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Abstract

Formal theorem proving is challenging for humans as well as for machines. Thanks1

to recent advances in LLM capabilities, we believe natural language can serve as a2

universal interface for reasoning about formal proofs. In this paper, 1) we introduce3

Pétanque, a new lightweight environment to interact with the Coq theorem prover;4

2) we present two interactive proof protocols leveraging natural language as an5

intermediate representation for designing proof steps; 3) we implement beam6

search over these interaction protocols, using natural language to rerank proof7

candidates; and 4) we use Pétanque to benchmark our search algorithms. Using8

our method with GPT-4o we can successfully synthesize proofs for 46% of the9

Logical Foundation series and for 50% of the first 100/260 lemmas from the newly10

published Busy Beaver proofs.111

1 Introduction12

The general knowledge and reasoning abilities of frontier large language models (LLMs) makes13

them practical as a backbone for building agents able to interact with theorem provers. These agents14

should iteratively build proofs with help from proof engine feedback. While previous work (e.g. Yang15

et al. [2023]) used a costly data collection procedure to finetune modestly sized language models,16

we believe that reasoning in natural language before outputting tactics will lead to better and more17

interpretable results. Recently, Thakur et al. [2024] showed promising preliminary results by using18

GPT-4 as an agent proposing tactics inside a backtracking search and using rich feedback from the19

proof environment.20

In this work, we develop infrastructure to allow communication between a GPT-4o-based agent21

and the Coq proof environment [The Coq Development Team, 2024]. Our key idea is to rely on22

natural language as much as possible when generating proofs. Using natural language leverages the23

strength of LLMs, and allows us to use chain-of-thought [Wei et al., 2022] by asking for an informal24

mathematical proof before generating the formal proof, making it more intuitive and comprehensible25

compared to purely automatic formal techniques. Additionally, partial proofs expressed in natural26

language are easier for humans to understand, adapt, or reuse, allowing for greater flexibility and27

collaboration between machine-generated suggestions and human mathematicians.28

We present the following contributions: 1) Pétanque: A new fast and lightweight environment to29

interact with the Coq theorem prover. 2) Two interactive proof protocols both leveraging natural30

language reasoning: tactic-by-tactic proof construction, and hierarchical proof templating. 3) We31

couple both protocols with standard search algorithms leveraging feedback from the ITP and using32

natural language to rerank proof candidates. 4) We evaluate this agent on a new dataset of textbook33

1https://github.com/ccz181078/Coq-BB5
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forall n m : nat,  
n + m = m + n

To begin with, let's use 
induction on n. This 
approach will allow us to 
handle the problem by 
breaking it down into a base 
case and an inductive step.

/step intros n m. 
induction n. 

Next goals


m : nat 
⊢ 0 + m = m + 0 

n : nat 
m : nat 
IHn : n + m = m + n 
⊢ S n + m = m + S n

Figure 1: Tactic-by-tactic proof construction.

exercises and intermediate theorems from the recent Busy Beaver proof formalized in Coq of34

BB(4) = 107, [ccz181078, 2024].35

2 Pétanque: a lightweight interactive environment for Coq36

A common difficulty when interacting with interactive proof assistants in the context of machine37

learning is inadequate tooling, see for example [Reichel et al., 2023]. Following existing work38

[Gallego Arias et al., 2016, Gallego Arias, 2019, Yang and Deng, 2019, Sanchez-Stern et al., 2020],39

we have built a new environment for machine to machine interaction for the Coq proof assistant,40

particularly tailored for interactive, high-throughput, low-latency learning applications. Pétanque41

is based on Flèche [Gallego Arias, 2024], a new document manager for Coq. We extend Flèche by42

enabling Pétanque to access the Coq proof engine directly without requiring edits in the associated43

document. This makes our environment fast and lightweight. A Python interface, pytanque, provides44

easy access to the API.45

3 Proof interaction protocols46

In this section, we present two approaches leveraging LLMs’ ability to reason in natural language in47

order to find a formal proof with the help of a proof assistant. Tactic-by-tactic proof construction48

mimics the typical behavior of a standard Coq user: given the current goals, the agent generates49

one or several tactics that updates the goals and repeats this process until the proof is complete. By50

contrast, hierarchical proof templating tries to generate full proofs directly. Failed tactics are then51

replaced with holes to obtain a proof template. The agent then repeats the process of filling each hole52

until the proof is complete. Our approach’s originality is that although both protocols’ inputs (goals)53

and outputs (tactics) are in Coq code, the agent internally uses natural language as an intermediate54

representation to analyze the input and guide the code generation.55

3.1 Tactic-by-tactic proof construction56

An overview of the tactic-by-tactic proof construction agent is presented in Figure 1. Given a Coq57

theorem, the agent first uses natural language to describe the goal and explain how to continue the58

proof (chain-of-thought). The last step synthesizes the corresponding Coq tactics. For instance, in59

