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Online meta-learning has recently emerged as a marriage between batch meta-
learning and online learning, for achieving the capability of quick adaptation on
new tasks in a lifelong manner. However, most existing approaches focus on the re-
strictive setting where the distribution of the online tasks remains fixed with known
task boundaries. In this work, we relax these assumptions and propose a novel
algorithm for task-agnostic online meta-learning in non-stationary environments.
More specifically, we first propose two simple but effective detection mechanisms of
task switches and distribution shift based on empirical observations, which serve as
a key building block for more elegant online model updates in our algorithm: the
task switch detection mechanism allows reusing of the best model available for the
current task at hand, and the distribution shift detection mechanism differentiates
the meta model update in order to preserve the knowledge for in-distribution tasks
and quickly learn the new knowledge for out-of-distribution tasks. In particular, our
online meta model updates are based only on the current data, which eliminates the
need of storing previous data as required inmost existingmethods. We further show
that a sublinear task-averaged regret can be achieved for our algorithm under mild
conditions. Empirical studies on three different benchmarks clearly demonstrate
the significant advantage of our algorithm over related baseline approaches.

1. Introduction
Two key aspects of human intelligence are the abilities to quickly learn complex tasks and continually
update their knowledge base for faster learning of future tasks. Meta-learning [1–3] and online
learning [4–6] are two main research directions that try to equip learning agents with these abilities.
In particular, meta-learning aims to facilitate quick learning of new unseen tasks by building a prior
over model parameters based on the knowledge of related tasks, whereas online learning deals with
the problemwhere the task data is sequentially revealed to a learning agent. To achieve the capability
of fast adaptation on new tasks in a lifelong manner, online meta-learning [3, 7, 8] has attracted
much attention recently. Considering the setup where online tasks arrive one at a time, the objective
of online meta-learning is to continuously update the meta prior based on which the new task can
be learnt more quickly after the agent encounters more tasks.
In online meta-learning, the agent typically maintains two separate models, i.e., the meta-model to
capture the underlying common knowledge across tasks and the online task model for solving the
current task in hand. Most of the existing studies [3, 9] in online meta-learning follow a “resetting”
strategy: quickly adapt the online task model from the meta model using the current data, update
the meta model and reset the online task model back to the updated meta model at the beginning of
the next task. This strategy generally works well when the task boundaries are known and the task
distribution remains stationary. However, in many real-world data streams the task boundaries are
not directly visible to the agent [7, 10, 11], and the task distributions can dynamically change during
the online learning stage. Therefore, in this work we seek to solve the online meta-learning problem
in such more realistic settings.
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Needless to say, how to efficiently solve the online meta-learning problem without knowing the
task boundaries in the non-stationary environments is nontrivial due to the following key questions:
(1) How to update the meta model and the online task model? Clearly, the “resetting” strategy at the
moment of new data arriving is not desirable, as adapting from the previous task model is preferred
when the new data belongs to the same task with the previous data. On the other hand, the
meta model update should be distinct between in-distribution (IND) tasks, where the current
knowledge should be preserved, and out-of-distribution tasks (OOD), where the new knowledge
should be learnt quickly. (2) How to make the system lightweight for fast online learning? The nature of
online meta-learning precludes sophisticated learning algorithms, as the agent should be able to
quickly adapt to different tasks typically without access to the previous data. And dealing with the
environment non-stationarity should not significantly increase the computational cost, considering
that the environment could change fast during online learning.
Our main contributions can be summarized as follows.
(1) (Novel algorithm design) We propose a novel online meta-learning algorithm in non-stationary
environments without knowing the task boundaries, which appropriately addresses the problems
above. More specifically, we first propose two simple but effective mechanisms to detect the task
switches using the classification loss and detect the distribution shift using the Helmholtz free energy
[12], respectively, as motivated by empirical observations. Based on these detection mechanisms,
our algorithm provides a finer treatment on the online model updates, which brings in the following
benefits: (1) (task knowledge reuse) The detection of task switches enables our algorithm to reuse
the best model available for each task, avoiding the “resetting" to the meta model at each step as in
most previous studies; (2) (judicious meta model update) The detection of distribution shift allows
our algorithm to update the meta model in a way that the new knowledge can be quickly learnt for
out-of-distribution tasks whereas the previous knowledge can be preserved for in-distribution tasks;
(3) (efficient memory usage) Our algorithm does not reuse/store any of the previous data and updates
the meta model at each online episode based only on the current data, which clearly differs from
most existing studies [8, 10, 13] in online meta-learning.
(2) (Extensive experiments) We conduct extensive experiments in three different standard bench-
marks for online meta-learning. As indicated by the experimental results, our algorithm significantly
outperforms the related baselines methods on all benchmarks. The ablation study also verifies the
effectiveness of the proposed detection mechanisms.
(3) (Theoretical analysis) We provide a regret analysis of the proposed algorithm by taking task
boundary detection into account, where a sublinear task-averaged regret can be achieved under mild
conditions. In particular, our result captures a trade-off between the impact of task similarity on the
performance of standard online meta-learning with known task boundaries and the performance
under task boundary detection uncertainty. Namely, when tasks are more similar, better performance
can be achieved due to less task variations over time, but it is harder to detect task switches.
Related Work: Meta-learning. Also known as learning to learn, meta-learning [3, 14, 15] is a
powerful tool for leveraging past experience from related tasks to quickly learn good task-specific
models for new unseen tasks. As a pioneering method that drives recent success in meta-learning,
model-agnostic meta-learning (MAML) [3] seeks to find good meta-initialization such that one or a
few gradient descent steps from the meta-initialization leads to a good task-specific model for a new
task. Several variants of MAML have been introduced [16–23]. Other approaches are essentially
model based [2, 24–26] and metric space based [1, 14, 27, 28].
Online Learning. In online learning [4, 6, 29], cost functions are sequentially revealed to an agent
which is required to select an action before seeing each cost. One of the most studied approach is
follow the leader (FTL) [4], which updates the parameters at each step using all previously seen
loss functions. Regularized versions of FTL have also been introduced to improve stability [30, 31].
Similar in spirit to our work in terms of computational resources, online gradient descent (OGD) [32]
takes a gradient descent step at each round using only the revealed loss. However, traditional online
learning methods do not efficiently leverage past experience and optimize for zero-shot performance
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without any adaptation. In this work, we study the online meta-learning problem, in which the goal
is to optimize for quick adaptation on future tasks as the agent continually sees more tasks.
Online Meta-learning. Online meta learning was first introduced in [13]. Pioneering methods
[8, 13, 33] follow a FTL-like design approach, which requires storing previous tasks and leads to a
linear growth of memory requirement. Follow-the-regularized-leader (FTRL) [31] approach has
also been extended to the online meta learning setting in [34, 35], resulting in a better memory
requirement. [9] proposed a memory-efficient approach based on summarizing previous task
experiences into one state vector. However, these approaches require knowledge of task boundaries
and “reset" the task model to the meta model at each online episode [3, 36]. Similar to [9], our
algorithm also overcomes the linear memory scaling. But unlike their method, we do not need to
know task boundaries and consider dynamic environments. [10] alleviates the “resetting" issue by
updating the online model always starting from its previous state, which however needs to store
previous models and has limited performance especially in dynamic environments where successive
tasks can be very different.
None of the methods above considered the online meta-learning problem in a dynamic environ-
ment setting where the task distributions change substantially over time without knowing the task
boundaries. [11] is the first work that empirically evaluated the proposed algorithm in a dynamic
environment, but did not propose a method to quickly learn the knowledge for out-of-distribution
tasks. In contrast, we update the meta representations in a way that preserves the in-distribution
knowledge while continually improving fast adaptation for out-of-distribution tasks.

