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ABSTRACT

Watermarking has emerged as a crucial method to distinguish AI-generated text
from human-created text. In this paper, we present a novel theoretical framework
for watermarking Large Language Models (LLMs) that jointly optimizes both
the watermarking scheme and the detection process. Our approach focuses on
maximizing detection performance while maintaining control over the worst-case
Type-I error and text distortion. We characterize the universally minimum Type-II
error, showing a fundamental trade-off between watermark detectability and text
distortion. Importantly, we identify that the optimal watermarking schemes are
adaptive to the LLM generative distribution. Building on our theoretical insights,
we propose an efficient, model-agnostic, distribution-adaptive watermarking algo-
rithm, utilizing a surrogate model alongside the Gumbel-max trick. Experiments
conducted on Llama2-13B and Mistral-8×7B models confirm the effectiveness of
our approach. Additionally, we examine incorporating robustness into our frame-
work, paving the way for future watermarking systems that withstand adversarial
attacks more effectively.

1 INTRODUCTION

Arising with Large Language Models (LLMs) (Touvron et al., 2023) that demonstrate stunning power
are substantial risks: spreading disinformation, generating fake news, engaging in plagiarism, etc.
Such risks elevate as LLMs are increasingly widely adopted for content generation. Distinguishing
AI-generated content from human-written text is then critically demanded and watermarking serves
as an effective solution to address this challenge.

Existing watermarking techniques for AI-generated text can be classified into two categories: post-
process and in-process. Post-process watermarks (Brassil et al., 1995; Yoo et al., 2023; Yang et al.,
2023; Munyer et al., 2023; Yang et al., 2022; Sato et al., 2023; Zhang et al., 2024; Abdelnabi & Fritz,
2021) are applied after the text is generated, while in-process watermarks (Wang et al., 2023; Fairoze
et al., 2023; Hu et al., 2023; Huo et al., 2024; Zhang et al., 2023; Tu et al., 2023; Ren et al., 2023) are
embedded during generation. Between the two types, in-process watermarking is more favorable due
to its flexibility and numerous techniques have been proposed to seamlessly integrate watermarks
into the generation process. Notably, an ideal in-process watermarking scheme for LLMs should
have four desired properties: 1) Detectability: the watermarking can be reliably detected with Type-I
error controlled; 2) Distortion-free (Christ et al., 2024; Kuditipudi et al., 2023): the watermarked
text preserves the quality of the original generated text by maintaining the original text distribution;
3) Robustness (Zhao et al., 2023; Liu & Bu, 2024): the watermark is resistant to modifications
aimed at its removal; 4) Model-agnostic (Kirchenbauer et al., 2023a): detection does not require
knowledge of the original watermarked LLMs or the prompts. Clearly, one expects tension between
these dimensions. Yet, despite the great efforts in designing watermarking and detection schemes that
heuristically balance these factors, theoretical understanding of the fundamental trade-offs therein is
rather limited to date.

Among existing theoretical analyses, Huang et al. (2023) frame statistical watermarking as a test of
independence between the text and the watermark, and analyze the optimal watermarking scheme
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for a specific detection process. While their analysis can be extended to a model-agnostic setting,
they do not propose a practical algorithm. In contrast, Li et al. (2024) propose a surrogate hypothesis
testing framework based on i.i.d. pivotal statistics, with the goal of identifying statistically optimal
detection rules for a given watermarking scheme. However, their method depends on a suitable
but unoptimized watermarking scheme, and their detection rule is not necessarily optimal for the
original independence test. While these studies provide useful insights, they fall short of capturing the
jointly optimal watermarking scheme and detection rule, limiting their practicality and effectiveness
in real-world applications.

In this paper, we formulate the LLM watermarking problem as an independence test between the text
and an auxiliary variable to jointly optimize both the watermarking scheme and the detector. Unlike
the classical watermarking paradigm, which employs fixed watermark messages or distributions, this
study investigates a broader definition of watermarking where watermarks are adaptively generated
based on the generative distribution of LLMs. This approach enables the full exploitation of the genera-
tive capability of LLMs, thereby enhancing watermark detection performance to new limits (Figure 1).

