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Abstract

There has been a significant research effort focused on explaining predictive models,
for example through post-hoc explainability and recourse methods. Most of the
proposed techniques operate upon a single, fixed, predictive model. However, it is
well-known that given a dataset and a predictive task, there may be a multiplicity
of models that solve the problem (nearly) equally well. In this work, we investigate
the implications of this kind of model indeterminacy on the post-hoc explanations
of predictive models. We show how it can lead to explanatory multiplicity, and
we explore the underlying drivers. We show how predictive multiplicity, and the
related concept of epistemic uncertainty, are not reliable indicators of explanatory
multiplicity. We further illustrate how a set of models showing very similar
aggregate performance on a test dataset may show large variations in their local
explanations, i.e., for a specific input. We explore these effects for Shapley value
based explanations on three risk assessment datasets. Our results indicate that
model indeterminacy may have a substantial impact on explanations in practice,
leading to inconsistent and even contradicting explanations.

1 Introduction

Data-driven decision making has become a preferred practice within organizations. When the most
important outcomes are readily quantifiable, entire decision making processes may even be automated
using predictive models fit to historic data. With so much to be gained from accurate predictions,
powerful, modern, “black-box" machine learning (ML) models have obvious appeal. Clearly, however,
it is understood that deciding whether to deny access to products like insurance and credit should not
be taken lightly. Governing regulation may require a justification to be provided in conjunction with
a decision, such as one from a set of adverse action codes [34]. Even where such regulation is not
required, there is increasing pressure to make automated decisions more transparent [31]. As a result,
considerable interest has recently been devoted to explaining ML model decisions. Academics have
proposed numerous new techniques [2], new businesses have been founded to address this need, and
regulators have invested significant effort to provide guidance [21].

Thus far, the focus of most machine learning explanation and transparency research has been on a
single learned predictive model. However, it is well-known that given a dataset and a predictive task,
there may be a multiplicity of models that solve the problem (nearly) equally well[5; 6; 30]. What are
the implications of this kind of model indeterminacy for the explanations of automated decisions? It
has been demonstrated that a set of models with very similar performance on a test set may still show
significant predictive multiplicity [20], which is to say, the models make conflicting predictions on
individual data points. Quantifying this kind of model uncertainty in machine learning predictions is
the subject of considerable research interest. For instance it is central to work in Bayesian modelling,
and to discussions of epistemic uncertainty [16]. But to what extent are explanations affected?
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Figure 1: [Left] An aggregate performance metric like AUROC (black solid line) and a local
explanation like a Shapley value (blue dot-dash line) depend on a model’s predictive function,
f(x), in different ways. Even if we see low variance in the aggregate performance across a set of
models, we may see high variance in the individual local explanations. [Right] Visualizing how
model indeterminacy may affect predictive multiplicity (epistemic uncertainty), local feature-based
explanations, and recourse separately. Consider a set of approximately equivalent models, and a point
in the input space, x. The differences we may see in the model output probability at x are distinct
from the differences we may see in their gradients (with respect to x). The location of the nearest
decision boundary may also change independently.

In practical applications, where the stakes are high, might model indeterminacy jeopardize the
trustworthiness of an automated decision system by undermining transparency efforts? We explore
these questions in the context of risk assessment, i.e., insurance and credit applications, focusing
on a well-established class of explanation techniques which use Shapley values [7; 19; 22], but our
analysis applies to a broader set of systems and methods.

Contributions In this work, we introduce the notion of explanatory multiplicity, and study it both
analytically and experimentally. We show how a set of models with very similar test-set performance
may have large variations in their local explanations (Figure 1 left). We further show how predictive
multiplicity, is not required for—or even indicative of—explanatory multiplicity (Figure 1 right). This
is because in general, explanation methods are affected not just by the value of the predictive function
at a point, but by its shape. We connect this analysis to an existing measure of model uncertainty:
epistemic uncertainty [16]. Through experimentation, we explore explanatory multiplicity on three
risk assessment datasets. We measure the changes in the decisions and corresponding explanations
that users would receive if an automated decision system switched between approximately equivalent
models. Our results indicate that model indeterminacy may have a substantial impact on explanations
in practice, leading to inconsistent and even contradicting explanations.