2. Background and Problem Formulation
Background. We first briefly introduce some related concepts about online meta-learning.
Meta-learning via MAML. Meta-learning [3, 14, 15], a.k.a., learning to learn, seeks to quickly learn a
new task with limited samples by leveraging the knowledge from similar tasks. More specifically, the
objective therein is to learn a meta model based on a set of tasks {Ti}Mi=1 drawn from some unknown
distribution P(T ), from which task-specific models can be quickly obtained for new tasks from the
same stationary distribution P(T ). Taking MAML as an example, the objective therein is to learn a
model initialization θ such that one or a few gradient descent steps from θ can lead to a good model
for a new task T ∼ P(T ), by solving the following problem with training tasks {Ti}Mi=1:

θ := argminθ
1
M

∑M
i=1 fi (Ui(θ)) (1)

where task model ϕi = Ui(θ) = θ − α∇f̂i(θ), f̂i and fi are the training and test losses for task Ti.
Online learning. In the general online learning problem, loss functions are sequentially revealed to a
learning agent: at each step t, the agent first selects an action θt, and then a cost ft(θt) is incurred.
The goal of the agent is to select a sequence of actions to minimize the following static regret

R(T ) =
∑T

t=1 ft (θt)−minθ
∑T

t=1 ft (θ), (2)
i.e., the gap between the agent’s predictions {ft(θt)}Tt=1 and the performance of the best static model
in hindsight. A successful agent achieves a regret R(T ) that grows sublinearly in T . Online learning
is a well studied field and we refer the readers to [37] for more information.
Online meta-learning. As a marriage between online learning and meta-learning, online meta-learning
[7, 8, 13] aims to achieve the following two features: (i) fast adaptation to the current task (the
meta-learning aspect); (ii) learn to adapt even faster as it sees more tasks (the online learning aspect).
Specifically, the agent observes a stream of tasks S = {T1, T2, ..., TT } sampled from P(T ), where tasks
are revealed one at a time. For each task Tt, the agent has access to a support set St for task-specific
adaptation and a query set Qt for evaluation. The goal here is to select a sequence of meta models
{wt} for achieving sublinear growth of the following regret

Rmeta(T ) =
∑T

t=1 ft (Ut (θt))−minθ
∑T

t=1 ft (Ut(θ)) (3)
where Ut is the task adaptation function depending on the support set St, and the cost function ft is
evaluated using the adapted parameters Ut (wt) on the query set Qt. Intuitively, the agent seeks to
learn a better meta model which leads to better task models for future tasks after seeing more tasks.
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Online meta-learning in non-stationary environments. Differently from most online meta-learning
studies [7–10, 13, 33], in this work we consider a more realistic scenario:
Pre-trained meta model. In many real applications, there is plenty of data available for pre-training, and
it is unrealistic to deploy an agent in complex dynamic environments without any basic knowledge
of the tasks at hand [11]. Therefore, following the same line as in [11], we assume that there is a
set of training tasks {T 0

i }Mi=1 drawn from some unknown distribution P0(T ). And as standard in
meta-learning, each pre-training task T 0

i has a support dataset S0
i and a query dataset Q0

i . In this
work, we employ MAML over the training tasks to learn a pre-trained meta model.
Unknown task boundaries. During the online meta-learning phase, we assume that the task boundaries
are unknown, i.e., the so-called task-agnostic setup [11], in the sense that the agent does not know if
the new coming data at time t belongs to the previous task or a new task. To model the uncertainty
about task boundaries, we assume that at any time t the new data belongs to the previous task with
probability p ∈ (0, 1) or to a new task with probability 1− p.
Non-stationary task distributions. During the online meta-learning phase, the agent could encounter
new tasks that are sampled from other distributions instead of the pre-training one P0(T ). To capture
this non-stationarity in task distribution, we assume that whenever a new task arrives during online
learning, it will be sampled either from P0(T )with probability η ∈ (0, 1) or from a new (w.r.t. P0(T ))
distribution with probability 1− η. Note that we do not restrict the number of new distributions that
can be encountered during online learning and the task distributions can be revisited.

3. Proposed Algorithm under Distribution Shifts
To address the online meta-learning problem mentioned above for non-stationary environments, we
next propose a simple but effective algorithm, called onLine mEta lEarning under Distribution Shifts
(LEEDS), based on the detection of task switches and distribution shift to assist fast online learning.
Following most studies [10, 11] in online meta-learning, we maintain two separate models during
the online learning stage: θ for the meta model and ϕ for the online task model.
Detection of task switches and distribution shift: To enable fast learning of a new task in online
learning, the detection mechanisms can not be overly sophisticated, but have to be efficient with
high detection accuracy. Towards this end, we propose two different methods for detecting the task
switch and the distribution shift, respectively, which work in concert as key components of LEEDS.
Detection of task switches. To understand the learning behaviors under task switches, we evaluate
the classification loss of the previous task model using the newly coming data, i.e., L(ϕt−1;St) for
time t, where L is the loss function, ϕt−1 is the previous online model at time t − 1, and St is the
current support set. The left plot in Fig. 1 shows the empirical results on an online few-shot image
recognition problem. As depicted, the loss value keeps decreasing as the agent receives more data
from the same task but suddenly increases whenever a new task arrives. This is clearly reasonable as
the learnt online model for the previous task does not fit the new task anymore. Inspired by this
empirical observation, we use a simple mechanism based on the value of L(ϕt−1;St) to detect the
task boundaries: there is a task switch whenever the loss is above some pre-defined threshold. As
demonstrated later in Section 5, such a simple mechanism is indeed quite effective as corroborated
by its high detection accuracies on various online meta-learning problems.
Detection of distribution shift. To efficiently determine if a new task is IND or OOD, i.e., sampled from
the pre-training task distribution or not, we consider an energy-based OOD detection mechanism
with a binary classifier Cτ (·; θ) defined as follows

Cτ (x; θ) =

{
1 if − E(x; θ) ≤ τ

0 if − E(x; θ) > τ
(4)

where E(x; θ) = −δ log
∑K

k=1 exp (−gk(x; θ)/δ) corresponds to the Helmholtz free energy for input
x, gk(·; θ) is the k-th component of the prediction model’s output, and δ is the temperature parameter.
The hyperparameter τ is a threshold that can be set using the pre-training tasks. As shown in [12],
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the negative energy is linearly aligned with the likelihood of the of input x under model θ, making it
a useful score for distinguishing IND and OOD tasks.