Figure 1: Comparison of TPR at extremely low
FPR among different watermarking methods.

Our theoretical framework characterizes the fun-
damental trade-off between detectability, dis-
tortion, and robustness by minimizing Type-II
error. To capture the detectability, we define
universal optimality in two aspects: 1) control-
ling the false alarm rate across all possible text
distributions, and 2) obtaining a universally min-
imum Type-II error for all possible detectors
and watermarking schemes. Additionally, we
measure the distortion of a watermarked LLM
using the divergence between the watermarked
text distribution and the original text distribu-
tion. Robustness, on the other hand, depends
on modifications to the watermarked text, such
as replacement, deletion/insertion, or paraphrasing. Unlike existing approaches that evaluate robust-
ness via experiments (Liu & Bu, 2024) or provide detection error bounds under specific modifications
(Kuditipudi et al., 2023; Zhao et al., 2023), our framework covers a broader range of potential attacks,
including those that preserve the semantics of the text.

Our contributions can be summarized as follows:
• In Section 2, we propose a theoretical framework for LLM watermarking and detection that

encompasses most modern LLM watermarking methods. This framework features a common
randomness shared between watermark generation and detection to perform an independence test.

• In Section 3, we characterize the universally minimum Type-II error in our framework, revealing a
fundamental trade-off between detectability and distortion. More importantly, we identify the class
of jointly optimal detectors and watermarking schemes, providing a guideline for practical design,
namely, optimal watermarking schemes should adapt to the generative distribution of LLMs.

• In Section 4, we introduce a practical token-level optimal watermarking scheme that guarantees
detection performance and demonstrates inherent robustness against token replacement attacks. In
Section 5, we present a novel watermarking method, DAWA (Distribution-Adaptive Watermarking
Algorithm), which leverages a surrogate language model and the Gumbel-max trick to achieve
model-agnosticism and computational efficiency.

• We perform extensive experiments (Section 6) using various language models, including Llama2-
13B (Touvron et al., 2023) and Mistral-8×7B (Jiang et al., 2023), across multiple datasets. DAWA
is shown to consistently outperform the compared methods, demonstrating robust performance
against token replacement attacks. As shown in Figure 1, DAWA achieves superior detection
capabilities at extremely low false positive rates.

• Lastly, we explore how to incorporate robustness against semantic-invariant attacks into our
theoretical framework (Appendix L), providing insights for designing optimal semantic-based
watermarking systems that are robust to such attacks.

Other Related Literature. The advance of LLMs boosts productivity but also presents challenges
like bias and misuse. Watermarking addresses these challenges by tracing AI-generated content and
distinguishing it from human-created material. Many watermarking methods for LLMs have been
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proposed (Zhou et al., 2024; Fu et al., 2024; Giboulot & Furon, 2024; Wu et al., 2023; Kirchenbauer
et al., 2023b), including biased and unbiased (distortion-free) watermarking. Biased watermarks
(Kirchenbauer et al., 2023a; Zhao et al., 2023; Liu & Bu, 2024; Liu et al., 2024; Qu et al., 2024)
typically alter the next-token prediction distribution to increase the likelihood of sampling certain
tokens. For example, Kirchenbauer et al. (2023a) divides the vocabulary into green and red lists
and slightly enhances the probability of green tokens in the next token prediction (NTP) distribution.
Unbiased watermarks (Zhao et al., 2024; Fernandez et al., 2023; Boroujeny et al., 2024; Christ et al.,
2024; Giboulot & Furon, 2024) maintain the original NTP distributions or texts unchanged, using
various sampling strategies to embed watermarks. The Gumbel-max watermark (Aaronson, 2023)
utilizes the Gumbel-max trick (Gumbel, 1954) to sample the next token, while Kuditipudi et al. (2023)
introduces an inverse transform method for this purpose.