2 Setup and related work

Problem setup We consider the situation whereby a user (applicant) is processed by a (partially)
automated decision-making system, which ultimately accepts or rejects them. We assume the system
is built around a machine learning model that has been trained on relevant historical data. The
model makes a prediction which is used in the decision to accept or reject the applicant, possibly
in conjunction with other eligibility criteria or human expertise. However, we are concerned with
explaining the model prediction to the user. The explanation should be local, in the sense that it
should be specific to the user’s input data, rather than describing a global property of the model.

Assume we have a dataset of user-data outcome pairs, D = {xi, yi}Ni=1, with multi-dimensional
input, x = (x1, x2, ..., xM ) ∈ X , and label y ∈ Y . We denote the set of features (dimensions)
of X as M = {1, 2, ...,M}. Let f(x) be a predictive function from a set of candidate functions
(hypothesis space), F , mapping the users’ data, X , to an output prediction score z ∈ Z ⊆ R used
in determining their acceptance. A typical scenario may be that Y = {0, 1}, with F modelling
the probability p(y = 1|x), in which case Z = [0, 1]. We suppose that the system produces local,
vector-valued explanations, of the form ϕ : (X ;F) 7→ RM . This may be a feature-importance
vector such as the gradient [3], ∇xf , or those generated by LIME [27] or SHAP [19]. Alternatively,
this may be an action vector determined by an algorithmic recourse method [32], in which case we

2



hypothesis space 
all possible model 

instances

Rashomon effect set
“best performing” 
model instances

source of variation: 
model class, 

hyperparameters, 
random seed

Underspecification set
trained from the “best 

performing” model class and 
hyperparameters

source of variation: 
random seed

Figure 2: Model indeterminacy. The model in-
stance that ends up in production is often not
fully determined by the data, modelling objec-
tives, and constraints. There is likely to be a
set of different models showing nearly indistin-
guishable validation performance; this is known
as the Rashomon effect. Even if the model class,
hyperparameters, and optimization method are
all specified, randomness in training may lead
to substantial functional differences in the final
model instance; this is known as underspeci-
fication. Despite this potential for variability,
most existing explanation techniques operate on
a single model instance.

further require (ϕ(x; f) + x) ∈ X . In either case, we let ϕk(x; f) denote the component of the
explanation relevant to input feature k ∈ M. We assume there exists a dataset dependent model
selection criteria, SD : F 7→ {0, 1}, which filters F down to a set of approximately equivalent
models, R = {f ∈ F : SD(f) = 1}. For example, the selection criteria may consist of limiting R to
only include models which score above a certain threshold on an aggregate performance metric.

We are interested in the set of possible explanations that could be given to a user across all approxi-
mately equivalent models, {ϕ(x; f) : f ∈ R}. We are particularly concerned with situations whereby
there exist f, f ′ ∈ R such that ϕk(x; f) < 0 < ϕk(x; f

′), as this would constitute contradicting
explanations. A user processed by f would be explained that feature k contributed positively to their
assessment (or should be increased in the case of recourse), but had the same user been processed
by f ′, they would have been explained that feature k contributed negatively to their assessment (or
should be decreased).

2.1 Model indeterminacy: Underspecification and the Rashomon effect

Model indeterminacy arises when there are many approximately equivalent predictive functions
within the hypothesis space. We say that two models are approximately equivalent if, in a given
context, we cannot justify why we should use one instead of the other—both would satisfy our model
selection criteria. We consider two types of model indeterminacy: underspecification, as studied
by D’Amour et al. [6], and the Rashomon effect, as originally described by Breiman [5]. They arise in
two slightly different commonplace contexts, but each may lead to sets of approximately equivalent
models. The relationship between them is depicted in Figure 2. Underspecification arises when the
model specification and training set are not enough to fully determine the model parameters. The
training set, model class, hyperparameters, and optimization method are fixed, but the intentional
use of randomness during training can lead to sets of approximately equivalent model parameters
that effectively differ only because of the choice of random seeds. When the Rashomon effect is
observed during model development, many models (possibly of different classes) show approximately
equal performance. Choosing which model among them to use in deployment becomes an arbitrary
choice; thus this set of best models may be considered approximately equivalent. The Rashomon
effect is more general than underspecification, as it does not require the model specification to be
held constant. These types of model indeterminacy are very common in practical settings [6; 5].