Method Memory
Ours O(1)
[10] O(T )
[11] O( 1

1−p )

[9] O(1)
[13] O(T )

Figure 1: Left plot: Variations of the online loss for a pre-trained meta model using MAML which is
deployed for online learning. Red dot at 0 means no task switch at that time, and at 1 means the
task switched at that time. Right table: Comparison of the memory requirements among different
methods. T is number of online rounds and p ∈ (0, 1) is non-stationarity level.
Update of meta and online parameters: Based on the two detection schemes, the next question is
how to update the meta and task models for fast adaption in dynamic environments.
Without such detection mechanisms, previous online meta-learning algorithms [9, 13] typically
adapt the task model from the meta model using a support set, evaluate the adapted model on a
query set, and reset the task model to the meta model when new data is received from the online
data stream process, and then repeat the process again. However, such a “resetting" scheme can be
sub-optimal in realistic scenarios. For instance, if the newly received data belongs to the same task
with the previous data, the agent should update the task model by starting from previously adapted
parameters instead of from the meta model.
In contrast, the simple but effective detection mechanisms in this work enable a more elegant
treatment to the knowledge update during online learning:
(1) If there is a task switch at time t, i.e., L(ϕt−1;St) > ℓ where ℓ is the threshold, adapting from the
meta model is generally better than adapting from the task model of the previous task. Therefore,
we first obtain the online task model ϕt from the meta model using the new data:

ϕt = θadapt = θt−1 − α1∇θt−1
L(θ;St),

and then update the meta model no matter if there is a distribution shift, so as to incorporate the
knowledge of the new task to the meta model:

θt = θt−1 − α2∇θL(θadapt;Qt).

(2) If there is no task switch, i.e., L(ϕt−1;St) ≤ ℓ, we continue to update the task model from the
previous task model using the new data, different from the “resetting" scheme in the literature:

ϕt = ϕt−1 − α1∇ϕt−1L(ϕt−1;St).

To accelerate the knowledge learning for the new domains, we further distinguish the meta model
update for IND and OOD tasks. In particular, if the current task is an IND task, we will only update
the meta model once at the beginning of this task. That is to say, the meta model will not be further
updated within the same task. In stark contrast, if the current task is an OOD task, we continue to
update the meta model whenever new data for this task arrives as follows:

θadapt = θt−1 − α1∇θL(θt−1;St), θt = θt−1 − α2∇θL(θadapt;Qt).

The details of LEEDS can be found in Algorithm 1. Note that the performance of LEEDS is indeed
robust to the threshold parameters ℓ and τ as shown later in our experimental results, and we also
explain the heuristics for setting the thresholds in a more effective manner in the appendix.
Memory friendly: One important feature of the proposed algorithm LEEDS is that the meta model
update is only based on the current data. In contrast, most of the previous studies store the previous
data in the memory for the meta model update. A comparison of the memory requirements among
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Algorithm 1 onLine mEta lEarning under Distribution Shifts (LEEDS)
1: Input: Dynamic stream S, pre-training distribution P0(T ), stepsizes α1 and α2, thresholds ℓ and τ .
2: Perform pre-training phase using MAML method on tasks drawn from P0(T )
3: while stream S is ON do
4: Dt ←− S // receive current data from online data stream St, Qt

5: St, Qt ←− Dt // split data into support and query
6: if L(ϕt−1;St) ≤ ℓ (i.e., no switch) then
7: ϕt = ϕt−1 − α1∇ϕt−1L(ϕt−1;St) // adapt starting from previous online model
8: Evaluate ϕt on query set Qt

9: if Cτ (St; θt−1) (i.e., covariate shift) then
10: θadapt = θt−1 − α1∇θL(θt−1;St), θt = θt−1 − α2∇θL(θadapt;Qt) // update meta model
11: end if
12: else
13: θadapt = θt−1 − α1∇θt−1L(θt−1;St) // adapt starting from meta model using support set
14: Set ϕt = θadapt and Evaluate ϕt on query set Qt

15: θt = θt−1 − α2∇θL(θadapt;Qt) // update meta model
16: end if
17: end while

different approaches is summarized in the right table in Fig. 1. As will be shown later in the
experiments, LEEDS significantly outperforms the related baselines without the need of storing any
previous data. This encouraging result suggest that the community could also learn from careful
explorations of simpler designs, besides emphasizing algorithmic complexities.

4. Theoretical Results
In the onlinemeta-learningwith distribution shifts, it is clear that the static comparator in Equation (3)
is not sufficient to capture the non-stationarity, as one cannot expect to have a single meta-model for
all task distributions. Hence, we consider a task-averaged regret (TAR) by following [34]

Ravg = 1
T

∑T
t=1

(∑Kt

k=1 f
k
t

(
ϕk
t

)
−
∑Kt

k=1 f
k
t (ϕ∗

t )
)

(5)

where T is the number of tasks, Kt is the number of steps within task t, and ϕ∗
t is the dynamic

comparator for each task t. For simplicity, we denote fk
t as the within-task loss function in step k

of task t (evaluated on the query set). As shown in [34], one cannot expect to achieve a TAR that
decreases w.r.t. T because the dynamic comparators {ϕ∗

t }t can force a constant loss for each task t.
However, the average is still not taken w.r.t. the total number of steps∑T

t=1 Kt, but only w.r.t. the
number of tasks T . Therefore, the objective here is to achieve a TAR that is sublinear in Kt. Note
that the within-task loss functions {f t

t }
Kt

k=1 are usually non-adversarial in many practical online
meta-learning problems. For example, in few-shot online image classification problem, {f t

t }
Kt

k=1

correspond to different evaluations of the same classification loss function on different query sets for
the same task. In what follows, we can show that a constant TAR is achievable for the non-adversarial
case even after taking the detection errors of task boundaries into consideration.
Let the comparator ϕ∗

t be a minimizer of each of the loss functions fk
t , k = 1, ...,Kt. To formally

characterize the non-adversariality of the within-task loss functions {f t
t }

Kt

k=1 in online meta-learning,
we make the following assumptions.
Assumption 4.1. The comparator ϕ∗

t is a fixed point of the adaptation mappings Uk
t at step k within

task t, i.e., Uk
t (ϕ

∗
t ) = ϕ∗

t for k = 1, ...,Kt.
Assumption 4.2. The adaptation mapping Uk

t is a contraction, i.e., there exists some ρkt such that for
all ϕ1, ϕ2,

∥∥Uk
t (ϕ1)− Uk

t (ϕ2)
∥∥ ≤ ρkt

∥∥ϕ1 − ϕ2

∥∥.
Assumption 4.1 characterizes the property of the dynamic comparator ϕ∗

t . It is clear that Assump-
tion 4.1 will hold when there exists a task model ϕ that can perfectly achieve zero loss on all data
points sampled from the data distribution for task t. For example, in over-parameterized regime,
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one can always train a model to perfectly predict all training data points with near-zero loss. As-
sumption 4.2 can be easily satisfied in online meta-learning [13]. For example, the one step gradient
descent mapping, i.e., Uk

t (ϕ) = ϕ − α∇f̂k
t (ϕ), satisfies Assumption 4.2 when the function f̂k

t is
β-smooth and µ-strongly convex, and the stepsize α is chosen in (0, 2

β ). Define ρ = maxt,k ρ
k
t .

