons. In the proposed
algorithm, we set α = 0.25, β = 0.5, η = 0.1, e = 10, and t = 100. In the following experiments, we explain the parameter
settings. For other parameters of the compared algorithms, we set them according to the suggestions of their references.

9.2. Comparison with other versions of spectral clustering algorithms

We first analyze the difference in the clustering effectiveness between the proposed algorithm and the other eight spec-
tral clustering algorithms. Tables 2, 3, and 4 show the mean and standard deviation of ACC, ARI, and NMI for the clustering
results produced by each algorithm running 20 times on the tested data sets. According to the evaluation results, we can ob-
serve that the mean values of the ACC, ARI, and NMI for the proposed algorithm are obviously superior to other algorithms
on the tested data sets. The experimental results tell us that the self-label learning operation of the proposed algorithm
can very effectively improve the performance of spectral clustering. Besides, we can see that the standard deviation of the
proposed algorithm on each data set is less than 0.04. Therefore, we can conclude that the proposed algorithm is robust to
deal with these data sets.
L. Bai, M. Qi and J. Liang Artificial Intelligence 320 (2023) 103924
14

L. Bai, M. Qi and J. Liang Artificial Intelligence 320 (2023) 103924

Fig. 3. Three clustering indices against parameter η.

Table 3
ARI values of different algorithms on benchmark data sets.

Dataset SC ESCG LSC-K Fast-ESC U-SPEC CLR LRR GNMF RSLC

ORL 40.14 ± 1.70 42.35 ± 1.99 39.26 ± 2.23 35.04 ± 5.08 40.51 ± 1.61 37.57 ± 0.00 40.42 ± 2.30 36.89 ± 2.49 48.39 ± 2.42
Umist 59.03 ± 0.76 45.48 ± 1.03 44.89 ± 3.59 35.52 ± 3.79 33.66 ± 0.97 62.15 ± 0.97 13.42 ± 0.88 58.60 ± 5.18 70.05 ± 3.81
COIL-20 65.67 ± 1.41 64.09 ± 1.16 63.32 ± 2.68 49.06 ± 4.65 54.12 ± 2.62 73.34 ± 3.12 34.33 ± 2.14 76.50 ± 1.60 86.04 ± 0.93
Yale-B 15.05 ± 0.51 13.74 ± 0.26 5.85 ± 0.42 11.34 ± 0.53 1.66 ± 0.23 7.78 ± 0.21 13.50 ± 0.57 08.26 ± 0.78 23.72 ± 1.24
OpticDigits 90.43 ± 0.00 96.11 ± 0.02 84.01 ± 2.13 63.32 ± 3.77 70.90 ± 6.11 93.15 ± 0.00 67.91 ± 0.04 88.73 ± 5.59 96.23 ± 0.40
Stalog 42.60 ± 0.01 53.16 ± 0.05 52.90 ± 1.60 43.44 ± 6.46 53.85 ± 1.47 42.67 ± 0.01 45.62 ± 0.00 32.81 ± 3.93 61.26 ± 2.52
COIL-100 36.03 ± 0.87 38.47 ± 1.19 50.43 ± 1.49 24.09 ± 3.55 43.23 ± 1.10 56.95 ± 1.15 30.90 ± 1.53 46.43 ± 1.37 67.10 ± 0.81
MNIST 25.74 ± 0.00 55.05 ± 0.98 50.29 ± 2.93 33.16 ± 2.88 38.61 ± 3.34 59.74 ± 0.09 25.22 ± 0.02 49.42 ± 6.55 76.24 ± 3.61
PenDigits 56.40 ± 0.01 58.29 ± 0.95 65.36 ± 4.62 50.66 ± 2.10 57.75 ± 2.36 55.97 ± 0.00 54.86 ± 0.01 61.54 ± 6.07 77.06 ± 2.30
USPS 29.49 ± 0.04 47.07 ± 2.77 37.86 ± 1.80 27.77 ± 1.95 30.01 ± 1.40 47.01 ± 1.69 33.94 ± 0.00 37.29 ± 2.86 59.44 ± 4.67

Table 4
NMI values of different algorithms on benchmark data sets.