Figure 1, the goal is to prove that addition over natural numbers is commutative. The agent decides to60

try a proof by induction and correctly synthesizes a sequence of two tactics: intros n m. introduces61

two variables n and m of type nat (natural number), and induction n. starts an induction over n.62

The tactics are sent to the Pétanque environment, which parses and executes each tactic to update63

the current goal. A textual representation of the new goal is then fed back to the agent, allowing it64

to progress further in the proof. If the execution returns an error, the current goal does not change,65

but we augment the prompt with the failed tactics and ask the LLM to try something else for the66

next attempt. For instance, in Figure 1, both tactics succeed and generate two new subgoals: the67

base case (for n=0, prove m + 0 = 0 + m) and the induction case (given the induction hypothesis68
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Theorem Sn_le_Sm__n_le_m : forall n m, 
  S n <% S m -' n <% m. 

intros n m H. 
inversion H as [H0 | n' H0]. 
- { admit. } 
- { admit. }

intros n m H. 
inversion H as [H0 | n' H0]. 
- apply H0. 
- apply H0.

apply le_n. exact (le_S_n _ _ H). 

1. Introduce n and m. 
2. Introduce the hypothesis S n <= S m into the context. 
3. Use the inversion lemma on the hypothesis to simplify it. 
4. Conclude the proof by referring to the simplify hypothesis.

1. Recognize that m <= m is always true. 
2. Use the le_n constructor to finish the proof. 

Use hypothesis H to conclude n <= m. 

n, n', m  : nat 
H : S n <% S m 
H0 : S n <% m 
H1 : n' = m 
⊢ n <% m

n, m : nat 
H : S n <% S m 
H0 : n = m 
⊢ m <% m

Reason

Templatize

Formalize

~~~~~~~~~
~~~~~~~~~

intros n m H. 
inversion H as [H0 | n' H0]. 
- { apply le_n. } 
- { exact (le_S_n _ _ H). }

Final proof

Figure 2: Hierarchical proof templating.

IHn: n + m = m + n, prove (n + 1) + m = m + (n + 1) ). The textual representation of a goal69

uses the the symbol ⊢ to separate hypotheses from the conclusion, and S n denotes n + 1.70

Model Interface. In early experiments, we observed that conversation-style reasoning often diverges:71

after a few rounds, the output makes very little sense, and the agent never recovers. Following Yang72

et al. [2024] – and similarly to Thakur et al. [2024] – we use a synthetic interface to summarize at73

each goal the global objective (initial theorem), the current goal (in the middle of a proof), and failed74

attempts to solve the same goal.75

3.2 Hierarchical proof templating76

An example execution of the hierarchical proof templating agent is presented in Figure 2. The agent77

pipeline is similar to the tactic-by-tactic method, but instead of focusing only on the next step, the78

agent generates a complete proof in natural language, before translating the proof in Coq syntax. For79

instance, in Figure 2, the agent uses the inversion tactics on the hypothesis H which generate two80

subgoals with a simpler hypothesis H0, and then tries to solve each subgoals using this H0 hypothesis.81

Then, rather than simply checking the proof, the Pétanque environment repairs it, by replacing failed82

tactics with holes which admits and closes the current subgoal, removing subsequent tactics until83

the focus moves to the next subgoal. Pétanque then checks that the resulting template is correct, i.e.,84

assuming a valid proof for each holes, the proof is complete. A textual representation of each holes85

is then fed back to the agent which repeat the process to fill the holes one by one. For instance, in86