Assumption 4.3. Each function fk
t is L-smooth.

Note that we do not make any assumption on the convexity of the within-task loss functions fk
t . For

any step r in the online meta-learning process (where each task t includesKt steps), let Pr be the
current data distribution and ϕr be the task model obtained after adaptation. To analyze the error
probability of the detection mechanisms proposed in this work, we make the following assumption
on the single-data loss function ℓ:
Assumption 4.4. Let ℓ(·, ξ) be the loss on a data point ξ and 0 ≤ ℓ(·, ξ) ≤ M . We assume that there
exist constants ℓm ≤ ℓp such that the following holds for any step r and s: (1) Eξ∼Pr

ℓ(ϕr, ξ) ≤ ℓm;
(2) Eξ∼Pr

ℓ(ϕs, ξ) ≥ ℓp if Pr ̸= Ps.
Assumption 4.4 characterizes the comparison of the expected loss w.r.t. a certain data distribution
between 1) the model adapted on this distribution and 2) the model adapted on another distribution.
This essentially means, in expectation, the loss after adaptation is less than the loss of another task
model, which is crucial for a threshold-based detection scheme to be applicable.
By updating themeta-model usingOGD [32] on themeta loss

∥∥ϕ0
t−ϕ∗

t

∥∥2 after each task t, we can have
the following theorem to characterize the expected TAR w.r.t. the uncertainty of the task-boundary
detection.
Theorem 4.5. Suppose Assumptions 4.1,4.2, 4.3, 4.4 hold. Let R =

∑T
t=1 Kt be the total number of online

rounds, and S = c logR be the number of data points used for adaptation at each step, where c is some positive
constant. Then the expected TAR is bounded as

E[Ravg] ≤ O

(
σ2
∗ + log T

T

1− ρ2
+R

−
(

c(ℓp−ℓm)2

2M2 −2

))
,

where the expectation is taken over the task-boundary detection uncertainty. σ2
∗ = 1

T

∑T
t=1

∥∥ϕ∗
t − ϕ∗

∥∥2 and
ϕ∗ = 1

T

∑T
t=1 ϕ

∗
t denote the variance and the mean of the comparators {ϕ∗

t }Tt=1, respectively. In particular, a
constant expected TAR can be achieved by selecting c > 4M2

(ℓp−ℓm)2 .
Intuitively, the first term in the upper bound in Theorem 4.5 captures the TAR for online meta-
learning with known task boundaries, whereas the second term characterizes the impact of the
task-boundary detection uncertainty. As shown in Theorem 4.5, when the tasks become more similar,
the first term will decrease because the variance σ2

∗ is smaller, whereas the second term can increase
because the constants ℓp and ℓm become closer (i.e., it is harder to detect task switches if tasks are
more similar). Therefore, Theorem 4.5 captures a trade-off between the impact of task similarity on
the performance of standard online meta-learning and the performance under the task boundary
detection uncertainty. In practice, the optimal actions ϕ∗

t are usually not available for the meta
updates. Thus, in our algorithm we use the alternative MAML-like updates which has been shown
to be effective for learning meta parameters. As demonstrated in the different experiments in the
next section, such updates can indeed serve as a good practical alternative.

5. Experiments
Experimental setup. We investigate the performance of LEEDS on three standard online meta-
learning benchmarks, Omniglot-MNIST-FashionMNIST, Tiered-ImageNet and Synbols, compared
to multiple related baseline algorithms. Specifically, we pre-train the meta model in one domain
and then deploy it in a dynamic environment where tasks can be drawn from new domains. We
evaluate all the algorithms using the average of test losses obtained throughout the entire online
learning stage. To investigate the impact of the non-stationary level on the learning performance, we
further consider two different cases of the environment non-stationarity: A moderately stationary
case where the probability of not switching to a new task is set to p = 0.9, and a low stationary case
where p = 0.75. We do not consider the cases where p is very small, as an algorithm that just assumes
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task switches at each round should perform well in such cases. We compare algorithms over 10000
episodes unless otherwise stated. See more details about datasets and baselines in Appendix C. More
comprehensive results and training curves of different methods are also provided in Appendix B.
For all the experiments, whenever a new task needs to be revealed, it will be drawn from either the
pre-training domain with probability 0.5, or from one of the OOD domains with probability 0.5.
For Tiered-ImageNet, because only ood2 is trully OOD w.r.t. the pre-training task distribution, we
increase the sampling probability of ood2 to 0.5which is consistent to the protocol 50%− 50% for
IND and OOD tasks in all our experiments. More details about the experimental setup including the
neural network architectures and the hyperparameter search are deferred to Appendix D.
Table 1: Average accuracy over 10000 online episodes on Omniglot-MNIST-FashionMNIST bench-
mark under different non-stationarity levels. “pre-train" domain: Omniglot; “ood1" domain: MNIST,
“ood2" domain: FashionMNIST. The advantage of our algorithm LEEDS over the other baselines is
more significant in the ood domains. See Appendix C for more details about the datasets.

Method non-stationarity level p = 0.9 non-stationarity level p = 0.75

pre-train ood1 ood2 pre-train ood1 ood2
LEEDS 99.39 ±0.09 96.44±0.11 82.87 ±0.19 98.97 ±0.10 95.68±0.12 81.49 ±0.22

CMAML++ 98.78 ±0.12 92.52±0.19 76.16 ±0.28 97.39 ±0.11 89.07±0.20 73.35 ±0.35
CMAML 89.79 ±0.54 84.06±0.80 69.70 ±0.63 75.51 ±0.94 70.41±1.22 58.58 ±1.27
FOML 89.20±0.61 70.84±0.76 64.83 ±0.74 81.68 ±0.59 59.24±0.78 58.07 ±0.77
MAML 95.07±0.10 62.02±0.14 54.67 ±0.17 95.51 ±0.11 62.31±0.13 54.83 ±0.13
ANIL 96.54±0.12 42.14±0.16 40.12 ±0.13 96.88 ±0.11 42.08±0.11 40.00 ±0.13

MetaOGD 84.05 ±1.66 73.73±1.39 60.03 ±1.60 85.67 ±1.57 75.09±1.43 60.51 ±1.65
BGD 63.58 ±2.25 46.12±2.10 44.89 ±1.41 23.86 ±2.36 17.97±2.17 19.81 ±1.63

MetaBGD 77.73±1.26 59.11±0.84 54.67 ±0.82 43.95 ±1.31 27.87±0.94 30.14 ±0.98

5.1. Main results
Results on Omniglot-MNIST-FashionMNIST (OMF). The online evaluations of the compared
methods are shown in Table 1 for non-stationary levels p = 0.9 and p = 0.75. For each setting we
report separately the online accuracies on pre-training domain and on the other two OOD domains,
to show how our method keeps improving on the OOD domains while also remembering the pre-
tarining tasks. Clearly, our method LEEDS achieves superior performance compared to all other
baseline algorithms in both settings. More specifically, on the IND domain all methods pre-trained
using MAML perform similarly, but are outperformed by LEEDS and CMAML++ which can detect
task boundaries. However, on the OOD domains our algorithm significantly outperforms all other
baselines, including CMAML++. This is due to the key OOD adaptation module that allows LEEDS
to dynamically adapt the meta model based on the task distribution. Interestingly, comparing the
performance for MAML and ANIL provides some insights on the limitations of re-using pre-trained
representations in non-stationary environments. In fact, the ANIL baseline, which does not adapt
its inner representations, performs poorly compared to MAML on the OOD domains, but achieves
similar results on the pre-training domain. Also, the results highlight some limitations of the recently
introduced FOML [10] method, which achieves lower performance than other competitive baselines.
This is because FOML requires the tasks to be not mutually exclusive, which may not hold for the
standard few-shot benchmarks considered in our experiments.