2.2 Shapley value based explanations

We focus on the class of local, feature-based explanations that use Shapley values to attribute
importance to the model’s input features. It has been shown that explanations satisfy a set of desirable
criteria if and only if they are computed using Shapley values [19]. This has put them in the spotlight
for regulatory purposes [34; 21]. The core idea of using Shapley values for explanations is to explore
all the possible subsets of features that the model could use to make a prediction, S ⊂ M, where M
is the set of all input features, and to calculate the average marginal effect that including feature k
into S has on that prediction. There are several related Shapley-based methods, which vary in how
they include/exclude features from a prediction. We present a unifying formulation introduced by
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Merrick and Taly [22]. Let u(x, r,S) be a composite input function, which takes the values of x for
all the features in S ⊂ M, and otherwise takes the values of r, some other reference input; recall
|M| = M . The Shapley value for feature k given input x can then be written as

ϕk(x; f) =
1

M

∑
S⊆M\{k}

(
M − 1

|S|

)−1

ER∼Dref

[
f (u (x, R,S ∪ {k}))− f (u (x, R,S))

]
. (1)

The sum is over all subsets of features (excluding feature k). Each term is the marginal change in
the prediction when including feature k, divided by the binomial coefficient M − 1 choose |S|. The
reference distribution, Dref, is chosen to zero out the contribution of the excluded features. Typically,
some variant of the input distribution is used. By simply varying the choice of reference distribution,
we can recover several different Shapley-based explanation methods [22], including those used in
popular techniques like KernelSHAP [19] and Quantitative Input Influence [7].

2.3 Uncertainty quantification

Model indeterminacy can be examined through the lens of uncertainty quantification. A popular,
Bayesian-inspired framework used in this pursuit subdivides uncertainty into two categories: aleatoric
and epistemic [14]. Epistemic uncertainty aims to quantify the uncertainty in the model of the data
generating process, and thus can be reduced by gathering more data. Aleatoric uncertainty aims to
quantify the inherent (irreducible) noise in the data generating process. Kirsch et al. [16] propose
that the uncertainty in the prediction at input x of a Bayesian model (with parameters θ) can be
decomposed and categorized as

I [Y ;θ|x,D]︸ ︷︷ ︸
epistemic

=H [Y |x,D]︸ ︷︷ ︸
predictive

−Ep(θ|D) [H [Y |x,θ]]︸ ︷︷ ︸
aleatoric

(2)

≈ H

[
1

n

n∑
i=1

f(x;θi)

]
− 1

n

n∑
i=1

H [f(x;θi)] (3)

where H [Y |x,D] is the predictive entropy given the training data D. The mutual information term,
I [Y ;θ|x,D], which corresponds to the epistemic uncertainty, can be obtained by subtracting the
aleatoric uncertainty from the predictive entropy. When we have access to samples from p(θ|D),
{θi}ni=1, and f models the probability p(Y = y|x), we can estimate Equation 2 with Equation 3 [24].
The epistemic uncertainty at x is high when the individual model instances, {f(x;θi)}ni=1, confi-
dently disagree at x. We use epistemic uncertainty as a principled way of measuring the variation in
the prediction probabilities in sets of approximately equivalent models.

2.4 Related work

Local explanation methods have already attracted some criticism with regards to their robustness.
For example, Alvarez-Melis and Jaakkola [1] have noted a lack of robustness to small perturbations
of the input being explained, while Lakkaraju and Bastani [18] show how this can be exploited to
generate manipulative explanations. The effect of model indeterminacy on explanations has been
explored in a philosophical sense by Hancox-Li [11]. Rudin [28] has argued against relying on
post-hoc explanations of black box models in high stakes decision-making altogether. There has
also been research into how the Rashomon effect can impact model interpretability. Semenova et al.
[30] quantify the Rashomon effect, and differentiate it from existing ideas in the study of model
complexity. Fisher et al. [9] consider the Rashomon set of “all well-performing models" within a
specified class, and explore the extent to these models are necessarily dependent on any particular
feature. They consider a global measure of feature importance called model reliance (MR), examining
its range over the Rashomon set for each of the individual input features. Dong and Rudin [8] build on
this work by characterizing the MR relationship between different features within the Rashomon set,
using what they call the variable importance cloud (VIC). This set of work is highly relevant to our
treatment of explanatory multiplicity, but it does not directly address the popular local explanation
methods which explain the prediction for a specific user, i.e., a specific x. These are currently the
main candidates for explanations in practice. In contrast, global measures of feature importance like
MR are tied to how important a feature is for a model’s aggregate performance on a whole dataset.
Recently, Black et al. [4] examine the inconsistencies in model predictions and simple gradient
explanations that arise from underspecification and leave-one-out changes to the training data. They
propose using selective ensembles to make both predictions and explanations more consistent.
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3 Explanatory multiplicity

