Under review as submission to TMLR

High-Performance Machine Learning for FinTech

Anonymous authors
Paper under double-blind review

Abstract

The use of machine learning techniques in the FinTech sector, such as in portfolio selection,
requires a high-performance compute engine to test a large number of candidate strategies.
The higher the runtime performance of the engine, the larger the number of strategies that
can be considered and the wider the scope of testing that could be conducted. This leads
to better quality strategies. Thus, runtime performance should directly impact strategy
performance in the market.

This paper presents a compute engine for processing market data and implementing highly
customisable trading strategies. We use it as the core of our differential-evolution-based
machine learning framework for portfolio selection. We then discuss a range of key techniques
that improve its runtime performance and show that it outperforms other extant engines.

1 Introduction

At the heart of a successful machine learning engine for FinTech, there needs to be a high-performance
compute engine to assess candidate strategies. The power of modern approaches to artificial intelligence
(AI) and machine learning (ML) stems from the high number of ML models that can be tested within a
short time. These models can be based on either neural networks or genetic programming. We consider
Differential Evolution as an exemplar of the latter. Both approaches provide considerable flexibility, such as
in the parameters of the neural network or the mutation and crossover procedure of the genetic framework.

In the context of FinTech, data analysts face two particular challenges. The first is the high volume of data
that needs to be repeatedly processed, and the second is the complexity of the (investment) strategies that
should be considered. We tackle the first challenge by developing a highly optimised compute engine, and
tackle the second challenge by formally defining a rule-based expression language. This paper focuses on
the compute engine but mentions key concepts of the expression language as a domain-specific language for
FinTech.

The primary contribution of this paper is the systematic evaluation of the computational performance of
our compute engine in comparison with other accessible platforms that offer ML technologies for FinTech.
In discussing the core structure of the engine, we analyse the contribution to the performance of several
optimisations in different components of the engine.

2 Context and Background

Prior research, such as [Kumiega & Van Vliet| (2012)), has identified a research gap regarding algorithmic
trading strategy development processes. Algorithmic trading has been increasingly dominating trading in
financial markets for more than a decade. In this context, the drivers of performance are not individual
decisions made by traders but long-term decisions made by managers regarding investing in individual
tools for automation. For example which types of strategies should be researched further (checkpoints for
profitability and robustness), or which can be improved for live trading (execution, specialised user interface,
automating special cases)? Developing an individual strategy or feature might bind a developer resource for
weeks or months. Without the ability to measure decisions at that level of abstraction, people are prone
to form biased estimates of probability. For example, a strategy might have made the impression that it

Under review as submission to TMLR

is profitable due to data mining bias or wrong assumptions in a backtest. An interesting contribution can
be made by providing development project managers and researchers with a tool to test the robustness of
encoded processes. Encoded here means making economic theories specific enough so that they can be
executed by a machine, tested by a tool, and their results quantified. Otherwise, money is maybe allocated
to inefficient processes that lead to false-positive results that cause unstable or negative returns. Enhancing
awareness of the process will help allocate resources (money and time) more efficiently.

Machine learning (ML) applications in business and research have increased in popularity. This is due to
its enhanced pattern detection on large streams of data that were previously only accessible through the
manual labour of data analysts. Today data analysts have not been replaced but empowered by novel
ML techniques facilitated by computational advances. Evolutionary computing approaches have also been
identified, e.g., by [Bose & Mahapatral (2001)), as a robust search technique for patterns in noisy data in large
problem spaces, as long as the data format is uniform, which is common in finance. Although ML still faces
regulatory and acceptability challenges (Lui & Lamb) 2018)), its techniques are favoured in finance because
of their transparency and ease of understanding by human supervisors (Wall, 2018). Genetic programming
produces expressions in a grammar that is readable by humans. This should benefit the acceptability of
the tool. Thus, the literature supports the idea that genetic programming (Lohpetch| 2011) is suitable
for simulating strategy development. There are also other techniques like deep (Bao et al., |2017) neural
networks (Ghazali, 2007)), decision trees, clustering, classification, support vector machines, hidden Markov
machines, and many more. See[Wu et al.[(2006)); |Aronson & Masters| (2013));|Luo & Chen|(2013)); Hargreaves
& Mani (2015); Nguyen| (2018)); |Arnott et al.| (2019)) for details. From our perspective, these techniques
will also benefit from faster simulation speeds. They can be combined with genetic programming to create
hybrid machine learning approaches. Genetic programming can either use inputs from technical analysis
(Colby, [2002) or features extracted from other machine learning algorithms. It can also be used for the
meta-optimisation of other machine learning algorithms. That is why we first focus on genetic programming
and develop an expression language suitable for modelling hybrid machine learning approaches. Kotthoff
et al.| (2017)) with its AutoML capabilities is an inspiration to our research and our long-term goal is to
develop something similar for timeseries analysis in the financial trading domain. The concepts we develop
on the way and the final solution should be generalisable for other research domains, even though we initially
focus on one specific domain during the development.

The problem with ML (similar to manual strategy development) in financial markets is that exploitable
market inefficiencies could be short-lived in forward trading, and their detection can be subject to various
biases. |Aronson| (2011) points to biases such as the data-mining bias, selection bias, survivorship bias, and
curve-fitting bias, and how to mitigate them using a scientific process. The markets continuously adjust
and thus an approach that is adaptable to changing market conditions is needed to verify the robustness of
such an automated strategy development process. To do this, one has to apply automation concepts in a
walk-forward manner, as defined by [Pardo| (2011)), in the form of an automated longitudinal study.

Initially, we reviewed literature that discusses the choice of platform to use for backtests in financial research,
or those that use particular platforms. This covers the usage of general purpose scripting languages such as
Python (de Prado, |2018;|Jansen) 2020)) or Julia (Danielsson, |2011)), statistics platforms such as Matlab (Chan,
2017) or R (Georgakopoulos, |2015; |Conlan, 2016)), and dedicated trading and more general FinTech platforms
such as TradeStation (Pardo, 2011} |[Ehlers| |2013), MetaTrader (Blackledge et al., 2011), NinjaTrader (Ford,
2008), FXCM Trading Station (Mahajan et all 2021)), and Zorro (Liang et al., 2020).

We specifically focus on event-driven backtesting engines, but also compare against some vector-based back-
testing engines. Vector-based strategy implementations are not well suited for live trading (sometimes
requiring a rewrite), make alignment of multiple data feeds harder and are more prone to ’look-ahead’ bias
during researchﬂ Matlab, R and Python have similar performance according to (JuliaLangContributors)
2022)). However, the Julia benchmarks might also be biased according to [Vergel Eleuterio & Thukral (2019))
which shows better performance with Python in some cases. The Java benchmark is also biased because it
uses a Java Native Interface (JNI) integration for a C-based matrix library. JNI adds significant overhead to

IThe ’look-ahead’ bias results in unrealistically high profits due to accidental misalignment of data that allows decisions to
be influenced by future data points that will not be available under realistic assumptions (without a time machine that might
not be physically feasible).

Under review as submission to TMLR

a function call and the test measures mostly the performance of the C-binding of the matrix library. This is
adequate when comparing matrix operations where Matlab, R, Python and Julia have their strengths, but
they may not be the best-performing solutions for financial backtests. These general-purpose programming
languages and trading platforms do not provide off-the-shelf solutions for generating strategies. Accord-
ingly, we also consider specialist platforms. StrategyQuantX and Adaptrade are examples referenced in the
literature (see Hafiiak et al. (2018) and Hayes et al.| (2013))). We also consider commercial tools, such as
GeneticSystemBuilder and BuildAlpha (Bergstroml 2020)) because we find these to be faster
than alternatives.

Extant available tools, whether commercial or not, do not offer the computational performance or the
capability to automate robustness tests on strategy development processes. In the following sections, we
will fill some research gaps regarding high-performance backtesting engines. This leads to an improvement
in professional practice and empirical research by making viable test scenarios that were previously costly
to implement in terms of processing power, manual labour, or time. Our simple domain-specific expression
language and highly optimised compute engine enable the exploration of state-of-the-art ML technologies in
the domain of algorithmic trading and portfolio management.

3 A High-Performance Platform: Invesdwin

To improve the current capabilities for empirical research on strategy development processes in economics,
the first author has implemented a novel platform in Java. Over the last few years, this platform has been
extended to support high-performance machine learning with a high degree of automation. We describe
here the process of how a user can analyse strategy development processes in the platform. We also explain
important architectural and design aspects to achieve high performance. Figure [[|shows the main structural
features and processes of the Invesdwin platform.

Legend: | @ Anifact
|:| Preprocessing
\\ ! Creation

\ - (Nested) Loops

.\\‘

2. Local Data
Representation

A

1. Data
Discovery and
Loading

Figure 1: Strategy generation context and architecture of our platform

The platform can perform test scenarios for automated strategy development processes. Strategies are
generated for specific markets. Individual candidate strategies are tested for profitability. They are then
selected to form a portfolio of strategies to be traded forward. In the end, the robustness of the whole process
is quantified in a Monte Carlo simulation. The platform, as shown in Figure [} executes this in the following
steps:

Under review as submission to TMLR

1. Data Discovery and Loading loads the required data from registered data sources based on the
test configuration provided by the user. Depending on the deployment decisions, the data sources
can be embedded or accessed from a microservice infrastructure. Importantly for performance, data
is cached locally in a specialised, low-latency, custom-developed NoSQL database that we designed
specifically for this purpose (<anonymised>| |2022d)). The processing of the tests can be done locally
or parallelised in a distributed grid or cloud computing infrastructure. In the latter case, Steps 2, 3,
and 4 below are executed on remote computation nodes, while Step 5 is aggregated and performed
on the user’s client computer. For this paper, we stick to a single computer though. As a novel
technical contribution, high-performance and low-latency communication are facilitated by a channel
abstraction that creates zero-copy and zero-allocation data pipelines (<anonymised>, |2022c¢). This
step facilitates fast startup times for test scenarios without having to manually manage and copy
large financial data sets.

2. Local Data Representation transforms the loaded data into an efficient in-memory structure
(see Section . This extracts information and features from the data by using domain knowledge
and machine learning approaches. The results are stored in primitive arrays of double values for
indicator blocks (decimal results) and bit sets for signal blocks (boolean results). This step provides
fast in-memory backtesting speed that is optimised for making heavy use of CPU prefetching without
requiring slow data retrievals on the disk or network.

3. Strategy Generation defines and combines expression blocks (indicators and signals) for creating
candidates for trading strategies. This is done by finding local optima in the problem space by
using machine learning (specifically differential evolution for this paper). The individual fitness of
the candidates is evaluated here by checking the trade frequency, profitability, and other metrics.
Our highly optimised expression language (<anonymised>, 2022b)) and many semantic shortcuts are
implemented here to walk through the problem space as efficiently as possible.

4. Inner Backtesting Loops evaluate the robustness of individual candidates and filter them into
portfolios by using domain-specific heuristics and machine learning. These portfolios are then used
in an outer walk-forward (Step 5) that evolves the portfolios in regular intervals. Thousands of
profitability /success metrics are made available in a way that does not cause a significant overhead
for storage or computation. With profitability /success metrics we not only mean Profit/Loss, Sharpe
Ratio, or Drawdown but also complex statistical tests that look at the complete backtest history.
This is essential when testing hundreds of thousands of generated strategies per second.

5. Outer Robustness Loops evaluate the robustness of the strategy generation and portfolio se-
lection approach. Besides entries & exits (entering a trade and exiting a trade by sending or-
ders to the broker based on rules) or portfolio management (e.g. selecting markets and strategies
regularly, maybe based on fitness criteria), more decision points such as risk management (e.g.
portfolio/market /industry/direction/exposure-based loss limit), position sizing (e.g. volatility based
or equal risk per cent), and equity curve trading (temporarily stop trading after certain losses in a
day, or decouple a strategy from live execution to simulation during drawdowns in isolated strategy
equity), can be automated as well. This allows the testing of hypotheses on formalised strategy de-
velopment processes and the making of decisions at higher levels of abstraction. The walk-forward
runs of the inner backtesting loops (Step 4 in Figure [1)) are repeated multiple times here (e.g. 200
times) to sample the distribution of out-of-sample results in a Monte Carlo simulation. The stra-
tegy generation is randomised, thus each run will have slightly different results. For example, based
on fluctuations in metrics of profitability such as Profit/Loss or Sharpe Ratio. By comparing dis-
tributions of results from strategy development processes, we are then able to compare and rank
the alternatives. This decision-making can be formalised, as we have done in our domain-specific
expression language, and fully automated. We define a robust strategy development process
as one that has a distribution with low variance and high average profitability. It does not
become unprofitable over many trials and survives validation checks over multiple markets and time
frames (as examples of approaches that can be used for validation in the platform). We can quan-
tify robustness and automate decisions about them. This step is not available in extant platforms

Under review as submission to TMLR

and is hard or impossible to formally research without having access to the processing speed and
automation available in our platform.