Dataset SC ESCG LSC-K Fast-ESC U-SPEC CLR LRR GNMF RSLC

ORL 79.32 ± 0.56 75.92 ± 0.91 74.70 ± 1.02 75.89 ± 2.59 75.20 ± 0.66 80.15 ± 0.00 79.39 ± 0.73 75.67 ± 1.24 81.87 ± 0.70
Umist 80.00 ± 0.28 73.36 ± 0.71 73.38 ± 2.08 66.15 ± 2.50 65.24 ± 0.85 86.17 ± 0.55 40.59 ± 0.91 83.69 ± 2.02 86.07 ± 1.47
COIL-20 84.87 ± 0.60 83.53 ± 0.76 80.24 ± 1.34 73.16 ± 2.44 74.51 ± 1.68 88.14 ± 1.42 62.83 ± 1.33 89.36 ± 0.91 93.03 ± 0.49
Yale-B 47.40 ± 0.79 38.64 ± 0.37 23.46 ± 0.61 39.30 ± 0.29 39.30 ± 0.29 37.07 ± 0.99 13.32 ± 0.54 36.37 ± 2.26 53.34 ± 0.49
OpticDigits 92.79 ± 0.00 95.77 ± 0.02 85.82 ± 1.08 71.16 ± 2.26 77.20 ± 3.10 94.95 ± 0.00 74.34 ± 0.03 92.23 ± 2.52 96.12 ± 0.25
Stalog 52.91 ± 0.02 64.94 ± 0.09 62.47 ± 0.86 56.05 ± 3.08 62.08 ± 0.57 53.00 ± 0.00 49.16 ± 0.00 44.53 ± 3.55 68.29 ± 0.76
COIL-100 79.11 ± 0.38 79.47 ± 0.35 79.28 ± 0.52 72.00 ± 1.40 74.73 ± 0.44 84.69 ± 0.36 67.80 ± 0.77 86.50 ± 0.73 88.91 ± 0.38
MNIST 42.01 ± 0.00 69.16 ± 0.43 60.57 ± 1.65 44.92 ± 2.10 50.29 ± 1.89 72.01 ± 0.23 38.02 ± 0.02 67.24 ± 3.35 80.96 ± 1.40
PenDigist 72.89 ± 0.01 77.04 ± 0.48 76.81 ± 1.95 65.41 ± 1.49 68.45 ± 1.15 73.73 ± 0.00 63.95 ± 0.01 75.22 ± 3.13 84.81 ± 1.21
USPS 48.88 ± 0.02 64.27 ± 1.48 52.90 ± 1.35 41.37 ± 1.86 44.89 ± 1.35 65.08 ± 0.43 46.20 ± 0.01 56.71 ± 1.99 70.45 ± 2.74
15

L. Bai, M. Qi and J. Liang Artificial Intelligence 320 (2023) 103924
Fig. 4. Three clustering indices against parameters α and β .

9.3. Comparison with semi-supervised spectral clustering

We analyze the difference in clustering effectiveness between the proposed algorithm and the semi-supervised spectral
clustering algorithm, as shown in Fig. 2. We test spectral clustering with different sizes of label information. Let s be
the proportion of labels to a whole data set. We select s from 5% to 50% with a step length of 5%. In these figures, the
curves show the relations between the clustering indices of label propagation and the sizes of labels, and the lines reflect
the clustering indices of the proposed algorithm. According to these figures, we can see that the clustering results of the
proposed algorithm can reach or approach the semi-supervised results on four out of ten data sets. On other data sets,
there are no small gaps between the clustering results of the proposed algorithm and label propagation with some labels.
Therefore, we need to study further how to improve the proposed algorithm.

9.4. Parameter analysis

According to the description of the proposed algorithm, we can observe that there are three important parameters η, α,
and β , which are used to balance the roles of main terms in the objective function. We first analyze the effect of η on the
performance of the proposed algorithm. In the experiment, we test η in the interval [0, 1] with the step length of 0.1 while
α and β were fixed. Fig. 3 shows the relation between clustering indices and the parameter η on each data set. Based on
these figures, we can see that the clustering quality decreases on all data sets except Statlog as the value of η increases.
We know η is used to control the importance of the regularization term. The more η is, the more sparse Y is. We can also
observe that if η = 0.1, we can get good clustering results on most of the data sets.

