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ABSTRACT

In neural machine translation (NMT), data augmentation methods such as back-
translation make it possible to use extra monolingual data to help improve trans-
lation performance, while it needs extra training data and the in-domain monolin-
gual data is not always available. In this paper, we present a novel data augmen-
tation method for neural machine translation by using only the original training
data without extra data. More accurately, we randomly replace words or mixup
with their aligned alternatives in another language when training neural machine
translation models. Since aligned word pairs appear in the same position of each
other during training, it is helpful to form bilingual embeddings which are proved
useful to provide a performance boost (Liu et al., 2019). Experiments on both
small and large scale datasets show that our method significantly outperforms the
baseline models.

1 INTRODUCTION

Deep neural networks show great performances when trained on massive amounts of data. Data
augmentation is a simple but effective technique to generate additional training samples when deep
learning models are thirsty for data. In the area of Computer Vision, it is a standard practice to use
image data augmentation methods because trivial transformations for images like random rotation,
resizing, mirroring and cropping (Krizhevsky et al., 2012; Cubuk et al., 2018) doesn’t change its
semantics. This presence of of semantically invariant transformation makes it easy to use image
data augumentation in Computer Vision research.

Unlike image domain, data augmentation on text for Natural Language Processing (NLP) tasks is
usually non-trivial as there is often a prerequisite to do some transformations without changing
the meaning of the sentence. In this paper we will focus on data augmentation techniques in neural
machine translation (NMT) which is special and more difficult than other NLP tasks since we should
maintain semantic consistency within language pairs which is from quite possibly different domains.

Data augmentation techniques in NMT can be divided into two categories dependent on whether
additional monolingual corpus is uesd. If in-domain monolingual training data for NMT is available,
one successful data augmentation method is back-translation (Sennrich et al., 2016), whereby an
NMT model is trained in the reverse translation direction (target-to-source) and then used to translate
target-side monolingual data back to source language. The resulting synthetic parallel corpus can
added to existing training data to learn a source-to-target model. Other more refined ideas of back-
translation include dual learning (He et al., 2016) or Iterative Back-translation (Hoang et al., 2018).

Sometimes when in-domain monolingual data is limited, existing methods including randomly
swapping two words, dropping word, replacing word with another one (Lample et al., 2018) and
so on are applied to perform transfromations to original training data without changing its semantics
to the greatest extent. However, due to text characteristics, these random transformations often re-
sult in significant change in semantics. Gao et al. (2019) propose to replace the embedding of word
by a weighted combination of mutiple semantically similar words. Also, Xiao et al. (2019) use a
lattice structure to integrate multiple segmentations of a single sentence to perfrom an immediate
data augmentation.

In this work, we propose Switching-Aligned-Words (SAW) data augmentation, a simple yet effective
data augmentation approach for NMT training. It belongs to the second class of data augmentation
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methods where in-domain monolingual data is limited. Different from the previous methods that
conduct semantically invariant transformations within each language, we propose to use another
language (target language) to help make semantically invariant transformations for current language
(source language) by switching aligned words randomly. We use an unsupervised word aligner
fast-align1 (Dyer et al., 2013) to pair source and target words that have similar meaning.

To verify the effectiveness of our method, we conduct experiments on WMT14 English-to-German
and IWSLT14 German-to-Englisth datasets. The experimental results show that our method can
obtain remarkable BLEU score improvement over the strong baselines.

2 RELATED WORK

We describes the related work about data augmentation for NMT with or without using additional
monolingual data in this section.

