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Abstract—The United States, as well as the global commu-
nity, experiences health disparities among socially disadvantaged
populations. These disparities often manifest in the data utilized
for AI model training. Without appropriate de-biasing strate-
gies, models trained to optimize predictive performance may
inadvertently capture and perpetuate these inherent biases. The
utilization of biased models in clinical decision-making can inflict
harm upon patients from disadvantaged groups and exacerbate
disparities when these decisions are documented and employed
to train subsequent AI models. Unlike conventional correlation-
based methods, we aim to mitigate the negative impacts of
health disparity by answering a causal inference question for
fairness: would the clinical decision support system make a different
decision if the patient had a different sensitive attribute (e.g.,
race)? Recognizing the high computational complexity of devel-
oping causal models, we propose a flexible and efficient causal-
model-free algorithm, CFReg, which provides causal fairness for
supervised machine learning models. In addition, CFReg also
develops a novel evaluation metric to quantify fairness within
clinical settings. We first validate CFReg using a healthcare
dataset of 48,784 patients focused on care management, then
generalize to another four benchmark datasets with racial and
ethnic disparity, including law school admission, adult income,
criminal recidivism, and violent crime prediction. Experimental
results demonstrate that CFReg outperforms baseline approaches
in both fairness and accuracy, achieving a good trade-off between
model fairness and supervised classification performance.

I. INTRODUCTION

Health disparity refers to the fact that certain disadvantaged
social groups persistently experience worse healthcare treat-
ment or higher health risks than advantaged social groups
[1]. Such social groups include, but are not limited to, the
poor, racial/ethnic minorities, and people from rural areas [2].
Health disparities in the US primarily refers to racial/ethnic
disparities [1]. The racial and ethnic disparity encompasses
a wide range of topics, including mortality, fatality, morbid-
ity, health risks, and healthcare resource allocation. Multiple
studies have shown the existence of racial disparities in health
domains, including patients with cancers [3] and patients who
have undergone cardiac surgery [4]. These disparities can be
attributed to the fact that racial and ethnic minorities often
receive lower-quality healthcare [5].

The disparity evident in reality is reflected in the big data
we have acquired. When we utilize such data to train clinical
decision support systems without considering these bias, the
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system will replicate the bias from the real-world data. For
example, Obermeyer et al. [6] demonstrate that within a
commercial software utilized to allocate patients to high-
quality care programs, there exists a significant disparity in
illness severity between black and white patients, as measured
by the number of uncontrolled illnesses. The replication of
bias in the learned models will in turn bring unfair impact on
people of sensitive attributes.

In this study, we focus on developing fair supervised ma-
chine learning models to mitigate racial disparity in health
decision support systems. There are mainly three types of
fairness metrics in machine learning models: (1) Group-
based fairness metrics measure differences in model be-
havior among subgroups with different sensitive attributes.
For instance, they assess disparities in prediction accuracy
between an advantaged group and a disadvantaged group [7].
(2) Individual-based fairness metrics emphasize the similar-
ity in model decisions for similar individuals from opposite
sensitive attribute groups [8]. However, the current group-
based and individual-based metrics mainly rely on correlations
and may evaluate (un)fairness based on spurious correlations
[9]. Consequently, their reliability in practical applications is
limited. As a result, (3) Causality-based fairness metrics
[10], [9] aim to address the fundamental question: Would the
machine learning model1 have made a different decision if the
individual had a different sensitive attribute?

Despite the intuitive definition, the practical application of
these causality-based metrics and their corresponding learning
algorithms is constrained in real-world scenarios [11], [12].
To begin, we leverage the outcome of a patient of a specific
sensitive attribute (e.g., in the advantaged group) the factual
outcome. For the same patient, if they had an opposite sensitive
attribute (e.g., in the disadvantaged group), the outcome we
would have observed is counterfactual outcome. To answer the
fundamental question, we need to predict the counterfactual
outcomes of a patient: their outcome if they were from the
opposite sensitive feature group. An exact answer to the pre-
diction of counterfactual outcomes requires understanding the
causal relationships among all variables in our study. For each
variable (e.g., blood pressure), we need to know what variables
can cause it to change (e.g., stress level) and the magnitude
of such changes. However, knowing all causal relationships
is not possible in practice; causal inference-based fairness is

1To avoid confusion, moving forward, we use “model” to exclusively
denote the model describing causal relationships among all variables, and
“hypothesis” to denote predictors such as regressors and classifiers.
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Fig. 1: A comparison between paired dataset and unpaired
data: in paired data, we have a one-to-one correspondence
where, for an individual, we observe their outcome in both
group S and the opposite group S′.

generally very challenging to apply in real-world scenarios. In
addition, even if we can approximate or learn a causal model
as the ground truth, operating on it is also very challenging
due to the large computational requirements. For example,
some algorithms [10] require reasoning over distributions of
unknown variables, or assumed structural equation models
such as path-based counterfactual fairness [13].