Most existing watermarking schemes and detectors are heuristic and lack theoretical support. Tradi-
tional post-process watermarking schemes, which apply watermarks after generation, have been ex-
tensively studied from information-theoretic perspective (Martinian et al., 2005; Moulin & O’Sullivan,
2000; Chen, 2000; Merhav & Ordentlich, 2006; Merhav & Sabbag, 2008). For in-process watermark-
ing, while two prior works (Huang et al., 2023; Li et al., 2024) attempt to derive theoretically optimal
schemes or detectors, their solutions are either not jointly optimized or lack universal optimality as
achieved in our paper. In contrast, we propose a framework that jointly optimizes the watermarking
scheme and detector for an optimal configuration of both components.

2 PRELIMINARIES AND PROBLEM FORMULATION

Notations. For any set X , we denote the space of all probability measures over X by P(X ). For
a sequence of random variables X1, X2, . . . , Xn, and any i, j ∈ [n] with i ≤ j, we denote Xj

i :=
(Xi, . . . , Xj). We may use distortion function, namely, a function D : P(X ) × P(X ) → [0,+∞)
to measure the dissimilarity between two distributions in P(X ). For example, the total variation
distance, as a distortion, between µ, ν ∈ P(X ) is DTV(µ, ν) :=

∫
1
2 |

dµ
dν − 1| dν. For any set A ⊆ X ,

we use δA to denote its indicator function, namely, δA(x) := 1{x ∈ A}. Additionally, we denote
(x)+ := max{x, 0} and x ∧ y := min{x, y}.
Tokenization and NTP. LLMs process text through “tokenization,” namely, breaking it down into
words or word fragments called “tokens.” An LLM generates text token by token. Let V denote the
token vocabulary, typically of size |V| = O(104) (Liu, 2019; Radford et al., 2019; Zhang et al., 2022;
Touvron et al., 2023). An unwatermarked LLM generates the next token Xt based on a prompt pt
and the previous tokens xt−1

1 by sampling the Next-Token Prediction (NTP) distribution QXt|xt−1
1 ,pt.

For simplicity, the prompt dependency is suppressed in notation throughout the paper. The joint
distribution of a length-T generated token sequence XT

1 is then given by QXT
1
:=

∏T
t=1 QXt|Xt−1

1
,

which we assume to be identical to one that governs the human-generated text.

A Framework for Watermarking Scheme. Traditional post-hoc detectors identify AI-generated text
by dividing the entire text space into rejection and acceptance regions, which relies on the assumption
that certain sentences cannot be produced by humans. In contrast, modern LLM watermarking
schemes achieve the same goal by analyzing the dependence structure between text XT

1 and an
auxiliary random sequence ζT1 , thereby avoiding this unrealistic assumption.
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Detector

Common Randomness ζT1
Watermark Generation
Watermark Detection

ø
LLM
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xT
1

unwatermarked text
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Figure 2: Overview of LLM watermarking and
detection.

In this paper, we propose a general framework
for LLM watermarking and detection, as shown
in Figure 2, which encompasses most of the ex-
isting watermarking schemes. The watermark-
ing scheme and detector share a common ran-
domness represented by an auxiliary random
sequence ζT1 drawn from a space ZT (either dis-
crete or continuous). After passing through a wa-
termarking scheme, the watermarked LLM sam-
ples token sequence according to the modified
NTP distribution PXt|xt−1

1 ,ζT
1

, where PXT
1 |ζT

1
=∏T

t=1 PXt|Xt−1
1 ,ζT

1
. This process associates the generated text XT

1 with an auxiliary sequence ζT1 .
Thus, the joint distribution of the watermarked token sequence XT

1 is PXT
1

, which might be different
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from the original QXT
1

. The detector can then distinguish whether the received sequence XT
1 is

watermarked or not based on the common randomness.

To evaluate the distortion level of a watermarking scheme, we measure the statistical divergence
between the watermarked text distribution PXT

1
and the original one QXT

1
.