2.1 WITH MONOLINGUAL DATA

The most successful data augmentation techiques to leverage monolingual data for NMT training
is back-translation. It requires training a target-to-source system in order to generate additional
synthetic parallel data from the monolingual target data. This data complements human bitext to
train the desired source-to-target system. There has been a growing body of literature that analyzes
and extends back-translation. Edunov et al. (2018) demontrate that it is more effective to generate
source sentences via sampling rather than beam search. Hoang et al. (2018) present iterative back-
translation, a method for generating increasingly better synthetic parallel data from monolingual
data to train NMT model. Fadaee & Monz (2018) show that words with high predicted loss during
training benefit most. Wang et al. (2019) propose to quantify the confidence of NMT model predic-
tions based on model uncertainty to better cope with noise in synthetic bilingual corpora produced
by back-translation. Dual learning (He et al., 2016) extends the back-translation approach to train
NMT systems in both translation directions. When jointly training the source-to-target and target-
to-source NMT models, the two models can provide back translated data for each other direction
and perform multi-rounds back-translation.

Different from back-translation, Currey et al. (2017) show that low resource language pairs can
also be improved with synthetic data where the source is simply a copy of the monolingual target
data. Wu et al. (2019) propose to use noised training to better leverage both back-translation and
self-training data.

2.2 WITHOUT MONOLINGUAL DATA

Lample et al. (2018) randomly swap the words within a fixed small window size or drop some
words in a sentence for learning an autoencoder to help train the unsupervised NMT model. Fadaee
et al. (2017) propose to replace a common word by low-frequency word in the target sentence,
and change its corresponding word in the source word to improve translation quality of rare words.
In Xie et al. (2017), they replace the word with a placeholder token or a word sampled from the
frequency distribution of vocabulary, showing that data noising is an effective regularizer for NMT.
Kobayashi (2018) propose an approach to ues the prior knowledge from a bi-directional language
model to replace a word token in the sentence. Gao et al. (2019) try to replace the ids of word by
a soft ids and they train Transformer language models in original training data to get soft words.
Wang et al. (2018) introduce a data augmentation method for NMT called SwitchOut to randomly
replace words in both source and target sentences with other words.

3 OUR APPROACH

We first describe the background and our proposed switching-aligned-words data augumentation
approach. The framework can be seen as an adversarial training process like Generative Adversarial
Networks (GAN) (Goodfellow et al., 2014; Salimans et al., 2016), see Figure 1 for an overview. For

1https://github.com/clab/fast align
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Figure 1: An overview of Switching-Aligned-
Words data augumentation approach. The noise
generator can be any model that produces noise
over parallel sentences, and the NMT model is
trained as a discriminator.

I want to thank my friends

Ich möchte meinen Freunden danken

Figure 2: The illustration for alignment model.
English sentence is ”I want to thank my friends.”,
and corresponding German sentence is ”Ich
möchte meinen Freunden danken”.

image generation, in which a discriminator and a generator compete with each other: the generator
aims to generate images similar to the natural ones, and the discriminator aims to detect the generated
ones from the natural ones. For data augmentaion methods in NMT, the noise generator can be any
model that produces noise over parallel sentences, in our method it is an alignment model which is
shown in Figure 2. Finally, the NMT model is trained as a discriminator to distinguish generated
sentences from the original ones and the process of detection noise offers NMT model an ability to
learn bilingual alignment information.

3.1 BACKGROUND

Given a source and target sentence pair (x,y), where x = (x1, x2, · · · , x|x|) is a source-language
sentence and y = (y1, y2, · · · , y|y|) is a target-language sentence. A neural machine translation
system models the conditional probability:

P (y|x) =
|y|∏
j=1

P (yj |y<j ,x) (1)

based on an encoder-decoder framework with an attention mechanism (Sutskever et al., 2014; Bah-
danau et al., 2014). Encoder and decoder can be specialized using different neural architectures
including GRU (Bahdanau et al., 2014), LSTM (Wu et al., 2016), CNN (Gehring et al., 2017) and
Transformer (Vaswani et al., 2017), among which the self-attention based Transformer is the state-
of-the-art architecture for NMT.

