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Spectral clustering is a leading unsupervised classification algorithm widely used to capture 
complex clusters in unlabeled data. Additional prior information can further enhance 
the quality of spectral clustering results to satisfy users’ expectations. However, it is 
challenging for users to find the prior information under unsupervised scenes. To get 
rid of the deficiency, we propose a spectral clustering model with robust self-learning 
constraints. In this model, we first extend the optimization problem of spectral clustering 
by seeing label constraints as variables to learn the constraints and the clustering result 
simultaneously. Furthermore, we add a robust term to the proposed model so that we 
can learn multiple groups of label constraints to guide the clustering process and find a 
robust self-constrained spectral clustering result. The robust term can reduce the impact 
of uncertainty in the quality of a single set of label constraints on the performance of the 
proposed model. An iterative strategy with update formulas for variables is proposed to 
solve the self-constrained spectral clustering problem. We provide the theoretical analysis 
to explain the importance of the learned constraints in spectral clustering. Furthermore, 
we analyze the convergence of our optimization scheme. Finally, we have done many 
experiments on benchmark data sets to illustrate the effectiveness of the proposed 
algorithm.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Clustering is an important field in machine learning and artificial intelligence [1]. The goal of clustering is to identify 
objects that look similar into a common cluster and discover patterns from huge data like humans. To solve this problem, 
various types of clustering algorithms have been developed in the literature (e.g., [2] and references therein).

Spectral clustering (SC) [3,4] is a representative of graph clustering. It has shown greater promise than other traditional 
clustering algorithms in learning hidden nonlinear structures from data. It transforms a clustering problem into a graph-
partitioning problem and then uses the spectrum (eigenvalues) of the graph to learn the label features of data. Since it 
exploits nonlinear pairwise similarity between data, it can recognize different shapes of clusters. Currently, many improved 
spectral clustering methods have been developed to enhance the performance of spectral clustering, which can be found in 
Section 2. However, since spectral clustering works without supervision information, its clustering result may differ from 
the users’ expectations. Many studies [5] have demonstrated that even a small amount of supervision information can lead 
to significant improvements in the performance of spectral clustering. In the field of machine learning, label and pairwise 
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Fig. 1. Self-constrained spectral clustering.

constraints are two widely used types of supervision information. The relationship between these two types of constraints 
has been explored by [6], where it was shown that label constraints may be converted into pairwise constraints. Compared 
to label constraints, pairwise constraints are weak supervision signals. Currently, many semi-supervised spectral clustering 
algorithms with different types of supervision information have been developed, which are detailed in Section 2. The super-
vision information can provide additional discriminative information to improve the clustering accuracy in semi-supervised 
clustering algorithms. Unfortunately, the semi-supervised clustering results are sensitive to the quality of prior supervision 
information. Inexact supervision information often can not improve the clustering result but reduce its effectiveness. Be-
sides, it is very challenging for users to obtain some prior supervision information from a data set under an unsupervised 
scene.

To solve the problem, we try to learn label constraints automatically from unlabeled data and then convert a spectral 
clustering problem into a self-supervised clustering problem. Based on the idea, we develop a spectral clustering model 
with self-learning constraints, where label constraints are seen as variables and learned by using a sparse regularization 
term. After label constraints are extracted automatically, this model can make use of semi-supervised learning techniques 
to improve the clustering results. However, the performance of this model is very sensitive to the quality of the learned 
constraints. Since there is certain uncertainty in the learning process of label constraints, we can not guarantee that the 
learned constraints are of high quality. To overcome the shortcoming, we further build a robust self-constrained spectral 
clustering model which can learn multiple sets of label constraints to guide the clustering process. Compared to a single set 
of self-learning constraints, multiple sets can help us to get a more robust clustering result. The diagram of self-constrained 
spectral clustering with single and multiple sets of self-learning constraints is shown in Fig. 1. According to this figure, we 
can see their difference. Furthermore, we provide the theoretical and experimental analysis to illustrate the effectiveness of 
the proposed model.

The main contributions of this paper are described as follows:

• We build a robust self-constrained spectral clustering model which learns multiple sets of label constraints to guide the 
spectral clustering process and obtain the robust clustering result.

• We derive the update formulas for different variables and propose an iterative method to solve the optimization problem 
of spectral clustering with robust self-learning constraints.

• We provide the theoretical analysis to investigate the importance of the learned constraints for spectral clustering. 
Furthermore, we analyze the convergence of the proposed algorithm.

• By the experimental analysis, we illustrate the effectiveness of the proposed algorithm on the benchmark data sets.

The outline of the rest of this paper is as follows. Section 2 reviews the related work of spectral clustering. Section 3
introduces the preliminaries of spectral clustering and label propagation. Sections 4 and 5 present spectral clustering with 
single and multiple sets of self-learning constraints, respectively. Section 6 shows the description of the proposed algo-
rithm. Sections 7 and 8 provide the theoretical and convergence analysis for the proposed algorithm, respectively. Section 9
demonstrates the performance of the proposed algorithm. Section 10 concludes the paper with some remarks.

2. Related work

According to the supervision scenarios, we introduce the related works from three parts, i.e., unsupervised spectral 
clustering, semi-supervised spectral clustering, and self-supervised clustering, which are reviewed as follows.

(1) Unsupervised spectral clustering: There are two key factors influencing the performance of the spectral clustering al-
gorithm, namely, the quality of the pairwise similarity matrix and the expensive computational cost. Different definitions 
of the similarity matrix often result in spectral clustering outputs of varying qualities. To address this issue, many studies 
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have focused on learning an appropriate pairwise similarity matrix from data for spectral clustering. For instance, sparse 
subspace clustering [7–10] utilizes a self-representation optimization model to learn a sparse similarity matrix. In [11], a 
low-rank similarity matrix was learned for subspace clustering. Zhang et al. [12] further extended this method to learn the 
affinity matrix from the low-dimensional space of the original data. In [13–15], the authors proposed to learn a Laplacian-
rank similarity matrix with precisely connected components. In addition to improving the similarity matrix, many studies 
focus on how to reduce the calculation cost for spectral clustering. Dhillon et al. [16] demonstrated the equivalence between 
spectral clustering and kernel k-means, and used the iterative optimization method of kernel k-means instead of Eigen de-
composition to solve the spectral clustering problem. Liu et al. [17] applied this technique to the cluster ensemble problem. 
Moreover, various methods have been proposed to compress the original graph into a sparse sub or bipartite graph, in order 
to reduce the time cost of spectral clustering, such as [18–25].

(2) Semi-supervised spectral clustering: Currently, different types of semi-supervised spectral clustering algorithms have 
been developed, which can make use of additional prior information to improve the spectral clustering results. For example, 
Zhou et al. [5] proposed a label propagation algorithm that can be seen as spectral clustering with Positive-Label constraints. 
Zoidi et al. further extended the label propagation algorithm to propose a version with Negative-Label constraints [26]. 
Bai et al. proposed a label propagation with pairwise constraints [24]. Furthermore, they developed a spectral clustering 
algorithm with the integration of different types of constraints [6]. Besides, other types of constrained spectral clustering 
algorithms have also been developed in [27–29]. Although these methods can improve the spectral clustering results, their 
performance depends on the quality of prior information. Poor supervision information often brings bad clustering results. 
However, finding high-quality prior information requires high costs. Besides, it is difficult for users to discover good prior 
information in many scenarios, especially unsupervised scenarios.