Figure 2, apply H0 fails on both subgoals. The agent then repeats the process for each holes, using87

focused fine-grain reasoning to prove the corresponding subgoal. The proof is complete when there88

are no more holes.89

4 Proof search90

def beam_search(n_steps, n_actions, beam_size):
# Init
s = petanque.start(thm)
beam = [(s,[])] # (state, proofs) pairs
for step in range(n_steps)
# Generate candidates
candidates = []
for (s, p) in beam:
# Try multiple actions for each state
for a in agent.generate(s, n_actions)
sa = petanque.step(s, a)
pa = p + [a]
# Proof found!
if petanque.proof_finished(sa): return pa
else: candidates = candidates + [(sa, pa)]

# Rank candidates
beam = agent.sort(candidates)[:beam_size]

# No proof found
return None

We combine our interactive protocol with the classic91

beam search algorithm. Inspired by Yao et al. [2023],92

we use the LLM to rank and sort the proposals at each93

step of the search.94

A simplified version of the code is presented on the95

right. At each step, the agent.generate method96

generates multiple possible steps (tactics or proofs).97

Each step is then validated with the petanque.step98

method. and the state and the current proof of all the99

resulting candidates is stored. The agent.sort method then calls the LLM to discuss, compare and100

finally rank the candidates for the next step.101
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5 Evaluation102

Logical Foundations exercises: We extracted the exercises of Logical Foundations [Pierce et al.,103

2024], the first volume of the Software Foundation textbooks series that is widely used to introduce104

Coq. We extracted 179 exercices. Given the popularity of this textbook the risk of data leak is high.105

We filtered out 66 “easy” exercises that are solved with one shot prompting (see ?? in ??). This106

dataset thus comprises 113 exercises.107

BB(4) lemmas: To avoid data leak issues, we extracted the 260 lemmas from the recent proof of108

BB(4) = 107 [ccz181078, 2024]. The repository was created in April 2024, long after the knowledge109

cutoff date of GPT-4o (October 2023). To provide the necessary context for the proof, for each lemma110

we augment the prompt with all the preceding definitions and lemmas.111

Evaluation. The results are presented in the following table. The gray number in the template112

column indicates the number of proofs that were correct at the first try (no holes). On both dataset,113

we observe that the templating agent coupled with beam search114

Logical Foundations BB(4)

tactics template template

naive beam naive beam naive beam

% success 30.1 40.7 (16.8) 29.2 (23.0) 46.0 (24.0) 35.0 (40.0) 50.0

We use Coq 8.19.2 and GPT-4o (Sept. 2024) for all experiments. We observe that the template agent115

coupled with beam search (n_steps=10, n_actions=4, beam_size=3) outperforms the tactic116

agent on the Logical Foundation benchmark. To limit the costs of our experiments, we only run the117

template agent on the first 100 Lemmas of the BB(4) benchmark. For the template agent, the gray118

numbers indicate the proportion of proofs that are correct at the first try (no holes).119

6 Related work and conclusion120

LLMs and theorem provers Automatic theorem-proving is a longstanding challenge in computer121

science Newell et al. [1957]. Recent work has used neural models based on autoregressive language122

model that generate a proof tactic by tactic. Most works use finetuned LLMs [Polu and Sutskever,123

2020, Han et al., 2021, Wu et al., 2022, Yang et al., 2023, First et al., 2023], trained on (goal, tactic)124

pairs obtained from intermediate steps of existing proofs. On the other hand, Lample et al. [2022]125

uses online training, progressively collecting more data. Closest to our work, Thakur et al. [2024]126

build a tactic-by-tactic LLM agent based on GPT-4 and also use an interface to summarize past127

interactions. They, however, do not use proof repair or beam search. Other work close to ours is128

Wang et al. [2024], who use proof repair over hierarchical proofs in Isabelle, coupled with best-first129

search. Contrary to us, they use fine-tuned models and no chain-of-thought.130

Reasoning in LLMs This work is also related to recent investigations on the reasoning abilities131

of LLMs [Plaat et al., 2024]. Chain-of-Thought (CoT) prompting [Wei et al., 2022] was shown132

to improve LLM’s answers; subsequent work found that these reasoning abilities could be elicited133

zero-shot [Kojima et al., 2022]. Further work interleaved CoT with decision-making [Yao et al.,134

2022], added search and complex control flow to reasoning [Chen et al., 2022, Yao et al., 2023, Besta135

et al., 2024], incorporated refinement and feedback [Madaan et al., 2024, Shinn et al., 2024], and136

learned to generate novel reasoning traces that proved beneficial for further training [Zelikman et al.,137