Furthermore, we analyze the co-influence of α and β on the performance of the proposed algorithm. We test the two
parameters in the interval [0, 1] with the step length of 0.1, while η is fixed. The tested results are shown in Fig. 4. According
to these figures, we can observe that if α and β are close to 0, the performance of the proposed algorithm is very bad.
The conclusion tells us that the self-learned constraint and consensus terms play important roles in the proposed algorithm.
Besides, we can see that setting α and β to more than 0.2 can bring good clustering results on most of the data sets.
16

L. Bai, M. Qi and J. Liang Artificial Intelligence 320 (2023) 103924
Fig. 5. Comparison of clustering accuracy between single and multiple sets of constraints.

9.5. Comparison of different numbers of constraints

We first randomly produce ten different initialized Yl . Then we test the proposed algorithm with every single set of Yl
and multiple sets including all the Yl . In Fig. 5, ‘Max’ and ‘Mean’ denote the maximum and average values of clustering
indices for the proposed algorithm with different Yl , and ‘Robust’ represents the clustering indices for the proposed algo-
rithm with all the Yl . According to the figures, we can see that the proposed algorithm with multiple sets of constraints is
obviously better than that with a single set of constraints. Besides, we also compare their robustness. In Fig. 6, we show the
standard deviation of the clustering indices for the proposed algorithm with single and multiple sets of constraints. We can
see that using multiple sets of constraints can enhance the robustness of the proposed algorithm.
17

L. Bai, M. Qi and J. Liang Artificial Intelligence 320 (2023) 103924
Fig. 6. Comparison of robustness between single and multiple constraints.

Additionally, we analyze the effects of the number of sets of self-learned constraints on the performance of the proposed
algorithm. Fig. 7 shows the ACC, ARI, and NMI indices against different e on ten data sets, respectively. According to these
figures, we can observe that the performance of the proposed algorithm basically increases as the value of e grows. However,
the values of clustering indices increase slowly after the e value grows to a certain extent. The experimental results tell us
on most tested data sets that (1) learning multiple sets of constraints is better than a single set; (2) learning a few sets of
label constraints can effectively enhance the clustering results.

9.6. The effect of Y on the performance of the proposed algorithm

The performance of the proposed algorithm depends on the initialization of Y . In this paper, we need to select sev-
eral objects and then use the relations between them and other objects to initialize Y . In this experiment, we employ
18

L. Bai, M. Qi and J. Liang Artificial Intelligence 320 (2023) 103924
Fig. 7. Three clustering indices against the number of constraints.

three selection strategies to initialize Y , i.e., random initialization (where we randomly select k objects from X), K -means
initialization (where we implement k-means on X to produce k cluster centers and select the nearest objects for each
of them from X) and K -means++ initialization (where we implement k-means++ on X to select k objects from X). We
compare the proposed algorithm with the above three initialization methods on these data sets. The experimental results
are shown in Fig. 8. We can see that the performance of the proposed algorithm with k-means++ initialization is better
than the other two initialization methods. We can also see that random initialization is a better choice for simplicity and
effectiveness.