(3) Self-supervised clustering: Different self-learning paradigms, such as label learning and pairwise learning, have been 
developed to tackle the insufficiency of discriminative information [30]. Each paradigm has its own application scenarios. 
Pairwise learning, for example, is suitable when the number of clusters is unknown on a dataset. When learning pairwise 
relations between objects, we do not need to know the number of clusters and only consider whether they belong to the 
same clusters. However, if the number of clusters is given and is much smaller than the number of objects in a dataset, 
the computational cost of learning labels is lower than that of pairwise learning. Based on these paradigms, several deep 
clustering algorithms have been proposed that self-learn label or pairwise constraints from unlabeled data to train deep 
neural networks for clustering tasks [31–34]. Deep embedded clustering (DEC) [34] and joint unsupervised learning (JULE) 
[35] are the early representatives of deep clustering models based on label learning. Lv et al. [36] learned pseudo-labels 
to train deep subspace clustering network [37]. Li et al. [38] adopted a confidence-based criterion to select pseudo-labels 
for boosting contrastive clustering. In [39], a deep spectral clustering network was proposed to learn pairwise similarity 
between data points to enhance the performance of spectral clustering. Chang et al. proposed a deep self-evolutionary clus-
tering (DSEC) [40] which uses the similarity between points as supervision information. Compared to traditional clustering 
algorithms, these deep methods can enhance the clustering results’ effectiveness by self-supervision. However, their per-
formance strongly depends on the capability of deep neural networks for data representation, which requires expensive 
training costs, such as parameter tuning, sufficient data, large storage space, and time costs.

3. Preliminaries

In this section, we first give some notations used in this paper. For any matrix M , its element of the ith row and the jth 
column is represented by [M]i j , its ith row is represented by [M]i. , its jth column is represented by [M]. j . The trace of M
is denoted as T r(M), and the transpose of M is denoted as MT . diag(M) is the diagonal matrix of M . ||M||F is Frobenius 
norm of M . Next, we briefly introduce some base concepts of spectral clustering and label propagation.

3.1. Spectral clustering

Let X be a n × d data matrix with n objects and d features, xi be the ith row of X which is used to represent the ith 
object. Given X , people can use a similarity measure to get its affinity matrix A. In general, Gaussian kernel is used to define 
A as follows.

Aij = exp

(
−||[X]i. − [X] j.||2

δ

)
, (1)

where δ is a kernel parameter. Spectral clustering is to see A as a graph and find its partition such that the sum of weights 
of edges between the two sets is minimized. Its objective function is described as

min
H

T r(H T LH), s.t., H T H = I, (2)

where L = I − Â is a normalized Laplacian matrix and H is a n × k membership matrix. Â is the normalized similarity 
matrix D−1/2 AD−1/2 or D−1 A, D is a diagonal matrix whose entries are row sums of A. The spectral clustering problem 
is the standard trace minimization problem which is solved by the matrix H by containing the first k eigenvectors of L as 
columns.
3
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3.2. Semi-supervised spectral clustering

Label propagation [5] is the representative of semi-supervised spectral clustering methods, which uses additional prior 
information, i.e., label constraints, to enhance the performance of spectral clustering. Its optimization function � is described 
as

min
H

T r(H T LH) + α||H − Y ||2F , (3)

where Y is a n × k pre-given label constraint matrix, which reflects the relations between objects and clusters. If the ith 
object belongs to the lth cluster, Yil is set to 1; otherwise, 0. α is a parameter that is used to balance the importance of 
each term in the objective function. It is set to 0.01 by default. If α = 0, the function is equivalent to spectral clustering. 
In [5], the authors provided the optimal solution of Eq. (3), which is described as follows. Differentiating � with respect to 
H , we have

∂�

∂ H
= 2(H − ÂH) + 2α(H − Y ) = 0. (4)

Its closed-form solution H̃ is

H̃ = α

1 + α
(I − 1

1 + α
Â)−1Y . (5)

Based on Eq. (5), we can get a clustering result H with pre-given label constraints Y . In general, people do not directly 
compute (I − 1

1+α Â)−1 but get H̃ by iterative updating formula

H = 1

1 + α
ÂH + α

1 + α
Y . (6)

According to Eq. (6), we can see H is a non-negative matrix if Y is required to be non-negative. The non-negative property 
corresponds to the meanings represented by H and Y . Because each element in H or Y reflects the membership of an 
object to a cluster, which is assumed to be non-negative in many clustering algorithms.

From Eq. (6), it is evident that H is non-negative when we require Y to be non-negative. The non-negative property 
corresponds to the meanings represented by H and Y . This is because each element in either H or Y represents an object’s 
membership in a cluster, which is assumed to be non-negative in many clustering algorithms.

4. Spectral clustering with self-learning constraints

We can extend the objective function of spectral clustering by seeing label constraints as variables to simultaneously 
learn the label constraints and the clustering result. The new objective function is defined as

min
H,Y

T r(H T LH) + α||H − Y ||2F + η||Y ||2,1, (7)

where ||Y ||2,1 is a regularization norm of L2,1 to make Y sparse and η is a parameter. L2,1-norm regularization was pro-
posed for multi-task feature selection [41,42]. It is a combination between L2-norm and L1-norm to control the sparsity of 
columns and rows of a feature matrix, respectively. For variable Y , each of its columns represents a class label. Since there 
is some overlap between class labels, we need a smooth regular term, i.e., L2-norm, to sparse the column values in each 
row. Each row of Y represents an object. We only require some objects to get high-credible label constraints, and the label 
constraints of other objects are deleted. Then we choose a strongly sparse regularization, i.e., the norm of L1, to constrain 
each row of Y .

This optimization problem forms a class of nonconvex optimization problems. To minimize it, we can randomly initialize 
Y and iteratively update H and Y to get its approximate solution. Next, we introduce the specific update formulas for H
and Y , respectively.

Updating H : When Y is fixed, the optimization problem (7) becomes a label propagation problem [5], i.e., Eq. (3). 
Therefore, the update formula of H equals to Eq. (5).

Updating Y : When H is fixed, the optimization problem (7) is reduced to a problem

min
V

� = α||H − Y ||2F + η||Y ||2,1. (8)

Thus, minimizing it becomes a classical problem of L2,1-norm regularization whose solving method is described as follows 
[11]. Differentiating Eq. (8) with respect to Y , we have

∂� = 2α(Y − H) + 2ηU Y , (9)

∂Y
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where U = diag(1/||[Y ]i.||2). Therefore, for 1 ≤ l ≤ e, Y is updated by the following formula

[Y ]i. =

⎧⎪⎨
⎪⎩

(
1 − η

α||[H]i.||2
)

[H]i., α||[H]i.||2 > η,

0, otherwise.

(10)

As seen from Eq. (10), the updating formula of Y is equal to the sparsification of H . This operation enables us to extract 
reliable label constraints from H , which we use to update Y . Moreover, we note that if the initial value of Y is non-negative, 
then both the updated Y and H are non-negative.

5. Spectral clustering with robust self-learning constraints

The solution of self-constrained spectral clustering is sensitive to the initialization of Y . Before the proposed model runs, 
we need to randomly initialize Y which will provide the first guidance for the clustering task. However, a poor initialization 
may result in incorrect guidance and subsequently low-quality learned label constraints. If we only learn a group of label 
constraints, the clustering result of the proposed model is sensitive to the quality of the learned label constraints. Therefore, 
to mitigate this issue, we incorporate a robust function into Eq. (7). Learning multiple sets (groups) of label constraints can 
correct erroneous initialization information to some extent that can guide the spectral clustering process in a more accurate 
and robust manner.

The robust function is defined as

� = min
F ,G

T r(F T L F ) + β

e∑
l=1

||Yl − F Gl||2F , (11)

where β is a parameter, e is the number of learned label constraints, Yl is the lth matrix of label constraints, F is the final 
clustering result, G = [Gl]e

l=1 where Gl is a relation matrix between F and Yl . 
∑e

l=1 ||Yl − F Gl||2F is a consensus measure to 
evaluate the difference between the final clustering result F and each matrix of the learned label constraints Yl . We wish 
to minimize the robust function to find the most consensus clustering result with all the label constraints.

