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Abstract

We seek to bridge the performance gap between batch ensembles (ensembles of deep net-
works with shared parameters) and deep ensembles on tasks which require not only pre-
dictions, but also uncertainty estimates for these predictions. We obtain negative theoret-
ical results on the possibility of approximating deep ensemble weights by batch ensemble
weights, and so turn to distillation. Training a batch ensemble on the outputs of deep en-
sembles improves accuracy and uncertainty estimates, without requiring hyper-parameter
tuning. This result is specific to the choice of batch ensemble architectures: distilling
deep ensembles to a single network is unsuccessful, despite single networks having only
marginally fewer parameters than batch ensembles.

1. Introduction and related work

With the increasingly widespread use of deep neural networks as tools to predict anything
from weather patterns (Agrawal et al., 2019) to medical diagnoses (Gulshan et al., 2016),
the ability to provide not only predictions but also confidence intervals for these predictions
has similarly become more widely desirable.

Bayesian neural networks (Neal, 1995; MacKay et al., 1995; Blundell et al., 2015; Osawa
et al., 2019; Wenzel et al., 2020a; Wilson and Izmailov, 2020), which learn a posterior dis-
tribution over the weights of the neural network, are a particularly elegant way of modeling
epistemic uncertainty : uncertainty in the predictions that stems from the choice of model
itself. By drawing multiple samples from the posterior distribution over weights, one can
directly obtain a empirical estimate of the standard deviation over the resulting predictions.

However, Bayesian neural networks fall short of the mark in terms of state-of-the-art
results on standard machine learning datasets, particularly in terms of accurate predictions
(Ovadia et al., 2019; Wenzel et al., 2020a). For this reason, recent work on uncertainty
benchmarking has focused on ensembles of deep networks (“deep ensembles”), which achieve
competitive accuracy and uncertainty estimates not only on held-out test data, but also on
data drawn from a distribution shifted away from the training distribution. This robustness
makes deep ensembles a particularly attractive model choice for real-world applications that
require meaningful estimates of uncertainty (Dietterich, 2000; Lakshminarayanan et al.,
2017; Ovadia et al., 2019; Gustafsson et al., 2020; Wenzel et al., 2020b).

Ensembling different deep neural nets is a popular strategy to improve upon the predic-
tive behaviors of its members (Hansen and Salamon, 1990; Dietterich, 2000). Ensembles are
typically formed over the weight initialization (Lakshminarayanan et al., 2017). Duvenaud
et al. (2016) showed that ensembling over random initializations can be viewed as sampling
from a variational distribution fitting the Bayesian posterior.
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Although deep ensembles alleviate the computational burden of training and — to some
extent — inference, an ensemble of size n is also O(n) times larger than a single (potentially
Bayesian) neural network. To reduce the memory footprint and the prediction cost of
deep ensembles Wen et al. (2020) introduced batch ensembles (BEs): ensembles of neural
networks that share a common weight parameterization, up to rank-one perturbations of
their weight matrices. In addition to the memory saving, the parametrization of BEs is
amenable to an efficient vectorization of the predictions, making it possible to predict with
all ensemble members in a single forward pass.

In this work, we seek to bridge the performance gap between batch ensembles and deep
ensembles. We first investigate the possibility of approximating the weights of a deep en-
semble by the weights of a batch ensemble; however, our theoretical and empirical results
show that the strong performance of batch ensembles cannot be attributed to their emulat-
ing deep ensembles. Hence, we turn to distillation to leverage the richer modeling of deep
ensembles. We show that training a batch ensemble on the outputs of deep ensembles im-
proves their accuracy and uncertainty estimates, without requiring hyper-parameter tuning.
Although a batch ensemble has only marginally more parameters than a single model with
the same architecture, distilled batch ensembles also significantly outperform single models
trained via distillation on deep ensemble outputs.

Distillation of Bayesian networks and ensembles for better uncertainty has been explored
previously, albeit not in the context of batch ensemble parameterizations. Snelson and
Ghahramani (2005) and Korattikara Balan et al. (2015) distill a Monte Carlo approximation
of the posterior of a Bayesian neural network into a single deterministic model. Malinin et al.
(2020) distill ensembles by leveraging prior networks (Malinin and Gales, 2018), which model
a conditional distribution over outputs. In (Tran et al., 2020), a teacher deep ensemble is
distilled into a multi-headed single network.