5. Process Robusthess

4. Candidate Filtering & Portfolio Management

3. Candidate Generation and Fitness Evaluation

1. & 2. Indicator and Signal Blocks

Extract information from data by using domain
knowledge and machine learning approaches.

Find candidate strategies using machine learning by determining
local optima in the problem space and evaluate individual fitness.

Evaluate robustness of candidate strategies and create portfolios for the next forward
trading sample by using domain specific heuristics and machine learning.

Evaluate the robustness of a formalised strategy development process by testing hypotheses and
alternative approaches on individual decision levels as meta optimisation dimensions.

Figure 2: Machine learning layers

Figure[2] depicts the different levels of abstraction in this model as layers of machine learning. Hybrid machine
learning approaches can be composed horizontally (architectural integration) to create a combined decision
on the same layer, vertically (data manipulation) by connecting inputs and outputs across multiple layers,
and on a meta optimisation (model parameter) dimension in one layer (see|Anifowose|(2020) and |Anifowose
et al.| (2017)).

3.1 Backtesting Engines

A fast backtesting engine is the component that is most critical to performance for applying ML techniques
because many alternatives need to be tested as fast as possible. Three possible types of local data represen-
tation are implemented as specialised backtesting engines with the main difference being a different storage
format (for simulating trades of a strategy candidate based on historical data):

1. Historical: We define indicators as transformations of the price data to extract features. Signals are
defined as true/false interpretations of indicators that lead to buy/sell/hold decisions. This engine
stores indicators and signals as in-memory historical caches (<anonymised>, 2022a)) during live
trading to minimise memory usage while providing multithreaded access to indicators and signals
for visualisation purposes in charts. Indicators and signals are calculated lazily in a pull-based
interaction between them. Thus if a strategy does not need a specific calculation for a while, it can
be skipped.

2. Circular Buffer: Another implementation might use circular buffers of primitive arrays as the
in-memory storage of the indicators to speed up the calculations for low latency live trading or to
make backtests of large data sets utilise a limited large memory space in a moving window. Tick
data is the smallest granularity and highest volume of data points that can be processed. Multiple
ticks can occur in a millisecond, and order book data can provide further information on ’'depth’
An example would be to maximise the speed of portfolio tests on tick data, which would not fit into

Under review as submission to TMLR

memory when multiple years are to be tested. Data might be calculated eagerly here via an observer
pattern. This engine is still under development.

3. Blackboard: Another representation is to precalculate the whole time series into primitive arrays
for indicators and signals and keep those immutable. This is stored in a memory space following
the blackboard pattern (Buschmann et al., 1996, p. 71). This provides memoisation of indicators
and signals during backtests (Mayfield et al., [1995). Individual backtesting threads can fetch or add
more blocks on demand. Unused blocks are evicted automatically based on memory management
heuristics (least recently used, soft & weak references, memory limits). This provides the fastest
access for machine learning tasks where the whole time series is iterated over many times to find an
optimised variant of a strategy that performs best.

From a computational performance point of view, we are interested in machine learning problems that use
a form of genetic programming, specifically Differential Evolution, to generate and test a large number of
strategy candidates. Thus the blackboard option provides the fastest internal representation of the workload.
Using (and reusing) precomputed primitive arrays as the in-memory representation allows CPU prefetching
in the hardware to be used extensively during the iteration of the backtests. Our column-oriented storage
is preferable to row-oriented storage because it minimises cache misses by the CPU (Ragan-Kelley, [2014,
p.34 ff.). Each column represents an indicator or signal, or another expression that memoises a function on
multiple indicators or signals.

3.2 Expression Language

The platform uses a domain-specific expression language to formalise building blocks for strategy gene-
ration (indicators and signals) and to automate portfolio management and other high-level decisions.
<anonymised>| (2022b|) discusses the design and choice to use this expression language in detail. In sum-
mary it is only possible to achieve a high performance by tightly integrating the expression language into
the surrounding context (in our case a trading platform). We also compare our expression language against
alternatives in the Java Virtual Machine in that publication. Our implementationn is significantly faster
while also being more feature-rich. Other contender expression languages are unsuitable because they are
prioprietary or written in a different programming language, which makes integration impossible or too slow
for high performance. Table [14] extends this analysis by comparing our integrated solution against propri-
etary solutions that also use expression languages. We hope that other and future expression languages can
be improved by applying our generalised concepts to make expression languages more efficient. For this
purpose we have open sourced our expression language implementation.

Indicators (decimals) can be combined into signal blocks (boolean) by comparing them against each other, or
thresholds, in various ways as expressions. The expression language is rule-based with boolean guards that
trigger actions: "Rule := Guard — Action'. Figure [3]shows examples of such expressions and the generation
process:

Similar to our platform, BuildAlphal (2022) simplifies this by only allowing curated signal blocks in the
strategy generation process. Only logical “and” operators are allowed for combining multiple blocks. The
backtesting speed of BuildAlpha is the fastest extant tool (apart from ours) because rather than mathematical
expressions it evaluates simple boolean expressions lazily via shortcutting. When one condition becomes
false, the other conditions in a logical “and” combination can be ignored, and one does not have to calculate
additional indicators. Since the signal in a trading strategy is false most of the time, this improves the
backtesting speed significantly.

3.2.1 Expression Language Design

An excerpt from our language design document (<anonymised>| 2022b): “Our expression language is de-
liberately not Turing complete, and components need to be of limited resource consumption. It is designed
as a domain-specific language that supports variables and functions. It supports no recursion, loops, arrays,
lists, collections, maps, strings, exceptions, declarations, or assignments. Instead, non-recursive functions
are used to emulate loops, mappings, decisions, and selections in a simplified fashion with a limited potential

Under review as submission to TMLR

Genetic Evolution Programming Flowchart

Technical Price Order Strategy
Indicators Patterns Types Options

W

Initial Strategies Generation

Genetic Operations

.]

" o5 Tests fuats e .,
R Data Probabilistic Selection of Genetic \
i Operation AN
Repeat until - ’ + +
stopped or p“f:ab'"st'cssalmm" of / Select One Individual Select Two Individuals
final condil Sl e / Based on “Fitness” Based on “Fitness”
Genetic Operations - Mutate Perform Mating
(mating, mutation) “\\\
I . -
s Insert Result into Insert Offsprings into
i i . New Population New Population
Final Strategies NN pul
\\ [

o L//
—

Pool of huilding blocks

ng

= e L
ﬂ Enter Long Crosses Above

|M|r'ult
Day of week
Random Number M
n1 Market

Example of randonly generated entry rule

[cc1 I o0] > I 0 [&A]Dly :tm] «,Ir.lnnu--;] [Enl«LonQ]AlM-nel]

if (CCI(60) > 0 && Day of week <> Monday) then Enter Long At Market

Figure 3: Genetic generation process and boolean expression example (StrategyQuant, 2022)

for coding errors. Functions can be nested arbitrarily as dynamic parameters. Thus a mathematical view
of higher-order functions is supported as nested transformations on double seriesEl There is no notion of a
functor, function object, or variable for a function in the language. Only the underlying implementation has
that representation and is hidden from the user. Instead, the user can think in a series of doubles (data)
which are provided and transformed by functions to be fed into other functions as parameters. This comes
from the fact that the language operates on streamed financial data and can access previous data and calcu-
lation results. Since it operates solely on doubles and indexes, the function algebra is simplified significantly.
The language makes the use of functions and variables transparent to the user by making parentheses op-
tionalEl Typical mathematical and logical operations are supported. Constants are represented as variables
in the language. The language is case insensitive. The language has only a single type double for inputs and
outputs. Other types like boolean get encoded into double by seeing numbers above 0 as TRUE and all other
values as FALSE. Null values are represented by the double value NaN which means “Not a Number”. The
underlying implementation may transparently use boolean, Boolean (object), integer, double and generic
object types where this provides a performance benefit.”

2For example, a double series consisting of {1.1, 1.2, 1.3} is transformed via nested transformations: “multiply(round(0), 2)”
into a new double series consisting of {2, 4, 6}.

3This is realized in the syntax. Variables may or may not be suffixed with parentheses. The formats “variable()” or “variable”
are both accepted. Also, parentheses can be omitted for functions with only optional or no parameters. The formats “function”
and “function()” are both acceptable.

Under review as submission to TMLR

3.2.2 Signal Strategy Example

A strategy that uses simplified boolean expressions combines multiple signals that are composed of inter-
pretations of indicators based on domain knowledge to decide about an entry point for a trade. Domain
knowledge here means for example technical analysis or statistics based on literature (or ML models trained
on the data). Another simplified boolean expression with an optional time/loss/profit-based stop handles
the exit of the trade. Only one trade at a time is allowed. Such a strategy can be expressed schematically
in a rule-based form, where a guard is a boolean expression that decides whether to trigger a (sequence of)
actions:

e Rule := Guard — Action]
o Entry := signall && signal2 — enterLongAtMarket()

o Exit := with the following Guards and Actions:

signal3 && signald — exitAtMarket()
stopLoss(volatilityRangel) — sendStopLossToBroker()

. takeProfit(volatilityRange2) — sendTakeProfitToBroker()
maxBars > x — exitAtMarket()

oo

An example strategy might look like this:

o Entry := close[l] < close[0] && volume[l] < volume[0] — enterLongAtMarket()

o Exit := with the following Guards and Actions:

1. average(close, 10) < average(close, 20) && relativeStrengthIndex(2) < 0.7
— exitAtMarket()

2. stopLoss(averageTrueRange * 0.5) — sendStopLossToBroker ()
3. takeProfit(averageTrueRange * 2) — sendTakeProfitToBroker()
4. maxBars >= 5 — exitAtMarket()

An expression is evaluated for each data point in the time series individually in a backtest or as data arrives
in live trading. This strategy will enter a market order profiting from an upward trend when the last bar
closes above the previous bar (Entry, left) and the volume has increased (Entry, right). It will exit the trade
when a fast moving average is below a slow moving average (Exit 1, left) and the Relative Strength Index
is below 70% (Exit 1, right). Alternatively, the trade might also exit at a 50% volatility loss (Exit 2) or a
200% volatility profit (Exit 3). If neither of these exit conditions occur, the trade is closed after 5 bars (e.g.
days) after the trade has been filled by the broker (Exit 4).

Other strategy generators are:
e Mathematical Strategy: Uses mathematical operators to create a decimal value that is compared

against a threshold. This requires calculating everything without shortcutting. Since this type of
generator is comparatively slow (see Section [5.4)), we have not yet implemented it in our platformﬂ

4The actual syntax uses logical “and”/”or” to combine the guards with mostly implicit actions. This would be the syntax
for entry: "signall €€ signal2 €€ enterLongAtMarket()", and for exit: "signal3 €& signalj || stopLoss(volatilityRangel) [/
takeProfit(volatilityRange2) || maxBars > z". In the entry, "€ enterLongAtMarket()" can be omitted since this would be the
implicit action (if configured for the strategy). It is useful to declare it explicitly for actions like limit/stop entries. Limit/stop
orders can also be declared for both long and short positions simultaneously by OR combining them into one entry rule. This
way, breakout strategies can be expressed. These are implementation details of the language that we express more simply with
the rule-based notation.

5If we do implement it, we might find ways to accelerate it. This might enable us to find other kinds of alpha-capturing
trading strategies than our current generators provide.

Under review as submission to TMLR

o Breakout Strategy: Filters trade opportunities based on signals, then uses a mathematical expression
to define a price target for a limit or stop orderﬁ We have implemented this and can make use of
our signal optimisations even though trade simulation is slower than in signal-only strategies.

3.2.3 Portfolio Selection Example

Candidate strategies can also be selected for a portfolio through a ranking and filter expression. We mean
a portfolio of dynamic strategies on one or more instruments. Common portfolios only consider buy & hold
investments in stocks, bonds, and funds. The schema might look like this:

« Rank & Filter := with the following Guards and Actions:

— fitnessFilter]l && fitnessFilter2 — removeCandidateStrategy()
— rankDesc(rankFitness) <= portfolioSize — removeCandidateStrategy()

An example expression might look like this:

« Rank & Filter := with the following Guards and Actions:

— tradesCount >= 100 && sharpeRatio > 0.8 — removeCandidateStrategy()
— rankDesc(profitLoss / maxDrawdown) <= 10 — removeCandidateStrategy()

This expression will create a portfolio of the 10 best candidates based on the return-to-risk ratio which have
more than 100 trades and a Sharpe ratio above 0.8.