Definition 1 (ϵ-distorted watermarking scheme). A watermarking scheme is ϵ-distorted with respect
to distortion D, if D(PXT

1
, QXT

1
) ≤ ϵ. Here, D can be any distortion metric.

Common examples of such divergences include squared distance, total variation, KL divergence, and
Wasserstein distance. For ϵ = 0, the watermarking scheme is unbiased or distortion-free.

Specifically, our formulation allows the auxiliary random sequence ζT1 to take an arbitrary struc-
ture, which contrasts the rather restricted i.i.d. assumption considered in Li et al. (2024, Working
Hypothesis 2.1). In practice, ζT1 is usually randomly generated using a shared key accessible during
both watermark generation and detection. At first glance, our formulation may appear abstract, but
its flexibility enables existing watermarking schemes to be interpreted as special cases within this
framework.

Example 1 (Existing watermarking schemes as special cases). In the Green-Red List watermarking
scheme (Kirchenbauer et al., 2023a), at each position t, the vocabulary V is randomly split into a
green list G and a red list R, with |G| = ρ|V| for some ρ ∈ (0, 1). This split is represented by a
|V|-dimensional binary auxiliary variable ζt, indexed by x ∈ V , where ζt(x) = 1 means x ∈ G;
otherwise, x ∈ R. The watermarking scheme is as follows:

– Compute a hash of the previous token Xt−1 using a hash function h : V × R→ R and a shared
secret key, i.e., h(Xt−1, key).

– Use h(Xt−1, key) as a seed to uniformly sample the auxiliary variable ζt from the set {ζ ∈
{0, 1}|V| : ∥ζ∥1 = ρ|V|} to construct the green list G.

– Sample Xt from the adjusted NTP distribution which increases the logit of tokens in G by δ > 0:

PXt|xt−1
1 ,ζt

(x) =
Q

Xt|x
t−1
1

(x) exp(δ·1{ζt(x)=1})∑
x∈V Q

Xt|x
t−1
1

(x) exp(δ·1{ζt(x)=1}) .

A discussion of how our formulation encompasses several other schemes is provided in Appendix B.

Hypothesis Testing for Watermark Detection. Note that a sequence XT
1 generated by a water-

marked LLM depends on ζT1 , while XT
1 and ζT1 are independent if written by humans. Therefore,

detection involves distinguishing the following two hypotheses based on the pair (XT
1 , ζ

T
1 ):

• H0: XT
1 is generated by a human, i.e., (XT

1 , ζ
T
1 ) ∼ QXT

1
⊗ PζT

1
;

• H1: XT
1 is generated by a watermarked LLM, i.e., (XT

1 , ζ
T
1 ) ∼ PXT

1 ,ζT
1

.

We consider a model-agnostic detector γ : VT × ZT → {0, 1}, which maps (XT
1 , ζ

T
1 ) to the

hypothesis index (see Figure 2). In theory, we assume that the auxiliary sequence ζT1 can be fully
recovered from XT

1 and the common randomness, while this assumption is dropped in practice.

Detection performance is measured by the Type-I (false alarm) and Type-II (missed detection) error
probabilities:

β0(γ,QXT
1
, PζT

1
) := Pr(γ(XT

1 , ζ
T
1 ) ̸= 0 | H0), β1(γ, PXT

1 ,ζT
1
) := Pr(γ(XT

1 , ζ
T
1 ) ̸= 1 | H1).(1)

Optimization Problem. Given that human-generated texts can vary widely, within our proposed
framework, we aim to control the worst-case Type-I error supQ

XT
1

β0(γ,QXT
1
, PζT

1
) at a given

α ∈ (0, 1) while minimizing Type-II error. Our objective is to design an ϵ-distorted watermarking
scheme and a model-agnostic detector by solving the following optimization:

inf
γ,P

XT
1 ,ζT1

β1(γ, PXT
1 ,ζT

1
) s.t. sup

Q
XT

1

β0(γ,QXT
1
, PζT

1
) ≤ α, D(PXT

1
, QXT

1
) ≤ ϵ. (Opt-O)

The optimal objective value, denoted as β∗
1(QXT

1
, α, ϵ), is termed as universally minimum Type-II

error. This universality is due to its applicability across all potential detectors and watermarking
schemes, as well as its validity under the worst-case Type-I error scenario.