We now examine how model indeterminacy can bring about explanatory multiplicity. First consider
the relative consistency of a performance metric, e.g., accuracy or AUROC, versus the value of a local
explanation across a set of approximately equivalent models, {ϕ(x; f) : f ∈ S}. Regardless of the
exact methods employed, the local explanation ϕ(x; f) will almost certainly depend on f differently
than the aggregate performance metric. Therefore, even if a set of approximately equivalent models
show very similar aggregate performance, we should not expect consistency in their individual
local explanations. The difference in dependency on f might transform a tight distribution over
the performance metric into a wide, possibly multi-modal, distribution over the Shapley value for a
feature, ϕk(x; f). This is illustrated in Figure 1 (left).

Now consider how the form of the predictive function may vary in the region around some input
x across the approximately equivalent models. This is illustrated in Figure 1 (right). We focus on
how three local characteristics of the predictive function may vary within the set of approximately
equivalent models. First, there can be variance in the value of the predictive function f(x). Therefore,
we may see considerable disagreement at any individual point in the input space. Strong disagreement
would drive high epistemic uncertainty, per Equation 2. Second, there can be variance in the gradient,
∇xf(x), (or the discrete equivalent to this quantity if f is not differentiable). The gradient is an
indicator of local feature importance. It is used directly in simple explanation techniques [3], and it is
closely connected to several others [29], including Shapley-value based methods in linear models.
Finally, there can be variance in the position of the nearest decision boundary. This has implications
for counterfactual explanations [33] and algorithmic recourse [32]. It is possible that the nearest
decision boundary to a user shift significantly between approximately equivalent models. This
could nullify the validity of the recourse provided. Importantly, these three characteristics may vary
independently. Therefore, while epistemic uncertainty may be a useful construct for indicating when
we should expect to see variance in predictions, it is not indicative of when explanations will vary.
Our experimental results presented below support this.

Illustrative example To illustrate these effects, we train 200 neural networks (MLPs) on a
synthetic dataset (x ∈ R2, y ∈ {0, 1}). These model instances differ only because of differences in
the random seeds used in training. We limit our consideration to the 3% highest-performing model
instances, selecting those ranging between 93.3% and 93.6% validation accuracy. This constitutes
a set of approximately equivalent models. Because the models differ only in the random seeds,
underspecification is the source of model indeterminacy here. We plot the models’ output (softmax
probability) over a region of the input space in Figure 15 in Appendix E. Their functional forms
may change considerably from one model instance to the next, in some cases, causing the nearest
counterfactual boundary to shift significantly. A single model instance along with the (iid) test set is
shown in Figure 3 (left). The predictive multiplicity at each point in that region of the input space is
calculated using the epistemic uncertainty in the set of approximately equivalent models (Equation 2
explained below) and is shown in Figure 3 (center). Notice it increases as we move toward regions of
the input space for which we have less data. Finally, we compute the mean pairwise cosine similarity
of the gradients (with respect to x) between models over the same region of the input space, shown
in Figure 3 (right). We see that predictive multiplicity is a poor indicator of the similarity of the
gradients across approximately equivalent models. For instance, consider the point at the orange star.
We have low epistemic uncertainty (corresponding to inter-model agreement in predictions), yet the
gradients across the models at this point are very dissimilar (orange arrows).

Analysis in a linear setting In a linear model class, it is possible to determine the precise conditions
under which model indeterminacy can lead to contradicting explanations. We present a brief summary
of this analysis here, and refer the reader to Appendix C for more details. Consider the case where
x ∈ RM , y ∈ R, and F is the set of ridge regression models of the form f(x;θ) = θTx, with
square error loss and ℓ2 penalty α > 0. The Rashomon set of all θ which parameterize models
within ε of the optimal loss, is an ellipsoidal region, Θε, centered at the OLS solution, θ∗. We are
interested in circumstances whereby the sign of a Shapley value reverses within this Rashomon set,
i.e., ∃ θ,θ′ ∈ Θε s.t. ϕk(x;θ) > 0 > ϕk(x;θ

′).