3.3 Differential Evolution

We use Differential Evolution (DE) (Storn & Price, [1997)) to generate our strategy candidates. Other
generators can be implemented and tested whether they converge faster to viable strategy candidates. We
use DE as a good starting example.

3.3.1 Encoding Strategy Candidates

For a strategy that uses simplified boolean expressions with 2 “and” combined signal blocks for the entry
rule and 2 “and” combined signal blocks for the exit rule, the problem would be stated as 4 integer variables
from -1 to the number of different available blocks per variable. We use 100 blocks in our example and, thus,
a maximum index of 99 since array indexing starts at 0. Fach array represents a list of domain-specific rules
that extract features from the market data. As an example, consider the following list of 100 rules:

e Index -1 disables this block.
e Indexes 0 to 20 are variants of moving averages and other long-term trend signals.
o Indexes 21 to 35 are volatility signals based on volume or price action.

e Indexes 36 to 70 are short-term momentum rules for mean reversion based on the Relative Strength
Index and absolute momentum measures.

e Indexes 71 to 85 are time and session filters to restrict when signals are to be taken.

o Indexes 86 to 99 are Bollinger Bands and other channel-based signals for long-term breakout signals.

6 An example breakout strategy can be schematically defined as: "filterLong &€ enterLongAtStop(longPriceLevel + volatility
* factor) || filterShort €6 enterShortAtStop(shortPriceLevel - volatility * factor)’.

Under review as submission to TMLR

The problem space results in the permutations of the variables being multiplied. A strategy candidate
picks 4 of the 101 potential blocks (including -1 for a disabled block and the rules from 0 to 99). It uses
the first two variables for the entry signal and the last two variables for the exit signal. Figure [] shows
a two-dimensional problem space where the third dimension is the fitness value of negative Profit/Loss to
minimize. The minimum to which DE should converge is apparent in the figure. The rings on the bottom
are the contours that DE uses to move to the minimum. Typical problem spaces are more complex and look
more like an inverted mountain region, or a crater region on the moon, with multiple local minima where
DE might find suitable strategy candidates. However, with our 4 variables, we operate in a four-dimensional
problem with the fifth dimension being the fitness value. Sadly this can not be visualised easily, but luckily
DE can handle higher dimensions well because it treats it as a contour space that guides it.

(For better visualisation: Axes of input variables x1 and x2 are normalized between -1 and 1; f(x1,x2) as
the fitness output is scaled between 9 and 10)

Figure 4: Two dimensional problem space with fitness as third dimension, adapted from (Price et al., 2005]
p. 9)

3.3.2 Vector Movement for Crossover and Mutation

Since the rule arrays are sorted logically so that similar rules are near each other, an algorithm such as DE can
benefit from directional movements in the contour space. Larger jumps in the indexes caused by mutations
and crossovers will result in different kinds of rules (represented by individual inverted mountains or craters
in the problem space), while smaller jumps will lead to similar rules that might differ in parameterisation
only for fine-tuning (approaching the local minimum). Our generator, on which we base our benchmarks,
uses 3818 domain-specific rules and includes an efficient negation of them that results in twice as many (7636)
rules. This leaves enough space for smaller jumps to pick similar rule variants and enough local minima to
find many strategy candidates. This is a bit harder to imagine, so we stick to 100 rules and a demonstration
of a three-dimensional problem space in our explanations.

10

Under review as submission to TMLR

Figure [5[shows how DE calculates the vector movements (for each input that we call gene) in the problem
space using the formula (at the top) for crossover and mutation (derived from |Georgioudakis & Plevris
(2020)).

+ F * (rand + 0.0001)
- V[g1]ig2]

VIOUI92] ger = VIOUO2 1o pest

* (V[g1l[g2])

donor._randl donor_rand2

Vig1lig2]

donor _randl

V[g1][g2
[g][g]anDr_best‘-\\

V[gl][gZ]anor rand2

Pgl

(Instead of x1 and x2 as inputs, we speak of gl and g2 as genes of the vector tuple V[gl][g2] that represents
a candidate that is on the contour space)

Figure 5: Vector movement in the contour space, adapted from (Price et all 2005, p. 39)

Figure [6] shows how DE is executed. The algorithm starts with an initial population of 500 candidates
generated randomly. The scaling factor is a constant value that moves based on a random value at a speed
defined by the difference between two random candidate values at the same gene. Since we have integer
values, we add a step that rounds the modified vector indices for the new trial candidates to the nearest
integer. Since the speed can move the picked signal beyond the allowed values, we truncate the result
between -1 and 99. When -1 is picked, the given block is disabled. This allows us to test simpler strategies
with less than the maximum amount of signal blocks. In the implementation, we perform the Mutation and
Crossover steps together as one step without actually creating an intermediate vector. This saves allocations
and improves the speed of the algorithm. Also, we diverge from other DE implementations by modifying
the population and then evaluating all together as a separate step instead of a tight loop that tests each
candidate individually. This creates a bit more randomness in the search and allows for running backtests
together depending on the engine.

The number of backtests can be reduced by sorting the picked blocks in the variables of a generated strategy
candidate by the true count ascending. That way logically duplicate backtests can be filtered in advance via
a score cache. If it is a new candidate, the backtests will be faster because the first block will most often
decide not to enter a trade, thus the next blocks don’t need to be checked most of the time. However, this
optimisation has no effect if block compression (see Section is enabled since that combines the blocks
into one "bit set" upfront. Instead, it still applies to expressions that mix with dynamic blocks.

The parameters for the crossover probability P and the scaling factor F' could be meta-optimised separately.

11

Under review as submission to TMLR

Initialisation

1. Generator Template with 100 Signals in 4 Blocks:
S1[-1..99] && S2[-1..99] && S3[-1..99] && S4[-1..99]
2. Initialize 500 Candidate Population Vectors:
Vi S1[0] && S2[10] && S3[58] && S4[-1]

V2: S1[22] && S2[47] && S3[-1] && S4[74]

Vsoo: S1[75] && S2[11] && S3[67] && S4[99]
3. Evaluate Fitness of all Candidates

Differential Evolution ¢

For each candidate “Veanisat" in population except the best one:

4. Mutation:
Pick best candidate “Vionar_nest” and two distinct random
vectors “Vuono_randt”, “Vdonor_rang2” @s donors.

Then create target vector “Viuge:" for each Gene “g"
V[Jlaret = V[d]eoner best + F * (rand + 0.0001)
~ * (V[9]onor_ranar — V[g]aoner_ranaz)
Where F is the scaling factor with a value of 0.5 and
rand is a uniform random value between 0 and 1.

Then round the gene to the nearest integer and
limit gene values between -1 and 99:

[V[garget = limit(round(V[gliage), -1, 99)]

v

5. Crossover:
Create a new Viia to replace the Vcangisae in the population:
For each Gene “g” if (rand < P) then:
{ VI9lias = V[glerget } €lse { V[Gliia = V[G]candivate }
Where P is the crossover probability with a value of 0.5 and
rand is a uniform random value between 0 and 1.

Evaluation i

6. Evaluate Fitness of all Candidates

Termination J

J— A
../’ \\-_ no g \\\ ¥es
(X :4—»\/(: ontinue? ™
N N 7

- -, -

-
N

Figure 6: Differential evolution process

We execute the strategy generation in multiple threads which perform backtests for the evaluation of the DE
algorithm. Each thread runs DE in a loop until the pre-configured number of unique and valid candidates
has been generated. It can also abort with a smaller number of valid candidates if too many duplicate or
invalid candidates are found. In addition, there are hard limits on the maximum number of candidates
checked and this limits the maximum number of backtests and iterations. For this, DE runs multiple loops
with a given population size and convergence parameters that define how the crossover and mutation should
take place. Each evolutionary step attempts to improve the population until either a maximum iteration
count is reached or the population is unable to improve over a few iterations. The best individual is kept
between iterations, and candidates that did not change will not be backtested a second time. The best
individual from the final population is then used as the strategy candidate for the outer portfolio selection.
A shared fitness cache prevents the repetition of backtests for duplicate strategies between parallel strategy

12

Under review as submission to TMLR

generators. Duplicate strategies are removed from the resulting candidates by comparing the final fitness
and the trade count against other candidates. Invalid candidates without trades are punished with the lowest
possible fitness during the generation process, because DE would always favour no trading over a strategy
that produces losses.

3.3.3 Nested Backtest Loops

3. Strategy Generation

. Generate Candidate »
Expressions (Entry, Exit,)’; Mutation
SignalX => Indicatorl > Indicator2 — L S PG IEEE
- -
&&E &&E &&E 525 &8 S6 && S17 && S8
[T
Optimisations v Crossover
ParameterX => optimise(from, to, step) | GR AN
| S1(PLP2.P3) }—>| $1(10,5,0.5) | O SR Gy e
[s2(Pa) | s2pm) | 5184 S6 8453 &% S8
[
[s3pspe) |—| s3Goao) |
E&) | s4029 | Fitness
I

4. Inner Backtesting Loops

"1 Evaluate Time Series Segments

1 lz2]s a5 e |78][9]

. Pre Optimisation Post Optimisation Walk Forward Analysis Cross Validation

[optimise 1-9 > value 12 | | Optimise 18 > value 10 | | [optimise 1.2 [Test3 | 45,6789
[optimise 19 > Value 12 | 56.7.8.9

[Optimise 1-8 > Value 11 | [Optimise1234 [Test5 | 6789

Figure 7: Candidate generation and evaluation process

Figuremshows multiple options to run nested loops as Post-Optimisation (in respect to strategy generation)
inside each backtest for:

e Nested Optimisation: This runs a brute force optimisation (that explores all variants) for the given
blocks to find the best parameters for each block. DE will see the best fitness value to make its
decision about an individual. To limit the number of alternatives to be tested, one parameter is
optimised after the other. This adds the possible permutations as tests by multiplying them during
the optimisation process. Alternatively, a genetic optimisation algorithm could be used to reduce
the number of tests when using multiplied permutations.

o Nested Walk-Forward: This repeats a brute force optimisation multiple times in a walk-forward
manner and concatenates the out-sample walk-forward steps as the fitness value for an individual.

e Nested Cross Validation: This splits the testing period into multiple segments and repeats a brute
force optimisation for each segment as the out-sample period individually while the other segments
are used as the in-sample optimisation period. The out-sample fitness is then averaged over the
out-sample segments for an individual.

13

Under review as submission to TMLR

There are also some options to select different optimisation parameters for blocks during the initial precal-
culation. These are called Pre-Optimisation options besides the No-Optimisation option which leaves the
default values as they are. Pre-Optimisation can make full use of precalculated indicators and signals. It is
more involved for Post-Optimisation. The platform has to calculate all permutations of a block and cache
these inside the block so that values can be reused as primitive arrays within optimisation cycles. This re-
quires significantly more effort to implement but allows high-performance advanced optimisation workflows
that give DE a higher level of abstraction to decide about strategy candidates. Though for our compari-
son benchmarks we disable these kinds of nested loops because no other platform supports them. Instead,
optimisations are flattened into multiple blocks for the same rule.

The fitness evaluation is done via deliberately simple and, consequently, fast algorithms that measure specific
statistics about the strategies as fast as possible. In this manner, the nested loops only perform the minimum
amount of calculations to decide about an individual. A strategy candidate that is given to the portfolio
selection is re-evaluated with a more complex suite of statistics. This makes available all possible statistics
for complex ranking and filtering logic that determines which candidates should be included in the portfolio.
The complex suite of statistics calculates equity-based measures (Profit/Loss, Sharpe Ratio, etc.) on a
daily basis and feeds the information into fast algorithms that are calculated eagerly. The same applies
to statistics for orders (Win Percent, Z-Score for Consecutiveness, etc.) that are pushed eagerly. More
complex and expensive algorithms (to check the robustness of candidates) are calculated lazily based on
other statistics, the stored daily equity curve or individual trade events. Portfolio rules can also compare
statistical properties like correlation or cointegration between candidates or apply advanced hybrid machine
learning techniques at this step. With this mix of eager and lazy calculations, portfolio decisions can be
made as fast as possible for a given configuration. The immutable results can be stored in files for later
analysis using external tools or be used in the following analysis steps.