To make counterfactual fairness more applicable in address-
ing health decision-making problems, we present CFReg, a
flexible learning algorithm for approximating Counterfactual
Fairness Regularization on predictive models without strong
assumptions on the underlying causal knowledge. Instead
of assuming or estimating a ground-truth causal model, we
propose to directly learn mappings that infer what features an
individual might have had if they had been in the opposite
group of sensitive attributes.

If we had paired data between an individual and their coun-
terfactual outcome, we would be able to build a supervised
mapping to perform the transformation. In practice, however,
the counterfactual nature restricts us from having access to
the paired data from the two domains. For example, if we
observe a black patient who was not assigned to a better
health program, we would not be able to know what the
model outcome would be if this patient were white while
all other conditions remain the same (Fig. 1). Inspired by
cycle generative adversarial networks (CycleGANs) [14], we
propose learning such mappings using distribution matching
techniques (Fig. 2). Based on these two mappings, we define
our counterfactual fairness regularization term by minimizing
the difference in prediction between an individual and their
counterfactuals. The term is differentiable and thus can be
combined with any gradient-based optimization algorithms,
such as logistic regression and deep neural networks.

Our contributions are mainly three-fold:

• We propose a causal model-free method for measuring
the counterfactual fairness of any machine learning mod-
els. By eliminating the requirement for causal structures,
this metric is more efficient and generalizable in real-

world scenarios.
• Based on this metric, we develop a regularized learning

algorithm, CFReg, to enforce counterfactual fairness on
supervised learning models. It can be combined with any
gradient-based optimization method. We also demonstrate
how this metric effectively reduces the number of samples
that would have been treated differently if they were
assigned the opposite sensitive attribute.

• Experimental results on health and other datasets show
the effectiveness of CFReg compared to multiple model-
free baselines as well as model-based algorithms. Our
algorithm naturally balances between accuracy and fair-
ness, which is desirable in real-world cases with regula-
tory requirements.

II. RELATED WORK

Causal and Counterfactual Fairness. Counterfactual fairness
compares the decision of a model for an input sample to its
counterfactual version [10]. To reason about counterfactual
fairness, current methods mainly rely on a well-specified
causal graph, either through expert knowledge in real-world
scenarios or by assumption in simulation studies. For example,
Kilbertus [9] studies counterfactual fairness metrics based on
a structural causal model for the input data and imputes the
counterfactual outcome of the decision model using Pearl’s do-
calculus for fairness comparisons. Extensions to model-based
discussions include studying path-specific fairness [13] and
developing a unified measurement for counterfactual fairness
[15]. Based on counterfactual fairness metrics, researchers
have developed algorithms for auditing the fairness of black-
box models. For example, Black et al. use optimal transport
algorithms to generate counterfactual input for testing the
fairness of machine learning models [16]. In addition, Ustun et
al. [17] discuss how an individual can improve their outcome
by changing their attributes in a linear classification setting.
In contrast, our work focuses on developing a counterfactual
fairness model when a ground-truth causal model is not
available. Moreover, our work can also be applied to regression
settings, which are not covered by most existing work.
Distribution Matching. Relating two domains and mapping
samples from one domain to another has wide applications
in machine learning and data analytics, for example, image-
to-image translation [18] and language translation [19]. The
problem becomes more manageable when dealing with paired
samples. For example, in a language translation context, during
the training phase, we possess a sentence in a source language
along with its corresponding translation in the target language.
This scenario can be formulated as a standard supervised
learning problem by employing techniques such as transform-
ers [20]. Learning from unpaired data poses a greater chal-
lenge compared to paired data due to the limited supervision
available in our setting. CycleGAN [14] introduces a cycle-
consistency loss, which ensures that the learned mappings are
reversible. This inspires us to map a sample from one domain
to another and then map it back without any loss. In our work,
we leverage CycleGAN to generate counterfactual outcomes,
essentially learning mappings between the factual domain and
the counterfactual domain.
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Fig. 2: An overview of the proposed approach: We apply cycleGANs to learn mappings from a person with one sensitive
attribute to another. When training a supervised learning model, for a person (x, s), we apply the mappings to obtain (x′, s′)
and require that the model’s prediction is similar to (x, s) and (x′, s′).