4



Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

3 JOINTLY OPTIMAL WATERMARKING SCHEME AND DETECTOR

In this section, we aim to solve the optimization in (Opt-O) and identify the jointly optimal wa-
termarking scheme and detector. However, solving (Opt-O) is challenging due to the binary na-
ture of γ and the vast set of possible γ, sized 2|V|T |Z|T . To address this, we begin with a fixed
γ(XT

1 , ζ
T
1 ) = 1{(XT

1 , ζ
T
1 ) ∈ A1}, where A1 defines the acceptance region for H1, aiming to

uncover a potential structure for the optimal detector. To this end, we simplify (Opt-O) as

inf
P

XT
1 ,ζT1

β1(γ, PXT
1 ,ζT

1
) s.t. sup

Q
XT

1

β0(γ,QXT
1
, PζT

1
) ≤ α, D(PXT

1
, QXT

1
) ≤ ϵ. (Opt-I)

Error-Distortion Tradeoff. We first derive a lower bound for the minimum Type-II error in
(Opt-I), which surprisingly does not depend on the selected detector γ and therefore also applies to
(Opt-O). We then pinpoint a type of detector and watermarking scheme that attains this lower bound,
indicating that it represents the universally minimum Type-II error. Thus, the proposed detector and
watermarking scheme are jointly optimal, as detailed in Theorem 2. The theorem below establishes
this universally minimum Type-II error for all feasible watermarking schemes and detectors.

Theorem 1 (Universally minimum Type-II error). The universally minimum Type-II error attained
from (Opt-O) is

β∗
1 (QXT

1
, α, ϵ) = min

P
XT

1
:D(P

XT
1

,Q
XT

1
)≤ϵ

∑
xT
1

(PXT
1
(xT

1 )− α)+, (2)

which is achieved by the watermarked distribution

P ∗
XT

1
= argmin

P
XT

1
:D(P

XT
1

,Q
XT

1
)≤ϵ

∑
xT
1

(PXT
1
(xT

1 )− α)+. (3)

By setting D as total variation distance DTV, (2) can be simplified as follows: If
∑

xT
1
(α −

QXT
1
(xT

1 ))+ ≥ ϵ,

β∗
1 (QXT

1
, α, ϵ) =

(∑
xT
1

(QXT
1
(xT

1 )− α)+ − ϵ
)
+
.

The proof of deferred to Appendix C. Theorem 1 shows that, for any watermarking scheme, the
fundamental limits of detection performance depend on the original NTP distribution of the LLM.

universally
minimum

Type-II error

distortion-free -distorted

universally
minimum

Type-II error

Figure 3: Universally minimum Type-II error
w/o distortion

When the original QXT
1

has lower entropy, the minimum
achievable detection error increases. This hints that it is
inherently difficult to watermark low-entropy text. How-
ever, increasing the allowable distortion ϵ can enhance the
capacity for reducing detection errors, as illustrated in Fig-
ure 3. Moreover, we find that β∗

1(QXT
1
, α, ϵ) matches the

minimum Type-II error from Huang et al. (2023, Theorem
3.2), which is notably optimal for their specific detector.
Our results, however, establish that this is the universally
minimum Type-II error across all possible detectors and
watermarking schemes, indicating that their detector be-
longs to the set of optimal detectors described below.
Jointly Optimal Design. We now present the jointly optimal watermarking schemes and detectors
that achieve the universally minimum Type-II error in Theorem 1, i.e., the solution to (Opt-O).
Theorem 2 ((Informal Statement) Jointly optimal type of watermarking schemes and detectors). For
any (QXT

1
, ϵ), the class of optimal detectors is given by

γ∗ ∈ Γ∗ :=
{
γ | γ(XT

1 , ζ
T
1 ) = 1{XT

1 = g(ζT1 )}, for some surjective g : ZT → S ⊃ VT
}
. (4)

The corresponding optimal ϵ-distorted watermarking scheme P ∗
XT

1 ,ζT
1

, whose marginal distribution

on XT
1 is P ∗

XT
1

(c.f. (3)), depends on the original distribution QXT
1

and is detailed in Appendix E.