Based on Eqs. (7) and (11), the objective function of robust self-constrained spectral clustering is defined as

min
H,Y ,F ,G

� =
e∑

l=1

[
T r(H T

l LHl) + α||Hl − Yl||2F
]
+ η||Y ||2,1

+ T r(F T L F ) + β

e∑
l=1

||Yl − F Gl||2F ,

(12)

s.t., F ≥ 0, Hl ≥ 0, Yl ≥ 0, Gl ≥ 0,

where H = [Hl]e
l=1 and Hl is the eth clustering result based on Yl .

We need to iteratively update these variables to minimize Eq. (12). Next, we introduce the specific optimization process 
of their update formulas, respectively.

Updating H : When updating H , other variables are fixed. In this case, each 
l for Hl is independent and nonnegative, 
where


l =T r(H T
l LHl) + α||Hl − Yl||2F

+ β||Yl − F Gl||2F .
(13)

Thus, the optimization problem is equal to minimizing each 
l . Differentiating 
l with respect to Hl , we can obtain

∂
l

∂ Hl
= 2LHl + 2α(Hl − Yl) = 0. (14)

Thus, for 1 ≤ l ≤ e, Hl is computed by the same equation as Eq. (5), i.e.,

Hl = α

1 + α
(I − 1

1 + α
Â)−1Yl. (15)

Updating Y : Given other variables, the optimization problem becomes minimizing

� = α

e∑
l=1

||Hl − Yl||2F + β

e∑
l=1

||F Gl − Yl||2F + η||Y ||2,1. (16)

Since
5
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e∑
l=1

||Hl − Yl||2F = ||H − Y ||2F (17)

and

e∑
l=1

||F Gl − Yl||2F = ||F G − Y ||2F , (18)

we have

� = α||H − Y ||2F + β||F G − Y ||2F + η||Y ||2,1. (19)

Thus, minimizing � becomes a classical problem of L2,1-norm regularization whose solving method is described as [11]. 
Differentiating � with respect to Y , we have

∂�

∂Y
= 2α(Y − H) + 2β(Y − F G) + 2ηU Y , (20)

where U = diag(1/||[Y ]i.||2). Therefore, for 1 ≤ l ≤ e, Yl is updated by the following formula

[Yl]i. =

⎧⎪⎨
⎪⎩

(
1 − η

||[W ]i.||2
)

[Wl]i., ||[W ]i.||2 > η,

0, otherwise,

(21)

where Wl = αHl + β F Gl and W = [Wl]e
l=1.

Updating F and G: According to Eq. (18), we have

tr(F T L F ) + β

e∑
l=1

||Yl − F Gl||2F = tr(F T L F ) + β||Y − F G||2F . (22)

When H and Y are fixed, the optimization problem becomes minimizing

min
F ,G

tr(F T L F ) + β||Y − F G||2F , s.t. F ≥ 0, G ≥ 0. (23)

This problem can be seen as a non-negative matrix factorization with graph regularization [43]. Therefore, we can get the 
update formulas for F and G as follows.

[F ]i j ← [F ]i j

[Y G T + 1
β

Â F ]i j

[F GG T + 1
β

F ]i j
(24)

and

[Gl]i j ← [Gl]i j
[F T Yl]i j

[F T F Gl]i j
. (25)

Based on the above updating formulas of H , Y , F , and G , we can iteratively solve the optimization problem in Eq. (12).

6. Algorithm description

A spectral clustering with robust self-learning constraints (RSLC) algorithm is summarized in Algorithm 1. In this algo-
rithm, we consider two cases, i.e., e > 1 and e = 1. If e = 1, we only need to learn a set of label constraints. Thus, in this 
case, we only update H and Y to return H as the clustering results. If e > 1, we need to update H , Y , F , and G to learn 
multiple sets of constraints and return F as a robust clustering result. For the initialization of Yl , we only randomly select k
objects from a data set and assign different labels for them.

The time complexity of the proposed algorithm is made up of three parts, computing similarity matrix O (n2m), self-
label propagation O (n2ket), non-negative matrix factorization O (nket), where t is the number of iterations. Therefore, its 
overall time complexity is O (n2ket + nket + n2m). We know that the time complexity of classical spectral clustering with 
fast eigenvalue decomposition is O (n2m + n2k). We can see that the proposed algorithm needs more computational costs 
than traditional spectral clustering. These additional costs are used to iteratively compute update formulas, which can help 
us to improve the performance of spectral clustering. However, since the time complexity is quadratic with the number 
of objects on a data set, it can not efficiently deal with large-scale data sets. Therefore, we need to study the acceleration 
mechanism of the proposed algorithm in future work to make it suitable for large-scale data.
6



L. Bai, M. Qi and J. Liang Artificial Intelligence 320 (2023) 103924
Algorithm 1: The RSLC algorithm.
Input: A, k, α, β , η, e and t
Output: F
Randomly initialize Yl , for 1 ≤ l ≤ e;
Repeat

If e > 1
Update H and Y by Eqs. (15) and (21);
Update F and G by Eqs. (24) and (25);

Else
Update H and Y by Eqs. (5) and (10);
F = H ;

End
Until the desired number of iterations is reached;
Return F ;

7. Theoretical analysis

In this section, we try to answer two questions: (1) Why do the learned constraints can improve the performance of spectral 
clustering? (2) Is spectral clustering with multiple sets of constraints better than that with a single set of constraints? To address 
these questions, we provide the generalization and robustness analysis to show the importance of the learned constraints.

7.1. Importance of single set of the learned constraints

We first use the relations between stability and generalization of a learning algorithm (which can be found in [44]) to 
analyze the role of a single set of the learned constraints in spectral clustering. We first give the notations for the analysis.

Let X = {x1, x2, · · · , xn} and X (i) = {x1, · · · , xi−1, x′, xi+1, · · · , xn} which differ at just the ith data point from X . We 
assume all the data points in {x1, · · · , xn, x′} are independent and identically distributed and subject to the same data 
distribution Z . For a data point xi , its prediction loss of spectral clustering is described as

f (H, xi) =L(H, xi) + αR(H, xi),

where L(H, xi) =
n∑

j=1

[A]i j|| H(xi)√[D]ii
− [H] j.√[D] j j

||2,

R(H, xi) =||H(xi) − [Y ]i.||2,

(26)

where H(xi) is the representation of data xi in gained Hilbert space formed by H , and we have H(xi) = ∑n
j=1[ Ã]i j[H] j. .

The overall prediction loss is the mean value of f (H, xi) for all the data points, which is described as

f (H, X) =1

n

∑
xi∈X

f (H, xi) = L(H, X) + αR(H, X),

where L(H, X) =1

n

∑
xi∈X

L(H, xi), and R(H, X) = 1

n

∑
xi∈X

R(H, xi).

(27)

It is easy to verify that this loss function f (H, X) is strongly convex, so we have

f (H, X) − f (H ′, X) ≥ α||H − H ′||2F (28)

where H and H ′ are two different clustering results for spectral clustering. For H and H ′ , we have

f (H, X) − f (H ′, X) =[L(H, X) + αR(H, X)] − [L(H ′, X) + αR(H ′, X)]
=[L(H, X (i)) + αR(H, X (i)) + f (H, xi) − f (H, x′)

n
]

− [L(H ′, X (i)) + αR(H ′, X (i)) + f (H ′, xi) − f (H ′, x′)
n

]
=[L(H, X (i)) + αR(H, X (i))] − [L(H ′, X (i)) + αR(H ′, X (i))]

+ f (H, xi) − f (H ′, xi)

n
+ f (H ′, x′) − f (H, x′)

n

=[ f (H, X (i)) − f (H ′, X (i))] + L(H, xi) −L(H ′, xi) + L(H ′, x′) −L(H, x′)

(29)
n n

7
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Furthermore, we suppose H X is a matrix that minimizes f (H, X), then H X(i) stands for the optimal result for minimizing 
f (H, X (i)). Let H = H X(i) and H ′ = H X in (29). In this case, it is obvious that f X(i) (H) ≤ f X(i) (H ′).