III. METHOD

A. Problem Formulation: Counterfactual Fairness

We study supervised learning and its fairness; for presenta-
tion simplicity, we utilize binary classification as an illustrative
example. However, the discussion can be extrapolated to other
scenarios, including regression and multi-class classification.
For a binary classification problem, our objective is to learn
a hypothesis h : (x, s) → y ∈ {0, 1}, where x represents
the feature of a sample, s denotes the sensitive attribute, and
y corresponds to its label. The counterfactual fairness of the
classification hypothesis h is defined as follows:

Definition 1. A hypothesis ŷ = h(x) is counterfactually fair
if ∀x, s,

Pr(ŷ|X = x, S = s) = Pr(ŷdo(s)=s′ |X = x, S = s). (1)

We adopt the notation of Pearl’s do-calculus. For a sample
of (x, s), do(s) = s′ denotes flipping the sensitive attribute
from s to s′ (e.g., changing gender from male to female) and
observing the corresponding changes in the children variables
of s′ that change x to x′. We require that the model outcome
remains unchanged for an individual in group s if they were
in another group s′.

We note that this is an individual-level fairness concept,
which is a much stronger notion than group-based fairness
metrics. Enforcing individual-level fairness leads to an im-
provement in fairness overall. To understand counterfactual
fairness as an individual fairness metric, we define a pair
((x1, s1), (x2, s2)) to be similar if (s1 ̸= s2) and (x1 =
x2|do(s2 → s1)). The decision is considered similar if
Pr(Ŷ1) = Pr(Ŷ2), ensuring that similar individuals receive
similar treatment.

Furthermore, our model h takes the input of both the
features and sensitive attributes x, s. In practice, the sensitive
attribute s may or may not be used. When s is not used
as a model input, this corresponds to fairness through the
unawareness algorithm [8]. However, removing s from the
model input does not necessarily help mitigate the unfairness
of the machine learning algorithm, as there can be correlated
variables of s in x. We discuss the difference between the two
versions in our experiment sections.

B. Learning Counterfactual Mappings

To identify the counterfactual outcome of an individual, g :
(x, s) → (x′, s′), we approach it as the learning of a pair
of mappings between two domains, S0 = {(x, s = 0)} and
S1 = {(x, s = 1)}. We train gS0→S1 to map a sample from S0

to S1, and another gS1→S0
to map in the opposite direction.

Given the counterfactual nature of the real world, we fail to
observe the counterfactual outcome, (x′, s′) for an individual
(x, s). Consequently, we lack a paired dataset for directly
learning the mappings. Instead, we are provided with an
unpaired dataset, D0 = {(xi, si = 0)}, sampled from the
domain S0 and D1 = {(xi, si = 1)} from S1. Our goal
is to identify the mappings that transform samples from one
domain to the other. To achieve this, we adopt the workflow
of CycleGAN [21] that augments conventional GAN training
with a cycle consistency loss.

Let us briefly revisit CycleGAN and use learning gS0→S1

as an example. Alongside gS0→S1 , we set up a discriminator,
disc, to classify samples from S0 and S1. We assume that
gS1→S0

is well trained. Consequently, the overall objective
for gS0→S1

consists of two parts, including:

• Adversarial loss LGAN :

LGAN = E(x,s=0)∼S0
[log disc(x, 0)]

+ E(x,s=1)∼S1
[log disc(gS0→S1

(x, 1))] (2)

• Cycle-consistency loss LCyc:

LCyc = E(x,s=0)∼S0
[∥gS1→S0(gS0→S1(x, 0))− (x, 0)∥1]

+ E(x,s=1)∼S1
[∥gS0→S1(gS1→S0(x, 1))− (x, 1)∥1] (3)

During training, we iteratively update gS0→S1
and gS1→S0

until the algorithm converges. The advantage of neural
network-based mappings lies in their flexibility; theoretically,
neural networks can accurately fit any nonlinear function,
providing us with significantly higher modeling capabilities
compared to mappings defined by optimal transport [21].