Preliminary. We denote by ◦ the Hadamard product of two matrices of the same shape:
∀i, j, (A ◦B)ij = AijBij . Similarly, we write A/B the Hadamard quotient of matrices A,B,
as soon as B has all non-zero coefficients. We will make use of the following property of
Hadamard products: for two matrices A,B of the same shape,

rank(A ◦B) ≤ rank(A) rank(B). (1)

2. Are batch ensembles simply approximations of deep ensembles?

A reasonable hypothesis would explain the strong performance of batch ensembles by sug-
gesting that, for most benchmarking tasks, weight matrices of trained deep ensembles can be
approximated by a batch ensemble parameterization. In this section, we provide theoretical
and empirical results showing that this explanation is unlikely.

A batch ensemble (Wen et al., 2020) imposes a shared weight structure between ensemble
members. For any layer `, the i-th member’s weight matrix Wi from layer `→ `+1 satisfies

Wi = W0` ◦Ri, with rank(Ri) = 1, (2)

where the matrix W0` is shared across all ensemble members.
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Theorem 1 Let W1, . . . ,Wn ∈ Rp×q be n weight matrices of the same shape, corresponding
to n weight matrices in a deep ensemble, such that each matrix only contains non-zero coef-
ficients. There exists a batch ensemble parameterization of [Wi]

n
i=1 given by W0, R1, . . . , Rn

such that for all i, Wi = W0 ◦Ri with rank(Ri) = 1 if and only if

∀1 ≤ i, j ≤ n, rank(Wi/Wj) = 1.

Proof Let us first assume there exists a batch ensemble parameterization of the weights
Wi of a deep ensemble: for all i, Wi = W0 ◦Ri with rank(Ri) = 1. Then, for any i 6= j ∈ [n],
Wi/Wj = Ri/Rj . Writing Rj = xy> for given vectors x,y, we have in turn 1/Rj =
1/x · (1/y)>, and so rank(1/Rj) = 1. Hence, rank(Wi/Wj) ≤ rank(Ri)rank(1/Rj) = 1.

Conversely, suppose that for all i, j, rank(Wi/Wj) = 1. Define W0 = W1 and let R1 =
[1]ij be the (rank-1) matrix of all-ones, and for j 6= 1, set Rj = Wj/W1. By assumption,
rank(Rj) = 1, and W0 ◦Rj = W1 ◦ (Wj/W1) = Wi, thereby concluding the proof.

Theorem 1 indicates that a set of n matrices of similar shape cannot be well-approximated
by batch ensemble-style parameterization, as the space of rank-k matrices of shape p× q is
not dense within the space of all matrices as soon as k < min(p, q). This result is not strictly-
speaking equivalent to dismiss the possibility of parameterizing a deep ensemble as a batch
ensemble: because neurons within a layer can be permuted without changing the behavior
of the neural network, any weight matrix [Wij ]i,j can be represented by [Wσ(i)τ(j)]i,j , with
σ and τ permutations of the corresponding layers. Appendix A shows how to properly
generalize Theorem 1 to hold over all possible representations of a deep ensemble.
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Figure 1: BE, deep ensemble init.

Unfortunately, initializing the weights of a batch
ensemble to an approximate reconstruction1 of the
weights of a deep ensemble of the same size does
not improve training. Rather, as shown in Figure 1,
batch ensembles initialized with such a reconstruc-
tion are unable to learn a good model of the data, and
remain well-below state-of-the-art performance on
Cifar-10 (for which test accuracy lies around 96%);
more results are provided in Section 4.

Remark 2 Theorem 1 cannot be easily generalized to batch ensembles with rank k > 1
parameterizations, as both sides of the equivalence will have different constraints on the
ranks of the Hadamard ratios, following from identity (1). However, the same identity
shows that there may be hope of parameterizing dense ensembles with batch ensembles of

rank
⌈√

k
⌉

, where k is the width of the largest layer in the neural network ensemble.

3. Distilling deep ensembles

Given the theoretical and empirical evidence that the weights of batch-ensemble models are
not simply a lighter representation of deep ensemble weights, we turn instead to learning
the function represented by the deep model, rather than its inner parameterization. Distil-
lation (Hinton et al., 2015) is a well-known, successful method for transferring knowledge
from large models to cheaper representations.

1. We consider the matrix factorization minW0,{Ri}
∑n

i=1 ‖W0◦Ri−Wi‖2 solved by alternative least-squares.
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We investigate the particular setting in which both teacher and student models are
ensembles (Lan et al., 2018; Malinin et al., 2020; Tran et al., 2020); our hope is that the
more precise modeling the teacher deep ensemble can be inherited by the student batch
ensemble, despite the student’s significantly reduced parameter space.