Furthermore, we discuss the effect of the diversity of these constraints on the proposed algorithm. To detect the effect,
we use overlapping ratios of different initial Yl to reflect the consensus of the constraints. We assume the higher the
overlapping ratio is, the smaller the difference among these constraints is. In Fig. 9, we show the clustering indices for
the clustering results of the proposed algorithm with different overlapping ratios of the initial constraints on each data set.
According to these figures, we can see that the overlap rate has less influence on the algorithm when it is less than a certain
value on a data set. However, as the overlapping ratio continues increasing, the clustering quality is obviously decreasing on
most of the data sets. The experimental result indicates that excessive overlap can lead to poor performance of the proposed
algorithm. The main reasons are as follows. (1) The more consistent the different groups of the label constraints are, the
closer the clustering performance with multiple groups of label constraints is that with the single group. Due the fact that
we can not ensure the high quality of each group of the learned label constraints, the diversity of multiple groups can help
us to reduce the effect of the quality of label constraints. (2) If a cluster is very complex, it is very difficult to learn a label
column to represent it. We may need to learn multiple labels to describe it. Therefore, reducing overlapping between label
matrices can help us to use multiple label columns to constrain the assignment of data objects to a cluster. Besides, the
conclusion about the effect of the overlapping ratio of label constraints is dependent on the number of clusters. According
to our experiments, we can see that the clustering quality is decreasing, as the overlapping ratio increases on the tested
data sets with different numbers of clusters.

Finally, we analyze the quality of the self-label constraints in the proposed algorithm. In Figs. 10, we show the visu-
alization of Y Y T on each data set. According to these figures, we can see that the cluster structure can be easily found
from the diagonal of the matrix Y Y T on each of the tested data set. The experimental result indicates that the self-learned
constraints have good quality, which can effectively guide the clustering process.
19

L. Bai, M. Qi and J. Liang Artificial Intelligence 320 (2023) 103924
Fig. 8. Comparison of different initialization for Y .

9.7. Convergence study of the proposed algorithm

In this paper, we have proved that the proposed algorithm is convergent. In this subsection, we further provide the
experiment analysis to show the changing trend of the overall loss function � against the number of iterations, as seen in
Fig. 11. According to the figures, we observe that as the number of iterations increases, the loss value decreases. We also
see that the proposed algorithm can usually converge within 100 iterations.
20

Fig. 9. Three clustering indices against the overlapping ratio.

Table 5
Comparison of running times (seconds).

ORL Umist COIL20 Yale-B OpticDigits Statlog COIL100 MNIST PenDigits USPS

SC 0.2085 0.0895 0.1358 0.3414 0.1406 0.1412 3.5807 0.3260 0.4491 0.4712
RSLC-Single 0.2315 0.1023 0.1876 0.6551 0.5036 0.4473 6.1504 1.1658 1.1648 1.1683
RSLC-Multi 3.3347 1.6462 5.9965 21.9037 15.2059 10.6775 186.6335 32.7420 36.9136 32.2853

9.8. Comparison of computational costs

We compare the computational costs of the classical spectral clustering (SC) algorithm with fast Eigen decomposition and
the proposed algorithm with single and multiple sets of self-learning constraints on each tested data set. The comparison
result is shown in Table 5. According to the table, we can observe that the proposed algorithm needs additional time costs to
iteratively update variables compared to the classical spectral clustering algorithm. Besides, we also can see that if we need
to get a robust clustering result, we take more time costs to learn multiple sets of constraints compared to the proposed
algorithm with a single set of constraints.

10. Conclusions

We proposed spectral clustering with robust self-learning constraints (RSLC) in this paper. In the new algorithm, we ex-
tend the objective function of the classical semi-supervised spectral clustering model by seeing label constraints as variables
and adding a robust function. We wish to minimize the new objective function to learn multiple sets of label constraints
and guide the spectral clustering process. We propose an iterative method to solve the optimization problem with update
formulas for variables. The new algorithm can get robust self-constrained clustering results under unsupervised scenes. Fur-
thermore, we provide the theoretical analysis to show the importance of the learned constraints in spectral clustering and
then prove the convergence of the proposed algorithm. Finally, by experimental study, we show that the proposed algorithm
performs well on benchmark data sets.
L. Bai, M. Qi and J. Liang Artificial Intelligence 320 (2023) 103924
21

L. Bai, M. Qi and J. Liang Artificial Intelligence 320 (2023) 103924

Fig. 10. Evaluation of the learned constraints.

Fig. 11. The loss values against the number of iterations.
22

L. Bai, M. Qi and J. Liang Artificial Intelligence 320 (2023) 103924
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgement

The authors are very grateful to the editors and reviewers for their valuable comments and suggestions. This work
is supported by the National Key Research and Development Program of China (No. 2021ZD0113303), and the National
Natural Science Foundation of China (Nos. 62022052, 62276159).