4 Key Contributors to Performance Improvements

In this section, we summarise the key optimisations that have been undertaken on the platform to achieve
high-performance evaluation, to the extent that it exceeds that of other extant platforms according to the
measures reviewed in Section belowm The hardware is comprised of an Intel i9-9900k (8 physical cores, 16
virtual cores, 16 MB cache, from 3.6 GHz up to 5 GHz turbo boost) with 64 GB RAM and SSD storage.
We use EUR/USD as the instrument with tick data sourced from [DukascopyBankSA| (2022b) including the
bid/ask spread. One minute, four hour and daily bars are aggregated from this data. This is used for all
benchmarks in this paper. We go through the performance contributors individually in the order of their
importance.

4.1 Faster Simplified Boolean Expressions

Our platform can leverage similar speed improvements as |BuildAlphal (2022) as well as add some novel
optimisations. For example, logical signal blocks can be stored efficiently in bit sets (1 bit per value) instead
of primitive boolean arrays (8 bits per value in Java). These bit sets use primitive long array types (64
bits in Java) where each bit is used to store a boolean value (1 bit boolean). This makes CPU prefetching
significantly more efficient and requires 8 times less memory. Additionally, we can use bit set “and” operations
to compress multiple signals into one bit set before a backtest. The backtest can then be skipped for bit
sets that are never true or skip through segments that are false for a while (which is most of the time). The
skip is implemented as a lookup in the bit set to find the next time index that requires the backtesting logic
to execute a trade again. Thus, the full backtesting logic is performed when needed only. This is required
for calculating trades but not for waiting on a trade signal. We call this technique “Skipping Compressed
Bit Sets”. This is one of the main performance contributors that is benchmarked in Section

"These measures are processing speed on ticks and bars for backtesting and optimising classical and ML-generated trading
strategies.

14

Under review as submission to TMLR

4.2 Boolean Compression

Table [1] shows the performance contribution of different storage formats for signal blocks, as discussed in
Section [3.1] This is the main performance contributor when two advanced techniques are applied. We call
this ’compression and skipping with bit sets’. Compression combines multiple bit sets via a quick “and”
combination into one bit set representation that can be iterated faster and knows how often and when the
combined expression is true. Backtests can be skipped entirely when expressions are false over the whole
time series. When this compression is not available, lazy evaluation via shortcutting of boolean combinations
can skip unneeded calculations. But knowing how often and where the whole time series becomes true
allows for a second advanced optimisation. Sparsely true combinations benefit from skipping pre-computed
time series indexes within backtests by looking into the bit set for the next true index and continuing the
backtest evaluation from there. This skips complex calculations within the backtesting engine that would
have arrived at the same conclusion but with a code path that is more expensive than a lookup in a bit set.

For automated strategy generation, we choose to generate strategies with 8 signal blocks based on simplified
boolean expressions for the entry and a time-based exit after 1 bar. Entries and exits refer to entering a
trade and exiting a trade by sending orders to the broker. In terms of testing frequency, we test on daily
bars with about 20 years worth of historical data. We also show the effect of skipping to the next true value
during backtests. We measure the backtests per second and extrapolate the bars per second from that.

Table 1: Boolean storage format performance overhead

Optimisation Bars | Backtests/s Bars/s | Relative
RoaringBitmap 5,839 18,439.99 107,671,101.60 -47%
BitSet 5,839 34,367.77 200,673,409.00 -1.3%
Boolean Array (Primitive) 5,839 34,832.96 203,389,653.40 Baseline
Boolean List (Object) 5,839 35,379.05 206,578,273.00 +1.6%
Compressed RoaringBitmap 5,839 49,779.17 290,660,573.60 +42.9%
Skipping RoaringBitmap 5,839 51,289.57 299,479,799.20 +47.2%
Skipping Compressed RoaringBitmap || 5,839 104,398.74 609,584,242.90 +199.7%
Compressed BitSet 5,839 111,023.99 648,269,077.60 +218.7%
Skipping BitSet 5,839 121,204.29 || 707,711,849.30 | +247.9%
Skipping Compressed BitSet 5,839 200,746.40 || 1,172,158,230.00 | +476.3%

Even though compression and skipping optimisations could be implemented for boolean lists and arrays,
they are likely to be less efficient and would require significantly more memory than bit sets. A primitive
boolean requires 1 byte, while a boolean object requires 16 bytes due to the object header in the JVM. In a
bit set, one boolean requires only 1 bit. Accordingly, these slower and less efficient combinations have not
been implemented nor tested.

Table[1| summarises the effect of each optimisation (row), measured in terms of several computational perfor-
mance metrics (columns): the number of backtests per second (with generated signal blocks in the expression
language), the number of bars in the input series processed per second, and the relative runtime performance
(based on the bars per second) with the implementation using primitive boolean arrays as a baseline. From
Tablewe can conclude that it is possible to improve the relative performance by up to 476.3%
when using skipping and compressing bit sets as the storage format compared to the baseline primitive
boolean array. RoaringBitmap (Lemire et all |2017)) provides additional compression of sparse bit sets by
not storing each boolean as a bit, but instead storing only the indexes where the bit set evaluates true. This
might save memory for large and sparsely true data but comes at a performance impact of up to 48.0%.
We only use it in our platform when more than 1 million data points are stored in memory because the
performance penalty shrinks with these larger sizes to about 20.0%.

15

Under review as submission to TMLR

4.3 Expression Evaluation

In Table[2] we compare the speed of using cached signal blocks versus evaluating expressions during backtests.
The same scenario is applied as in the above tests. Skipping and compression optimisations are not possible
when the expressions are not precalculated and cached into bit sets. We also disable expression simplifica-
tions and subexpression elimination for a raw evaluation test. Such simplifications might remove unneeded
calculations like “4-0” or “-0” while subexpression elimination might turn constant calculations “5+43+2”
into a constant value “10”. Subexpression eliminations avoid repeating calculations that are already known.
This should not be confused with caching or memoisation because there is no additional storage involved.
Instead, it is a language feature. When bit sets are not used in favour of the evaluation of expressions, only
indicators and price data are retrieved from primitive arrays in a cache that never expires. Because the cache
never expires, we call the technique memoisation. Even though the blackboard engine can evict unused data
(for example intermediary calculations), the heuristic is smart enough to never evict data that is actively
used in our experimental setup.

Table 2: Expression evaluation performance overhead

Optimisation Bars | Backtests/s Bars/s Relative
Raw (Evaluation) 5,839 14,217.35 83,015,106.65 Baseline
Subexpression Elimination and

Simplification (Evaluation) 5,839 15,730.36 91,849,572.04 +10.6%
Skipping Compressed

BitSet (Memoisation) 5.839 200,746.40 || 1,172,158,230.00 | +1,312.0%

Table [2| shows the results of unoptimised (raw) and optimised (subexpression elimination and simplification)
evaluation against memoisation (with bit sets). As in the previous table, the number of backtests was
measured in a multi-threaded strategy generation process. The bars per second and the relative speed
differences were calculated based on the unoptimised (raw) evaluation. We can conclude that the speed of
evaluations with memoisation and highly optimised bit sets is 1,312.0% faster or 14.1 times as
fast when evaluating the expressions for every invocation.

The raw evaluation would be significantly worse if the expression blocks included more irrelevant calcu-
lations. This would be different if mathematical or register-based expressions were generated. However,
such generators have not yet been implemented in the platform and hence, are not tested here. Instead,
see the performance tests in |[<anonymised>| (2022b) for expressions where this would significantly improve
the performance. A simplification that is not yet implemented but would improve generated mathematical
expressions significantly would be the removal of redundant variables or functions that are neutral in the
calculation. For example: “+a ...-a” or “+f() ...-f()” or “a / a” or “f() / £()".

4.4 Memory Requirements

With optimisation techniques such as caching or memoisation, there is often a trade-off between computa-
tional performance and memory efficiency. The memory consumption in bytes can be calculated as follows
for our simplified boolean expression strategy generator. The calculation below is for the experimental setup
of signal-based strategy generation processes that we use throughout the document. Even though the bit
sets are the primary source of information for the signal-based strategies, we still have to calculate the inter-
mediary indicators as integer/float/double/long primitive arrays. The primitive array indicators might be
used directly for calculating entry levels of breakout-based strategies.

o Primitive Array of Double or Long (timestamp, price, indicator, exchange rate): 5,839 (bars
in test) * 8 (bytes) = 46,712 (bytes)

o Primitive Array of Integer or Float (count, index): 5,839 (bars in test) * 4 (bytes) = 23,356
(bytes)

16

Under review as submission to TMLR

» Bit Set of Boolean (simple signal): 5,839 (bars in test) / 8 (1 bit) = 730 (bytes)

o Bars consist of: 46,712 (start time) + 46,712 (end time) + 46,712 (first tick time) + 46,712 (last
tick time) + 46,712 (open) + 46,712 (high) + 46,712 (low) + 46,712 (close) + 46,712 (volume) +
46,712 (mean) + 23,356 (mean count) = 10 * 46,712 + 1 * 23,356 = 490,476 (bytes)

o Ticks consist of: 46,712 (tick time) + 46,712 (ask) + 46,712 (bid) + 46,712 (ask volume) + 46,712
(bid volume) = 5 * 46,712 = 233,560 (bytes)

o Indicators for Evaluation consist of: 141 (double indicators) * 46,712 + 60 (integer indicators)
* 23,356 + 119 (boolean indicators) * 739 = 8,075,693 (bytes)

« Signal Blocks for Memoisation consist of: 3818 (boolean signal blocks) * 739 = 2,821,502
(bytes)

o Total Memory Usage: 490,476 (bars) + 233,560 (ticks) + 8,075,693 (indicators) + 2,821,502
(signal blocks) = 8,799,729 (Blackboard Engine) + 2,821,502 (Signal Block Cache) = 11,621,231
(bytes)

Thus we require about 12 MB of memory for a strategy generator based on about 20 years of daily data.
Using primitive boolean arrays instead of bit sets we would require 19,750,514 bytes more, thus about 20
MB of additional memory or about 32 MB in total. Bit sets save us 63.0% in memory requirements
with this strategy generator. The above calculation can be extrapolated to other time frames. Depending
on the markets and their trading session times the amount of data can be significantly less than the example
below which is based on a 24-hour trading session. Accordingly, it is better to directly count the given bars
in a given time frame of an instrument.

o Daily (5,839 bars): 12 MB
e 4 Hours (35,034 bars): 12 MB * (24 hours / 4 hours) = 12 MB * 6 = 72 MB
o Hourly (140,136 bars): 12 MB * 24 hours = 288 MB

o 5 Minutes (1,681,632 bars): 12 MB * 24 hours * (60 minutes / 5 minutes) = 12 MB * 24 * 12 =
3,456 MB (3.5 GB)

o 1 Minute (8,408,160 bars): 12 MB * 24 hours * 60 minutes = 17,280 MB (17.3 GB)

Nowadays such memory requirements can be easily fulfilled with even laptops having 128 GB of available
memory (Schenker Technologies| |2022). Reasonably priced servers also provide this amount of memory
(HetznerOnlineGmbH, 2022|). There is also space for testing multiple instruments together in baskets or
using more indicators and caching more signal blocks. During walk-forwards, one also does not need to load
the entire data set into memory. Instead, each segment can be loaded individually to, for example, test
on tick data and generate strategies each month with a strategy generator that uses the last 3 months of
available ticks. Between each segment, the previous data is unloaded to make space for the next in-memory
segment. Also, multiple instruments can be optimised separately so that only one instrument is loaded into
memory at a time. However, with an investment into more memory, segments could be kept in memory
between runs to speed up multiple runs for robustness tests. This is easily achievable for more common data
resolutions which are still considered intraday trading. The JVM still needs memory to work with to not be
slowed down significantly due to garbage collection. As a rule of thumb, the maximum heap size should be
allocated at about double the calculated residual memory requirement of the data set.

The CPU cache will likely not be able to hold all of the data, even that of a daily frequency. The column-
oriented primitive array storage is optimised to maximise the use of CPU prefetching so that data is preloaded
from RAM before the calculation requires it. In theory, it would be possible to load larger data sets into
virtual memory than in the hardware memory (RAM) available on a computer. However, swapping to disk
will likely cause backtest speeds to drop below speeds that are possible with classical backtesting engines

17

Under review as submission to TMLR

that do not load all the data into memory. This is because the operating systems might not be intelligent
enough about what memory to prioritize, which results in memory thrashing. A way around this could be
to make use of memory compression which promises up to 40% less memory requirements while maintaining
40% to 70% of the system performance (Jennings| 2013). However, it might be cheaper to stay within the
limits of the hardware (by chunking backtests) or to increase the hardware memory instead of paying (e.g. in
cloud computing instances billed by minutes) for longer backtest times due to degraded performance. This
is why we have not yet verified or tested these workarounds for larger data sets.