3.1. Head distillation versus knowledge distillation

When distilling from a deep ensemble of size n to a batch ensemble of equal size n, we
can ask the student model to either predict the teacher prediction averaged over ensemble
members, or instead match each student member to a corresponding teacher member, and
do one-to-one distillation. Following the notation of (Tran et al., 2020), we refer to the
former as knowledge distillation, and to the latter as head distillation (each student “head”
is being matched to a teacher “head”).

In head distillation, each student member emulates a specific teacher member. In-
tuitively, this is desirable: intra-ensemble diversity is known to be key to robustness to
dataset shift and meaningful uncertainty metrics (Masegosa, 2019; Zaidi et al., 2020). With
head distillation, the student model should inherit the teacher’s diversity.

Conversely, knowledge distillation also presents strong methodological advantages: with
the requirement of having the same ensemble size for teacher and student lifted, we can
scale the size of the student model as required to increase its capacity.

4. Experimental results

We evaluate batch ensemble models distilled on the outputs of deep ensemble teachers on the
Cifar-10 and Cifar-100 datasets (Krizhevsky, 2009). For both datasets, we train ensembles
(resp. batch ensembles) composed of four wide-resnets (Zagoruyko and Komodakis, 2016)
of shape 28-10. Results present the mean and standard deviations over 10 different initial
random seeds. For all experiments, we used the hyperparameters that provide the state-of-
the-art results for batch ensemble models (without distillation); notably, all our distillation
results where obtained without any additional hyperparameter tuning.

4.1. Distillation and weight reconstruction

As baselines, we include the performance of a simple batch ensemble trained without distil-
lation, and a single neural network (“single”) distilled from the outputs of the teacher deep
ensemble. Results are summarized in Tables 1 and 2; DE Teacher records the performance
of the (deep ensemble) teacher model, which is fixed across all experiments.

We also include results when initializing with the weights of the deep ensemble. As
discussed above, however, batch ensembles are rarely able to recover from the initialization,
and their performance is poor. We do not include the results for this method on Cifar-100,
as it did not perform meaningfully better than random.

Distilling the deep ensemble architecture into a student batch ensemble drastically im-
proves the calibration, on standard and corrupted test data (Ovadia et al., 2019). For
uncertainty metrics — ECE (Expected Callibration Error) and NLL (Negative Log Like-
lihood) — this allows the batch ensemble to match the performance of the teacher deep
ensemble, despite a 4× decrease in memory footprint. Crucially, this improvement in cali-
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Table 1: Cifar-10 results. The teacher model is a deep ensemble of 4 wide-resnets 28-10. All batch
ensembles are of size 4 and provide a factorized form of the wide-resnet 28-10. Distilled
batch ensembles match or slightly improve upon the accuracy of standard batch ensembles,
and significantly improves performance on calibration metrics.

Model Distill Head Acc. ↑ ECE ↓ NLL ↓ c-Acc. ↑ c-ECE ↓ c-NLL ↓

DE Teacher 96.8 0.009 0.155 0.784 0.086 1.015

BE 0.962 ± 0.001 0.018 ± 0.001 0.139 ± 0.005 0.782 ± 0.006 0.120 ± 0.004 0.950 ± 0.031
Lone Student 0.960 ± 0.001 0.022 ± 0.001 0.153 ± 0.005 0.762 ± 0.003 0.150 ± 0.004 1.019 ± 0.027
BE + Init × 0.448 ± 0.367 0.031 ± 0.033 0.602 ± 0.046 0.324 ± 0.236 0.049±0.052 1.423 ± 0.025
BE + Init × 0.315 ± 0.337 0.049 ± 0.092 0.844 ± 0.422 0.234 ± 0.212 0.039±0.062 1.508 ± 0.228
BE Student 0.963±0.001 0.016±0.001 0.132±0.003 0.779±0.008 0.119 ± 0.005 0.911±0.044
BE Student × 0.962 ± 0.001 0.017 ± 0.001 0.132±0.002 0.778±0.004 0.119 ± 0.003 0.903±0.019

bration is not accompanied by a degradation of accuracy metrics. We also report accuracy,
ECE and NLL on corrupted data (c-Acc., c-ECE, c-NLL), as in (Ovadia et al., 2019).

In contrast, distilling a deep ensemble into a single wide-resnet performs significantly
worse than distilling to a batch ensemble, despite the small difference in number of param-
eters (36.5M for a single wide-resnet, 36.6M for a batch ensemble of size 4).