Then, we have

f (H X(i) , X) − f (H X , X) ≤ L(H X(i) , xi) −L(H X , xi)

n
+ L(H X , x′) −L(H X(i) , x′)

n
(30)

Comparing this equation with (28), we can get

α||H X(i) − H X ||2F ≤ L(H X(i) , xi) −L(H X , xi)

n
+ L(H X , x′) −L(H X(i) , x′)

n
(31)

The loss term L(H, xi) is bounded for given data point xi and clustering matrix H , which is easy to verify, and we 
assume the upper bound is M . Next, we analyze the upper bound for the right two terms in (31). The notations H and H ′
are reused to clarify the following derivation.

L(H, xi) −L(H ′, xi) =
n∑
j

[A]i j

(
|| H(xi)√[D]ii

− [H] j.√[D] j j
||2 − || H ′(xi)√[D]ii

− [H ′] j.√[D] j j
||2

)

≤
n∑
j

[A]i j[( H(xi)√[D]ii
− [H] j.√[D] j j

) + (
H ′(xi)√[D]ii

− [H ′] j.√[D] j j
)]T

[( H ′(xi)√[D]ii
− [H ′] j.√[D] j j

) − (
H ′(xi)√[D]ii

− [H ′] j.√[D] j j
)]

≤ 2
√

M
n∑
j

√[A]i j||(
n∑

r=1

γr[H]r. − β j[H] j.) − (

n∑
r=1

γk[H ′]r. − β j[H ′] j.)||

≤ 2
√

M
n∑

r=1

γ̂r ||[H]r. − [H ′]r.||

≤ 2
√

Mσi ||H − H ′||F

(32)

where γr = √[A]i j/
√[D]ii , β j = 1/

√[D] j j , γ̂r = ∑n
j=1

√[A]i jγr − √[A]irβr , σi = max(γ̂r), and i, j, r ∈ {1, 2, · · · , n}.
Then for H = H X(i) and H ′ = H X , we have

L(H X(i) , xi) −L(H X , xi) ≤ 2
√

Mσi||H X(i) − H X ||F , (33)

L(H X , x′) −L(H X(i) , x′) ≤ 2
√

Mσ ′||H X(i) − H X ||F , (34)

where σi and σ ′ are concerned with the data set, and we represent the biggest one as σ∗ = max{σ1, · · · , σn, σ ′}.
Utilizing the above two equations, we can reformulate Eq. (31) as

α||H X(i) − H X ||2F ≤ 4
√

Mσ∗
n

||H X(i) − H X ||F (35)

which yields

||H X(i) − H X ||F ≤ 4
√

Mσ∗
nα

(36)

Taking this back into Eq. (32), we have

L(H X(i) , xi) −L(H X , xi) ≤ 8Mσ 2∗
nα

(37)

Since this equation holds for all data points X , using the theorem in [44], we have the following equation

E
X∼Zn

[L[(H X , Z) −L(H X , X)] = E
(X,x′)∼Zn+1,i∼U (n)

[L(H X(i) , xi) −L(H X , xi)] (38)

In our derivation, each data point xi is assumed to be chosen randomly and subject to a uniform distribution. Thus, 
based on Eq. (38), we can calculate the expectations on the Eq. (37) to conclude

E
X∼Zn

[L(H X , Z) −L(H X , X)] ≤ 8Mσ 2∗
nα

. (39)

The above conclusion shows that the constraint term influences the upper generalization bounds of the spectral clus-
tering loss. As α increases, the upper bounds decreases, which means that the learned constraints can promote the 
generalization ability of the spectral clustering model.
8
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7.2. Importance of multiple sets of the learned constraints

Next, we analyze the role of multiple sets of the learned constraints in spectral clustering. The proposed algorithm uses 
the robust function � to integrate multiple self-learning constraints to obtain the final clustering result F . If we assume

[F ]i j =
⎧⎨
⎩

1√|Cl| , i f [X]i ∈ Cl

0, otherwise,

(40)

where Cl is a set of objects belonging to the lth cluster, for 1 ≤ l ≤ k.
By minimizing �, we can obtain Gl = F T Yl . In this case, we have

||Yl − F Gl||2 = T r(YlY
T
l ) − T r(F T YlY

T
l F )

≤ 1

2
T r(I) + T r(YlY

T
l ) − T r(F T YlY

T
l F )

= 1

2
T r(YlY

T
l ) + 1

2
||YlY

T
l − F F T ||2F .

(41)

According to Eqs. (40) and (41), we have

� = tr(F T L F ) + β

e∑
l=1

||Yl − F Gl||2F

= T r(I) + β

e∑
l=1

T r(YlY
T
l ) − T r(F T ( Â + 2β

e∑
l=1

YlY
T
l )F )

≤ T r(I) + T r( Â) + β

e∑
l=1

T r(YlY
T
l ) − T r(F T ( Â + 2β

e∑
l=1

YlY
T
l )F )

= 1

2
T r(I + Â + β

e∑
l=1

YlY
T
l ) + 1

2
||

e∑
l=1

(
1

e
Â + 2βYlY

T
l ) − F F T ||2F .

(42)

When each Yl is given, minimizing � is equivalent to minimizing

�′ = ||1

e

e∑
l=1

( Â + γ YlY
T
l ) − F F T ||2F . (43)

If we replace β with a parameter γ and assume β = 1
2e γ , �′ can be seen as

�′ = ||1

e

e∑
l=1

( Â + γ YlY
T
l ) − F F T ||2F . (44)

If E(B) = F F T and Bl = Â +γ YlY T
l are seen as the expectation and estimation of the final clustering result, respectively, we 

have

�′ = ||1

e

e∑
l=1

Bl −E(B)||2F . (45)

According to the above equation, we can see that the larger e, the closer the mean of Bl is to the expectation of B , and the 
lower the value of �′ . Thus, we can conclude that the proposed algorithm with multiple sets of self-learning constraints 
can better learn the final clustering result compared to that with a single set of self-learning constraints.

8. Convergence analysis

Minimization of the proposed objective function � forms a class of constrained nonlinear optimization problems whose 
solutions are unknown. Therefore, we provide an iterative method to solve this optimization problem. In this section, we 
apply Zangwill’s theorem [45] to discuss the convergence of the proposed algorithm. The theorem and its generalizations 
can be used to obtain convergence proofs for almost all of the classical iterative optimization algorithms, e.g., steepest 
descent, Newton’s method, etc. [46], by using this approach as an alternative to more conventional arguments. The theorem 
is described as follows.
9
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Theorem 1. [45] Let f : D f ⊂ Rm → R, S = {x∗ ∈ D F : f (x∗) < f (y) ∀y ∈ B0(x∗, r)}, where B0(x∗, r) = {y ∈ Rm :‖ x∗ − y ‖<
r}, ‖ · ‖ any norm on Rm, A : D f → D f be an iterative algorithm, xk+1 = A(xk), and g be attached to sequences of iterations 
generated by A to monitor the progress of A in seeking a solution x∗ ∈ S. If the following conditions hold, g is a descent function 
for {A, S}, A is continuous on D f \ S, and the iterative sequence {A(xk) : k = 1, 2, · · · ; x1 ∈ D f } ⊂ K are contained in a compact 
set K ⊆ D f for arbitrary x1 ∈ D f , then for each iterative sequence {xk} generated by A, we have either {xk} terminates at a solution 
x∗ ∈ S or ∃ a sequence {xk j } ⊆ {xk} so that {xk j } → x∗ ∈ S.