5 Performance Results

In this section, we compare the runtime performance of our Invesdwin platform with competitor platforms.
For head-to-head performance results, we use event-based strategy APIs provided by the respective platforms,
rather than using our expression language, to have a fair comparison with other platforms that do not have
specialised expression languages. Our expression language is built as a more accessible simplification on top
of our event-based strategy API, providing the same functionality. For the measurements in this section, the
strategies are coded by hand in a feature-rich programming language instead of having them generated by an
expression language. We focus on the raw performance of classical backtesting engines and their optimisation
steps, specifically the difference between storage formats, the potential for multi-threading, and the effect of
changing data resolutions in strategy optimisation tasks. Later in Section [5.4] we focus on the performance
in the context of a full ML backtesting engine, and there we will revisit our expression language.

Each test is executed after a few warmup runs of backtests in the given platform to load data, populate
caches, and perform pre-calculations. We repeat the test 10 times and record the best time. Platforms are
included in the comparison only if a free demo or trial version is available. Some platforms were omitted
because it was not possible to do reliable tests for processing tick data in that given scenario, or because a
licensed version for the purpose was not readily available. The data sources of the given platforms differ in
the number of ticks (discrete data points) available. Accordingly, a backtest duration was chosen to provide
a sufficiently large sample of ticks. The same data was imported where possible. Statistics gathering was
minimised. The main metric for our evaluation is the achieved rate of Ticks per Second (Ticks/s).

5.1 High Data Resolution: Ticks

Table [3] shows performance results from the event-based API backtest, processing about one year’s worth of
ticks (discrete data points) on EUR/USD exchange rates without executing trades or strategy logic. This
measurement focuses on the raw performance of processing data points without capturing the overhead of a
transaction or the complexity of the strategy logic. Because not all contender platforms support ticks as the
primary data feed, we also compare them with 1-minute bar feeds (aggregated data) with 3 years’ worth of
bars.

We could not get Zipline-Reloaded to run backtests on 1-minute data due to session alignment issues. Instead,
we used a daily feed and compared that against the other Python-based platforms. These numbers indicate
that most purely Python-based platforms, without tuned, underlying libraries, are too slow to be competitive
in our comparisons.

With MetaTrader 4 we were unable to ensure that “processing all ticks” actually loaded real ticks instead
of interpolating artificial ticks from bars, thus we don’t classify this as testing as ticks. Zorro S provides a
similar interpolation mode, which we exclude from our tests as well in favour of real ticks and 1-minute bar
tests that can be configured in Zorro S.

For the relative comparison, we use Zorro S as the baseline because it also loads the data fully into memory
similar to our blackboard engine. The results in Table [3| show that our blackboard engine is 535.7%
faster or 6.3 times as fast for simply processing ticks.

The data in Table [] and its visualisation as bar-charts in Figure [§] show the event-based API backtest
engines executing trades in ticks resolution from a simple strategy (Moving Average Crossover) performing
the logic of the strategy on 1-minute bar intervals. Again, we include tests in 1-minute data feeds because

18

Under review as submission to TMLR

Table 3: Raw performance in bars or ticks per second (ticks/s)

Platform Bars or Ticks | Seconds || Bars/s or Ticks/s Relative
Daily Data:

Python: Zipline-Reloaded 4,528 5.098 888.19 -84.5%
Python: Backtrader2 4,528 0.789 5,738.91 Baseline
Python: PyAlgoTrade 4,528 0.145 31,117.59 +442.2%
Minutes Data:

Python: Backtrader2 1,000,000 62.020 16,123.83 -93.0%
JForex 4 1,052,540 46.581 22,598.05 -90.1%
Python: PyAlgoTrade 2,000,000 68.263 29,298.45 -87.2%
MetaTrader 4 1,117,631 6.484 172,367.52 -27.8%
Zorro S 1,088,716 4.750 229,203.37 Baseline
MetaTrader 5 1,117,231 0.494 2,261,601.21 +886.7%
Invesdwin (Historical) 1,486,140 0.341 4,358,181.82 +1,701.4%
Invesdwin (Blackboard) 1,486,140 0.149 9,974,093.96 | +4,251.6%
Ticks Data:

JForex 4 16,797,607 93.778 179,120.98 -91.9%
Zorro S 17,479,849 7.920 2,207,051.64 Baseline
MetaTrader 5 16,797,607 3.098 5,422,081.02 +145.7%
Invesdwin (Historical) 24,232,002 3.771 6,425,882.26 +191.1%
Invesdwin (Blackboard) 24,232,002 1.727 14,031,268.67 +535.7%

not all contender platforms support testing on ticks. We also added vector-based backtesting engines for
comparison here. It makes no sense to test vector-based engines on raw data processing speeds as above
since calculations are required to make a pass through the data. That is why we test them using this simple
strategy instead. The tabulated results show that our blackboard engine is 1,303.6% faster or 14.0
times as fast compared to Zorro S for backtesting a simple strategy on ticks.

Ticks/s or Bars/s log(Ticks/s) or log(Bars/s)

10,000,000.00 10,000,000.00
9,000,000.00
,000,000.00 1,000,000.00
7,000,000.00
6,000,000.00 100,000.00
5,000,000.00
4,000,000.00 10,000.00
3,000,000.00
2,000,000.00 1,000.00
1,000,000.00 I I 1

0.00 S T 1IN 100.00

abcdefghijklmnopgristuvwxy abcdefghijklImnopgristuvwxy

Figure 8: Graphical representation (linear and log y-scale) of Table [4} Performance of Moving Average
Crossover strategy single backtest (bars or ticks); bars g, r, x and y represent our Invesdwin platform

In general, we observe that the Python- and R-based platforms show the poorest performance. Customised
platforms such as Tradestation, MetaTrader, and Zorro S consistently outperform these platforms. Our
platform achieves considerable gains on top of these platforms on both minutes and tick data, and our
optimisations summarised in Section [f] are instrumental in achieving this performance.

Zorro S is an interesting platform because it preloads all data into memory before executing a backtest.
While speeding up the backtesting, this also limits the window for backtesting because at the time of writing
Zorro was only available as a 32-bit application. Our tests were performed with an older licensed version of

19

Under review as submission to TMLR

Table 4: Performance of Moving Average Crossover strategy single backtest (bars or ticks)

Platform Bars or Ticks | Seconds || Bars/s or Ticks/s Relative

Daily Data:

I a) Python: Zipline-Reloaded 4,528 16.413 275.88 -93.2%

I'b) Python: Backtrader2 4,528 1.114 4,064.63 Baseline

I ¢) Python: PyAlgoTrade 4,528 0.165 27,442.42 +575.1%
d) Python: vectorbt 4,528 0.039 116,104.56 +2,756.4%

Minutes Data:

I e) R: quantmod 200,000 20.248 9,877.52 -91.7%

I f) Python: Backtrader2 1,000,000 94.977 10,528.86 -91.2%

I g) JForex 4 (Minutes) 1,052,540 50.696 20,763.77 -82.7%

I h) Python: PyAlgoTrade 2,000,000 86.709 23,065.66 -80.7%

1 i) TradeStation 9.5 6,925,170 290.880 23,807.65 -80.1%
j) Python: vectorbt 2,000,000 17.257 115,895.00 -3.2%
k) Zorro S 1,088,716 9.090 119,770.73 Baseline
1) MetaTrader 4 1,117,631 6.969 160,371.79 +33.9%

I m) Matlab 3,002,266 10.917 275,008.34 +129.6%

I n) NinjaTrader 8 370,801 1.240 299,033.06 +149.7%

I o) Julia: Strategems.jl 3,002,266 6.475 463,670.42 +287.1%

I p) MetaTrader 5 1,117,231 2.239 498,986.60 +316.6%

I q) Invesdwin (Historical) 1,486,140 1.763 842,960.86 +603.8%

I r) Invesdwin (Blackboard) 1,486,140 0.511 2,908,297.46 | +2,328.2%

Ticks Data:

I s) JForex 4 16,797,607 102.586 163,741.71 -74.9%
t) Zorro S 17,479,849 26.780 652,720.28 Baseline
u) FXCM Trading Station 2,976,026 4.080 729,418.13 +11.7%

I v) NinjaTrader 8 16,472,101 8.190 2,011,245.54 +208.3%

I w) MetaTrader 5 16,797,607 7.567 2,219,850.27 +240.1%

I x) Invesdwin (Historical) 24,232,002 6.866 3,529,274.98 +440.7%

I y) Invesdwin (Blackboard) 24,232,002 2.645 9,161,437.43 | +1,303.6%

Zorro S (1.83), where we limited the data to a size that fits into the backtesting engine of Zorroﬂ Zorro has
many backtesting features in common with our Invesdwin platform and it allows fine-grained control over
how data feeds are processed in backtests. Our platform is written in Java and thus fully supports 64-bit
memory allocations. We are only limited by the available (virtual) memory with our blackboard engine that
also loads all data into memory. With the historical engine, any amount of data can be tested because it
loads data in a moving window from data files.

As a more substantial case study, we have also implemented the Workshop & strategy from the Zorro
documentation (oPgroupGermanyGmbH] [2022al) to compare backtesting speeds in optimisation scenarios.
The strategy in Workshop 5 is a moving averages crossover strategy that uses two indicators with a maximum
lookback of 500 bars for the normalisation of a smoothing filter algorithm. It enters trades based on a
crossover with a threshold and uses a stop loss based on a volatility indicator. The execution of the trailing
stop loss is disabled for these tests on both platforms. The same indicators, algorithms and settings are used
in both cases. Regarding parallelization, Zorro can not utilize multiple threads for optimisation backtests.
This is only possible in walk-forward analysis runs. Zorro is not the only platform that does not fully
utilize multiple threads in that scenario. In contrast, our platform supports multi-threading in more testing
scenarios than other platforms. To have a fair comparison, we compare both platforms in single-threaded
execution but also state numbers for the Invesdwin platform when multiple threads are used. The first

8 A 64-bit version of Zorro S (2.50) has become available in the meantime (which our existing license does not include)
that supports bigger data sets. The changelog notes slightly improved backtesting speeds due to better memory management
(oPgroupGermanyGmbH]| [2022b)). However, we expect this effect to not change the results by a magnitude.

20

Under review as submission to TMLR

backtests are performed with ticks precision, while the strategy executes trades and strategy logic in four-
hour bar intervals. Full statistics are collected in memory in these backtests, though report creation is
excluded from the measured time of both platforms. Our platform collects significantly more statistics than
Zorro S and that is part of the measured time.

First, we compare the single backtest scenario in Table [5l We use the EUR/USD exchange rates in the year
2015 as the source of the ticks. The results show that our blackboard engine is 421.3% faster or 5.2
times as fast compared to Zorro S for backtesting the Workshop 5 strategy on ticks.

Table 5: Performance of Workshop 5 single backtest (ticks)

Platform I Ticks | Seconds || Ticks/s | Relative
Zorro S 34,443,682 53.050 649,268.27 Baseline
Invesdwin (Historical) 24,232,002 41.946 577,695.18 -11.0%
Invesdwin (Historical, Precalculated) || 24,232,002 30.605 791,766.12 +21.9%
Invesdwin (Blackboard) 24,232,002 7.159 || 3,384,830.56 | +421.3%

The Precalculated optimisation uses file storage for indicator results and retrieves these values from the file
on successive backtests instead of calculating the indicators individually in each run. Storing the data on
a hard disk or SSD does not make much of a difference because the operating system file cache keeps hot
segments in memory. Also, the series only consists of a long timestamp and a double value over the whole
time range at four-hour intervals (the resolution of strategy decisions). So the data will be small enough to fit
into memory after the first run with a size of about 0.5 MBE The most benefit comes from not requiring to
calculate complex indicators multiple times. This effect becomes more significant when more backtests can
share these precalculations. This optimisation is not needed for the blackboard engine because everything
is loaded from precalculated primitive arrays in memory with that engine.