References

[1] A.K. Jain, Data clustering: 50 years beyond k-means, in: Machine Learning and Knowledge Discovery in Databases, Springer, Berlin, Heidelberg, 2008.
[2] C.C. Aggarwal, C.K. Reddy (Eds.), Data Clustering: Algorithms and Applications, CRC Press, 2014.
[3] J. Shi, J. Malik, Normalized cuts and image segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000) 888–905.
[4] A.Y. Ng, M.I. Jordan, Y. Weiss, On spectral clustering: analysis and an algorithm, in: Advances in Neural Information Processing Systems, MIT Press,

2001, pp. 849–856.
[5] D. Zhou, O. Bousquet, T.N. Lal, J. Weston, B. Schölkopf, Learning with local and global consistency, in: Advances in Neural Information Processing

Systems, vol. 16, 2003, pp. 321–328.
[6] L. Bai, J. Liang, F. Cao, Semi-supervised clustering with constraints of different types from multiple information sources, IEEE Trans. Pattern Anal. Mach.

Intell. 43 (2021) 3247–3258.
[7] E. Elhamifar, R. Vidal, Sparse subspace clustering, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009,

pp. 2790–2797.
[8] M. Soltanolkotabi, E. Elhamifar, E. Candès, Robust subspace clustering, Ann. Stat. 42 (2013) 669–699.
[9] X. Peng, J. Feng, J.T. Zhou, Y. Lei, S. Yan, Deep subspace clustering, IEEE Trans. Neural Netw. Learn. Syst. 31 (2020) 5509–5521.

[10] Y. Chen, C.-G. Li, C. You, Stochastic sparse subspace clustering, in: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020,
pp. 4154–4163.

[11] G. Liu, Z. Lin, Y. Yong, Robust subspace segmentation by low-rank representation, in: Proceedings of the 27th International Conference on Machine
Learning (ICML-2010), 2010, pp. 663–670.

[12] X. Zhu, S. Zhang, Y. Li, J. Zhang, L. Yang, Y. Fang, Low-rank sparse subspace for spectral clustering, IEEE Trans. Knowl. Data Eng. 31 (2019) 1532–1543.
[13] F. Nie, X. Wang, H. Huang, Clustering and projected clustering with adaptive neighbors, in: ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 2014.
[14] F. Nie, X. Wang, M.I. Jordan, H. Huang, The constrained laplacian rank algorithm for graph-based clustering, in: AAAI Conference on Artificial Intelli-

gence, 2016.
[15] F. Nie, W. Chang, Z. Hu, X. Li, Robust subspace clustering with low-rank structure constraint, IEEE Trans. Knowl. Data Eng. 34 (2022) 1404–1415.
[16] I.S. Dhillon, Y. Guan, B. Kulis, Weighted graph cuts without eigenvectors: a multilevel approach, IEEE Trans. Pattern Anal. Mach. Intell. 29 (2007)

1944–1957.
[17] H. Liu, J. Wu, T. Liu, D. Tao, Y. Fu, Spectral ensemble clustering via weighted k-means: theoretical and practical evidence, IEEE Trans. Knowl. Data Eng.

29 (2017) 1129–1143.
[18] J. Liu, C. Wang, M. Danilevsky, J. Han, Large-scale spectral clustering on graphs, in: Proceedings of the 23rd International Joint Conference on Artificial

Intelligence, 2013, pp. 1486–1492.
[19] C.C. Fowlkes, S.J. Belongie, F.R.K. Chung, J. Malik, Spectral grouping using the Nyström method, IEEE Trans. Pattern Anal. Mach. Intell. 26 (2004)

214–225.
[20] D. Cai, X. Chen, Large scale spectral clustering via landmark-based sparse representation, IEEE Trans. Cybern. 45 (2015) 1669–1680.
[21] W.Y. Chen, H. Bai, H. Bai, E.Y. Chang, E.Y. Chang, Parallel spectral clustering in distributed systems, IEEE Trans. Pattern Anal. Mach. Intell. 33 (2011)