2022, 2024]. Like our work, many of these methods – especially the ones using search and refinement138

– make use of LLM-based scoring or ranking functions [Zheng et al., 2023].139

Conclusion In this work, we have presented a new agent for building proofs leveraging chain of140

thought as an intermediate representation, and generating proofs by outputting step-by-step tactics or141

hierarchical proof templates. We couple this with beam search and natural language reranking and142

obtain good performance on a new evaluation set built with the help of our novel proof environment,143

Pétanque. Future work could investigate how one could use reinforcement learning to obtain better144

reasoning and performance with smaller models [OpenAI, 2024].145
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A Prompts233

A.1 Tactic-by-tactic proof construction prompt example234

Instructions235

You are an analytical and helpful assistant proficient in mathematics as well as in the use of the Coq236

theorem prover and programming language. You will be provided with a Coq/math-comp theorem237

and your task is to prove it. This will happen in interaction with a Coq proof engine which will238

execute the proof steps you give it, one at a time, and provide feedback. This is the important239

information about this task:240

Coq engine interface241

You will be provided with:242

• This information prompt;243

• The theorem to prove;244

• Successful proof steps until now (current proof);245

• Unsucessful proof step attempts with the current goal(s), if any; you know these techniques246

didn’t work, so try avoid reusing them;247

• The current goal;248

Interaction249

Your goal is to write proof steps interactively until you manage to find a complete proof for the250

proposed theorem. You will be able to interact with the proof engine by issuing the following251

commands:252

Step : Passes the string that is given after it to the Coq proof engine. Example usage:253

/step intros.

You can use several steps in each interaction, but try to be concise and advance one step at a254

time, especially if you’ve been getting errors.255

Theorem and proof information256

You have interacted 2 times with the engine.257

Theorem258

Here is the theorem to prove:259

forall f : nat -> nat,
(forall n : nat, n = f (f n)) -> forall n1 n2 : nat, f n1 = f n2 -> n1 = n2

Proof260

Here are the proof steps until now:261

intros f H n1 n2 H0.

Previous unsuccessful steps262

Here are the previous unsuccessful proof step attempts. These have all been tried before with the263

current goal(s). DOT NOT TRY ANY OF THESE STEPS, as you know they don’t work. You should264

try something different.265

rewrite H0.
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Current goal(s)266

f : nat -> nat
H : forall n : nat, n = f (f n)
n1 : nat
n2 : nat
|- a2 f n1 = f n2 -> n1 = n2

A.2 Hierarchical proof templating prompt example267

Your task is to complete a proof using the Coq proof assistant. For each theorem, I will give you the268

goal to prove in Coq syntax.269

Here are a few examples:270

<example>
<goal>
n, m, p : nat
|- nat, n + (m + p) = m + (n + p)
</goal>

<proof>
rewrite Nat.add_assoc. rewrite Nat.add_assoc.
assert (n + m = m + n) as H by apply Nat.add_comm.
rewrite H. reflexivity.
</proof>
</example>

[...]271

Think before you write the proof in <thinking> tags. First explain the goal. Then describe the proof272

step by step. Finally write the corresponding Coq proof in <proof> tags using your analysis. Do not273

repeat the context and do no restate the theorem.274

You are in the middle of the proof of involution_injective:275

forall f : nat -> nat,
(forall n : nat, n = f (f n)) -> forall n1 n2 : nat, f n1 = f n2 -> n1 = n2

Ready? Here is the current goal.276

<goal>
f : nat -> nat
H : forall n : nat, n = f (f n)
n1 : nat
n2 : nat
Hf_eq : f n1 = f n2
|- n1 = n2
</goal>

Take a deep breath and walk me through the proof.277

B Detailed results278

B.1 Logical Foundations279

For the template agent, the gray numbers indicate the proportion of proofs that are correct at the first280

try (no holes). We also report the average length of the generated proof (number of tactics) and the281

size of the smallest and the biggest proof.282
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tactics template