Notably, the class of optimal detectors Γ∗ are universally optimal. This means that to guarantee the
construction of a watermarking scheme that maximizes the detection performance, we must choose a
detector from the class Γ∗. Detailed proofs are provided in Appendix E.

Discussions on Theoretically Optimal Watermarking Scheme. For any optimal detector γ∗ ∈ Γ∗

characterized by some function g, constructing the corresponding optimal watermarking scheme
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P ∗
XT

1 ,ζT
1

is equivalent to transporting the probability mass P ∗
XT

1
on VT toZT , making P ∗

ζT
1 |XT

1
(ζT1 |xT

1 )

nearly deterministic for γ∗(xT
1 , ζ

T
1 ) = 1, while keeping the worst-case Type-I error below α. A

detailed illustration is provided in Appendix F, with several important remarks as follows.

First, we observe that the derived optimal watermarking scheme P ∗
XT

1 ,ζT
1

for any γ∗ ∈ Γ∗ is adaptive
to the original LLM output distribution QXT

1
. This observation suggests that, to maximize water-

mark detection performance, watermarking schemes should fully leverage generative modeling and
make the sampling of auxiliary sequence adaptive to QXT

1
. This approach contrasts with existing

watermarking schemes, which typically sample the auxiliary sequence according to a given uniform
distribution, without adapting it to the LLM NTP distribution. This critical insight serves as a
foundation for the design of a practical watermarking scheme, which will be introduced in Section 4.

Second, in order to control the worst-case Type-I error, the construction of P ∗
XT

1 ,ζT
1

enlarges the

auxiliary sequence set ZT by including a redundant sequence ζ̃T1 such that γ(xT
1 , ζ̃

T
1 ) = 0 for all xT

1 .
This redundant auxiliary sequence ζ̃T1 plays a critical role in our proposed algorithm.

Third, the optimal watermarking scheme P ∗
XT

1 ,ζT
1

is particularly effective in reducing the false alarm

rate for low-entropy texts. Specifically, if P ∗
XT

1
(xT

1 ) > α (indicating low-entropy), the text may be
mapped to a redundant auxiliary sequence, making it harder to detect as watermarked-LLM-generated.

Lastly, we highlight that our framework and optimal results can be extended to encompass scenarios
involving a wide range of attacks, including semantic-invariant attacks. In Appendix L, we establish
the theoretical foundations for optimal robust watermarking schemes and detectors. These findings
offer valuable insights for designing advanced semantic-based watermarking algorithms that are
resilient to such attacks in the future.
Practical Challenges. While we have derived the theoretically optimal structure, there are still a
few practical challenges in its direct implementation. 1 Designing a proper function g, an alphabet
ZT and the corresponding P ∗

XT
1 ,ζT

1
is challenging, as |V|T grows exponentially with T , making it

hard to identify all pairs (xT
1 , ζ

T
1 ) such that xT

1 = g(ζT1 ). 2 The optimality is derived for static
scenarios with a fixed token length T , making it unsuitable for dynamic scenarios where the tokens
are generated incrementally with varying T . 3 In the theoretical analysis, we assume full recovery
of the auxiliary sequence ζT1 during detection. However, in practice, the detector only receives the
token sequence XT

1 , and reconstructing the auxiliary sequence ζT1 from XT
1 poses a challenge.

These practical constraints motivate the development of a more feasible version of the theoretically
optimal scheme. In Section 4, we extend it to a practical token-level optimal scheme to address 1 and
2 ; in Section 5, we propose an algorithm utilizing a surrogate language model and the Gumbel-max
trick Gumbel (1954) to overcome 3 .