568–586.
[22] H. Li, N. Ray, Y. Guan, Z. Hong, Fast large-scale spectral clustering via explicit feature mapping, IEEE Trans. Cybern. 49 (2019) 1058–1071.
[23] M. Mohan, C. Monteleoni, Beyond the Nystrom approximation: speeding up spectral clustering using uniform sampling and weighted kernel k-means,

in: Twenty-Sixth International Joint Conference on Artificial Intelligence, 2017, pp. 2494–2500.
[24] L. Bai, J. Liang, A three-level optimization model for nonlinearly separable clustering, in: Proceedings of the AAAI Conference on Artificial Intelligence,

vol. 34, 2020, pp. 3211–3218.
[25] D. Huang, C. Wang, J. Wu, J. Lai, C. Kwoh, Ultra-scalable spectral clustering and ensemble clustering, IEEE Trans. Knowl. Data Eng. 32 (2020) 1212–1226.
[26] O. Zoidi, A. Tefas, N. Nikolaidis, I. Pitas, Positive and negative label propagations, IEEE Trans. Circuits Syst. Video Technol. 28 (2018) 342–355.
[27] Z. Li, J. Liu, X. Tang, Constrained clustering via spectral regularization, in: Proceedings of IEEE Computer Vision and Pattern Recognition, 2009,

pp. 421–428.
[28] Z. Lu, Y. Peng, Exhaustive and efficient constraint propagation: a graph-based learning approach and its applications, Int. J. Comput. Vis. 103 (2013)

306–325.
[29] H. Liu, Z. Tao, Y. Fu, Partition level constrained clustering, IEEE Trans. Pattern Anal. Mach. Intell. 40 (2018) 2469–2483.
[30] I. Jang, G. Danley, K. Chang, J. Kalpathy-Cramer, Decreasing Annotation Burden of Pairwise Comparisons with Human-in-the-Loop Sorting: Application

in Medical Image Artifact Rating, in: NeurIPS Data-Centric AI Workshop, 2021.
[31] J. Zhang, C.G. Li, C. You, X. Qi, Z. Lin, Self-supervised convolutional subspace clustering network, in: IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2019.
[32] X. Ji, A. Vedaldi, J. Henriques, Invariant information clustering for unsupervised image classification and segmentation, in: IEEE/CVF International

Conference on Computer Vision, 2019, pp. 9864–9873.
[33] Y.M. Asano, C. Rupprecht, A. Vedaldi, Self-labelling via simultaneous clustering and representation learning, in: International Conference on Learning