The decoder predicts a corrresponding translation y = (y1, · · · , y|y|) step by step based on the last
decoding state and source context. The translation probability can be formulated as follows:

P (yj |y<j ,x) = q(yj−1, sj , cj) (2)

where sj and cj denote the decoding state and the source context at the j-th time step respectively.
Here, q(·) is the softmax layer. Sepcifically,

sj = g(yj−1, sj−1, cj) (3)

where g(·) is the corresponding neural architecture unit. The context vector cj is calculated as a
weighted sum of the source annotations hi on the basis of attention mechanism:

cj =

|x|∑
i=1

αjihi (4)

The alignment model αji measures the similarity between sj and hi. The whole model is jointly
trained to seek the optimal parameters that can be used to correctly encode the source sentences and
decode them to corresponding target sentences.
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3.2 ALIGNMENT

NMT models learn the alignment between source words xi and target word yj mainly deponds
on these two aspects: attention and word embeddings. Since attention weight αji measures the
similarity between sj and hi, it has been widely used to evaluate the word alignment between yj
and xi, so that the word alignment is explicitly modeled.

NMT models also try to learn word alignment information by updating word embeddings when
training. In monolingual vector space, similar words tend to have commonalities in the same di-
mensions of their word vectors (Mikolov et al., 2013). These commonalities include: (1) a similar
degree (value) of the same dimension and (2) a similar positive or negative correlation of the same
dimension. In bilingual vector space, Liu et al. (2019) assume that the source and target words
that have similar meanings should also have similar embedding vectors. Hence, they propose to
perform a sharing techique between source and target word embedding space resulting significantly
imporvement in alignment quality and translation performance.

Motivated by their findings, we propose to generate new training samples by replacing one word
in the original sentences with its alinged word in corresponding target sentences. According to
the characteristic of bilingual embeddings, aligned words tend to have similar meanings even in
different language, so our replacing method will preserve the original meaning of the sentence to
a great extend. Also, when training the model we put a aligned target word in the similar context
of source sentence, it is helpful for source and target words with similar meanings to learn similar
embedding representation.

3.3 SWITCHING ALIGNED WORDS BY REPLACEMENT

Inspired by the above intuition, we propose to augment NMT training data by replacing a randomly
chosen word in a sentence by its aligned target word. Suppose we have an extra alignment model
A(·|·) such as intrinsic attention mechanism (Bahdanau et al., 2014) or unspervised word aligner
(Dyer et al., 2013). Given a sentence pair (x,y), each source word xi is aligned with a target word
ŷi that has the highest alignment probability among the candidates, and is computed as follows:

ŷi = argmax
y∈a(x)

logA(y|xi) (5)

where a(·) denotes the set of aligned candidates. So the conditional probability can be written as:

P (y|x) =
|y|∏
j=1

P (yj |y<j , C(x))

=

|y|∏
j=1

P (yi|y<j , x1, . . . , ŷk, . . . , x|x|)

(6)

where k-th source word is replaced by corresponding target word. In experiments, we randomly
choose a word in the training data with probability γ1 and replace it by its aligned target word.

3.4 SWITCHING ALIGNED WORDS BY MIXUP

Mixup is a simple yet effective image augmentation techique introduced by Zhang et al. (2017).
The idea is to combine two random images in a mini-batch in some proportion to generate synthetic
examples for training. Bringing this idea to our work, we do not directly replace source word
with corresponding aligned target word with probability γ1, instead we mix up these two word
embeddings to form a combined embedding which contain both source and target information:

E(xi) = (1− γ2)E(xi) + γ2E(C(x))

= (1− γ2)E(xi) + γ2E(ŷi)
(7)

where E is the embedding lookup table, γ2 is the mixup ratio which is a hyper-parameter.

The intuition behind mixup is that random linear interpolations between the embeddings of source
word and corresponding target word let neural models regularize the representation of word embed-
dings. Mixing the aligned word pairs do not interrupt the representaion of word embeddings far
from its original ones.
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4 EXPERIMENT

In this paper, data augmentation will only process source data of the training data.