4 PRACTICAL TOKEN-LEVEL OPTIMAL WATERMARKING SCHEME

In this section, we present a practical approach that approximates the theoretical framework while
ensuring its applicability to real-world scenarios. Building on the fixed-length optimal scheme, we nat-
urally extend it to accommodate varying-length scenarios by constructing the optimal watermarking
scheme incrementally for each token, i.e., P ∗

Xt,ζt|xt−1
1 ,ζt−1

1

for all t = 1, 2, . . ..

To lay the groundwork, we first revisit several heuristic detectors for some existing watermarking
schemes.
Example 2 (Examples of heuristic detectors). Two example detectors from existing works:
• Green-Red List watermark detector (Kirchenbauer et al., 2023a): γ(XT

1 , ζ
T
1 ) =

1{ 2√
T
(
∑T

t=1 1{ζt(Xt) = 1} − ρT ) ≥ λ} where λ > 0, ρ ∈ (0, 1), and ζt = (ζt(x))x∈V is

uniformly sampled from {ζ∈{0, 1}|V| :∥ζ∥1=ρ|V|} with the seed hash(Xt−1, key).
• Gumbel-max watermark detector (Aaronson, 2023): γ(XT

1 , ζ
T
1 ) = 1{−

∑T
t=1 log(1− ζt(Xt)) ≥

λ}} where λ > 0, and ζt = (ζt(x))x∈V is uniformly sampled from [0, 1]|V| with the seed
hash(Xt−n

t−1 , key) for some n.

Practical Detector Design. We observe that the commonly used heuristic detectors take
the non-optimal form by averaging the test statistics over each token: γ(XT

1 , ζ
T
1 ) =

6
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1
{

1
T

∑T
t=1 Test Statistics of (Xt, ζt) ≥ λ

}
. This token-level design provides several advantages: (1)

incremental computation of detectors for any T and 2) token-level watermarking with the alphabet
depending only on the fixed size |V|. Inspired by these detectors, we propose the following detector
to address the issues 1 and 2 mentioned earlier:

γtk(X
T
1 , ζ

T
1 ) = 1

{
1

T

T∑
t=1

1{Xt = gtk(ζt)}︸ ︷︷ ︸
Token-level adaptation of (4)

≥ λ

}
, (5)

for some surjective function gtk : Z → S ⊃ V . This detector combines the advantages of existing
token-level detectors with the optimal design from Theorem 2. The test statistic for each token
(Xt, ζt) is optimal at position t, enabling a token-level optimal watermarking scheme that improves
the detection performance for each token.

Token-Level Optimal Watermarking Scheme. Following the same rule in Theorem 2 and Appendix
E, the token-level optimal watermarking scheme is sequentially constructed based on 1{Xt =
gtk(ζt)} in (5) and the NTP distribution at each position t, acting only on the token vocabulary V .
This approach addresses the challenges 1 and 2 as well. Notably, the resulting distribution of the
token-level optimal scheme for the auxiliary variable ζt is adaptive to the original NTP distribution
QXt|xt−1

1
. Moreover, the resulting distribution on Xt is given by (comparable to P ∗

XT
1

in Theorem 2)

P ∗
Xt|xt−1

1
:= argmin

P
Xt|x

t−1
1

:D(P
Xt|x

t−1
1

,Q
Xt|x

t−1
1

)≤ϵ

∑
x∈V

(P
Xt|xt−1

1
(x)− η)+, (6)

where η ∈ (0, 1) is the token-level false alarm constraint, which is typically much greater than
the sequence-level false alarm constraint α. With a proper choice of η, we can effectively control
α. Under this scheme, we add watermarks to the generated tokens incrementally, with maximum
detection performance at each token. The details are deferred to Appendix G and the algorithm is
provided in Section 5.

Performance Analysis. We evaluate the Type-I and Type-II errors of this scheme over the entire
sequence (cf. (1)).