Representation, 2020.
23

http://refhub.elsevier.com/S0004-3702(23)00070-X/bib7CA0434A280BDBAB159D6176B285DEAEs1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib84A09672047E8E76CE4A8E322788FC65s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bibD207FD85EB9B9572D88730F6F259DA96s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib9A45B4ECF511D9B19BBADAB0380990E4s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib9A45B4ECF511D9B19BBADAB0380990E4s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib5F9943C88DF7330261ACF426C766B25Ds1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib5F9943C88DF7330261ACF426C766B25Ds1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib77CE0254A9671EC8B8900328F8897BBEs1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib77CE0254A9671EC8B8900328F8897BBEs1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib89A85A221D9A95F6CC43EC325B5768E6s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib89A85A221D9A95F6CC43EC325B5768E6s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bibAD228756BB392C22E3970AB63390F758s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bibE88BB8E90E22D55FD9F0927421ADDE9Bs1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bibF82A70460808E1F0C17AE384C6F50CB2s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bibF82A70460808E1F0C17AE384C6F50CB2s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bibE355C47A5C4FE77381D68B76771D11EDs1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bibE355C47A5C4FE77381D68B76771D11EDs1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib593A3023B826E242BE5651751B69D09Es1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib6D5050F7A97E7E2E881A4E09DFBD6087s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib6D5050F7A97E7E2E881A4E09DFBD6087s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bibD22BCC369C956E87D0D2F12C364F204As1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bibD22BCC369C956E87D0D2F12C364F204As1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bibEBFDBEA8FA38F48AABEE2E7B9A5ED9E5s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib838E16E24F3EFFF02539458BF06942B0s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib838E16E24F3EFFF02539458BF06942B0s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bibAE4A66B0E5EA91A1A8DBB3785155E922s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bibAE4A66B0E5EA91A1A8DBB3785155E922s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib56D1420544D8EEC95CF2BADABA18E05Es1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib56D1420544D8EEC95CF2BADABA18E05Es1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bibC55151616A7F6482DDECA4C2C7FABEBEs1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bibC55151616A7F6482DDECA4C2C7FABEBEs1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib6F6C90E968A4ADC904152244698D1DDAs1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib0806DE474FC3DBB037F68D7E26982D9Fs1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib0806DE474FC3DBB037F68D7E26982D9Fs1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib7CE9B22D580CAE4CB7413911420A8D98s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib118FD2E50AF2652A1CCBBDF86126AF55s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib118FD2E50AF2652A1CCBBDF86126AF55s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib3B49B83DED6A717CC75B8FCD9057ACC8s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib3B49B83DED6A717CC75B8FCD9057ACC8s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bibF2CF8A859643D5CA562A8AB92AC76666s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib4F69E7C434F8EF58865EA3788F493298s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib8640D08847FE5E081F0A41C4579BF26As1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib8640D08847FE5E081F0A41C4579BF26As1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bibD5E6176FC33F554F399B2619C9D0F039s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bibD5E6176FC33F554F399B2619C9D0F039s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bibA687BF182CA5DC6BA4176A1002155854s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib7A7E8553DE67B238B863F49141F0E829s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib7A7E8553DE67B238B863F49141F0E829s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bibDD18904AEF65A981729D08A5AA56253Ds1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bibDD18904AEF65A981729D08A5AA56253Ds1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bibB45B4881089B94AC5853833CFC7D741Bs1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bibB45B4881089B94AC5853833CFC7D741Bs1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bibACA6F56F38A7E73E7607C0088316A081s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bibACA6F56F38A7E73E7607C0088316A081s1

L. Bai, M. Qi and J. Liang Artificial Intelligence 320 (2023) 103924
[34] J. Xie, R. Girshick, A. Farhadi, Unsupervised deep embedding for clustering analysis, in: International Conference on Machine Learning, vol. 48, 2016,
pp. 478–487.

[35] J. Yang, D. Parikh, D. Batra, Joint unsupervised learning of deep representations and image clusters, in: IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 5147–5156.

[36] J. Lv, Z. Kang, X. Lu, Z. Xu, Pseudo-supervised deep subspace clustering, IEEE Trans. Image Process. 30 (2021) 5252–5263.
[37] P. Ji, T. Zhang, H. Li, M. Salzmann, I. Reid, Deep subspace clustering networks, in: Advances in Neural Information Processing Systems, Curran Associates,

Inc., 2017.
[38] Yunfan Li, Mouxing Yang, Dezhong Peng, Taihao Li, Jiantao Huang, Xi Peng, Twin Contrastive Learning for Online Clustering, Int. J. Comput. Vis. 130

(2022) 2205–2221.
[39] U. Shaham, K. Stanton, H. Li, B. Nadler, R. Basri, Y. Kluger, Spectralnet: spectral clustering using deep neural networks, in: International Conference on

Learning Representation, 2018.
[40] J. Chang, G. Meng, L. Wang, S. Xiang, C. Pan, Deep self-evolution clustering, IEEE Trans. Pattern Anal. Mach. Intell. 42 (2020) 809–823.
[41] A. Argyriou, T. Evgeniou, M. Pontil, Multi-task feature learning, in: Advances in Neural Information Processing Systems, 2006.
[42] F. Nie, H. Huang, X. Cai, C. Ding, Efficient and robust feature selection via joint 2, 1-norms minimization, in: Advances in Neural Information Processing

Systems, 2010.
[43] D. Cai, X. He, J. Han, T.S. Huang, Graph regularized nonnegative matrix factorization for data representation, IEEE Trans. Pattern Anal. Mach. Intell. 33

(2011).
[44] S. Shalev-Shwartz, S. Ben-David, Understanding Machine Learning: From Theory to Algorithms, Cambridge University Press, 2014.
[45] W.I. Zangwill, Nonlinear Programming: A Unified Approach, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969.
[46] L. Bai, J. Liang, C. Dang, F. Cao, The impact of cluster representatives on the convergence of the k-modes type clustering, IEEE Trans. Pattern Anal.