According to the theorem above, the optimization algorithm needs to satisfy three conditions, i.e., non-increasing, 
continuous, and compact set properties, to ensure that the algorithm can converge. In order to prove that the pro-
posed algorithm satisfies the three conditions, we give some symbolic definitions for clarity of proof. We assume that 
A� represents the proposed algorithm in the paper. Since the algorithm is updated by iteration with four matrices 
(H (t), Y (t), F (t), G(t)), and the iteration of variables produces corresponding sequences {(H (t), Y (t), F (t), G(t)) : t = 1, 2, · · · }. 
We define the domains of H, Y , F , G as Mh, M y, M f , Mg . As the updating formula of each variable is based on fixing all 
the other three variables, we define Nh as the ranges of the fixed vectors Y , F , G . Similarly, we have N y, N f , Ng . Then we 
define the updating functions for H as �h : Nh → Mh , i.e., �h(Y , F , G) = H , and H in calculated by the Eq. (15). Likewise, 
we can define the updating functions �y, � f , �g for Y , F , G . Now we have the updating algorithm A� be defined as 
A� : (Mh × M y × M f × Mg) → (Mh × M y × M f × Mg), A� = �h ◦ �y ◦ � f ◦ �g .

Based on the Theorem 1, we will provide some theorems to prove the convergence of the proposed algorithm, i.e., it can 
converge in the limited number of iterations. In the following, Theorems 2-5 show the descending property of the objective 
function. Theorem 6 proves the iterative algorithm A� is continuous on the (Mh × M y × M f × Mg), and Theorem 7 asserts 
the iterative sequences calculated by the proposed algorithm are in the compact set.

8.1. Non-increasing property

To prove that the objective function is non-increasing under the updating rules, we essentially follow the idea in the 
proof of NMF [47] and GNMF [43]. Our proof will make use of their auxiliary function and the corresponding lemma which 
are described as follows.

Definition 1. [47] Q (v, v ′) is an auxiliary function for F(v) if the conditions

Q (v, v ′) ≥ F(v), Q (v, v) = F(v) (46)

are satisfied.

Lemma 1. [47] If Q is an auxiliary function of F , then F is non-increasing under the update formula:

v(t+1) = arg min
v

Q (v, v(t)), (47)

where t denotes the tth iteration.

Proof.

F(v(t+1)) ≤ Q (v(t+1), v(t)) ≤ Q (v(t), v(t)) = F(v(t)) � (48)

Next, based on the above auxiliary function and lemma, we provide four theorems to prove that the objective function 
is non-increasing under each updating rule.

Theorem 2. The optimization function in Eq. (22) is non-increasing under the update formula of F in Eq. (24).

Proof. The proof is mainly about designing a suitable auxiliary function that satisfies the inequality in Eq. (47). First, we 
represent the objective function in Eq. (22) as 
F and the element-wise objective function as 
[F ]i j . We rewrite the update 
formula for F as

[F ]i j ← [F ]i j
[βY G T + Â F ]i j

[β F GG T + F ]i j
(49)

It is easy to get the derivatives of 
[F ]i j as


′[F ]i j
= ∂
F

∂[F ]i j
= [2L F + 2β F GG T − 2βY G T ]i j (50)


′′[F ]i j
= ∂2
F

∂[F ]2
= 2β[GG T ] j j + 2[L]ii (51)
i j

10
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We set the auxiliary function for 
F as

Q F ( f , [F ](t)i j ) = 
[F ](t)i j
+ 
′

[F ](t)i j

( f − [F ](t)i j ) + [β F GG T + F ](t)i j

[F ](t)i j

( f − [F ](t)i j )2 (52)

It is obvious that Q F ([F ](t)i j , [F ](t)i j ) = 
[F ](t)i j
. Then we need to prove that Q F ( f , [F ](t)i j ) ≥ 
 f . It can be derived using Taylor’s 

expansion of 
 f as follows.

Q F ( f , [F ](t)i j ) ≥ 
 f = 
[F ](t)i j
+ 
′

[F ](t)i j

( f − [F ](t)i j ) + 1

2

′′

f ∗( f − [F ](t)i j )2

= 
[F ](t)i j
+ 
′

[F ](t)i j

( f − [F ](t)i j ) + (β[GG T ] j j + [L]ii)( f − [F ](t)i j )2.

(53)

Based on the derivation, Q F ( f , [F ](t)i j ) ≥ 
 f can be transformed as

[β F GG T + F ](t)i j

[F ](t)i j

≥ (β[GG T ] j j + [L]ii). (54)

It is easy to obtain that

[β F GG T ](t)i j = β

n∑
l=1

[F ](t)il [GG T ](t)l j ≥ β[F ](t)i j [GG T ](t)j j (55)

and

[F ](t)i j ≥ [L]ii[F ](t)i j (56)

Therefore, Eq. (54) is clearly true, i.e., Q F ( f , [F ]i j) ≥ 
 f . We conclude that the optimization function is non-increasing 
under the update formula for F . �
Theorem 3. The optimization function 
l in Eq. (13) is non-increasing under the update formula in Eq. (15).

Proof. We set 
H as the objective function for H and 
[H]i j as the objective function with respect to the matrix element 
[H]i j in H . Then the first and the second derivatives can be calculated as


′[H]i j
= ∂
H

∂[H]i j
= [2LH + 2αH − 2αY ]i j (57)


′′[H]i j
= ∂2
H

∂[H]2
i j

= [2L + 2α I]ii (58)

We design the auxiliary function as follows.

Q H (h, [H](t)i j ) = 
[H](t)i j
+ 
′

[H](t)i j

(h − [H](t)i j ) + [αH + H](t)i j

[H](t)i j

(h − [H](t)i j )2 (59)

Similar to the analysis in 
F , we can conclude that the optimization function is non-increasing under the update formula 
of H . �
Theorem 4. The optimization function � in Eq. (16) is non-increasing under the update formula in Eq. (21).

Proof. For the convenience of proof, we use the symbol 
Y for Y ’s loss function and 
[Y ]i j for [Y ]i j ’s loss function. We can 
rewrite the update formula of Y in the element-wise form as

[Y ]i j ← [Y ]i j
[αH + β F G]i j

[(α + β)I + ηU Y ]i j
(60)

The derivative of 
Y for each variable Yij in Y can be calculated as


′[Y ]i j
= ∂
Y

∂[Y ] = [2(α + β)Y + 2ηU Y − 2αH − 2β F G]i j (61)

i j

11
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′′[Y ]i j
= ∂2
Y

∂[Y ]2
i j

= [2(α + β)I + 2ηU ]ii (62)

Then we assume the corresponding auxiliary function for Y is

Q Y (y, [Y ](t)i j ) = 
[Y ](t)i j
+ 
′

[Y ](t)i j

(y − [Y ](t)i j ) + [(α + β)Y + ηU Y ](t)i j

[Y ](t)i j

(y − [Y ](t)i j )2 (63)

Like the proof in Q F , we can conclude that the given formula of Y in Eq. (16) can guarantee the non-increasing property of 
the optimization function. �
Theorem 5. The optimization function in Eq. (64) is non-increasing under the update formula of G in Eq. (25).

Proof. We have the following optimization function 
G for G


G = β||Y − F G||2F (64)

that is similar to the NMF model in [47]. Then we can utilize the convergence analysis in [47] to prove the above theo-
rem. �

Given these theorems, we have

�(t+1) =T r([H T ](t+1)LH (t+1)) + α||H (t+1) − Y (t+1)||2F + η||Y (t+1)||2,1

+ T r([F T ](t+1)L F (t+1)) + β||Y (t+1) − F (t+1)G(t+1)||2F
≤T r([H T ](t)LH (t)) + α||H (t) − Y (t)||2F + η||Y (t)||2,1

+ T r([F T ](t)L F (t)) + β||Y (t) − F (t)G(t)||2F .

(65)

According to Eq. (65), we conclude that the objective function in Eq. (12) is non-increasing with the updating formulas of 
the H, Y , F , and G .

8.2. Continuous property

The second requirement of the Theorem 1 is to make sure that the algorithm A� is continuous on the domain (M f h). 
We give the following theorem to prove the continuous property.

Theorem 6. The algorithm A� is continuous on (Mh × M y × M f × Mg).