C. Regularization via Counterfactual Mappings

With two mappings, gS0→S1
and gS1→S0

, we can construct
our proposed counterfactual regularization as follows. For a



Algorithm 1: Counterfactual Fairness
Data: D0, D1

Fit CycleGAN on D0, D1 to learn two mappings
gS0→S1

, gS1→S0
;

Initialize classifier as h : (x, s) → [0, 1] ;
while Not Converged do

Sample a batch of data B = {(x, s, y)} from both
D0, D1 ;

Compute predicted outcome as ŷ = h(x, s) ;
Construct classification loss Lclf by comparing the

prediction ŷ to the ground truth y ;
Build counterfactual samples as (x′, s′) for each
(x, s) using learned mappings gS0→S1

, gS1→S0
;

Compute counterfactual outcome y′ = h(x′, s′),
and construct counterfactual loss as
Lcf = D(y, y′) ;

Back propagate total loss as L = Lclf + λLcf and
update h parameters ;

end
Result: h

sample consisting of (x, s), we can acquire:

dist(Pr(Ŷ = 1|X = x, S = s),

P r(Ŷ = 1do(s)=s′ |X = x, S = s))

= dist(f(x, s), f(gs→s′(x), s
′)), (4)

where dist(a, b) is a distributional divergence function. For
instance, consider the KL divergence, where dist(a, b) ≥ 0
and D(a, b) = 0 if and only if a = b. Therefore, minimizing
the divergence is tantamount to minimizing the metrics of
counterfactual fairness. Since this objective is differentiable,
we can incorporate this regularization similar to conventional
L2 regularization.

D. Overall Algorithm
The overview of CFReg is in Algorithm 1. The computed

loss Lcf serves a dual purpose: it acts as a regularization
term during training and can also be used to evaluate the
counterfactual fairness of an already trained classifier h. The
hyperparameter λ controls the trade-off between accuracy and
fairness. In the experimental section, we further demonstrate
our model’s sensitivity to different choices of λ.

IV. THEORETICAL ANALYSIS

In this section, we analyze the theoretical aspects of our al-
gorithm, focusing on how it effectively reduces the unfairness
of learned supervised learning algorithms.

A. FlipSets and Regularization
We use the flipset in Black et al. [16] as a proxy for

analyzing the counterfactual fairness of a binary classifier h.

Definition 2. Let h : (x, s) → {0, 1} be a classifier and g0→
be the mapping from S0 : {x, s = 0} to S1 : {x, s = 1}. The
flipset Flip(h, gS0→S1

) is the set of points that changes its
label after the counterfactual mapping x′ = gS0→S1(x),

Flip(h, gS0→S1
) = {x ∈ S0|h(x, 0) ̸= h(x′, 1)}. (5)

We can similarly define Flip(h, gS1→S0) for the
reverse case, and Flip(h) as the union of the
Flip(h, gS0→S1

), F lip(h, gS1→S0
). The smaller the size

of flipset, the more fair a model h is. Note here the slight
difference in our definition is that we used the cycleGAN
instead of the optimal transport mapping. We then show
that enforcing counterfactual fairness metrics strictly upper
bounds the size of flipsets.

Proposition 1. For a classifier h with a counterfactual fairness
metric of ϵ, where the distribution divergence uses KL diver-
gence, the size of flipsets denotes as |Flip(h)| ≤ 2

√
2ϵ2 ∗N ,

where N is the size of the dataset.

Proof: Let P,Q denote the distribution of Ŷ |X = x, S = s,
and Ŷ |X = x′, S = s′, for (x, s), (x′, s′) are the pair of
observed data and its counterpart. Using Pinsker inequality:

∥P −Q∥ ≤
√
2KL(P ||Q) =

√
2ϵ, (6)

where ∥P −Q∥ is the total variational norm distance between
P,Q. Specifically, for two Bernoulli variables,

∥P −Q∥ =
1

2

∑
Ŷ=0,1

|P −Q|, (7)

where P − Q is the probability difference when the factual
outcome and counterfactual outcome differ. Thus, converting
probability to counts, we can obtain:

|Flip(h)| ≤ 2
√
2ϵ2 ∗N. (8)

B. Counterfactual Fairness and Demographic Parity

Built upon the Proposition 2 from [16], we can further use
our proposed technique to enforce demographic parity and
equalized opportunity.

Proposition 2. For a classifier h, and an exact mapping of
gS0→S1

and gS1→S0
, if the counterfactual fairness metric is 0,

the model also satisfies demographic parity.

Proof: As Prop. 1 shows, when the counterfactual fairness
metric is 0, the |Flip(h)| = 0. Thus, plugging in the proposi-
tion from Black et al., the demographic parity is satisfied:

|{x ∈ S0|h(x, 0) = 1}| = |{x′ ∈ S1|h(x′, 1) = 1}|. (9)

V. RESULTS

A. Datasets

For a comprehensive evaluation, we examine CFReg on five
different datasets related to health and social fairness:

1) Law Data: This dataset contains information on 21,790
law school students. We build supervised learning models to
predict (normalized) first-year grades based on five features:
undergraduate GPA, LSAT scores, race, and sex. We convert
this to a classification problem by assigning a label Y = 1 if
a student’s GPA is above the median. The sensitive attribute
is race (white or non-white).