4.1 DATASETS

Two translation tasks, IWSLT14 German-to-English (De-En) and WMT14 English-to-German (En-
De), are used for our evaluation.

IWSLT14 German-English IWSLT14 De-En dataset contains 153K training sentence pairs. We
randomly select 7K data from the training set as validation set and use the combination of dev2010,
dev2012, tst2010, tst2011 and tst2012 as test set with 7K sentences which are preprocessed firstly.
BPE algorithm is used to process words into subwords, and number of subword tokens in the shared
vocabulary is 10k.

WMT14 English-German We use the WMT14 En-De dataset with 4.5M sentence pairs for training.
We randomly select 40K data from the training set as validation set and use newstest2014 as test set.
Dataset is segmented by BPE and the number of subword tokens in the shared vocabulary is 32K.
The sentences longer than 250 subword tokens are removed from the training dataset.

4.2 BASELINES

We compare our approach with following baselines:

• Base: The original training strategy without any data augmentation;

• Swap: Randomly swap words in nearby positions with a window size k (Lample et al.,
2018);

• Dropout: Randomly drop word tokens (Lample et al., 2018);

• Blank: Ramdomly replace word tokens with a placeholder token (Xie et al., 2017);

• Smooth: Randomly replace word tokens with a sample from the unigram frequency distri-
bution over the vocabulary (Xie et al., 2017);

All above introduced methods except Swap incorporate a hyper-parameter, the probability γ of each
word token to be replaced in training phase. We set γ with different values in 0,0.05,0.1,0.15,0.2,
and report the best result for each method. As for Swap, we use 3 as window size following (Lample
et al., 2018);

4.3 MODEL

We use the transformer base setting following Vaswani et al. (2017) for WMT14 En-De datasets,
with a 6-layer encoder and 6-layer decoder. The dimensions of word embeddings, hidden states and
the position-wise feed-forward networks are 512, 512, 2048 respectively. The dropout is 0.1 and
attention head is 8. For IWSLT14 De-En datasets, we use the transformer small setting which has
a 6-layer encoder and 6-layer decoder, but the dimensions of word embeddings, hidden states and
the position-wise feed-forward networks are 512, 512, 1024 respectively. The dropout is 0.3 and
attention head is 4. Word embeddings between the source, target and output softmax embeddings
are tied as it is a normal setting. We set γ1 and γ2 with different values in {0, 0.05, 0.1, 0.15, 0.2},
and report the best result for each method. For all experiments, hyperparameters are optimized on a
development set and then tested using only a single hyperparameter. We use beam size 4 and length
penalty 0.6 for inference, and use multi-bleu2 to evaluate the quality of translation.

4.4 TRAINING

All our models are trained on one TITAN RTX GPU. The implementation of model is based on
fairseq toolkit3. We choose Adam optimizer with β1 = 0.9, β2 = 0.98, ε = 10−9 and the learning

2https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
3https://github.com/pytorch/fairseq
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Model BLEU
DE-EN EN-DE

Transformer (small) 34.49 -
Transformer (base) - 27.35

+Swap 34.40 27.12
+Dropout 34.83 27.43
+Blank 34.93 27.52
+Smooth 34.98 27.50

+Replacement 35.18 27.74
+Mixup 34.96 27.68

Table 1: BLEU scores on IWSLT14 De-En and WMT14 En-De. The baselines for De-En task and
En-De task are the Transformer-small and the Transformer-base model respectively.

rate setting strategy, which are all the same as Vaswani et al. (2017), lr = d−0.5·min(step−0.5, step·
warmup−1.5step ) where d is the dimension of embeddings, step is the step number of training and
warmupstep is the step number of warmup. When the number of step is smaller than the step of
warmup, the learning rate increases linearly and the decreases. Significantly, our replacing or mixing
decision is made at runtime allowing different transformations for the same sentence pair.