Method Prec. Rec.

TI LEEDS 96.6 99.27
CMAML++ 90.93 92.98

SB LEEDS 91.81 99.37
CMAML++ 87.09 93.89

Figure 2: Left: LEEDS under different p. Center: LEEDS with and without domain adaptation.
Right: Task boundaries detection on Tiered-ImageNet (TI) and Synbols (SB).
Results on Tiered-ImageNet (TI) and Synbols (SB).We report the online accuracies on all domains
and on OOD domains for these two benchmarks in Table 3. Because the distribution of the pre-
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Table 2: Average accuracy over 20000 and 10000 online episodes on Tiered-ImageNet benchmark and
Synbols benchmark, respectively, under different non-stationarity levels. The different domains are
distinct splits of the original Tiered-ImageNet dataset (please see experimental setup in Appendix C
for details on how these splits are obtained). In Synbols, the “pre-train" domain corresponds to 3
different alphabets from Synbols dataset, “ood1" corresponds to a new (w.r.t. the pre-training one)
alphabet from Synbols dataset, and “ood2" contains font classification tasks. Full table with variance
is in Appendix B.

Method
Tiered-ImageNet Synbols

non-stationarity p = 0.9 non-stationarity p = 0.75 non-stationarity p = 0.9 non-stationarity p = 0.75

all ood all ood all ood all ood
LEEDS 66.07 67.43 64.52 65.80 85.12 67.48 82.22 63.68

CMAML++ 63.83 63.75 61.28 61.96 81.14 62.39 79.74 60.70
FOML 35.90 35.87 32.02 31.61 46.40 41.73 37.46 34.13
MAML 62.37 61.00 62.54 60.88 76.25 42.70 74.87 43.84
ANIL 59.78 57.61 59.57 57.38 64.58 34.51 72.69 35.66

MetaOGD 57.01 57.32 56.80 56.94 72.04 46.69 67.93 42.66
BGD 40.95 41.44 35.48 35.97 25.63 25.61 27.53 27.17

MetaBGD 49.21 50.01 44.58 45.30 53.74 42.25 40.79 34.63

training tasks is similar to the OOD ones for the Tiered-ImageNet benchmark, methods such as
MAML can perform reasonably well. In fact, in the lower non-stationary case (p = 0.75), MAML is
able to outperform themore complex CMAML++ baseline. However, our algorithm still achieves the
best performance under both non-stationary levels and in both benchmarks. Note that in the larger
TI dataset case, the FOML algorithm, which stores all previously seen tasks, runs out of memory
after around 6500 online episodes. Again because of similarity between OOD and IND tasks in the
TI benchmark, static representations learned by ANIL are useful for all domains.

5.2. Ablation Studies
Task boundaries detection. The table in the right of Figure 2 provides the precision and recall
scores of the task switch detection schemes for our method and CMAML++. Our detection scheme
outperforms that of CMAML++ in all metrics. This is because, the detection scheme in CMAML++
is based on comparing successive losses, which could lead to over detection of task boundaries,
especially when the task loss is too high at the first time the task is revealed to the online algorithm.
Importance of domain adaptation module. We investigate the importance of the distribution shift
detection module that allows our algorithm LEEDS to update the meta model differently for in-
distribution and out-of-distribution tasks. Fig. 2 shows the performance of our algorithm with and
without the distribution shift detection module. The performance of the algorithm significantly
improves (∼ 4.3% improvement) with this module. This shows that such a simple mechanism can
effectively boost the online learning performance by allowing the agent to learn more from OOD
data while also remembering pre-training knowledge.
Sensitivity to frequency of task switches. Fig. 2 shows the performance of our algorithm for
different values of the probability p of task switches. The performance increases with p, which shows
that our algorithm LEEDS can successfully re-use previous task knowledge to increase performance.

6. Conclusions
In this work, we study the online meta-learning problem in non-stationary environments without
knowing the task boundaries. To address the problems therein, we propose LEEDS for efficient
meta model and online task model updates. In particular, based two simple but effective detection
mechanisms of the task switches and the distribution shift, LEEDS can efficiently reuse the best
task model available without resetting to the meta model and distinguish the meta model updates
for in-distribution tasks and out-of-distribution tasks so as to quickly learn the new knowledge for
new distributions while preserving the old knowledge of the pre-training distribution. In particular,
the meta model update in LEEDS is based on the current data only, eliminating the need of storing
previous data. Extensive experiments corroborate the superior performance of LEEDS over related
baseline methods on multiple benchmarks.
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Supplementary Material

We provide the details omitted in the main paper. The sections are organized as fellows:
• Appendix B: We provide more empirical results including sensitivity to the thresholds and online
evaluations curves for all settings.
• Appendix C: We provide further details about datasets and baseline methods.
• Appendix D: We provide further experimental specifications and discuss the heuristics used to set
the thresholds.
• Appendix F: We provide our proof of Theorem 4.5.

A. More Related Work about Continual Learning
Continual Learning. Continual learning (CL; a.k.a lifelong learning) focuses on overcoming “catas-
trophic forgetting” [38, 39] when learning from a sequence of non-stationary data distributions.
Existing approaches are rehearsal-based [40–42], regularization-based [43, 44], and expansion-based
[45–47]. For instance, rehearsal-based methods store a subset of previous tasks data and reuse it
for experience “replay” to avoid forgetting. However, traditional CL methods evaluate the final
model on all previously seen tasks so as to measure forgetting. In this work we are interested in
online meta-learning and evaluate models with the average online performance (e.g., accuracy) after
adaptation, which better captures the ability to quickly adapt to new online tasks [11]. Even though
we do not specifically focus on avoiding forgetting, we update the meta-model in a way that preserves
knowledge of in-distribution domain while also improving fast adaptation for out-of-distribution
domains, as demonstrated in our various experiments.