2) Health Data: We use a synthetic dataset [6], which
closely approximates the original data distribution while adher-
ing to privacy regulations. It contains 48,784 observations and
160 features, including demographic information, comorbidity



data, and biomarker/medication information. Given the 186
variables and lack of a ground-truth causal model, we only
compare results without relying on a causal model, reflecting
more prevalent real-world scenarios.

3) Chicago Strategic Subject List (SSL): This dataset2 aims
to identify individuals likely to be involved in violent crimes,
either as victims or perpetrators. We use eight features to
calculate a risk score (0-500) for each individual’s likelihood
of being involved in a shooting, which we then threshold into a
binary label. The sensitive attribute is race, with black subjects
more likely to receive a positive label in our experiments due
to different thresholds for black and white subjects.

4) ProPublica COMPAS: The ProPublica COMPAS (Cor-
rectional Offender Management Profiling for Alternative Sanc-
tions) dataset3 contains recidivism likelihood scores for defen-
dants. ProPublica’s original analysis identified discriminatory
outputs, with higher likelihoods assigned to black subjects.

5) Adult Income: Extracted from the 1994 Census dataset4,
this dataset predicts whether an individual’s annual income
exceeds $50,000. We use sex as the sensitive attribute and
preprocess the data using the IBM toolkit [22].

B. Baselines

1) Unregularized Classifier (LR): This is the vanilla clas-
sification algorithm without fairness constraints. For fair com-
parison, all baselines including CFReg also use logistic regres-
sion as classifier h, with the only difference being the fairness
regularization technique applied.

2) Causal Model-based Counterfactual Fairness: Kusner et
al. [10] propose three levels of causal model-based learning
algorithms:

• Level 1 (L1): Builds Ŷ using only the non-descendants
of the sensitive attributes.

• Level 2 (L2): Performs MCMC sampling on the causal
model’s hidden variables and predicts Ŷ using the in-
ferred distribution of hidden variables.

• Level 3 (L3): Assumes a deterministic linear model with
hidden variables, calculates them from the data, then uses
these calculated hidden variables for constructing Ŷ .

3) k-Nearest Neighbor Matching (k-NN): It originates from
the matching algorithm in treatment effect estimation [23]. For
gS0→S1 , we construct:

gS0→S1
(x, s = 0) = arg min

x′∈S1

∥x′ − x∥2 . (10)

We similarly construct gS1→S0
. The rest of the training algo-

rithm remains the same as in Alg. 1, except for Line 1.
4) Optimal Transport (OT) Matching: OT uses optimal

transport to build the mappings gS0→S1 and gS1→S0 . While
there are many variants of OT, such as Sinkhorn iteration,
entropic regularization, kernel OT, and linear OT, our experi-
ments show that linear OT obtains the best performance. Other
algorithms face convergence issues or perform worse than
simple linear OT. We use the implementation from the POT
library [24].

2https://data.cityofchicago.org/Public-Safety/
3https://www.propublica.org/
4http://archive.ics.uci.edu/ml/datasets/adult

TABLE I: Benchmark comparison on law dataset with sensi-
tive attributes race. −s indicates that the hypothesis h includes
sensitive attributes as part of the input. CF denotes CFReg.
Notations are consistent across tables.

Counterfactual Fairness Group-Based Fairness Classification Trade-offs

Alg LCF Flip Flip0 Flip1 DemPar ∆TPR F1 AUC Acc ratio

LR 1.1 48.2 40.8 7.4 0.281 0.170 0.565 0.665 0.604 NaN
LR-s 1.0 45.4 39.2 6.2 0.412 0.130 0.596 0.665 0.611 NaN
L1 113.2 1245.9 1054.9 191.0 0.280 0.196 0.599 0.637 0.597 NaN
L2 0.645 66.8 53.4 13.4 0.026 0.272 0.559 0.576 0.559 NaN
L3 6.6 136.9 115.3 21.6 0.013 0.260 0.574 0.607 0.580 NaN
kNN 1.2 48.1 42.8 5.3 0.268 0.159 0.559 0.665 0.605 5e2
kNN-s 1.1 42.5 35.6 6.9 0.430 0.119 0.594 0.665 0.609 1e3
OT 0.764 47.5 41.6 5.9 0.206 0.201 0.497 0.663 0.587 2e2
OT-s 0.755 39.6 36.3 3.3 0.390 0.111 0.554 0.663 0.599 2e2
CF 0.078 31.4 24.8 6.6 0.143 0.175 0.368 0.665 0.562 2e5
CF-s 0.239 36.6 29.7 6.9 0.416 0.122 0.596 0.665 0.612 4e3