It can be shown that the Shapley value of feature k in this ridge regression setting is ϕk(x;θ) = θkxk.
Since x is fixed for a user, ϕk changes sign if and only if θk does. In the simple case where the
features of x are independent, the ellipsoidal region Θε is axis-aligned. We show that θk is bounded
in an interval centered at θ∗k, having width 2(ε/( 1

N

∑
n x

2
k,n + α))1/2. For a fixed ε relaxation from
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Figure 3: [Left]: Softmax probability of an MLP over a region of the input space. The test set is
depicted as purple circles and yellow Xs. [Center]: Epistemic uncertainty over the same region of the
input space is computed using a set of approximately equivalent model instances arising from the
same training pipeline. [Right]: Mean pairwise cosine similarity of the gradients (w.r.t. the input)
between models over the same region of the input space. The orange arrows are the gradients for (a
subset of) the individual models at the point indicated by the orange star (left and center).

optimality and regularization coefficient α, the width of this interval decreases with the variance of
the feature k. So ϕk is a candidate for sign reversal if xk is a low variance independent feature, and
θ∗k is near zero.

Consider now if features j and k are correlated, with Cov(xj , xk) > 0, but all other features are
independent. The ellipsoidal region is aligned for all axes i /∈ {j, k}, but in the j, k plane, the
cross-sectional ellipse is rotated. In this case, we show that θk is also bounded in an interval centered
at θ∗k. If we fix ε, α, and the variance of features j and k, we show that the width of this interval
increases with Cov(xj , xk). Intuitively, this tells us that problems for which the input features are
strongly correlated are more prone to contradicting explanatory multiplicity. However, in complex
hypothesis spaces, it is considerably more difficult to analyse explanatory multiplicity theoretically.
We instead explore it through experimentation.

4 Experiments

To explore the extent to which model indeterminacy may impact the consistency of explanations
in a practical setting, we conduct a series of experiments. We use three different (binary) risk
assessment datasets (all available on Kaggle): UCI Credit Card [35], Give Me Some Credit, and
Porto Seguro’s Safe Driver Prediction. Their details can be found in Appendix B.1. In each case, we
let y = 1 indicate the “bad” outcome: missed payment, serious delinquency, and insurance claim
filed, respectively. We fit predictive models to each of these datasets, and consider their use in an
automated decision system that filters out applicants (users) who pose an unacceptably high risk of a
bad outcome. We then measure how the predictions and corresponding explanations are affected by
the Rashomon effect and underspecification. Our experiments were conducted on a GPU accelerated
computing cluster. ML models were written in PyTorch [26], and the analysis used NumPy [12] and
Matplotlib [13] 1 2.

Preprocessing and model selection We first split each dataset into a development and a holdout
set (70 / 30), and apply one-hot encoding and standard scaling. We then run a model selection
process with three model classes: logistic regression (LR), multi-layer perceptron (MLP), and a
tabular ResNet (TRN) recently proposed by Gorishniy et al. [10]. We sweep through a range of
hyperparameter settings, trying a total of 408 model-hyperparameter configurations per dataset. For
each configuration, we pick a random seed and use it to control a shuffled split of the development
dataset into train and validation sets (70 / 30). This seed also controls the randomness used in training
(optimization). We fit the models using Adam [15] with a patience-based stopping criteria on the
validation set. We also up-weight the rare class, creating a balanced loss. We repeat this process with
3 random seeds per configuration, obtaining a total of 1224 model instances per dataset.