Mach. Intell. 35 (2013) 1509–1522.
[47] D.D. Lee, H.S. Seung, Algorithms for non-negative matrix factorization, in: T.K. Leen, T.G. Dietterich, V. Tresp (Eds.), Advances in Neural Information

Processing Systems, vol. 13, Papers from Neural Information Processing Systems (NIPS) 2000, Denver, CO, USA, MIT Press, 2000, pp. 556–562.
[48] J.C. Bezdek, A convergence theorem for the fuzzy isodata clustering algorithms, IEEE Trans. Pattern Anal. Mach. Intell. 2 (1980) 1–8.
[49] C. Deng, Codes and dataset for feature learning, http://www.cad .zju .edu .cn /home /dengcai /Data /data .html, 2019.
24

http://refhub.elsevier.com/S0004-3702(23)00070-X/bibE4ABEC8DDDBA984831ECCC14E76E97E6s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bibE4ABEC8DDDBA984831ECCC14E76E97E6s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib193831F81B5D55DDA4B4051E2E8084D6s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib193831F81B5D55DDA4B4051E2E8084D6s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib52C4765E224B8155AE5FA08C55CB2A40s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib8F157589FE26126BFE357CAD0390F4F4s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib8F157589FE26126BFE357CAD0390F4F4s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib4E9C716058C1AE41E17E458E4B7B70CDs1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib4E9C716058C1AE41E17E458E4B7B70CDs1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib1FB6D5218D6E3C42421B8F1EAB73CD65s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib1FB6D5218D6E3C42421B8F1EAB73CD65s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib09A89838581725CD38690FC28694B9A2s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bibD91AF43F06ED640EA9B6699BBE5A18A8s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib343979ACD6084F5F3856B55F7D933A2Es1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib343979ACD6084F5F3856B55F7D933A2Es1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib50DCE8A78A58385DB3937D2E45734864s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib50DCE8A78A58385DB3937D2E45734864s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bibC4C3868FE9D2F6B415DA461E5C5E4CADs1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib87F79A5B57A3C3CCF9D7EFC7E2BB959Bs1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bibAEE4B273836D97E5A5DC7BABC3E921CCs1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bibAEE4B273836D97E5A5DC7BABC3E921CCs1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bibDAF8520059DBD11EE960ED38630E9092s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bibDAF8520059DBD11EE960ED38630E9092s1
http://refhub.elsevier.com/S0004-3702(23)00070-X/bib1DE165610C1B0142F04EBE6AC03408EBs1
http://www.cad.zju.edu.cn/home/dengcai/Data/data.html

	Spectral clustering with robust self-learning constraints
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Spectral clustering
	3.2 Semi-supervised spectral clustering

	4 Spectral clustering with self-learning constraints
	5 Spectral clustering with robust self-learning constraints
	6 Algorithm description
	7 Theoretical analysis
	7.1 Importance of single set of the learned constraints
	7.2 Importance of multiple sets of the learned constraints

	8 Convergence analysis
	8.1 Non-increasing property
	8.2 Continuous property
	8.3 Compact set property

	9 Experiment analysis
	9.1 Experiment settings
	9.2 Comparison with other versions of spectral clustering algorithms
	9.3 Comparison with semi-supervised spectral clustering
	9.4 Parameter analysis
	9.5 Comparison of different numbers of constraints
	9.6 The effect of Y on the performance of the proposed algorithm
	9.7 Convergence study of the proposed algorithm
	9.8 Comparison of computational costs

	10 Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgement
	References