Proof. Since A� = �h ◦ �y ◦ � f ◦ �g , and the composition of the continuous functions is also continuous, it suffices to 
show that �h, �y, � f , �g are each continuous. Then we prove that �h is continuous in the (kn) variables {[H]l j}. Note that 
�h is a vector field, with the resolution by (kn) scalar field like the domain of H . Thus, it can be described as

�h = [�(11)

h ,�
(12)

h , · · · ,�
(l j)
h , · · · ,�

(kn)

h ] : Rkn → Rkn, (66)

where �(l j)
h :Rkn →R defined in Eq. (15) can be calculated as

�
(l j)
h ← [H]l j

[αY T + ÂH]l j

[αH + H]l j
. (67)

It is evident that [H]l j , [αY T + ÂH]l j , [αH + H]l j are element-wise functions and are continuous, and the denominator of 
�h never vanishes under the given constraints of H . Therefore, the �h is a continuous function. Next, we prove that �y is 
also a continuous function of the (2kn + k2) variables {[Y ]l j}. �y is a vector field with the resolution by (kn) variables

�y = [�(11)
y ,�

(12)
y , · · · ,�

(l j)
y , · · · ,�

(kn)
y ] : Rk(2n+k) → Rkn (68)

where �(l j)
y : Rk(2n+k) → R is given in Eq. (60). Likewise, we know that each part of such element-wise updating function 

is continuous, so the �y is continuous on their entire domains. Next we show that � f is also a continuous function of the 
(kn + kk) variables {[F ]l j}, and � f is a vector field with the resolution by (kn) variables

� f = [�(11)
,�

(12)
, · · · ,�

(l j)
, · · · ,�

(kn)] : Rk(n+k) → Rkn (69)
f f f f

12
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Table 1
Description of benchmark data sets.

Data sets Objects Dimensions Clusters

ORL 400 1024 40
Umist 575 1024 20
COIL20 1440 1024 20
Yale-B 2424 5120 38
OpticDigits 5620 10 63
Statlog 6435 36 6
COIL100 7200 1024 100
MNIST 10000 728 10
PenDigits 10992 16 10
USPS 11000 256 10

where �(l j)
f :Rk(n+k) →R is given in Eq. (24). Likewise, since each part of such element-wise updating function is continu-

ous, � f is continuous on their entire domains. Next we prove that �g is also a continuous function of the (2kn) variables 
{[G]l j}, and �g is a vector field with the resolution by (k2) variables

�g = [�(11)
g ,�

(12)
g , · · · ,�

(l j)
g , · · · ,�

(kn)
g ] : R(2kn) → Rk2

(70)

where �(l j)
g :R(2kn) →R is given in Eq. (25). Likewise, since each part of such element-wise updating function is continuous, 

�g is continuous on their entire domains. Hence, A� = �h ◦ �y ◦ � f ◦ �g is continuous on (Mh × M y × M f × Mg). �
8.3. Compact set property

The third condition in the Theorem 1 is to judge the compactness of (Mh × M y × M f × Mg), which contains all of the 
possible iterate sequences generated by A� . Based on the idea of [48], we give the following theorem to prove the compact 
set property.

Theorem 7. (Mh × M y × M f × Mg) is a compact set.

Proof. Given the initial values of H (0) ∈ Mh, Y (0) ∈ M y, F (0) ∈ M f , G(0) ∈ Mg . Then we can iteratively calculate the values of 
the vector F (t+1) as

[F ](t+1)
i j = [F ](t)i j

[βY G T + Â F ](t)i j

[β F GG T + F ](t)i j

. (71)

According to Eq. (12), we know M f = {F : [F ]i j ≥ 0} and F (t) ∈ M f . We also can see that each element in Y (t) , G(t) and Â is 
non-negative, according to their definitions. Therefore, from Eq. (71), we have [F (t+1)]i j ≥ 0 and F (t+1) ∈ M f . Based on the 
same way, we can infer that H (t+1) ∈ Mh, Y (t+1) ∈ M y, G(t+1) ∈ Mg . Therefore, we can conclude that Mh, M y, M f , Mg are all 
compact sets. Then according to the Heine-Borel theorem [48], we can conclude that (Mh × M y × M f × Mg) is a compact 
set. �
9. Experiment analysis

9.1. Experiment settings

To examine the performance of the proposed algorithm, we compare it with other eight versions of spectral cluster-
ing algorithms, including standard spectral clustering (SC) [3], bipartite graph clustering (ESCG) [18], spectral clustering 
using k-means-based landmark selection (LSC-K) [20], spectral clustering with approximate eigenvectors (FastESC) [22], 
ultra-scalable spectral clustering (U-SPEC) [25], constrained Laplacian rank clustering (CLR) [14], low-rank representation 
clustering (LRR) [11], graph regularized nonnegative matrix factorization (GNMF) [43]. Besides, we also compare the pro-
posed algorithm with label propagation with different sizes of label information [5].

The comparisons are carried out on ten widely used benchmark data sets [49] whose detailed information is described in 
Table 1. We employ three clustering indices [2]: accuracy measure (ACC), the adjusted rand index (ARI) and the normalized 
mutual information (NMI) to evaluate the effectiveness of clustering results on each data set. If the clustering result is close 
to the true partition, its ACC, NMI, and ARI values are high. The experiment equipment is a personal computer with Intel 
i9-10900K, 64G RAM, Matlab R2018a, and windows 10.

Before the comparisons, we need to set some parameters as follows. For each algorithm, we set the number of clusters 
k to its true number of classes on a data set, and use the Gaussian kernel function to produce the similarity matrix and test 
each of these algorithms with different γ value of the kernel parameter, i.e., δ = εX/g , g ∈ [10, 100] with a step length of 
13



Fig. 2. Comparison of the proposed algorithm with semi-supervised spectral clustering. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

Table 2
ACC values of different algorithms on benchmark data sets.

Dataset SC ESCG LSC-K Fast-ESC U-SPEC CLR LRR GNMF RSLC

ORL 61.36 ± 1.26 60.51 ± 1.41 58.13 ± 1.67 59.64 ± 3.24 57.78 ± 1.61 64.75 ± 0.00 61.14 ± 1.53 59.22 ± 1.52 67.88 ± 1.65
Umist 71.04 ± 0.44 60.09 ± 1.35 60.21 ± 3.31 52.03 ± 2.69 50.17 ± 1.08 75.10 ± 1.15 38.26 ± 0.76 71.09 ± 2.41 77.37 ± 2.40
COIL-20 73.70 ± 1.24 74.23 ± 0.98 72.25 ± 2.46 61.12 ± 3.88 61.95 ± 3.04 78.35 ± 2.23 55.04 ± 1.19 84.30 ± 1.33 88.86 ± 0.61
Yale-B 36.13 ± 0.75 29.33 ± 1.42 16.24 ± 0.88 23.48 ± 1.08 10.56 ± 0.38 32.27 ± 0.56 40.62 ± 1.30 27.06 ± 1.25 42.12 ± 1.38
OpticDigits 95.25 ± 0.00 98.21 ± 0.01 92.08 ± 1.23 77.98 ± 3.47 82.88 ± 5.07 96.53 ± 0.00 80.53 ± 0.02 93.76 ± 3.20 98.27 ± 0.19
Stalog 66.16 ± 0.01 76.00 ± 0.03 74.69 ± 0.82 68.80 ± 3.60 74.96 ± 0.72 66.08 ± 0.00 67.79 ± 0.00 60.78 ± 4.55 82.17 ± 0.72
COIL-100 49.86 ± 1.01 59.61 ± 0.58 60.82 ± 1.26 42.62 ± 2.31 53.10 ± 1.26 66.64 ± 0.94 47.22 ± 0.99 67.30 ± 1.32 75.13 ± 0.81
MNIST 47.90 ± 0.01 70.73 ± 0.81 68.66 ± 1.98 56.50 ± 3.22 59.69 ± 2.58 72.62 ± 0.20 48.67 ± 0.03 63.67 ± 3.14 85.52 ± 3.16
PenDigits 71.51 ± 0.00 73.41 ± 0.01 80.18 ± 3.39 68.66 ± 1.70 74.36 ± 2.47 67.79 ± 0.00 72.59 ± 0.01 76.39 ± 4.10 86.90 ± 2.33
USPS 56.13 ± 0.02 61.81 ± 2.36 54.38 ± 2.02 49.04 ± 2.20 48.60 ± 1.90 64.60 ± 1.17 54.40 ± 0.00 54.35 ± 4.24 74.87 ± 2.94

10, where εX is the variance of data set X , to select the highest ACC, ARI and NMI values for comparisons. In the proposed 
algorithm, we set α = 0.25, β = 0.5, η = 0.1, e = 10, and t = 100. In the following experiments, we explain the parameter 
settings. For other parameters of the compared algorithms, we set them according to the suggestions of their references.