1These packages are publicly available under BSD-style licenses.
2Experimental source code will be made available at github.com/mebrunet/model-indeterminacy
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Forming sets of approximately equivalent models To explore the effect of underspecification, we
identify the best model-hyperparameter configuration and generate many approximately equivalent
model instances from it. We refer to these as underspecification sets. Specifically, we use the AUROC
on the validation sets (averaged over 3 random seeds) to determined the best model-hyperparameter
configuration for each dataset. We then train 100 models instances using that configuration. In this
final training, we fix the number of epochs, and use the full development dataset for each. Thus the
only source of variation between model instances is the random seed controlling initialization and
mini-batch order. To explore the impact of the Rashomon effect, we simply skim off the top 3% of
model instances (36 of 1224) from the model selection sweep, ranked according to their AUROC
performance on their validation sets. We refer to these as Rashomon effect sets as they stray slightly
from the definition of a “Rashomon set” by Semenova et al. [30]3. These sets include model instances
from different model-hyperparameter configurations, and different controlling random seeds. After
forming a set of either type, we use the holdout data to ensure that none of the model instances show
unusually low performance out-of-sample.

Computing explanations For each dataset, we consider a subset of 1000 instances from the
holdout set. We generate Shapley value explanations on these points for each of the approximately
equivalent models. Notice that in Equation 1 there is an expectation over the reference distribution,
R ∼ D, as well as a sum over all subsets of features in M which grows as O(2|M|). In practice this
sum must be approximated for inputs with even a modest number of features, and the expectation is
converted to an empirical mean. Fortunately, there has been considerable effort put into developing
estimators for Shapley values. In this work we use a simple antithetic sampling approach described
in [23]. Importantly, when comparing Shapley-based explanations across models we are careful to use
precisely the same set of samples, thereby ensuring that if two models agreed pointwise everywhere
in their domains, their explanations would be identical 4. We consider two different reference
distributions, D in Equation 1, each corresponding to a different type of Shapley explanation. The
first is a point mass at the mean input, E [x]. In the language of Merrick and Taly [22], this amounts to
considering a “single-reference game”; the explanations contrast the user with the “average applicant”.
We refer to this as Dmean. We also consider the input distribution; this amounts to explaining with
KernelSHAP. As is typical, to limit compute time, we approximate the input distribution using a
small subset of the training data. We randomly select 100 reference inputs, and we reuse them for
each explanation to ensure this is not a source of variation. We refer to this as Dinput.

4.1 Quantifying Consistency in Explanations

To quantify the consistency of explanations we focus on the top-k (in magnitude) Shapley values
explaining a user’s predicted risk (of a bad outcome). These correspond to the features which are
most significant to the prediction. It is recommended to limit feature-based explanations to a subset
of the most important features [27], thus these are most likely what would be shown to the user. If
they are positive-valued, they indicate the feature adds to the applicant’s predicted risk. If they are
negative-valued, they indicate the feature reduces that risk. We consider three metrics to quantify the
consistency of the explanations. Each of these metrics takes in a pair of explanations and outputs a
numerical value. For each user, we average these metrics over the explanations from every pair of
approximately equivalent models (|R| choose 2 pairs).

Signed Set Disagreement (SSD) We first consider a binary metric which takes value 0 if the sets
of top-k features agree between two explanations, and a value of 1 if they do not, i.e., they disagree.
For agreement within the sets of top-k, we require that the sign of the Shapley values be the same,
but not their numerical values or relative order. For example, suppose explanation A has Shapley
values {ϕ1 : 0.4, ϕ2 : 0.7, ϕ3 : −0.9, ϕ4 : −0.1}, but explanation B has {ϕ1 : −0.5, ϕ2 : 0.8, ϕ3 :
−0.7, ϕ4 : 0.3}. Their top-1 Shapley values disagree: {ϕ3} vs. {ϕ2}, their top-2 Shapley values
agree: {ϕ2, ϕ3}, but their top-3 Shapley values disagree because ϕ1 does not have the same sign in
both explanations. When averaged over pairs of approximately equivalent models, the SSD estimates
the probability that a user would see a disagreement in the set of (signed) top-k explanatory features
if the predictive model were switched to another approximately equivalent model.

Contradicting Direction of Contribution (CDC) We are most concerned about contradicting
explanations, as these can be confusing or even harmful for a user. For this we consider another

3We elaborate on this difference in Appendix B.3
4Further information about this estimate is available in Appendix F.
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binary metric which takes value 1 if at least one of the top-k Shapley values changes sign (direction
of contribution) across two explanations, and takes value 0 otherwise. Thus the metric takes value
1 if there is at least one top-k feature, say feature-j, which is adding to the user’s predicted risk
in explanation A, but reducing their risk in explanation B. (Or vice-versa, going from reducing to
adding). We require feature-j to be in the top-k features of explanation A or B, not necessarily both.
When averaged over pairs of approximately equivalent models, the CDC estimates the probability
that a user would see a top-k explanatory feature change direction of contribution if the predictive
model were switched to another approximately equivalent model.