Surprisingly, head distillation does not provide meaningful improvements over knowledge
distillation; this result is in line with those presented in (Tran et al., 2020). We speculate
that this is due to the same reason that underlies the poor performance of batch ensembles
initialized with deep ensemble weights. Namely, constraining batch ensembles to emulate
the inner representation of deep ensembles — either by weight initialization or matching
per-member predictions — is harmful.

Table 2: Cifar-100 results. All models have the same architecture as in Table 1. Once again,
distilled batch ensembles match or slightly improve upon the accuracy of standard batch
ensembles, and significantly improves performance on calibration metrics.

Model Distill Head Acc. ↑ ECE ↓ NLL ↓ c-Acc. ↑ c-ECE ↓ c-NLL ↓

DE Teacher 0.819 0.021 0.833 0.526 0.135 2.758

BE 0.818 ± 0.003 0.025 ± 0.004 0.696 ± 0.012 0.531 ± 0.004 0.145 ± 0.010 2.565 ± 0.055
Lone student 0.798 ± 0.003 0.073 ± 0.003 0.829 ± 0.006 0.513 ± 0.003 0.221 ± 0.009 2.597 ± 0.067
BE Student 0.819±0.003 0.018±0.002 0.676±0.009 0.535±0.004 0.128±0.004 2.393±0.031
BE Student × 0.820±0.003 0.019±0.005 0.672±0.007 0.534±0.004 0.130±0.010 2.397±0.045

4.2. Varying student ensemble size

As head distillation does not improve upon knowledge distillation results, it is natural to
take advantage of the comparative lack of constraints of knowledge distillation to learn
batch ensembles of increasing size for fixed teacher ensemble sizes. Figures 2 and 3 show
the impact of the student size on the different evaluation metrics.

On the Cifar-10 dataset, increasing the ensemble size immediately improve performance
across all accuracy and uncertainty metrics, on both standard and corrupted test data.
On Cifar-100, the best batch ensemble size appears to be 4, after which performance on
the standard Cifar-100 test set saturates, then begins to decay. However, on corrupted
data, increasing the batch ensemble size continues to yield meaningful improvements for
uncertainty estimates, while decreasing accuracy no more than by one percentage point.
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Figure 2: Performance on Cifar10 when increasing the number of members from 3 to 8 of a batch
ensemble; the red circle marker indicates the performance of a deep ensemble of size 4.

Figure 3: Performance on Cifar100 when increasing the number of members from 3 to 8 of a batch
ensemble; the red circle marker indicates the performance of a deep ensemble of size 4.

5. Conclusion and future work

Knowledge distillation is an inexpensive way of narrowing the gap between batch and deep
ensembles. As knowledge distillation only relies on teacher predictions, regardless of teacher
structure, knowledge distillation provides a generic and modular framework within which
architectures of teacher and student can be changed independently, e.g., using recent work
such as (Wenzel et al., 2020b; Zaidi et al., 2020). However, preliminary results (App. B.1)
suggest that hyperparameter diversity cannot be naively inherited by batch ensembles.

Surprisingly, an analysis of the disagreement between ensemble members did not show
improved diversity in distilled ensembles; similarly, the variance term introduced in (Masegosa,
2019) did not increase with distillation. This suggests that the improvements are not due to
the student models inheriting the diversity from their teachers, and leaves open the question
of the underlying cause of success for distillation.
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Appendix A. Theoretical results

Remark 3 Theorem 1 must be generalized to the case where for each i, there exists two
permutation matrices P,Q of appropriate size such that PWiQ

W1
is of rank 1. This provides a

more natural characterization of weights in neural networks, since the input-output neurons
may need to be reordered to compare weight matrices across ensemble members.

As there exists a finite number of permutation matrices of a given shape, the theoretical
results from Theorem 1 can be generalized to this setting easily.

Appendix B. Additional experimental results

B.1. Distilling from hyper-deep ensembles

We additionally investigated the possibility of distilling a batch ensemble from a hyper
deep ensemble (Wenzel et al., 2020b); results are reported in Tables 3 and 4. Note that the
teacher performance reported is still the performance of the deep ensemble teacher.

Unfortunately, batch ensembles are not able to benefit from the additional lift provided
by hyper deep ensembles.

Table 3: Cifar-10 results, including results when distilling from a hyper deep ensemble of size 4.