B. More Experimental Results

B.1. Accuracy tables with variances for Tiered-ImageNet and Synbols datasets

Method non-stationarity p = 0.9 non-stationarity p = 0.75
all domains ood domains all domains ood domains

LEEDS 66.07 ±0.24 67.43 ±0.38 64.52 ±0.17 65.80 ±0.31
CMAML++ 63.83 ±0.27 63.75 ±0.55 61.28 ±0.23 61.96 ±0.41

FOML 35.90 ±0.56 35.87 ±0.83 32.02 ±0.42 31.61 ±0.69
MAML 62.37 ±0.46 61.00 ±0.72 62.54 ±0.37 60.88 ±0.65
ANIL 59.78 ±0.21 57.61 ±0.38 59.57 ±0.22 57.38 ±0.36

MetaOGD 57.01 ±0.28 57.32 ±0.66 56.80 ±0.25 56.94 ±0.42
BGD 40.95 ±0.85 41.44 ±1.15 35.48 ±0.76 35.97 ±1.09

MetaBGD 49.21 ±1.05 50.01 ±1.25 44.58 ±1.12 45.30 ±1.20

Table 3: Average accuracy over 20000 online episodes on Tiered-ImageNet benchmark under different
non-stationarity levels. The different domains are distinct splits of the original Tiered-ImageNet
dataset (please see experimental setup in Section 5 for details on how these splits are obtained).

B.2. Sensitivity to thresholds ℓ and τ and temperature δ

Figures 3 and 4 illustrate the sensitivity of our algorithm LEEDS with respect to the thresholds ℓ and
τ and the temperature parameter δ in the energy-based detection module. As depicted in Figure 3,
when the threshold ℓ is too small, the algorithm tends to over detect task switches (as indicated by
low Recall for ℓ = 0.5 in the table), which results in inferior performance of the algorithm due to
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Method non-stationarity p = 0.9 non-stationarity p = 0.75
all domains ood domains all domains ood domains

LEEDS 85.12 ±0.91 67.48 ±0.97 82.22 ±0.32 63.68 ±0.36
CMAML++ 81.14 ±1.05 62.39 ±1.00 79.74 ±1.07 60.70 ±1.12

FOML 46.40 ±0.61 41.73 ±0.73 37.46 ±0.27 34.13 ±0.31
MAML 76.25 ±0.63 42.70 ±0.68 74.87 ±0.42 43.84 ±0.45
ANIL 64.58 ±0.32 34.51 ±0.54 72.69 ±0.30 35.66 ±0.49

MetaOGD 72.04 ±0.67 46.69 ±0.77 67.93 ±0.59 42.66 ±0.62
BGD 25.63 ±0.07 25.61 ±0.09 27.53 ±0.08 27.17 ±0.11

MetaBGD 53.74 ±0.41 42.25 ±0.52 40.79 ±0.23 34.63 ±0.33

Table 4: Average accuracy over 10000 online episodes on Synbols benchmark under different non-
stationarity levels. The "pre-train" domain corresponds to 3 different alphabets from Synbols dataset,
"ood1" corresponds to a new (w.r.t. the pre-training one) alphabet from Synbols dataset, and "ood2"
contains font classification tasks.

ineffective reuse of task knowledge. On the other hand when ℓ is too large, the high misdetection
rate (e.g., indicated by low Precision for ℓ = 5) results in the algorithm mostly fine-tuning the online
task model ϕt with the current task support data. As expected, this results in a failure mode (the
algorithm diverges) due to the adversariality of different tasks. We find that values of ℓ in the rage
[1.5, 2.3] yield the best performance of our algorithm.
Figure 4 (a) shows that larger values of τ , which collapse to updating the meta-model at each step
(even for pretraining task distribution), does not substantially improve the performance. This demon-
strates the advantage of the distinct meta-update scheme proposed for in- and out-of-distribution
tasks, which avoids unnecessary frequent meta-updates for the pretraining tasks and thus allows a
more judicious usage of computational budget. Lower values of τ (e.g. τ = 15) tend to detect all
task distributions as the pertaining one, and thus corresponds to eliminating the domain adaptation
component of our algorithm. We also find that simply setting the temperature δ = 1 in the energy
expression yields the best performance, and large values of δ also eliminates the effectiveness of the
energy-based detection module (Figure 4 (b)). This is in fact in accordance to the finding in [12],
which also suggests setting δ = 1.

ℓ Precision Recall
ℓ = 0.5 99.9 68.0
ℓ = 1.5 99.9 98.4
ℓ = 1.9 99.9 99.3
ℓ = 2.3 99.9 99.7
ℓ = 5 38.13 99.9

Figure 3: Performance of LEEDS for different values of the threshold ℓ. Left plot: Performance on all
encountered domains during online learning. Right table: Task boundaries detection for different
values of ℓ. Experiments are conducted on the Omniglot-MNIST-FashionMNIST benchmark.

Figures 5-8 show the online evaluation curves of the different methods for for all settings. The
different plots further show that our algorithm LEEDS outperforms other baseline algorithms in
the OOD domains and at the same time also retains its performance on the pre-training tasks. The
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(a) Sensitivity to energy threshold τ (b) Sensitivity to temperature scale

Figure 4: Performance of LEEDS for: (a) different values of the energy threshold τ and (b) different
scales of the temperature δ. For both plots we report the performance on all encountered domains
during online learning. Experiments are conducted on the Omniglot-MNIST-FashionMNIST bench-
mark.

performance of the methods that do not adapt meta-parameters during online learning phase (such
as MAML and ANIL) drops drastically when OOD tasks are far away from the pre-training ones (as
shown in Table 1 for Omniglot-MNIST-FashionMNIST). For settings in which OOD tasks are close
to the pre-training ones (such as in the Tiered-ImageNet dataset), MAML can perform similarly to
CMAML++.
The superior performance of LEEDS even for the pre-training domain particularly shows that the
re-use of task knowledge is beneficial for online meta-learning, as opposed to the usual practice of
“resetting” to meta-parameters at each step.
By comparing the two plots in Figure 10, it can be seen that the advantage of our domain adaptation
module is more significant when the OOD domains are far away from the pre-training one, as is the
case for the FashionMNIST OOD domain compared to the Omniglot pre-training domain.

C. Further Descriptions about Datasets and Baseline Methods

C.1. Datasets

We study dynamic online meta-learning on the following benchmarks:
Omniglot-MNIST-FashionMNIST dataset. For this dataset, we consider 10-ways 5-shots classifica-
tion tasks. We pre-train the meta model on a subset of the Omniglot dataset and then deploy it in
the online learning environment where tasks are sampled from either the full Omniglot dataset, or
from one of the OOD datasets, i.e., the MNIST or FashionMNIST datasets.
Tiered-ImageNet dataset. We consider 5-ways 5-shots classification tasks for this dataset. Following
[cite paper], we split the original Tiered-ImageNet dataset into the pre-training domain and the
OOD domains. More specifically, we pre-train on the first 200 classes of the original training set, use
the remaining classes as the first OOD domain (ood1), and set the original test classes as second
OOD domain (ood2). During online learning phase, we set the full training set to be IND domain,
and ood1 and ood2 as OOD domains. We evaluate algorithms over 20000 online learning episodes.
Synbols dataset. We consider 4-ways 4-shots classification tasks in this dataset. The meta model is
pre-trained on characters from 3 different alphabets and deployed on characters from a new alphabet
(ood1). We also consider font classification tasks as additional OOD tasks (ood2).
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Figure 5: Online evaluations in each of the encountered domains during online learning phase for the
Omniglot-MNIST-FashionMNIST benchmark. First column corresponds to non-stationarity level
p = 0.9. In second column p = 0.75. LEEDS is the only method that is able to preserve pre-training
knowledge while substantially increasing performance in OOD domains. Legend in first plot only.