naive beam naive beam

andb_true_elim2 6 5 10 10
lower_letter_lowers x 8 27 8
grade_lowered_once x 8 9 15
eqblist_refl x x x x
count_member_nonzero x x x x
remove_does_not_increase_count x x x x
involution_injective 7 x 9 7
option_elim_hd x x x x
eqb_id_refl x 6 22 18
update_eq 14 12 x 14
update_neq 7 7 7 7
add_comm x 12 x x
even_S x x x 41
add_shuffle3 x x x x
mul_comm x x x x
plus_leb_compat_l x x x x
mult_plus_distr_r x x x x
mult_assoc x 12 x x
add_shuffle3' 13 x x x
bin_to_nat_pres_incr x x x x
nat_bin_nat x x x x
bin_nat_bin x x x x
optimize_0plus_b_sound x x x x
pup_to_2_ceval x x x x
loop_never_stops x x x x
no_whiles_eqv x x x x
execute_app x x x x
s_compile_correct x x x x
break_ignore 4 4 4 4
while_continue 4 4 6 6
while_stops_on_break x 4 x x
seq_continue x x x x
seq_stops_on_break 4 4 x x
while_break_true 4 4 x 6
ceval_deterministic x 8 9 3
ev_double 8 8 13 11
ev5_nonsense 6 7 x 21
ev'_ev x x x x
ev_plus_plus x x x x
total_relation_is_total x x x x
empty_relation_is_empty 5 5 x 5
O_le_n 4 4 9 4
Sn_le_Sm__n_le_m 5 8 5 10
lt_ge_cases x 7 x x
le_plus_l 6 6 x 10
plus_le x x x x
add_le_cases x 14 x x
plus_le_compat_r x 14 x 9
le_plus_trans 6 6 x 10
n_lt_m__n_le_m x 7 11 8
plus_lt x x x x
leb_complete x x 23 25
leb_correct x x x x
leb_true_trans 7 7 x 9
R_equiv_fR x x x x
subseq_refl x x x x

tactics template

naive beam naive beam

subseq_app 4 4 4 4
subseq_trans x 4 6 8
reflect_iff 13 12 18 16
eqbP_practice x 18 x x
merge_filter x 4 4 6
pal_app_rev x x x x
pal_rev 7 4 4 4
palindrome_converse x x x x
pigeonhole_principle x x x x
regex_match_correct x x x x
rev_involutive 10 13 12 12
map_rev x x x x
uncurry_curry x x x x
curry_uncurry x x x x
ceval__ceval_step x x x x
leb_plus_exists x x x x
In_map_iff 31 x x 38
In_app_iff x x 52 55
All_In x x x x
combine_odd_even_intro x x x x
combine_odd_even_elim_odd x x x x
combine_odd_even_elim_even x x x x
eqb_neq x x x x
eqb_list_true_iff x x x x
forallb_true_iff x x x x
tr_rev_correct x x x x
excluded_middle_irrefutable 18 4 9 9
total_relation_not_partial_function x x x x
lt_trans' 15 8 x x
lt_trans'' 11 12 x 18
le_S_n x 5 15 6
le_not_symmetric 10 x x 13
le_antisymmetric 14 8 x 11
le_step 9 x x 11
rtc_rsc_coincide x x x 32
booltree_ind_type_correct x x x x
Toy_correct x 7 x x
reflect_involution x x x x
t_update_neq 7 x 24 11
t_update_permute x x x x
rev_exercise1 9 6 8 6
eqb_true x x 29 24
plus_n_n_injective x x x 37
combine_split x x 29 18
bool_fn_applied_thrice x x 33 69
eqb_sym x x 21 19
eqb_trans x x x x
split_combine x x x x
existsb_existsb' x x x x
ev_8 7 7 7 7
pe_implies_pi x x x 13
ev100 x 21 4 5
andb3_exchange x 20 x 40
andb_true_elim2 4 3 8 8
andb3_exchange' x 5 x 14
nor_comm' 14 12 x 19
nor_not' 11 9 19 x

Table 1: Detailed results for the Logical Foundations benchmark.

tactics template

naive beam naive beam total

# success 34 46 (19) 33 (26) 52 113
% success 30.1 40.7 29.2 46.0 100.0

average proof length 9.1 8.13 14.4 15.4
(min, max) proof length (4, 31) (4, 21) (4, 52) (3, 69)