9.2. Comparison with other versions of spectral clustering algorithms

We first analyze the difference in the clustering effectiveness between the proposed algorithm and the other eight spec-
tral clustering algorithms. Tables 2, 3, and 4 show the mean and standard deviation of ACC, ARI, and NMI for the clustering 
results produced by each algorithm running 20 times on the tested data sets. According to the evaluation results, we can ob-
serve that the mean values of the ACC, ARI, and NMI for the proposed algorithm are obviously superior to other algorithms 
on the tested data sets. The experimental results tell us that the self-label learning operation of the proposed algorithm 
can very effectively improve the performance of spectral clustering. Besides, we can see that the standard deviation of the 
proposed algorithm on each data set is less than 0.04. Therefore, we can conclude that the proposed algorithm is robust to 
deal with these data sets.
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Fig. 3. Three clustering indices against parameter η.

Table 3
ARI values of different algorithms on benchmark data sets.

Dataset SC ESCG LSC-K Fast-ESC U-SPEC CLR LRR GNMF RSLC

ORL 40.14 ± 1.70 42.35 ± 1.99 39.26 ± 2.23 35.04 ± 5.08 40.51 ± 1.61 37.57 ± 0.00 40.42 ± 2.30 36.89 ± 2.49 48.39 ± 2.42
Umist 59.03 ± 0.76 45.48 ± 1.03 44.89 ± 3.59 35.52 ± 3.79 33.66 ± 0.97 62.15 ± 0.97 13.42 ± 0.88 58.60 ± 5.18 70.05 ± 3.81
COIL-20 65.67 ± 1.41 64.09 ± 1.16 63.32 ± 2.68 49.06 ± 4.65 54.12 ± 2.62 73.34 ± 3.12 34.33 ± 2.14 76.50 ± 1.60 86.04 ± 0.93
Yale-B 15.05 ± 0.51 13.74 ± 0.26 5.85 ± 0.42 11.34 ± 0.53 1.66 ± 0.23 7.78 ± 0.21 13.50 ± 0.57 08.26 ± 0.78 23.72 ± 1.24
OpticDigits 90.43 ± 0.00 96.11 ± 0.02 84.01 ± 2.13 63.32 ± 3.77 70.90 ± 6.11 93.15 ± 0.00 67.91 ± 0.04 88.73 ± 5.59 96.23 ± 0.40
Stalog 42.60 ± 0.01 53.16 ± 0.05 52.90 ± 1.60 43.44 ± 6.46 53.85 ± 1.47 42.67 ± 0.01 45.62 ± 0.00 32.81 ± 3.93 61.26 ± 2.52
COIL-100 36.03 ± 0.87 38.47 ± 1.19 50.43 ± 1.49 24.09 ± 3.55 43.23 ± 1.10 56.95 ± 1.15 30.90 ± 1.53 46.43 ± 1.37 67.10 ± 0.81
MNIST 25.74 ± 0.00 55.05 ± 0.98 50.29 ± 2.93 33.16 ± 2.88 38.61 ± 3.34 59.74 ± 0.09 25.22 ± 0.02 49.42 ± 6.55 76.24 ± 3.61
PenDigits 56.40 ± 0.01 58.29 ± 0.95 65.36 ± 4.62 50.66 ± 2.10 57.75 ± 2.36 55.97 ± 0.00 54.86 ± 0.01 61.54 ± 6.07 77.06 ± 2.30
USPS 29.49 ± 0.04 47.07 ± 2.77 37.86 ± 1.80 27.77 ± 1.95 30.01 ± 1.40 47.01 ± 1.69 33.94 ± 0.00 37.29 ± 2.86 59.44 ± 4.67

Table 4
NMI values of different algorithms on benchmark data sets.

Dataset SC ESCG LSC-K Fast-ESC U-SPEC CLR LRR GNMF RSLC

ORL 79.32 ± 0.56 75.92 ± 0.91 74.70 ± 1.02 75.89 ± 2.59 75.20 ± 0.66 80.15 ± 0.00 79.39 ± 0.73 75.67 ± 1.24 81.87 ± 0.70
Umist 80.00 ± 0.28 73.36 ± 0.71 73.38 ± 2.08 66.15 ± 2.50 65.24 ± 0.85 86.17 ± 0.55 40.59 ± 0.91 83.69 ± 2.02 86.07 ± 1.47
COIL-20 84.87 ± 0.60 83.53 ± 0.76 80.24 ± 1.34 73.16 ± 2.44 74.51 ± 1.68 88.14 ± 1.42 62.83 ± 1.33 89.36 ± 0.91 93.03 ± 0.49
Yale-B 47.40 ± 0.79 38.64 ± 0.37 23.46 ± 0.61 39.30 ± 0.29 39.30 ± 0.29 37.07 ± 0.99 13.32 ± 0.54 36.37 ± 2.26 53.34 ± 0.49
OpticDigits 92.79 ± 0.00 95.77 ± 0.02 85.82 ± 1.08 71.16 ± 2.26 77.20 ± 3.10 94.95 ± 0.00 74.34 ± 0.03 92.23 ± 2.52 96.12 ± 0.25
Stalog 52.91 ± 0.02 64.94 ± 0.09 62.47 ± 0.86 56.05 ± 3.08 62.08 ± 0.57 53.00 ± 0.00 49.16 ± 0.00 44.53 ± 3.55 68.29 ± 0.76
COIL-100 79.11 ± 0.38 79.47 ± 0.35 79.28 ± 0.52 72.00 ± 1.40 74.73 ± 0.44 84.69 ± 0.36 67.80 ± 0.77 86.50 ± 0.73 88.91 ± 0.38
MNIST 42.01 ± 0.00 69.16 ± 0.43 60.57 ± 1.65 44.92 ± 2.10 50.29 ± 1.89 72.01 ± 0.23 38.02 ± 0.02 67.24 ± 3.35 80.96 ± 1.40
PenDigist 72.89 ± 0.01 77.04 ± 0.48 76.81 ± 1.95 65.41 ± 1.49 68.45 ± 1.15 73.73 ± 0.00 63.95 ± 0.01 75.22 ± 3.13 84.81 ± 1.21
USPS 48.88 ± 0.02 64.27 ± 1.48 52.90 ± 1.35 41.37 ± 1.86 44.89 ± 1.35 65.08 ± 0.43 46.20 ± 0.01 56.71 ± 1.99 70.45 ± 2.74
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Fig. 4. Three clustering indices against parameters α and β .

9.3. Comparison with semi-supervised spectral clustering

We analyze the difference in clustering effectiveness between the proposed algorithm and the semi-supervised spectral 
clustering algorithm, as shown in Fig. 2. We test spectral clustering with different sizes of label information. Let s be 
the proportion of labels to a whole data set. We select s from 5% to 50% with a step length of 5%. In these figures, the 
curves show the relations between the clustering indices of label propagation and the sizes of labels, and the lines reflect 
the clustering indices of the proposed algorithm. According to these figures, we can see that the clustering results of the 
proposed algorithm can reach or approach the semi-supervised results on four out of ten data sets. On other data sets, 
there are no small gaps between the clustering results of the proposed algorithm and label propagation with some labels. 
Therefore, we need to study further how to improve the proposed algorithm.