4.5 RESULTS

The evalution results on IWSLT14 De-En and WMT14 En-De datasets are shown in Table 1. As
we can see, the Replacement method can achieve 0.69 and 0.39 BLEU scores improvement over
the Transformer small and the Transformer base baselines and the Mixup method improve the two
baselines by 0.47 and 0.33 BLEU scores respectively.

Compared with other augmentation methods, we can see that (1) the Replacement method achieves
the best results on all the datasets and (2) the Mixup method can achieve comparable or better results.
Specially, we find that our method works better on relatively small scale datasets. As small scale
datasets lack bilingual information compared to large scale datasets and are easy to fall into the
overfitting problems, these results clearly demonstrate the effectiveness of our approach.

5 STUDY

5.1 IMPACT OF γ1 AND γ2
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Figure 3: BLEU scores on IWSLT De-En dataset
with different replacing probability γ1. In Mixup
experiment γ2 is 0.1.
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Figure 4: BLEU scores on IWSLT De-En dataset
with different mixup probability γ2 when γ1 =
0.1.
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Figure 5: Cosine similarity between some bilingual embedding pairs in different method (the results
have be normalized to 0 and 1).

We set different replacing probability value γ1 and mixup probability value γ2 to see the effect of
our approach.

Figure 3 shows the BLEU scores on IWSLT14 De-En dataset of each method with different replacing
probability, from which we can see that our method can obtain a consistent BLEU improvement
within a large probability range and achieve the best performance when γ1 = 0.1 in each method.
However, the performance begins to drop when γ1 > 0.1, we think the reason is that the semantic
meanings of original sentence begin to be destroyed greatly. Also we find that Mixup is more stable
than Replacement.

As we can see from Figure 4, the Mixup method can obtain a consistent BLEU improvement above
baseline within a large probability range and the best BLEU socre is achieved in mixup probability
γ2 = 0.1 when γ1 = 0.1.

5.2 ANALYSIS OF BILINGUAL EMBEDDINGS

Since we suppose that aligned word pairs appear in the same position of each other during training
will be helpful to form bilingual embeddings which are proved useful to provide a preformance
boost (Liu et al., 2019), we study whether our approach is truly useful for bilingual embeddings. We
randomly sample some words and their corresponding aligned words to analyze the relation within
them. Specifically, we compare the cosine similarity between the embeddings of aligned words to
figure out the changes of bilingual embeddings. Formally, we have aligned word pairs (xi,yj) and
their embeddings E(xi) = (e(xi)1, e(xi)2, · · · , e(xi)d), E(yj) = (e(yj)1, e(yj)2, · · · , e(yj)d),
where d is the embedding dimension. The cosine similarity can be defined as:

cos θ(E(xi),E(yj)) =

∑d
k=1 e(xi)k · e(yj)k√∑d

k=1 e(xi)2k ·
√∑d

k=1 e(yj)2k

(8)

where θ(E(xi),E(yj)) is the angle between embedding pairs. We finally normalize the results to 0
and 1, and the larger the value, the more similar the two embeedings are.

From Figure 5 we can see that (1) The embedding vectors between aligned word pairs have a very
strong positive correlation since the normalized cosine similarity values are all above 0.5. (2) The
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Replacement method significantly imporves the positive correlation between aligned word pairs
which proves our hypothesis that switching aligned words is helpful to from bilingual embeddings.
(3) The Mixup method does not seem to improve the quality of bilingual embeddings. We suppose
that the improvement of translation quality mainly come from the introduction of noise to word
embeddings.

6 CONCLUSION

In this work, we have presented Switching-Aligned-Words (SAW) data augmentaion for NMT,
which randomly replace words or mixup with their aligned alternatives in another language when
training. It is simple yet effective and can be extremely useful when extra in-domain monolingual
data is limited. Results on both small and large scale datasets have verified the effectiveness of our
method.

In the future, besides focusing bilingual machine translation tasks, we are interested in extending our
method to a multilingual scenario which needs more complex replacement and training strategies.
In addition, we plan to study our approach in other cross-lingual NLP tasks.
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