283

B.2 BB(4)284

For each methods, we also report the original proof sizes (mean, min, and max) on the set of lemmas285

that was successfully proved.286
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orig. naive beam

ffx_eq_x_inj 10 9 7
enc_v1_eq 6 x x
enc_pair_inj 12 x x
enc_list_inj 16 x x
andb_shortcut_spec 3 7 7
orb_shortcut_spec 3 9 7
set_ins_spec 33 x x
empty_set_WF 10 24 18
pop_back_len 8 x x
pop_back__nth_error 15 x x
list_eq__nth_error 34 48 x
pop_back'__push_back 6 x x
St_enc_inj 2 37 37
St_eqb_spec 3 3 3
Sigma_eqb_spec 3 x x
Sigma_enc_inj 2 x x
listSigma_inj 12 x 48
map_inj 9 27 26
listT_enc_inj 7 7 8
Dir_eqb_spec 3 3 13
St_list_spec 4 12 26
Sigma_list_spec 4 13 13
Dir_list_spec 4 x 13
forallb_St_spec 9 x 14
forallb_Sigma_spec 9 x 33
forallb_Dir_spec 9 17 16
Steps_trans 9 x 18
Steps_unique 11 22 x
Steps_NonHalt 22 x x
HaltsAt_unique 16 x x
NonHalt_iff 27 x x
LE_step 10 39 18
LE_Steps 10 34 x
LE_NonHalts 8 x x
HaltTimeUpperBound_LE_NonHalt 7 x x
LE_HaltsAtES_1 11 x x
LE_HaltsAtES_2 14 x x
HaltTimeUpperBound_LE_Halt 15 x x
St_swap_swap 12 x x
Trans_swap_swap 7 x 8
option_Trans_swap_swap 7 10 11
TM_swap_swap 8 x 9
ExecState_swap_swap 7 6 6
step_swap 18 x x
step_halt_swap 10 27 x
Steps_swap 27 x x
LE_swap_0 7 x 16
LE_swap 9 x x
InitES_swap 8 x 12
HaltsAt_swap_0 15 19 x

orig. naive beam

HaltsAt_swap 9 x x
HaltTimeUpperBound_LE_swap 10 x x
HaltTimeUpperBound_LE_swap_InitES 5 x x
Trans_rev_rev 7 15 7
option_Trans_rev_rev 8 10 11
TM_rev_rev 7 10 9
Tape_rev_rev 7 x 10
ExecState_rev_rev 7 x 7
fext_inv 3 5 5
step_rev 44 x x
step_halt_rev 11 x x
Steps_rev 27 x x
LE_rev_0 7 x 16
LE_rev 9 x x
InitES_rev 3 13 5
HaltsAt_rev_0 15 17 17
HaltsAt_rev 9 x 31
HaltTimeUpperBound_LE_rev 10 x x
HaltTimeUpperBound_LE_rev_InitES 5 x x
Trans_swap_id 10 x x
isUnusedState_spec 58 x x
step_UnusedState 11 14 15
Steps_UnusedState 15 x x
HaltTimeUpperBound_LE_HaltsAtES_UnusedState 68 x x
TM0_LE 7 5 5
UnusedState_TM0 10 22 21
UnusedState_dec 4 x 10
HaltTimeUpperBound_LE_HaltAtES_MergeUnusedState 31 x x
St_to_nat_inj 4 4 5
St_suc_le 4 x 23
St_suc_eq 5 x 13
St_suc_neq 3 7 10
HaltTimeUpperBound_LE_HaltAtES_UnusedState_ptr 21 x x
HaltsAtES_Trans 27 x 17
UnusedState_upd 68 x x
UnusedState_ptr_upd 97 x x
isHaltTrans_0 3 17 20
CountHaltTrans_upd 7 x x
CountHaltTrans_0_NonHalt 21 x x
Trans_list_spec 6 x x
St_leb_spec 13 x 13
TM_simplify_spec 6 7 16
TM_upd'_spec 5 9 5
nat_eqb_spec 3 x 11
TNF_Node_expand_spec 64 x x
TNF_Node_NonHalt 6 x 15
HaltDecider_cons_spec 7 x 18
SearchQueue_upd_spec 74 x x
SearchQueue_upd_bfs_spec 30 x x
SearchQueue_reset_spec 13 38 x

Table 2: Detailed results for the BB(4) benchmark.

template

naive beam total

# success (19) 35 (40) 50 113
% success 35.0 40.0 100.0

average proof length 16.2 14.4
original average proof length 7.9 7.1

(min, max) proof length (3, 48) (3, 48)
original (min, max) proof length (2, 34) (2, 27)

287
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