In Table |§|, we compare a small optimisation run where three parameters specific to the strategy (smoothing
filter bars, crossover threshold, volatility multiplier for the stop loss) are optimised in 10% increments for
the values (though the platforms calculate this differently). This is an example of important parameter
tuning as needed for an ML learning platform. Each parameter is optimised individually which results in
32 backtests in our engine. Zorro executes each backtest sequentially, while the Invesdwin platform can run
multiple backtests in the same thread simultaneously. This allows for the re-use of the same data loading
pipelines over multiple backtests. In this way, reducing file access achieves higher throughput than running
each backtest individually. When multiple cores are available Invesdwin will chunk backtests between the
available threads. Multiple strategies then run on the same data stream covering the whole time range in
one thread. This allows a higher throughput while each thread can reuse data pipelines for its backtests
that run together. For the blackboard engine, this optimisation is disabled because in memory it is faster
to execute each backtest separately due to improved usage of CPU prefetching since the CPU caches are
limited in size. So the blackboard engine still makes use of multi-threading but only runs a single strategy
per thread. Regardless of how many strategies run together in a thread, when a thread finishes its work,
it will continue with the next strategy or chunk of strategies until all required backtests are done. Since a
file buffer cache has been introduced in our NoSQL database it is faster to only run a few (e.g. 5) backtests
together per thread in the historical engine, because the overhead of accessing the files is already reduced
considerably by the database. The results show that our blackboard engine is 1,731.0% faster or 18.3
times as fast compared to Zorro S for step-wise optimising the Workshop 5 strategy on ticks.

Table [7] shows how the Invesdwin platform scales when optimising the three parameters together in a brute
force fashion, i.e. exploring all possible combinations of parameter values. This multiplies the permutations
and consequently requires significantly more backtests (1331 in our case). We stick to multi-threaded execu-
tion for these tests. The platform has heuristics to allow only a specific number of parallel backtests so as not
to exhaust the available memory. If there are more backtests scheduled than possible to run simultaneously,

91f it does not fit for decisions made in higher data resolutions (e.g. ticks), it will still improve results if the calculations that
are skipped are costly enough to offset the disk input/output overhead.

21

Under review as submission to TMLR

Table 6: Performance of Workshop 5 step-wise optimisation (ticks)

Platform Backtests | Seconds | Backtests/s Ticks/s Relative
Zorro S 38 798.210 0.048 1,639,743.82 Baseline
Invesdwin, 1 Thread:

Historical 32 572.197 0.056 1,355,169.75 -17.3%
Historical, Precalculated 32 427.648 0.075 1,813,229.72 +10.5%
Blackboard 32 155.639 0.206 4,982,196.39 +203.8%
Invesdwin, 12 Threads:

Historical 32 112.054 0.285 6,920,092.67 +322.0%
Historical, Precalculated 32 91.129 0.351 8,509,081.24 +418.9%
Blackboard 32 25.382 1.261 || 30,550,156.17 | +1,731.0%

the backtests will run in multiple step-wise chunks. For the relative comparison, we use the same baseline
that we used in the above Table [6] because the backtesting speed does not change significantly when more
backtests are to be run in Zorro S. The results show that our blackboard engine is 1,285.6% faster or
13.8 times as fast compared to Zorro S for brute force optimising the Workshop 5 strategy on
ticks. In practical terms, we only have to wait about 24 minutes, rather than more than 7 hours, for 1331
backtests.

Table 7: Performance of Workshop 5 brute force optimisation (ticks)

Platform | Backtests | Seconds | Backtests/s || Ticks/s | Relative
Invesdwin, 12 Threads:

Historical 1331 | 5,478.488 0.242 5,887,170.81 +259.0%
Historical, Precalculated 1331 | 3,133.338 0.425 || 10,239,429.77 +524.4%
Blackboard 1331 | 1,419.571 0.937 || 22,720,099.71 | 4+1,285.6%

5.2 Medium Data Resolution: One Minute Bars

Normally one has to balance a high data resolution for trustworthy backtest results against the performance
overhead of processing so many data points. Not all platforms support algorithmic trading strategies on
ticks or are limited by how many ticks can be processed in a single backtest. Often the compromise is to
run tests on 1-minute bars. We thus test the previous scenario against the Zorro platform by running both
optimisations on 1-minute bars on EUR/USD exchange rates, this time from 2003 to 2015 to get enough
sample bars. First, we compare single runs in Table The results show that our blackboard engine
is 7,112.4% faster or 72.1 times as fast compared to Zorro S for backtesting the Workshop 5
strategy on 1-minute bars.

Table 8: Performance of Workshop 5 single backtest (one minute bars)

Platform I Bars | Seconds || Bars/s | Relative
Zorro S 6.177.906 152.700 40,457.80 Baseline
Historical 4,747,531 12.738 372,706.15 +821.2%
Historical, Precalculated || 4,747,531 10.319 460,076.65 +1,037.2%
Blackboard 4,747,531 1.627 || 2,917,966.19 | +7,112.4%

Second, we run the step-wise optimisation of three parameters (individually after each other) in Table @}
The Invesdwin tests are directly performed with 12 threads. The results show that our blackboard engine
is 14,364.3% faster or 144.6 times as fast compared to Zorro S for step-wise optimising the
Workshop 5 strategy on 1-minute bars.

22

Under review as submission to TMLR

Table 9: Performance of Workshop 5 step-wise optimisation (one minute bars)

Platform Backtests | Seconds | Backtests/s Bars/s Relative
Zorro S 38 | 3,719.270 0.010 63,120.03 Baseline
Invesdwin, 12 Threads:

Historical 32 59.123 0.541 || 2,569,575.16 +3,970.9%
Historical, Precalculated 32 51.136 0.626 || 2,970,920.53 +4,606.8%
Blackboard 32 16.640 1.923 || 9,129,867.31 | +14,364.3%

We also repeat the same brute force optimisation of all three parameters together (multiplied permutations)
in Table[L0] The results show that our blackboard engine is 16,001.9% faster or 161 times as fast
compared to Zorro S for brute force optimising the Workshop 5 strategy on 1-minute bars.

Table 10: Performance of Workshop 5 brute force optimisation (one minute bars)

Platform ‘ Backtests | Seconds | Backtests/s H Bars/s ‘ Relative
Invesdwin, 12 Threads:

Historical 1331 | 2,027.233 0.656 3,117,038.72 +4,838.3%
Historical, Precalculated 1331 | 1,421.373 0.936 4,445,675.95 +6,943.2%
Blackboard 1331 | 621.730 2.141 || 10,163,517.54 | +16,001.9%

5.3 Low (Minimum) Data Resolution: Four Hour Bars

Since the strategy makes decisions in four-hour intervals, we can also test by using only bars in that interval.
This is the most efficient data resolution to use as it reduces the number of data points, collapsing them into
intervals. The strategy makes the same decisions as in higher data resolutions but works with a data set on
bars (intervals) rather than ticks (points). The backtest results will be the same for our platform regardless
of the data resolution chosen as long as the minimum for the strategy logic is not exceeded. Other platforms
might produce varying or even wrong results in lower data resolutions. We don’t have this issue because we
use the historical spread from ticks when executing trades based on bars. This is done by remembering the
related ticks for each bar and using them during trade execution even in lower data resolution tests. We
call this feature “Skipping Ticks”m It increases the work in our backtesting engine due to loading ticks and
bars as separate data streams. This feature can be turned off to behave like other platforms with reduced
accuracy and make our backtests up to 15% faster (when compared against our backtests with “Skipping
Ticks” here, not against Zorro S).

First, we compare single runs in Table Again we use EUR/USD from 2003 to 2015 to get a large enough
sample of bars. Our blackboard engine is 3,534.6% faster or 36.3 times as fast compared to Zorro
S for backtesting the Workshop 5 strategy on four-hour bars.

Table 11: Performance of Workshop 5 single backtest (four hour bars)

Platform | Bars | Sec || Bars/s | Relative
Zorro S 17,652 | 1.640 10,763.41 Baseline
Historical 21,125 | 0.409 51,650.37 +479.9%
Hist, Precale || 21,125 | 0.152 || 138,980.26 | +1,191.2%
Blackboard 21,125 | 0.054 || 391,203.70 | +3,534.6%

10A trailing stop loss that uses every tick as the minimum data resolution will have varying results on coarser bars even in
our platform. Using a trailing stop that only updates every four hours would make results consistent even if finer resolutions
were to be used. So it depends on the strategy design, particularly on when decisions are allowed to be made.

23

Under review as submission to TMLR

Second, we run the step-wise optimisation of 3 parameters in Table The Invesdwin tests are directly
performed with 12 threads. The results show that our blackboard engine is 14,745.1% faster or 148.4
times as fast compared to Zorro S for step-wise optimising the Workshop 5 strategy on four-
hour bars.

Table 12: Performance of Workshop 5 step-wise optimisation (four hour bars)

Platform Backtests | Seconds | Backtests/s Bars/s Relative
Zorro S 38 45.520 1.197 14,735.85 Baseline
Invesdwin, 12 Threads:

Historical 32 2.951 10.844 229,074.89 +1,454.5%
Historical, Precalculated 32 0.762 41.995 887,139.11 +5,920.3%
Blackboard 32 0.309 103.560 || 2,187,702.26 | +14,745.1%

We also repeat the same brute force optimisation of all 3 parameters together in Table The results
show that in this configuration our blackboard engine is 17,319.1% faster or 174.2 times as fast
compared to Zorro S for brute force optimising the Workshop 5 strategy on four-hour bars.

Table 13: Workshop 5 brute force optimisation (four hour bars)

Platform ‘ Backtests | Seconds | Backtests/s H Bars/s ‘ Relative
Invesdwin, 12 Threads:

Historical 1331 226.607 5.874 124,079.90 +742.0%
Historical, Precalculated 1331 22.423 59.359 || 1,253,952.41 +8,409.5%
Blackboard 1331 10.954 121.508 || 2,566,859.14 | +17,319.1%

5.4 ML Performance using Genetic Programming

After having examined the performance characteristics of classical backtesting engines, we can now demon-
strate how the performance compares to specialised machine learning backtesting engines. In this section,
we switch from classical strategy development to Al-generated strategies using genetic programming. A sim-
plistic view is that faster backtests find better strategies, but this is not always the case. Faster backtesting
allows one to faster find suitable candidate strategies from the problem space given by the strategy generator.
Looking at more candidate strategies might lead to a higher risk of curve fitting and selection bias. This
could turn to an increase in the false negative (Type II error) rate where bad strategy candidates are not
rejected often enough. Thus, speed is only one part of the strategy generation process. The other important
part is robustness testing and portfolio selection, which should mitigate these biases in the process. Our
platform’s mid term goal is to research these topics, but a detailed analysis is out of the scope for this paper.
With this caveat, we focus here on our improvements to the backtesting speed, which enables us to research
the robustness of strategy development processes. Faster backtesting speed also allows us to spend more
computational time on extensive robustness tests.

The data in Table[I4]and its visualisation as bar-charts in Figure[9] compares the Invesdwin machine learning
backtesting engine with other platforms that have this capability. Since all platforms can essentially generate
candidates endlessly, it makes no sense to capture the total run time. Instead, we let the platforms run for a
while to generate a large enough sample and record the performance. We measure the backtests per second as
a measure of performance and derive from that the processed bars per second. The values are subsequently
rounded. This means that not all processed bars might be touched by the platform since specific optimisations
can skip chunks of data and arrive at the same result for strategy backtests. However, this kind of comparison
allows us to compare normalised performance as bars per second regardless of such optimisations (that differ
across platforms). We configure 100% in-sample periods so that the genetic programming algorithm uses all
bars. We use varying numbers of bars to assess the overhead of genetic programming. Precalculation and
warmup are not counted. All platforms use multiple threads and can utilize the CPU fully. BuildAlpha and

24

Under review as submission to TMLR

Invesdwin generate signal-based strategies with 4 entry and 4 exit blocks combined with identical settings.
StrategyQuantX generates signal-based strategies with 4 entry blocks and a time-based exit. Adaptrade
and GeneticSystemBuilder generate mathematical entry expressions with 4 indicators compared against a
threshold with a time-based exit.

The population size and other genetic programming parameters are left at their default in the respective
platform because this should not influence the final number of bars per second. It does not matter in what
form the backtests are performed, as long as the threads all mainly execute backtests. We don’t measure
the number of candidate strategies created. Instead, we measure how many backtests were executed. Also,
the total number of backtests executed is irrelevant because we just collect a large enough sample (a few
minutes) to get the number of backtests executed per second.

For the relative comparison, we use GeneticSystemBuilder (intraday) as the baseline because it has a similar
performance to the test of the classical backtesting engines in Section Our machine learning engine is
based on the blackboard version of our classical backtesting engines from Section [b} The data in Table
and Figure@shows that Invesdwin (intraday) is 59,503.8% faster or 596.0 times as fast compared
to GeneticSystemBuilder (intraday). And Invesdwin (20 years) is 554.8% faster or 6.5 times
as fast compared to BuildAlpha (20 years).