C. Evaluation Metrics

We report the following metrics for a comprehensive evalu-
ation on both classification and fairness. We leverage accuracy,
AUC, and F1 for classification performance. For counterfac-
tual fairness, we report |Flip(h)|, |Flip(h, S0)|, |Flip(h, S1)|,
short as Flip, Flip0, Flip1, and the CF loss LCF . For group-
based fairness, we report demographic parity (DemPar =
|P (Ŷ = 1|S = 1)− P (Ŷ = 1|S = 0)|) and difference in true
positive rates (∆TPR = |P (Ŷ = 1|S = 1, Y = 1)− P (Ŷ =
1|S = 0, Y = 1)|).

D. Implementation Details

We train each classifier for a maximum of 10 epochs with
early stopping, splitting the data 4 : 1 for training and testing.
We use the Adam optimizer with a learning rate of 0.0003.
Each algorithm is run with 5-fold cross-validation, and we
compute the mean and standard deviation for each metric. For
each algorithm, we vary λ and choose the best value based on
the trade-offs between accuracy and fairness. We compare each
algorithm A to the unconstrained algorithm LR. If algorithm
A incurs a loss in accuracy while increasing the fairness
metric, we compute the ratio: |LCF (A)−LCF (LR)|

|Acc(A)−Acc(LR)| , which serves
as a proxy for evaluating the trade-off between accuracy and
fairness. A higher ratio indicates that the algorithm achieves
a better trade-off.

E. Results on Law Data

Fairness. On fairness, we first focus on the counterfactual
loss metric LCF . As shown in Table I, CF-s and CF have
the lowest counterfactual losses compared to other baselines
(OT, kNN, and causal model-based L1, L2, and L3). Between
CF and CF-s, we observe that CF further reduces LCF at
the cost of reduced classification performance metrics (F1
score drops from 0.596 to 0.368, recall drops from 0.580 to
0.256). Additionally, our algorithms (CF, CF-s) also achieve
the best fairness performance in terms of flipset size (Flip,
Flip0, Flip1). For group-based fairness, causal model-based
baselines (L2 and L3) have the lowest demographic parity
scores, while our algorithms (CF, CF-s) do not show lower
differences in true positive rates (∆TPR).

https://data.cityofchicago.org/Public-Safety/
https://www.propublica.org/
http://archive.ics.uci.edu/ml/datasets/adult


TABLE II: Benchmark comparison on health dataset with
sensitive attributes race.

Counterfactual Fairness Group-Based Fairness Classification Trade-offs

Alg LCF Flip Flip0 Flip1 DemPar ∆TPR F1 AUC Acc ratio

LR 2311.0 2023.2 239.9 1783.2 0.281 0.170 0.786 0.865 0.792 NaN
LR-s 2445.5 2088.3 248.0 1840.3 0.412 0.130 0.788 0.863 0.787 NaN
kNN 1989.2 1803.9 217.5 1586.4 0.268 0.159 0.792 0.873 0.791 4e5
kNN-s 2052.5 1582.3 197.1 1385.2 0.430 0.119 0.786 0.864 0.783 3e6
OT 2008.6 1877.2 228.2 1649.0 0.206 0.201 0.798 0.868 0.794 8e5
OT-s 2136.4 2025.9 227.1 1798.8 0.390 0.111 0.795 0.870 0.795 3e5
CF 1492.8 1931.8 317.3 1614.5 0.143 0.175 0.795 0.862 0.789 4e6
CF-s 1618.2 1801.9 308.0 1493.9 0.416 0.122 0.793 0.866 0.786 5e6

Classification. For classification performance, we primarily
focus on AUC and F1 metrics. We observe that causal model-
based algorithms (L1, L2, and L3) achieve much lower AUC
performance than other unregularized and regularized algo-
rithms, with no clear difference among the latter. For F1
scores, algorithms using sensitive attributes consistently out-
perform their counterparts that do not use sensitive attributes
(LR-s vs LR, kNN-s vs kNN, OT-s vs OT, and CF-s vs CF).
The best-performing fair algorithm, CF-s, has a similar F1
performance to L1 and significantly outperforms L2 and L3.
Overall, CF-s achieves the best classification accuracy when
considering both F1 and AUC metrics.
Trade-offs. Our algorithm demonstrates a good trade-off be-
tween accuracy and fairness. The ratio of reduction in fairness
over reduction in accuracy shows that our proposed algorithms
(CF and CF-s) have the highest ratios. This confirms the
effectiveness of our approaches: even without a ground-truth
causal model, we can effectively reduce model unfairness by
enforcing our proposed counterfactual fairness regularization
techniques. Among the three levels of causal model-based
algorithms, Level 1 cannot reasonably reduce unfairness while
maintaining accuracy similar to the LR model, while Levels
2 and 3 reduce unfairness at a significant cost to accuracy.