9.4. Parameter analysis

According to the description of the proposed algorithm, we can observe that there are three important parameters η, α, 
and β , which are used to balance the roles of main terms in the objective function. We first analyze the effect of η on the 
performance of the proposed algorithm. In the experiment, we test η in the interval [0, 1] with the step length of 0.1 while 
α and β were fixed. Fig. 3 shows the relation between clustering indices and the parameter η on each data set. Based on 
these figures, we can see that the clustering quality decreases on all data sets except Statlog as the value of η increases. 
We know η is used to control the importance of the regularization term. The more η is, the more sparse Y is. We can also 
observe that if η = 0.1, we can get good clustering results on most of the data sets.

Furthermore, we analyze the co-influence of α and β on the performance of the proposed algorithm. We test the two 
parameters in the interval [0, 1] with the step length of 0.1, while η is fixed. The tested results are shown in Fig. 4. According 
to these figures, we can observe that if α and β are close to 0, the performance of the proposed algorithm is very bad. 
The conclusion tells us that the self-learned constraint and consensus terms play important roles in the proposed algorithm. 
Besides, we can see that setting α and β to more than 0.2 can bring good clustering results on most of the data sets.
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Fig. 5. Comparison of clustering accuracy between single and multiple sets of constraints.

9.5. Comparison of different numbers of constraints

We first randomly produce ten different initialized Yl . Then we test the proposed algorithm with every single set of Yl
and multiple sets including all the Yl . In Fig. 5, ‘Max’ and ‘Mean’ denote the maximum and average values of clustering 
indices for the proposed algorithm with different Yl , and ‘Robust’ represents the clustering indices for the proposed algo-
rithm with all the Yl . According to the figures, we can see that the proposed algorithm with multiple sets of constraints is 
obviously better than that with a single set of constraints. Besides, we also compare their robustness. In Fig. 6, we show the 
standard deviation of the clustering indices for the proposed algorithm with single and multiple sets of constraints. We can 
see that using multiple sets of constraints can enhance the robustness of the proposed algorithm.
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Fig. 6. Comparison of robustness between single and multiple constraints.

Additionally, we analyze the effects of the number of sets of self-learned constraints on the performance of the proposed 
algorithm. Fig. 7 shows the ACC, ARI, and NMI indices against different e on ten data sets, respectively. According to these 
figures, we can observe that the performance of the proposed algorithm basically increases as the value of e grows. However, 
the values of clustering indices increase slowly after the e value grows to a certain extent. The experimental results tell us 
on most tested data sets that (1) learning multiple sets of constraints is better than a single set; (2) learning a few sets of 
label constraints can effectively enhance the clustering results.

9.6. The effect of Y on the performance of the proposed algorithm

The performance of the proposed algorithm depends on the initialization of Y . In this paper, we need to select sev-
eral objects and then use the relations between them and other objects to initialize Y . In this experiment, we employ 
18
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Fig. 7. Three clustering indices against the number of constraints.

three selection strategies to initialize Y , i.e., random initialization (where we randomly select k objects from X), K -means 
initialization (where we implement k-means on X to produce k cluster centers and select the nearest objects for each 
of them from X) and K -means++ initialization (where we implement k-means++ on X to select k objects from X). We 
compare the proposed algorithm with the above three initialization methods on these data sets. The experimental results 
are shown in Fig. 8. We can see that the performance of the proposed algorithm with k-means++ initialization is better 
than the other two initialization methods. We can also see that random initialization is a better choice for simplicity and 
effectiveness.

Furthermore, we discuss the effect of the diversity of these constraints on the proposed algorithm. To detect the effect, 
we use overlapping ratios of different initial Yl to reflect the consensus of the constraints. We assume the higher the 
overlapping ratio is, the smaller the difference among these constraints is. In Fig. 9, we show the clustering indices for 
the clustering results of the proposed algorithm with different overlapping ratios of the initial constraints on each data set. 
According to these figures, we can see that the overlap rate has less influence on the algorithm when it is less than a certain 
value on a data set. However, as the overlapping ratio continues increasing, the clustering quality is obviously decreasing on 
most of the data sets. The experimental result indicates that excessive overlap can lead to poor performance of the proposed 
algorithm. The main reasons are as follows. (1) The more consistent the different groups of the label constraints are, the 
closer the clustering performance with multiple groups of label constraints is that with the single group. Due the fact that 
we can not ensure the high quality of each group of the learned label constraints, the diversity of multiple groups can help 
us to reduce the effect of the quality of label constraints. (2) If a cluster is very complex, it is very difficult to learn a label 
column to represent it. We may need to learn multiple labels to describe it. Therefore, reducing overlapping between label 
matrices can help us to use multiple label columns to constrain the assignment of data objects to a cluster. Besides, the 
conclusion about the effect of the overlapping ratio of label constraints is dependent on the number of clusters. According 
to our experiments, we can see that the clustering quality is decreasing, as the overlapping ratio increases on the tested 
data sets with different numbers of clusters.

Finally, we analyze the quality of the self-label constraints in the proposed algorithm. In Figs. 10, we show the visu-
alization of Y Y T on each data set. According to these figures, we can see that the cluster structure can be easily found 
from the diagonal of the matrix Y Y T on each of the tested data set. The experimental result indicates that the self-learned 
constraints have good quality, which can effectively guide the clustering process.
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Fig. 8. Comparison of different initialization for Y .

9.7. Convergence study of the proposed algorithm

In this paper, we have proved that the proposed algorithm is convergent. In this subsection, we further provide the 
experiment analysis to show the changing trend of the overall loss function � against the number of iterations, as seen in 
Fig. 11. According to the figures, we observe that as the number of iterations increases, the loss value decreases. We also 
see that the proposed algorithm can usually converge within 100 iterations.
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Fig. 9. Three clustering indices against the overlapping ratio.

Table 5
Comparison of running times (seconds).

ORL Umist COIL20 Yale-B OpticDigits Statlog COIL100 MNIST PenDigits USPS

SC 0.2085 0.0895 0.1358 0.3414 0.1406 0.1412 3.5807 0.3260 0.4491 0.4712
RSLC-Single 0.2315 0.1023 0.1876 0.6551 0.5036 0.4473 6.1504 1.1658 1.1648 1.1683
RSLC-Multi 3.3347 1.6462 5.9965 21.9037 15.2059 10.6775 186.6335 32.7420 36.9136 32.2853

9.8. Comparison of computational costs

We compare the computational costs of the classical spectral clustering (SC) algorithm with fast Eigen decomposition and 
the proposed algorithm with single and multiple sets of self-learning constraints on each tested data set. The comparison 
result is shown in Table 5. According to the table, we can observe that the proposed algorithm needs additional time costs to 
iteratively update variables compared to the classical spectral clustering algorithm. Besides, we also can see that if we need 
to get a robust clustering result, we take more time costs to learn multiple sets of constraints compared to the proposed 
algorithm with a single set of constraints.

10. Conclusions

We proposed spectral clustering with robust self-learning constraints (RSLC) in this paper. In the new algorithm, we ex-
tend the objective function of the classical semi-supervised spectral clustering model by seeing label constraints as variables 
and adding a robust function. We wish to minimize the new objective function to learn multiple sets of label constraints 
and guide the spectral clustering process. We propose an iterative method to solve the optimization problem with update 
formulas for variables. The new algorithm can get robust self-constrained clustering results under unsupervised scenes. Fur-
thermore, we provide the theoretical analysis to show the importance of the learned constraints in spectral clustering and 
then prove the convergence of the proposed algorithm. Finally, by experimental study, we show that the proposed algorithm 
performs well on benchmark data sets.
L. Bai, M. Qi and J. Liang Artificial Intelligence 320 (2023) 103924
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Fig. 10. Evaluation of the learned constraints.

Fig. 11. The loss values against the number of iterations.
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