Table 14: ML performance: strategy generator performance (12 threads)

Platform Bars | Backtests/s Bars/s Relative
I a) GeneticSystemBuilder (4 years) 1,296 113,82 147,507.40 -94.0%
I b) Adaptrade (4 years) 1,296 215.61 304,654.44 -87.5%
I c) StrategyQuantX (20 years) 6,164 50.33 310,266.73 -87.3%
I d) Adaptrade (30 years) 10,336 42.16 435,750.42 -82.2%
I e) StrategyQuantX (intraday) 6,272,874 0.08 472,923.58 -80.6%
I f) GeneticSystemBuilder (30 years) 10,336 77.70 803,108.00 -67.1%
I g) GeneticSystemBuilder (intraday) || 3,222,007 0.76 2,443,505.99 Baseline
I'h) BuildAlpha (1 year) 259 | 143,530.00 37,174,270.00 | +1,421.3%
1i) BuildAlpha (4 years) 1,098 | 104,920.00 || 115,202,160.00 | +4,614.6%
1) BuildAlpha (20 years) 6,284 97.420.00 || 172,307,280.00 | +6,951.6%
I k) Invesdwin (1 year) 314 916,669.56 287,834,241.80 +11,679.6%
I1) Invesdwin (4 years) 1,252 596,633.89 746,985,630.30 +30,470.2%
I m) Invesdwin (20 years) 5,839 193,252.58 || 1,128,401,815.00 +46,079.6%
In) Invesdwin (intraday) 1,482,424 982.46 || 1,456,422,283.00 | +59,503.8%
Barsis log(Bars/s)
1,600,000,000.00 10,000,000,000.00
+400:000,000.00 1,000,000,000.00

1,200,000,000.00

100,000,000.00
10,000,000.00
1,000,000.00 I
100,000.00 | ™= . . I I I
f g h i j k I mn

a b c d e

1,000,000,000.00
800,000,000.00
600,000,000.00
400,000,000.00
200,000,000.00 I
0.00 -ul
h i j kK I mn

a b c d e f g

Figure 9: Graphical representation (linear and log y-scale) of Table Strategy generator performance (12
threads); bars k—n represent our Invesdwin platform

BuildAlpha (bars h—j) was an inspiration in the design of the Invesdwin platform machine learning backtesting
engine because it showed that significantly higher backtest speeds are possible with a specialised backtesting
engine for machine learning. Other platforms seemingly use classical event-based backtesting engines judging

25

Under review as submission to TMLR

by the measured speeds. Invesdwin makes use of more advanced optimisations that increase the speed further
than BuildAlpha, especially bit set compression and skipping of false indexes. Both platforms use simplified
boolean expressions as the basis for the strategy generator.

In the Invesdwin platform, it is also possible to implement more powerful strategy generators like the ma-
thematical threshold indicator calculation that GeneticSystemBuilder uses or the breakout strategies that
StrategyQuantX can generate. These generators will still run magnitudes faster in Invesdwin even though
not all optimisations can be fully utilised. This is because other platforms implement only a subset of possible
optimisations. Both StrategyQuantX and Invesdwin generate breakout strategies with 4 signal filters and
a time-based exit in the tests reported below. Table [15| shows that Invesdwin is 245,399.6% faster or
2,455 times as fast compared to StrategyQuanX for the more sophisticated breakout strategies.

Table 15: ML performance' breakout generator performance

Platform | Bars | Backtests/s || Bars/s | Relative
StrategyQuantX (Breakout) 6 164 42.35 261,073.17 Baseline
Invesdwin (Breakout) 5,839 109,767.72 || 640,933,717.10 | +245,399.6%

5.5 Main Contributors to Performance Improvement

To separate the main contributors to the performance improvements, we can pick important measurements
of the previous sections and tabulate them for relative improvements. Table [I6] and Figure [I0] show these
improvements measured between each step in relative terms. This is not a comparison based on the same
problem, but it allows us to visualise our journey to achieving the backtesting speeds we currently have.
Changing from a classical backtesting engine (historical) to an in-memory backtesting engine (blackboard)
improved backtesting speeds by a factor of 2.74. Applying multi-threading (12 threads) improved the speed
by a factor of 6.13. Switching to our custom expression language allowed us to gain an additional factor of
2.71. Optimising these expressions only gained us a factor of 1.10 in terms of backtests, though switching to
bit sets for the memoisation of calculations improved the speed by a factor of 2.18. Compressing these bit
sets gained an additional factor of 3.23 and coupling that with our skipping heuristic led to the final factor
of 1.80. The total of all these improvements leads us to a gain of 646.45 times in terms of backtesting
speed. Taking our performance measurements from the JForex platform as a starting point, we actually
gained about 6543.95 times in terms of speed.

Table 16: Relative performance contributions

Platform Bars/s or Ticks/s | Relative
JForex:
I a) 1 Thread (Ticks) 179,120.98 -90.1%
Historical Engine:

b) 1 Thread (Ticks) 1,813,229.72 Origin
Blackboard Engine:

¢) 1 Thread (Ticks) 4,082,196.39 | +174.5%

d) 12 Threads (Ticks) 30,550,156.17 | +513.2%
Expression Engine:
I e) Raw Evaluation (20 years) 83,015,106.65 | +171.7%
I f) Optimised Evaluation (20 years) 91,849,572.04 +10.6%
I g) BitSet (20 years) 200,673,409.00 | +118.5%
I h) Compressed BitSet (20 years) 648,269,077.60 | +223.0%
I i) Skipping Compressed BitSet (20 years) 1,172,158,230.00 +80.8%

26

Under review as submission to TMLR

Ticks/s or Bars/s log(Ticks/s) or log(Bars/s)
1,400,000,000.00 10,000,000,000.00
1,200,000,000.00
1,000,000,000.00

1,000,000,000.00
800,000,000.00 100,000,000.00
600,000,000.00 10,000,000.00
400,000,000.00
1.000,000.00
200,000,000.00 .
0.00 L 100,000,00 |
e f g h i b c d e f g h i

a b c d a

Figure 10: Graphical representation (linear and log y-scale) of Table Relative performance contributions

6 Conclusions

To tackle the FinTech challenge of testing a huge number of automatically generated strategies in a machine
learning framework, we developed and measured a compute engine for high-performance machine learning
within our Invesdwin platform.

Faster backtesting engines allow us to increase the automation of strategy development processes and conduct
research at a higher level of abstraction, tackling concrete questions in economics. We discussed in detail
the design of the Invesdwin platform and how machine learning concepts can be tested with this underlying
compute engine. As a core component of the platform, an expression language has been designed with which
trading strategies can be generated and portfolio decisions automated. Hybrid machine learning approaches
can be defined easily and tested quickly with this approach. Performance considerations and key contributors
to improving the speed of empirical research have been highlighted. Specifically using skipping compressed
bit sets improves the strategy generation speed by a factor of 5.7 and saves 63% of memory
for the signal generator. This approach is 14.1 times as fast compared to raw expression evaluation (see
Table . All of our tests were conducted on a single laptop, though the platform has yet untapped potential
for parallelism (beyond multi-threading) with grid computing and cloud scaling. This is facilitated by low
latency and high throughput native communication channels at the core of the compute engine.

Some of these optimisations are novel to the field of testing expression-based strategies. Specifically, the
in-memory machine learning engine for a new high-performance expression language. Key concepts are the
usage of a compressed “bit set” format for storage and the ability to skip parts of the storage based on data
set and strategy. These compact bit sets can be loaded quickly from financial databases. We use a custom-
developed, compressed NoSQL database for efficient local data storage. We demonstrate computational
performance benefits by comparing existing contender platforms against our novel solution. Our in-memory
(blackboard) engine for classical event-based trading strategies is faster than any of the platforms we could
make available for testing. In an in-depth comparison with Zorro S (which has similar features in comparison
to our platform), we can process ticks 3.0 (Zorro Workshop 5) to 14.0 (Moving Average Crossover) times
as fast in a single thread depending on the tested strategy. We can optimise strategies step-wise 18.3
times as fast on ticks, 144.6 times as fast on 1-minute bars, and 148.4 times as fast on four-
hour bars (measured on Zorro Workshop 5). This is achieved without any qualitative difference in the
execution of the trades regardless of the data resolution. Thus, we can use the coarsest granularity of bars
supported by a strategy if desired. With that, we can expect similar results to execution on ticks while
having a significantly faster backtesting speed.

Other platforms that can generate trading strategies also use classical event-based backtesting engines. Our
platform shows even larger performance gains in these benchmarks: the “Invesdwin (intraday)” test is 596.0
times as fast compared to “GeneticSystemBuilder (intraday)”. For signal strategies, our “Invesdwin
(20 years)” test is 2,589.6 times as fast compared to “Adaptrade (30 years)”, and 3,636.9 times as
fast compared to “StrategyQuantX (20 years)”. For breakout strategies, our “Invesdwin (20 years)”
test is 2,455.0 times as fast compared to “StrategyQuantX (20 years)”. This is strong evidence that this

27

Under review as submission to TMLR

level of high performance has not been previously realised in a compute engine for FinTech. Even the
fastest available contender “BuildAlpha”, which also uses a specialised signal strategy generator, does not
use advanced optimisations like skipping compressed bit sets. This is the main reason why our “Invesdwin
(20 years)” test is 6.5 times as fast compared to “BuildAlpha (20 years)”, the fastest of the contender
platforms. Beyond measuring raw speed, we observe that all contender platforms cannot formally automate
and test the robustness of strategy development processes. Based on these comparisons, we have achieved the
fastest backtesting performance and the highest degree of automation for researching strategy development
processes.

Future Work

Additional research to investigate strategy development processes from an economics point of view is un-
derway. Risk management, position sizing, and equity curve trading are decision points that can also be
automated with specialised expressions soon. This allows for research into the design and assessment of novel
hybrid ML techniques and the construction of robust investment portfolios. This research will extend the
platform with further algorithms and testing capabilities. The authors anticipate these capabilities will find
significant interest in the academic and practitioner communities. The aspiration is for this novel platform
to become a widely-used tool in academic research and professional practice that improves the ability of
market participants to investigate new approaches in portfolio management through the adaptation of more
data-driven methodologies.

Tool and Data Availability

Interested researchers can get free access to the platform (on github.com) for research purposes by emailing
"<anonymised>". The data used in this paper can be downloaded manually at |DukascopyBankSA| (2022a)
or accessed through an API with a free demo account at |DukascopyBankSA| (2022b).

7 References

Fatai Anifowose. Hybrid machine learning explained in nontechnical terms, 2020. URL https://jpt.spe.
org/hybrid-machine-learning-explained-nontechnical-terms. Retrieved at 08.04.2022.

Fatai Adesina Anifowose, Jane Labadin, and Abdulazeez Abdulraheem. Hybrid intelligent systems in
petroleum reservoir characterization and modeling: the journey so far and the challenges ahead. Journal
of Petroleum Ezxploration and Production Technology, 7(1):251-263, 2017.

<anonymised>. Historical Cache for sparse time series with gaps in the Invesdwin Platform, 2022a. URL
https://github.com/invesdwin/invesdwin-util#caches. Retrieved at 25.02.2022.

<anonymised>. A Simple Expression Language for Automating Strategy Development Processes. 03 2022b.
doi: 10.13140/RG.2.2.18081.48484. URL https://www.researchgate.net/publication/359659846 _
A_Simple_Expression_Language_for_Automating_Strategy_Development_Processes. Retrieved at
01.04.2022.

<anonymised>. Synchronous Channels in the Invesdwin Platform, 2022c. URL https://github.com/
invesdwin/invesdwin-context-integration#synchronous-channels. Retrieved at 20.02.2022.

<anonymised>. Specialised NoSQL Database for financial time series in the Invesdwin Platform, 2022d. URL
https://github.com/invesdwin/invesdwin-context-persistence#timeseries-module Retrieved at
20.02.2022.

Rob Arnott, Campbell R. Harvey, Vitali Kalesnik, and Juhani Linnainmaa. Alice’s Adventures in Factorland:
Three Blunders That Plague Factor Investing. The Journal of Portfolio Management, 45(4):18-36, 2019.

D. Aronson. Ewvidence-Based Technical Analysis: Applying the Scientific Method and Statistical Inference to
Trading Signals. Wiley Trading. Wiley, 2011. ISBN 9781118160589.