F. Results on Health Data

As shown in Table II, our algorithms CF and CF-s achieve
the lowest counterfactual losses (LCF ), while maintaining flip
set sizes similar to those of the kNN and kNN-s baseline
models. In terms of group-based fairness, CF demonstrates
the lowest demographic parity score. However, neither of our
models show lower differences in true positive rates (∆TPR).
All algorithms achieve performance comparable to the unregu-
larized logistic regression models. This demonstrates our abil-
ity to trade off a slight reduction in classification performance
for a substantial improvement in fairness. For instance, our CF
algorithm improves the fairness metric by approximately 30%
while only reducing AUC by 0.3%.

G. Additional Experimental Results

Chicago SSL. As shown in Table III, our proposed approach
CF-s demonstrates significantly lower counterfactual loss LCF

and flipset sizes compared to all other models. Regarding
group-based fairness, models without sensitive attributes gen-
erally show lower disparity scores. Notably, CF-s achieves a
substantially lower difference in true positive rates (∆TPR)
than all other models. In terms of classification performance,

TABLE III: Benchmark comparison on Chicago-SSL dataset
with sensitive attributes race.

Counterfactual Fairness Group-Based Fairness Classification Trade-offs

Alg LCF Flip Flip0 Flip1 DemPar ∆TPR F1 AUC Acc ratio

LR 4.3 212.9 49.9 162.9 0.055 0.643 0.469 0.864 0.846 N/A
LR-s 6.6 205.2 47.0 158.2 0.117 0.111 0.464 0.856 0.792 N/A
kNN 5.0 342.3 129.0 213.3 0.055 0.621 0.468 0.865 0.850 1570.4
kNN-s 7.4 232.0 52.7 179.3 0.118 0.113 0.465 0.856 0.793 16862.1
OT 2.1 138.2 24.4 113.8 0.047 0.655 0.458 0.864 0.846 92965.8
OT-s 0.632 61.9 31.1 30.8 0.149 0.026 0.473 0.857 0.813 11080.2
CF 2.0 132.3 16.3 116.0 0.042 0.596 0.452 0.864 0.855 96390.0
CF-s 0.457 29.6 13.0 16.6 0.125 0.001 0.470 0.856 0.828 81027.1

TABLE IV: Benchmark comparison on COMPAS dataset with
sensitive attributes race.

Counterfactual Fairness Group-Based Fairness Classification Trade-offs

Alg LCF Flip Flip0 Flip1 DemPar ∆TPR F1 AUC Acc ratio

LR 7.8 57.0 25.9 31.1 0.155 0.065 0.555 0.733 0.669 N/A
LR-s 7.9 56.1 25.5 30.6 0.162 0.060 0.557 0.733 0.670 N/A
kNN 6.6 54.3 24.7 29.6 0.141 0.052 0.544 0.735 0.665 635.2
kNN-s 6.8 53.7 24.2 29.5 0.167 0.058 0.554 0.733 0.666 175945.8
OT 3.0 53.9 27.3 26.6 0.121 0.044 0.470 0.730 0.649 1577.1
OT-s 2.6 52.0 31.5 20.5 0.162 0.076 0.495 0.729 0.651 1457.3
CF 5.0 48.1 25.1 23.0 0.149 0.060 0.557 0.733 0.670 7147.9
CF-s 0.542 21.2 15.1 6.1 0.215 0.036 0.585 0.736 0.677 2522.0

both CF and CF-s maintain performance comparable to the
baseline models, similar to the healthcare dataset results.
ProPublica COMPAS. Table IV illustrates that our proposed
approach CF-s achieves markedly lower counterfactual loss
LCF and flipset sizes compared to all other models. In terms
of group-based fairness, our proposed approaches (CF and CF-
s) remain similar scores compared to other baseline models.
Adult Income. As evident from Table V, our proposed ap-
proach CF-s exhibits lower counterfactual loss LCF compared
to other models. However, all models except the unregularized
logistic regression models show similar flipset sizes. For
group-based fairness, our proposed approaches (CF and CF-
s) do not demonstrate significantly lower scores than other
baseline models.