C.2. Baseline Methods

We compare our algorithm with the following baseline methods for online meta-learning.
(1)C-MAML [11] andC-MAML++: the continualMAML approach (C-MAML) pre-trains themeta
model using MAML and employs an online learning strategy based on task boundaries detection.
Since C-MAML does not evaluate the task models on separate query sets, for a fair comparison we
adapt it to do so and call the resulting algorithm C-MAML++.
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Figure 6: Online evaluations for the Tiered-ImageNet (TI) and Synbols (SB) benchmarks under p =
0.9. First columns correspond to TI and second column to SB. More results including performance
in each domain and under different p can be found in Appendix B. Legend shown in first plot only.

(2) FOML [10]: the fully online meta-learning method updates online parameters using the latest
online data andmaintains a concurrent meta-training process to guide the online updates regularized
by the meta model.
(3)MAML[3] andANIL [18]: theMAMLbaseline consists of an offline pre-training phase and an on-
line deployment phase. During offline pre-training the method learns a common meta-initialization
that will be used for all tasks, and the meta-initialization will never be updated at the online stage.
The task model is adapted from the meta-initialization using the support set and evaluated on the
query set. ANIL is similar to MAML but with partial parameter adaption, i.e., only the last layer is
adapted for each task.
(4) MetaBGD [11] and BGD [48]: the baseline MetaBGD combines MAML and the Bayesian
gradient descent method during online learning.
(5)MetaOGD [32]: the meta online gradient descent method simply updates the meta-model at
each step using a MAML-like meta-objective evaluated on the current task data.
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Figure 7: Online evaluations for the Tiered-ImageNet (TI) benchmark under p = 0.75. Left: Accu-
racies on all encountered domains during online learning. Right: Accuracies on all encountered
OOD domains during online learning. We compare all baselines on a 16GB GPU memory budget
and FOML runs out of memory for this benchmark due to its linear growth in memory requirement.

Figure 8: Online evaluations for the Synbols (SB) benchmark under p = 0.75. Left: Accuracies
on all encountered domains during online learning. Right: Accuracies on all encountered OOD
domains during online learning.

D. Further Experimental Details and Hyperameter Search

D.1. Further Experimental Specifications

In all our experiments, we consider classification tasks. The cross-entropy loss between predictions
and true labels is used to train all models. We use the same convolutional neural network (CNN)
architectures widely adopted in few-shot learning literature [3, 11, 13], which include four convo-
lutional blocks followed by a linear classification layer. Each convolutional block is a stack of one
3× 3 convolution layer followed by BatchNormalization, ReLU, and 2× 2MaxPooling layers. For
the Omniglot-MNIST-FashionMNIST benchmark, we use 64 filters in each convolutional layer and
downsample the gray-scale images to 28× 28 spacial resolution so as to have 64-dimensional feature
vectors before classification. For Tiered-ImageNet and Synbols datasets, the inputs are respectively
3× 64× 64 and 3× 32× 32 RGB images, resulting respectively in 1024- and 256-dimensional feature
vectors for 64 filters in each convolution layer.
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Figure 9: Performance of our algorithm LEEDS under different p. Left plot: Evaluations in pre-
training domain. Right plot: Evaluations in all domains.

Figure 10: Performance of LEEDS with and without energy-based domain adaptation module.
Left plot: Evaluations in OOD domain FashionMINIST. Right plot: Evaluations in OOD domain
MNIST.

D.2. Further Implementation Specifications
The implementation of FOML [10] method is not released yet, and hence we compare with our
own implementation of their algorithm. For all other baselines, we used their publicly available
implementations. Codes for our algorithm LEEDS and all other baselines are provided in the
supplementary materials of our submission. All codes are tested with Python 3.6 and Pytorch 1.2.
For example to run our algorithm LEEDS with the best hyperparameters that we obtained for the
Omniglot-MNIST-FashionMNIST dataset under p = 0.9, one can run the following command:
python main . py −−algo leeds −−use_best 1

The experiment setting (e.g., the dataset to use) can be changed in configurations.yaml file. We run
all methods on a single NVIDIA Tesla P100 GPU. All compared algorithms except FOML were able
to run on 16GB GPU memory. FOML requires at least 32GB to reach 12000 online episodes for the
Tiered-ImageNet dataset.

E. Heuristics for setting the thresholds
For the energy threshold τ , we follow the strategy in Liu et al. (2020), i.e., we set the threshold τ using
the pre-training tasks. More specifically, we set τ so that 95% of the pre-training inputs are correctly
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detected as pre-training data. In standard few-shot learning experimental setups, the true labeling
for each individual task is usually randomly chosen. When there is a task switch, the task specific
model learnt from the previous task generally does not fit the new task anymore, where the learning
performance could be similar to that of a random model. Thus motivated, we find that a good
heuristic to choose a starting value for the threshold ℓ is to use the loss value evaluated on a random
model. For example, for 10-ways classification tasks that value would be ℓr = − log(1/10) = 2.3.

F. Proof of Theorem 4.5

Recall the task-averaged regret:

Ravg =
1

T

T∑
t=1

(
Kt∑
k=1

fk
t

(
ϕk
t

)
−

Kt∑
k=1

fk
t (ϕ∗

t )

)
.

We consider the setting where at each round the agent can perform some task-specific adaptation
before evaluation on the loss function fk

t [13]. Let Uk
t be the mapping that defines the adaptation

procedure at each round. For instance, a popular choice of the mapping function Uk
t is the one

step gradient descent mapping: Uk
t (ϕ) = ϕ − α∇f̂k

t (ϕ), where α is a learning rate and f̂k
t is an

approximation of the loss function fk
t , e.g., computed on a small support set from task t.

Denote f̂r(ϕr−1) =
1

|Sr|
∑

ξ∈Sr
ℓ(ϕr−1, ξ) := f̂r,r−1 as the adaptation loss at round r, where ℓ(·, ξ) is

a classification loss on data point ξ. We first provide an upper bound on the detection error.
The total probability of error of the threshold-based detection scheme at round r is given by:

Perror = P (Pr ̸= Pr−1)P

(
f̂r,r−1 < τ

∣∣∣∣ Pr ̸= Pr−1

)
+ P (Pr = Pr−1)P

(
f̂r,r−1 > τ

∣∣∣∣ Pr = Pr−1

)
(6)

where the first term characterizes the probability of miss detection of the task boundary, and the
second term is the probability of false alarm when the underlying task does not change.
Based on Assumption 4.4, for a data distribution Pr and support set Sr drawn i.i.d. from Pr, the
Hoeffding inequality yields:

P

 1

|Sr|
∑
ξ∈Sr

ℓ(ϕr−1, ξ)− Eξ∼Pr ℓ(ϕr−1, ξ) < −ϵ

 ≤ exp

(
−2|Sr|ϵ2

M2

)
Hence,

P

(
f̂r,r−1 − ℓp < −ϵ

∣∣∣∣ Pr ̸= Pr−1

)

≤P

 1

|Sr|
∑
ξ∈Sr

ℓ(ϕr−1, ξ)− Eξ∼Pr
ℓ(ϕr−1, ξ) < −ϵ

∣∣∣∣ Pr ̸= Pr−1


≤ exp

(
−2|Sr|ϵ2

M2

)
.