28

https://jpt.spe.org/hybrid-machine-learning-explained-nontechnical-terms
https://jpt.spe.org/hybrid-machine-learning-explained-nontechnical-terms
https://github.com/invesdwin/invesdwin-util#caches
https://www.researchgate.net/publication/359659846 _A_Simple_Expression_Language_for_Automating _Strategy_Development_Processes
https://www.researchgate.net/publication/359659846 _A_Simple_Expression_Language_for_Automating _Strategy_Development_Processes
https://github.com/invesdwin/invesdwin-context-integration#synchronous-channels
https://github.com/invesdwin/invesdwin-context-integration#synchronous-channels
https://github.com/invesdwin/invesdwin-context-persistence#timeseries-module

Under review as submission to TMLR

David Aronson and Timothy Masters. Statistically Sound Machine Learning for Algorithmic Trading of
Financial Instruments: Developing Predictive-Model-Based Trading Systems Using TSSB. CreateSpace
Independent Publishing Platform, ISBN: 978-1489507716, 2013. ISBN 148950771X.

Wei Bao, Jun Yue, and Yulei Rao. A deep learning framework for financial time series using stacked
autoencoders and long-short term memory. PLoS ONE, 12, 07 2017. doi: 10.1371/journal.pone.0180944.

Dave Bergstrom. BuildAlpha, 2020. URL https://www.buildalpha.com. Retrieved at 17.04.2020.

Jonathan Blackledge, Kieren Murphy, Currency Traders Ireland, and Dublin Docklands Innovation Park.
Forex trading using metatrader 4 with the fractal market hypothesis. In Proceedings of the Third Inter-
national Conference on Resource Intensive Applications and Services, INTENSIVE, pp. 1-9, 2011.

Indranil Bose and Radha K. Mahapatra. Business data mining — a machine learning perspective. Information
& Management, 39(3):211-225, 2001. ISSN 0378-7206. doi: 10.1016/s0378-7206(01)00091-x. URL https:
//dx.doi.org/10.1016/30378-7206(01)00091-X.

BuildAlpha. BuildAlpha Demos (representative screenshot taken from the application), 2022. URL https:
//www.buildalpha.com/demo/l Retrieved at 25.02.2022.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal. Pattern-Oriented
Software Architecture Volume 1: A System of Patterns. Wiley, 1. aufl. edition, 8 1996. ISBN
9780471958697.

E.P. Chan. Machine Trading: Deploying Computer Algorithms to Conquer the Markets. Wiley Trading.
Wiley, 2017. ISBN 9781119219606.

Robert W. Colby. The Encyclopedia Of Technical Market Indicators, Second Edition. McGraw-Hill, 2 edition,
10 2002. ISBN 9780070120570.

C. Conlan. Automated Trading with R: Quantitative Research and Platform Development. Apress, 2016.
ISBN 9781484221785.

J. Danielsson. Financial Risk Forecasting: The Theory and Practice of Forecasting Market Risk with Im-
plementation in R and Matlab. The Wiley Finance Series. Wiley, 2011. ISBN 9780470669433. URL
https://www.financialriskforecasting.com/book-code/. Retrieved at 23.10.2022.

Marcos Lopez de Prado. Advances in Financial Machine Learning. Wiley Publishing, 1st edition, 2018.
ISBN 1119482089, 9781119482086.

DukascopyBankSA. Historical Data Export, 2022a. URL https://www.dukascopy.com/trading-tools/
widgets/quotes/historical_data_feed. Retrieved at 26.08.2022.

DukascopyBankSA. JForex Platform and API, 2022b. URL https://www.dukascopy.com/swiss/english/
forex/jforex/. Retrieved at 20.02.2022.

J.F. Ehlers. Cycle Analytics for Traders. Wiley Trading. Wiley, 2013. ISBN 9781118728512.

G. Ford. Systems Trading for Spread Betting: An End-to-end Guide for Developing Spread Betting Systems.
Harriman House, 2008. ISBN 9781905641734.

H. Georgakopoulos. Quantitative Trading with R: Understanding Mathematical and Computational Tools
from a Quant’s Perspective. Palgrave Macmillan US, 2015. ISBN 9781137354075.

Manolis Georgioudakis and Vagelis Plevris. A comparative study of differential evolution variants in con-
strained structural optimization. Frontiers in Built Environment, 6:102, 2020.

Rozaida Ghazali. Higher order neural networks for financial time series prediction. 2007.

29

https://www.buildalpha.com
https://dx.doi.org/10.1016/S0378-7206(01)00091-X
https://dx.doi.org/10.1016/S0378-7206(01)00091-X
https://www.buildalpha.com/demo/
https://www.buildalpha.com/demo/
https://www.financialriskforecasting.com/book-code/
https://www.dukascopy.com/trading-tools/widgets/quotes/historical_data_feed
https://www.dukascopy.com/trading-tools/widgets/quotes/historical_data_feed
https://www.dukascopy.com/swiss/english/forex/jforex/
https://www.dukascopy.com/swiss/english/forex/jforex/

Under review as submission to TMLR

A Hafiiak, E Borodina, and A Diachenko-Bohun. Application of genetic programming tools as a means of
solving optimization problems. Control, navigation and communication systems. Collection of scientific
papers, 6(52):58-60, 2018.

Carol Hargreaves and Chandrika Mani. The selection of winning stocks using principal component analysis.
American Journal of Marketing Research, 1:183-188, 08 2015.

Roy L Hayes, Peter A Beling, and William T Scherer. Action-based feature representation for reverse
engineering trading strategies. Environment Systems and Decisions, 33(3):413-426, 2013.

HetznerOnlineGmbH. Dedicated Root Server Hosting, 2022. URL https://www.hetzner.com/
dedicated-rootserver/matrix-ex. Retrieved at 09.04.2022.

S. Jansen. Machine Learning for Algorithmic Trading: Predictive Models to Extract Signals from Market
and Alternative Data for Systematic Trading Strategies with Python. Packt Publishing, 2020. ISBN
9781839217715.

Seth Jennings. Transparent Memory Compression in Linux, 2013. URL https://events.
static.linuxfound.org/sites/events/files/slides/tmc_sjennings_linuxcon2013.pdf. Retrieved

at 16.09.2022.

JuliaLangContributors. Julia Micro-Benchmarks, 2022. URL https://julialang.org/benchmarks/. Re-
trieved at 23.10.2022.

Lars Kotthoff, Chris Thornton, Holger H Hoos, Frank Hutter, and Kevin Leyton-Brown. Auto-weka 2.0: Au-
tomatic model selection and hyperparameter optimization in weka. Journal of Machine Learning Research,
18(25):1-5, 2017.

Andrew Kumiega and Benjamin Edward Van Vliet. Automated finance: The assumptions and behavioral
aspects of algorithmic trading. Journal of Behavioral Finance, 13(1):51-55, 2012. ISSN 1542-7560. doi:
10.1080/15427560.2012.654924.

Daniel Lemire, Owen Kaser, Nathan Kurz, Luca Deri, Chris O’Hara, Frangois Saint-Jacques, and Gregory
Ssi Yan Kai. Roaring bitmaps: Implementation of an optimized software library. CoRR, abs/1709.07821,
2017. URL http://arxiv.org/abs/1709.07821.

You Liang, Aerambamoorthy Thavaneswaran, Na Yu, Md. Erfanul Hoque, and Ruppa K. Thulasiram.
Dynamic data science applications in optimal profit algorithmic trading. In 2020 IEEE j4th An-
nual Computers, Software, and Applications Conference (COMPSAC), pp. 1314-1319, 2020. doi:
10.1109/COMPSAC48688.2020.00-74.

Dome Lohpetch. Evolutionary algorithms for financial trading. 2011. URL https://www.ros.hw.ac.uk/
handle/10399/2510.

Alison Lui and George William Lamb. Artificial intelligence and augmented intelligence collaboration:
regaining trust and confidence in the financial sector. Information € Communications Technology Law,
27(3):267-283, 2018. ISSN 1360-0834. doi: 10.1080,/13600834.2018.1488659.

Linkai Luo and Xi Chen. Integrating piecewise linear representation and weighted support vector machine
for stock trading signal prediction. Applied Soft Computing, 13(2):806-816, 2013.

Pranit Mahajan, Yagnesh Salian, Vinayak Jadhav, and Sujata Kulkarni. A multi-strategic approach to
automated trading. In 2021 International Conference on Communication information and Computing
Technology (ICCICT), pp. 1-7. IEEE, 2021.

James Mayfield, Tim Finin, and Marty Hall. Using automatic memoization as a software engineering tool in
real-world ai systems. In Proceedings the 11th Conference on Artificial Intelligence for Applications, pp.
87-93. IEEE, 1995.

30

https://www.hetzner.com/dedicated-rootserver/matrix-ex
https://www.hetzner.com/dedicated-rootserver/matrix-ex
https://events.static.linuxfound.org/sites/events/ files/slides/tmc_sjennings_linuxcon2013.pdf
https://events.static.linuxfound.org/sites/events/ files/slides/tmc_sjennings_linuxcon2013.pdf
https://julialang.org/benchmarks/
http://arxiv.org/abs/1709.07821
https://www.ros.hw.ac.uk/handle/10399/2510
https://www.ros.hw.ac.uk/handle/10399/2510

Under review as submission to TMLR

Nguyet Nguyen. Hidden Markov model for stock trading. International Journal of Financial Studies, 6(2):
36, 2018.

oPgroupGermanyGmbH. Zorro Manual: Workshop 5 - Counter Trend, 2022a. URL https://
zorro-project.com/manual/en/tutorial_fisher.htm. Retrieved at 20.03.2022.

oPgroupGermanyGmbH. New Functions and Features | Zorro Project, 2022b. URL https://manual.
zorro-project.com/new.htm. Retrieved at 16.09.2022.

R. Pardo. The FEwvaluation and Optimization of Trading Strategies. Wiley Trading. Wiley, 2011. ISBN
9781118045053.

K. Price, R.M. Storn, and J.A. Lampinen. Differential Evolution: A Practical Approach to Global Optimiza-
tion. Natural Computing Series. Springer, 2005. ISBN 9783540209508.

Jonathan Millard Ragan-Kelley. Decoupling algorithms from the organization of computation for high per-
formance image processing. PhD thesis, Massachusetts Institute of Technology, 2014.

Schenker Technologies. XMG ULTRA - Gaming Laptops, 2022. URL https://www.xmg.gg/xmg-ultra/.
Retrieved at 09.04.2022.

Rainer Storn and Kenneth Price. Differential evolution—a simple and efficient heuristic for global optimization
over continuous spaces. Journal of global optimization, 11(4):341-359, 1997.

StrategyQuant. StrategyQuant X User’s Guide, 2022. URL https://www.strategyquant.com/licenses/
d?code=sqgxug. Retrieved at 25.02.2022.

Pedro Vergel Eleuterio and Lovjit Thukral. Programming language choices for algo traders: The case of
pairs trading. Computational Economics, 53(4):1443-1449, 2019.

Larry D. Wall. Some financial regulatory implications of artificial intelligence. Journal of Economics and
Business, 100:55-63, 2018. ISSN 0148-6195. doi: 10.1016/j.jeconbus.2018.05.003.

Muh-Cherng Wu, Sheng-Yu Lin, and Chia-Hsin Lin. An effective application of decision tree to stock trading.
Expert Systems with Applications, 31(2):270 — 274, 2006. ISSN 0957-4174.

Peter Zwag. GeneticSystemBuilder, 2020. URL https://trademaid.infol Retrieved at 17.04.2020.

31

https://zorro-project.com/manual/en/tutorial_fisher.htm
https://zorro-project.com/manual/en/tutorial_fisher.htm
https://manual.zorro-project.com/new.htm
https://manual.zorro-project.com/new.htm
https://www.xmg.gg/xmg-ultra/
https://www.strategyquant.com/licenses/d?code=sqxug
https://www.strategyquant.com/licenses/d?code=sqxug
https://trademaid.info

	Introduction
	Context and Background
	A High-Performance Platform: Invesdwin
	Backtesting Engines
	Expression Language
	Expression Language Design
	Signal Strategy Example
	Portfolio Selection Example

	Differential Evolution
	Encoding Strategy Candidates
	Vector Movement for Crossover and Mutation
	Nested Backtest Loops

	Key Contributors to Performance Improvements
	Faster Simplified Boolean Expressions
	Boolean Compression
	Expression Evaluation
	Memory Requirements

	Performance Results
	High Data Resolution: Ticks
	Medium Data Resolution: One Minute Bars
	Low (Minimum) Data Resolution: Four Hour Bars
	ML Performance using Genetic Programming
	Main Contributors to Performance Improvement

	Conclusions
	References