Model Distill Head Acc. ↑ ECE ↓ NLL ↓ c-Acc. ↑ c-ECE ↓ c-NLL ↓

DE Teacher 96.8 0.009 0.155 0.784 0.086 1.015

BE 0.962 ± 0.001 0.018 ± 0.001 0.139 ± 0.005 0.782 ± 0.006 0.120 ± 0.004 0.950 ± 0.031
Lone Student 0.960 ± 0.001 0.022 ± 0.001 0.153 ± 0.005 0.762 ± 0.003 0.150 ± 0.004 1.019 ± 0.027
BE Student 0.963±0.001 0.016±0.001 0.132±0.003 0.779±0.008 0.119±0.005 0.911±0.044
BE Student × 0.962 ± 0.001 0.017±0.001 0.132±0.002 0.778±0.004 0.119±0.003 0.903±0.019
Hyper Student 0.962 ± 0.001 0.017±0.001 0.132±0.003 0.779±0.003 0.118±0.004 0.898±0.020
Hyper Student × 0.963±0.002 0.016±0.001 0.130±0.004 0.777±0.006 0.119±0.006 0.916±0.045

Table 4: Cifar-100 results, including results when distilling from a hyper deep ensemble of size 4.

Model Distill Head Acc. ↑ ECE ↓ NLL ↓ c-Acc. ↑ c-ECE ↓ c-NLL ↓

DE Teacher 0.819 0.021 0.833 0.526 0.135 2.758

BE 0.818 ± 0.003 0.025 ± 0.004 0.696 ± 0.012 0.531 ± 0.004 0.145 ± 0.010 2.565 ± 0.055
Lone Student 0.798 +- 0.003 0.073 +- 0.003 0.829 +- 0.006 0.513 +- 0.003 0.221 +- 0.009 2.597 +- 0.067
BE Student 0.819+-0.003 0.018+-0.002 0.676+-0.009 0.535+-0.004 0.128+-0.004 2.393+-0.031
BE Student × 0.820+-0.003 0.019+-0.005 0.672+-0.007 0.534+-0.004 0.130+-0.010 2.397+-0.045
Hyper Student 0.819+-0.003 0.022 +- 0.001 0.682 +- 0.009 0.534+-0.004 0.134 +- 0.003 2.441 +- 0.041
Hyper Student × 0.820+-0.001 0.022 +- 0.002 0.679 +- 0.006 0.535+-0.004 0.131+-0.005 2.422+-0.046

B.2. Regularizing batch ensemble weights to deep ensemble weights

In a second attempt to recover deep ensemble weights within batch ensembles, we impose
a L2 regularization term with varying levels of strength during training on the difference
between the deep ensemble weights and the batch ensemble weights. However, as shown
in Table 5, this does not improve upon distillation results. Results obtained when simply
imposing the regularization without distillation are not included, as they were not as strong
as when using distillation.
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Table 5: Cifar-100 results. All models have the same architecture as in Table 1. Once again,
distilled batch ensembles match or slightly improve upon the accuracy of standard batch
ensembles, and significantly improves performance on calibration metrics.

Model Distill Head Acc. ↑ ECE ↓ NLL ↓ c-Acc. ↑ c-ECE ↓ c-NLL ↓

DE Teacher 0.819 0.021 0.833 0.526 0.135 2.758

BE 0.818 ± 0.003 0.025 ± 0.004 0.696 ± 0.012 0.531 ± 0.004 0.145 ± 0.010 2.565 ± 0.055
Lone Student 0.798 +- 0.003 0.073 +- 0.003 0.829 +- 0.006 0.513 +- 0.003 0.221 +- 0.009 2.597 +- 0.067
BE Student 0.819+-0.003 0.018+-0.002 0.676+-0.009 0.535+-0.004 0.128+-0.004 2.393+-0.031
BE Student × 0.820+-0.003 0.019+-0.005 0.672+-0.007 0.534+-0.004 0.130+-0.010 2.397+-0.045
Reg. (0.01) 0.821+-0.003 0.020 +- 0.004 0.674+-0.006 0.533+-0.006 0.132 +- 0.009 2.406+-0.059
Reg. (0.01) × 0.820+-0.001 0.021 +- 0.002 0.675+-0.005 0.534+-0.007 0.129+-0.011 2.390+-0.078
Reg. (0.1) 0.821+-0.002 0.019+-0.001 0.672+-0.004 0.537+-0.004 0.129+-0.006 2.361+-0.052
Reg. (0.1) × 0.820+-0.002 0.019+-0.002 0.672+-0.007 0.535+-0.004 0.127+-0.006 2.378+-0.041
Reg. (1.0) 0.820+-0.002 0.019+-0.002 0.675+-0.009 0.534+-0.003 0.132 +- 0.009 2.409+-0.057
Reg. (1.0) × 0.820+-0.003 0.019+-0.002 0.674+-0.007 0.536+-0.004 0.126+-0.004 2.378+-0.038
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