H. Discussions
In this section, we discuss the trade-offs between accuracy

and fairness and the parameter sensitivity of our approach.
We first note that among the two types of fairness metrics,
namely counterfactual fairness and group-based fairness, we
need to choose which metrics to use in practice. For example,
local laws and regulations may have specific requirements for
algorithm fairness metrics. We advocate for counterfactual-
based metrics because they are defined from an individual
standpoint, allowing us to provide a fairness examination of
model prediction results for each person. Additionally, we can
aggregate these results into a scalar statistic, making them
comparable to group-based metrics. Although the results are
not normalized to the [0, 1] range, in practice, we can always
linearly scale the results for easier comparison. For example,
the flipset metrics have a minimum of 0 and a maximum of
the total sample size, so they could be normalized. We can
also select the LCF of a baseline algorithm (for example, the
Logistic regression algorithm) as the maximum, and normalize
the metrics of other algorithms accordingly.



TABLE V: Benchmark comparison on Income dataset with
sensitive attributes sex.

Counterfactual Fairness Group-Based Fairness Classification Trade-offs

Alg LCF Flip Flip0 Flip1 DemPar ∆TPR F1 AUC Acc ratio

LR 633.4 495.9 93.2 402.7 0.073 0.088 0.404 0.848 0.796 N/A
LR-s 679.8 643.7 89.4 554.3 0.079 0.088 0.397 0.847 0.797 N/A
kNN 505.5 409.9 84.4 325.5 0.068 0.067 0.372 0.845 0.795 39174.3
kNN-s 526.5 418.0 90.6 327.4 0.072 0.077 0.401 0.846 0.799 613057.0
OT 533.5 411.1 108.5 302.6 0.050 0.100 0.385 0.839 0.798 10961.5
OT-s 583.9 402.9 99.7 303.2 0.077 0.085 0.407 0.844 0.795 37113.2
CF 525.5 413.9 98.9 315.0 0.069 0.094 0.393 0.846 0.798 57969.5
CF-s 453.3 435.0 92.0 343.0 0.070 0.068 0.385 0.846 0.797 357959.3

To analyze the how choosing an appropriate λ can effec-
tively change the trade-off between fairness and metrics, we
present how metrics change with the hyper-parameter λ in
Fig. 3. Our method has a better LCF consistently over all
three datasets with different selections of λ. However, from
the recall metric in Fig. 3 (c), as we increase λ, the recall
quickly goes to zero, i.e., the algorithms tend to predict all
instances to 0 to obtain a fairer predictions. This indicates the
need in practice to have an overall view of all the classification
and fairness metrics, and to select the best trade-offs.

For each algorithm, we compare two versions: one that uses
sensitive attributes in the classifier, and one without (fairness
through unawareness). We observe that for baseline logistic
regression, using sensitive attributes increases the unfairness
of the algorithm in terms of both LCF and demographic parity
DPar. Conversely, for OT and CF, using sensitive attributes
decreases the unfairness. We hypothesize these algorithms can
exploit the hidden links between a sensitive attribute variable
and its proxy variables, so adding sensitive attributes into the
algorithm helps mitigate the unfairness of learned classifiers.
Additionally, we note that LCF and DPar,∆TPR may not
necessarily correlate with each other when λ is small.

VI. CONCLUSION

Our causal model-free approach effectively reduces unfair-
ness in learned supervised learning systems without sacri-
ficing accuracy. Compared with baseline causal model-free
algorithms and even causal model-based algorithms, CFReg
shows better performance in both fairness and classification,
as well as improved trade-offs in reducing unfairness at the
cost of reduced prediction accuracy. We also demonstrate how
the proposed regularization theoretically regularizes the coun-
terfactual fairness metric. By building fair machine learning
systems for clinical decision support applications, we may
mitigate health disparities and improve health outcomes for
patients from disadvantaged groups.
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(a) Parameter sensitivity on law data with race as S
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(b) Parameter sensitivity on health data with race as S
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(c) Parameter Sensitivity on Chicago SSL data with race as sensitive attribute s
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(d) Parameter sensitivity on COMPAS data with race as sensitive attribute s
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(e) Parameter sensitivity on adult income data with sex as sensitive attribute s

Fig. 3: Parameter Sensitivity Results for λ: We find our algorithm, compared to baselines, has the best trade-offs between
accuracy and fairness. In addition, when λ is too high, all the algorithm tends to predict 0 for all instances, reaching a perfectly
fair but zero useful model.
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