Sign Agreement (SA) We also make use of the Sign Agreement (SA) metric proposed by Krishna
et al. [17]. This metric computes the fraction of top-k features that are not only common between
two explanations, but also share the same sign (direction of contribution) in both the explanations. It
takes fractional values from {0, 1

k ,
2
k , ..., 1}. Note that SSD indicates if SA < 1.

5 Results

Here we present the results of our experiments. Note that our figures focus on Dinput, underspecifica-
tion, and the UCI Credit Card dataset. The corresponding figures for Dmean, the Rashomon effect,
and other datasets are presented in Appendix D. We tabulate the results of the hyperparameter sweep
and set formation in Table 2, in Appendix B.2. The probability that two approximately equivalent
models disagree on a user acceptance decision is a function of the decision threshold (risk appetite).
With decision thresholds set to a 50% user acceptance rate, disagreement ranges between 4.35–12.7%
across our experimental setups. We report more details on the consistency of decisions across a range
of user acceptance rates in Appendix D.1.
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Figure 4: Consistency of explanations. We compare the top-k Shapley values across approximately
equivalent models for 1000 users in the hold-out set. [Left] Histogram over the probability of
inter-model explanation disagreement (SSD) for each user. [Right] Histogram over the probability of
inter-model contradiction (CDC) in the top-k Shapley values for each user. [Shapley type: Dinput;
dataset: UCI Credit Card; source of indeterminacy: underspecification]

Consistency Metrics The signed set disagreement (SSD) and the contradicting direction of
contribution (CDC) metrics are plotted in a (per-user) histogram in Figure 4. They are also averaged
over 1000 users and reported in Table 1. In general, we see considerable inconsistency. If a user were
shown explanations of a prediction they received from two approximately equivalent models, the
probability that the set of top-3 Shapley disagree is over 35% in all our experimental settings, and over
50% in two thirds of them. The odds of a contradiction vary considerably across the experimental
settings. They are remarkably high in some of the Rashomon sets, but roughly an order of magnitude
lower in the underspecification sets. Nonetheless, the odds of a contradiction in the top-5 Shapley
values is over 10% in three quarters of our experimental settings, and over 20% in half of them,
potentially alarming levels in a real-world setting.

Visualizing (in)consistency Explanations are often reported in a visual form. We explore the visual
consistency of the explanations across approximately equivalent models. To do so, we sort users
by the sign agreement (SA) in their top-5 Shapley values across pairs of approximately equivalent
models. High SA means the model explanations tend to agree. We select a user, then we plot the
explanation for each model within an approximately equivalent set as a separate trace. We limit the
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Table 1: Consistency of explanations

UCI Credit Card Give Me Credit P.S.’s Safe Driver
Shapley type: Dmean top-3 top-5 top-3 top-5 top-3 top-5
Rashomon effect
Prob. of disagreement (SSD) (%) 83.5 92.8 66.9 70.1 78.4 92.1
Prob. of contradiction (CDC) (%) 46.6 62.7 6.6 19.5 19.2 34.2

Underspecification
Prob. of disagreement (SSD) (%) 72.1 88.2 54.1 63.3 48.1 67.7
Prob. of contradiction (CDC) (%) 7.9 20.1 3.4 13.5 0.8 2.5

Shapley type: Dinput

Rashomon effect
Prob. of disagreement (SSD) (%) 79.4 90.3 59.9 69.8 76.6 89.2
Prob. of contradiction (CDC) (%) 36.5 54.9 11.1 29.0 13.0 23.6