By setting ϵ =
ℓp−ℓm

2 , we can have

P

(
f̂r,r−1 <

ℓm + ℓp
2

∣∣∣∣ Pr ̸= Pr−1

)
≤ exp

(
−|Sr|(ℓp − ℓm)2

2M2

)
.
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Thus, setting the threshold τ =
ℓm+ℓp

2 yields

P

(
f̂r,r−1 < τ

∣∣∣∣ Pr ̸= Pr−1

)
≤ exp

(
−|Sr|(ℓp − ℓm)2

2M2

)
. (7)

Using the other side of the Hoeffding inequality, we have:

P

(
f̂r,r−1 − ℓm > ϵ

∣∣∣∣ Pr = Pr−1

)

≤P

 1

|Sr|
∑
ξ∈Sr

ℓ(ϕr−1, ξ)− Eξ∼Prℓ(ϕr−1, ξ) > ϵ

∣∣∣∣ Pr = Pr−1


≤P

 1

|Sr|
∑
ξ∈Sr

ℓ(ϕr−1, ξ)− Eξ∼Pr
ℓ(ϕr−1, ξ) > ϵ


≤ exp

(
−2|Sr|ϵ2

M2

)
.

Therefore, we have:

P

(
f̂r,r−1 >

ℓm + ℓp
2

∣∣∣∣ Pr = Pr−1

)
≤ exp

(
−|Sr|(ℓp − ℓm)2

2M2

)
,

because ϵ = ℓp−ℓm
2 . Thus, we obtain

P

(
f̂r,r−1 > τ

∣∣∣∣ Pr = Pr−1

)
≤ exp

(
−|Sr|(ℓp − ℓm)2

2M2

)
. (8)

Combining Equations (6), (7) and (8), and using the fact thatP (Pr ̸= Pr−1) = 1−P (Pr = Pr−1) can
yield the following upper bound on the probability of error when the threshold is set to τ =

ℓm+ℓp
2 :

Perror ≤ exp

(
−|Sr|(ℓp − ℓm)2

2M2

)
. (9)

Based on Assumption 4.3, we have for any ϕ:

fk
t (ϕ

k
t ) ≤ fk

t (ϕ) +
〈
∇fk

t (ϕ), ϕ
k
t − ϕ

〉
+

L

2

∥∥ϕk
t − ϕ

∥∥2.
Therefore, by setting ϕ to be the comparator ϕ∗

t and using Assumption 4.1, we obtain:

fk
t (ϕ

k
t )− fk

t (ϕ
∗
t ) ≤

L

2

∥∥ϕk
t − ϕ∗

t

∥∥2.
Thus, summing over k = 1, ...,Kt yields

Kt∑
k=1

fk
t (ϕ

k
t )−

Kt∑
k=1

fk
t (ϕ

∗
t ) ≤

L

2

Kt∑
k=1

∥∥ϕk
t − ϕ∗

t

∥∥2. (10)

We next bound the term∑Kt

k=1

∥∥ϕk
t − ϕ∗

t

∥∥2 from above. It follows that∥∥ϕk
t − ϕ∗

t

∥∥2 =
∥∥Uk

t (ϕ
k−1
t )− Uk

t (ϕ
∗
t )
∥∥2

≤ ρ2
∥∥ϕk−1

t − ϕ∗
t

∥∥2
≤ ρ2k

∥∥ϕ0
t − ϕ∗

t

∥∥2, (11)

where the first inequality uses Assumption 4.2. Therefore, combining Equations (10) and (11) gives
that

Kt∑
k=1

fk
t (ϕ

k
t )−

Kt∑
k=1

fk
t (ϕ

∗
t ) ≤

L

2

Kt∑
k=1

ρ2k
∥∥ϕ0

t − ϕ∗
t

∥∥2
≤ L

2(1− ρ2)

∥∥ϕ0
t − ϕ∗

t

∥∥2. (12)
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Hence, summing Equation (12) over t = 1, ..., T yields
T∑

t=1

(
Kt∑
k=1

fk
t

(
ϕk
t

)
−

Kt∑
k=1

fk
t (ϕ∗

t )

)
≤ L

2(1− ρ2)

T∑
t=1

∥∥ϕ0
t − ϕ∗

t

∥∥2.
The task-averaged regret is therefore upper bounded as follows

Ravg ≤ L

2(1− ρ2)T

T∑
t=1

∥∥ϕ0
t − ϕ∗

t

∥∥2. (13)
.
Next, we show that the term 1

T

∑T
t=1

∥∥ϕ0
t − ϕ∗

t

∥∥2 converges as T → ∞. We have,
1

T

T∑
t=1

∥∥ϕ0
t − ϕ∗

t

∥∥2 =
1

T

T∑
t=1

(∥∥ϕ0
t − ϕ∗

t

∥∥2 − ∥∥ϕ∗
t − ϕ∗∥∥2)+ 1

T

T∑
t=1

∥∥ϕ∗
t − ϕ∗∥∥2, (14)

where ϕ∗ = 1
T

∑T
t=1 ϕ

∗
t is the mean of the dynamic comparators. Note that ϕ∗ is the minimizer of

the summation∑T
t=1

∥∥ϕ∗
t − ϕ∗

∥∥2. Thus, if we use an algorithm such as OGD [32] to update the
initialization ϕ0

t with loss
∥∥ϕ0

t − ϕ∗
t

∥∥2 then summation in the first term at the right hand side of
Equation (14) corresponds to the regret of OGD on a stream of strongly-convex functions, which is
well-known to be O (log T ). The second term 1

T

∑T
t=1

∥∥ϕ∗
t − ϕ∗

∥∥2 = σ2
∗ corresponds to the variance

of the dynamic comparators. Hence, combining Equations (13) and (14) we obtain

Ravg = O

(
σ2
∗ +

log T
T

1− ρ2

)
. (15)

Using Equation (9) forR =
∑T

t=1 Kt rounds, we havewith probability at least 1−R exp
(

−S(ℓp−ℓm)2

2M2

)
the task-average regret is bounded as in Equation (15). Hence, the expected task-averaged regret for
the algorithm without exact task-boundary detection is upper bounded as

ERavg ≤ O

(
σ2
∗ +

log T
T

1− ρ2
+R2 exp

(
−S(ℓp − ℓm)2

2M2

))
≤ O

(
σ2
∗ +

log T
T

1− ρ2
+R

−
(

c(ℓp−ℓm)2

2M2 −2

))
,

(16)
where the second inequality follows by selecting support sets of size S = c logR, which completes
the proof of Theorem 4.5. Further choosing c > 4M2

(ℓp−ℓm)2 ensures a constant expected task-averaged
regret.
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