Underspecification
Prob. of disagreement (SSD) (%) 51.1 67.2 35.6 47.1 43.4 60.9
Prob. of contradiction (CDC) (%) 2.3 9.3 2.4 10.4 0.2 0.6

plot to the features that are in the top-5 for at least one model. An example of such a plot for the user
in the 10th percentile of SA can be seen in Figure 5 (left). We see a contradiction in the explanations
for feature “pay-2”. For some models, it would be explained to the user that this feature was among
the top-5 reasons for a decision, but if an approximately equivalent model were used instead, it could
be explained that the same feature was having the opposite effect on their decision.
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Figure 5: [Left and Center] Visualizing inconsistencies in explanations. Each trace corresponds to
one model’s explanation: The Shapley values for a subset of the most important features. Notice that
“pay_2” crosses the 0 line. For some models it would be presented among the top-5 reasons that a
decision was made, yet for other approximately equivalent models, it would be explained as having
the opposite effect on that decision. In the center, we show the models’ softmax outputs. The models
tend to agree in their predictions, but not in their explanations. [Right] Predictive vs. explanatory
multiplicity. Here we illustrate the relationship between predictive multiplicity and explanatory
multiplicity. For 1000 users in the holdout set, we plot the mean intersection of top-5 Shapley values
(between pairs of model instances) vs. the (log) epistemic uncertainty in the predictions. The lack
of correlation illustrates how epistemic uncertainty is not predictive of consistency in explanation.
[Shapley type: Dinput; Dataset: UCI Credit Card; Source of indeterminacy: underspecification]

Variation in predictions vs. variation in explanations Within our set of approximately equivalent
models, we explore the relationship between the variation in the predictions for a user and the variation
in their explanations. We do not observe a consistent relationship across our experimental setups.
There are users with low explanatory agreement and high predictive agreement, and vice versa.
To illustrate this, we plot the sign agreement (SA) in the top-5 Shapley values vs. the epistemic
uncertainty in the associated predictions (computed via Equation 3) for 1000 users. See Figure 5
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(right). We also compute the Spearman correlation coefficient (ρ). In the UCI Credit Card and Safe
Driver datasets, there is effectively no correlation; ρ ranges from -0.17 to 0.23. In the Give Me Some
Credit dataset there is weak to moderate negative correlation; ρ ranges from -0.34 to -0.58. One may
wish to characterize the uncertainty in an explanation stemming from model indeterminacy. However,
our results suggest that the epistemic uncertainty in a prediction is not a reliable indicator of the
uncertainty in an explanation.

Summary and Analysis Our results indicate that 1) model indeterminacy can lead to substantial
inconsistencies in the local explanations of approximately equivalent models, even when models only
differ because of underspecification; 2) variation in an explanation for a user across approximately
equivalent models can occur with or without variation in the prediction, i.e., whether the epistemic
uncertainty in that user’s prediction is high or low.

On the one hand, explanatory multiplicity may be viewed as a consequence of high fidelity expla-
nations, which ought to show a sensitivity to the fluctuations of the predictive functions. However,
when we consider providing these explanations to a user, whether as a justification for a decision,
or as information they can act on, the implications are concerning. Without some kind of guarantee
about how long a particular model instance will remain in use, the explanations may be of very little
value, or even be detrimental to the users. (Additional results in Appendix D.)

6 Discussion

There are notable societal implications to this work. Consider being denied a loan then explained
that your number of existing lines of credit was very detrimental to your application, only to learn
that—under a trivially different model—your existing lines of credit would have been explained as
having helped your application. How would this affect your trust in the decision-making system?
Explanation techniques that use Shapley values have been rigorously motivated, and may represent a
substantial operational cost in practice, requiring orders of magnitude more compute than just making
a prediction. It is sensible to want them to be robust. We should at least communicate the limits of
their robustness to the user, so they understand exactly what is being explained, i.e., we should be
explicit about the scope of the explanation. We elaborate on this discussion in Appendix A.

There is much to explore in future work. Our theoretical analysis is currently limited to a simple
linear class of models; our experiments are limited to just two forms of Shapley value explanations.
It would be important to explore the empirical effects of model indeterminacy on other explanation
methods including recourse. Notably, there is a wide range in the magnitude of the explanatory
multiplicity measured across our current experimental settings. It would be valuable to understand the
drivers of this variation so it may be preempted in practice. It may also be helpful to put the effects
of model indeterminacy into perspective by comparing them to human decision-makers. Human
decisions, and the explanations of those decisions, are also liable to fluctuate arbitrarily. However,
our results remind us that just because a decision or explanation was produced by a “data driven"
model, does not mean that they are fully determined by the data. We hope our work inspires a focused
research effort into developing explanation techniques that are more robust to the trivial or arbitrary
model choices that occur in practice.
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(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Ap-
pendix C.

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix C.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
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