Lemma 3 ((Informal Statement) Token-level optimal watermarking detection errors). Under
the detector γtk in (5) and its corresponding token-level optimal watermarking scheme with
η ∈ (0,min{1, (α/

(
T

⌈Tλ⌉
)
)

1
⌈Tλ⌉ }], the worst-case Type-I error for a length-T sequence is upper

bounded by α. If we assume that two tokens with a positional distance greater than n are independent,
with a proper detector threshold, the Type-II error decays exponentially in T

n .

Although the token-level optimal watermarking scheme may not be optimal on the entire token
sequence, we show that it maintains good performance with a proper choice of token-level false alarm
rate η. The formal statement is provided in Appendix H.

Furthermore, we observe that even without explicitly introducing robustness to the token-level
optimal watermarking scheme, it inherently leads to some robustness against token replacement. The
following result shows that if the auxiliary sequence ζT1 is shared between the LLM and the detector
γtk (cf. (5)), the token at position t can be replaced with probability Pr(ζt is redundant) without
affecting detector output.

Proposition 4 (Robustness against token replacement). Under the detector γtk in (5) and
its corresponding token-level optimal watermarking scheme, the expected number of to-
kens that can be randomly replaced in XT

1 without compromising detection performance is∑T
t=1 EXt−1

1

[∑
x∈V

(
P ∗
Xt|Xt−1

1

(x|Xt−1
1 )− η

)
+

]
, with P ∗

Xt|Xt−1
1

given in (6).

5 DAWA: DISTRIBUTION-ADAPTIVE WATERMARKING ALGORITHM

In this section, we address the challenge 3 of transmitting the auxiliary sequence to the detector
without knowledge of the original LLM and prompt, using some novel tricks. Building on our
proposed token-level optimal watermarking scheme and these innovations, we develop the DAWA
(Distribution-Adaptive Watermarking Algorithm).
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Figure 4: Workflow of our practical algorithm (DAWA) for watermark generation and detection. (A1):
construct the distribution of auxiliary variable ζt based on the NTP distribution of xt; (A2): sample
ζt using the Gumbel-max trick and a shared key; (A3): adjust the NTP distribution of xt with η.

5.1 NOVEL TRICK FOR AUXILIARY SEQUENCE TRANSMISSION

Since the resulting optimal distribution of the auxiliary variable ζt is adaptive to the original NTP
distribution of LLM, it is not likely to completely reconstruct it at the detection phase without
knowledge of the LLM. One possible workaround is enforcing Pζt = Unif(Z) for both watermark
generation and detection. While this method (cf. Appendix I) simplifies the transmission, it leads to
a much higher minimum Type-II error compared to β∗

1(QXT
1
, α, ϵ) (cf. (2)), indicating a trade-off

between detection performance and a non-distribution-adaptive design.

We thus introduce a novel trick to transmit the auxiliary sequence by integrating a surrogate language
model (SLM) during the detection phase and the Gumbel-max trick Gumbel (1954) for sampling ζt.
This SLM, much smaller than the watermarked LLMs but with the same tokenizer, approximates
the watermarked distributions {P ∗

Xt|Xt−1
1

}t=1,2,... using only the text XT
1 , without the prompt. With

the approximated P ∗
Xt|Xt−1

1

, we reconstruct the sampling distribution of ζt and sample it using the
Gumbel-max trick with the key shared from watermark generation.

In Section 6, our experiments highlight that, even with incomplete recovery of ζT1 during detection, the
DAWA algorithm with this novel trick exhibits superior detection performance and greater resilience
against token replacement attack, surpassing baseline watermarking schemes.

5.2 DAWA

We first design an efficient and practical detector (cf. (5)) by defining gtk as the inverse of a hash
function hkey:

γdawa(X
T
1 , ζ

T
1 )=1

{ 1

T

T∑
t=1

1{hkey(Xt) = ζt}≥λ
}
. (7)

The DAWA is developed on the distortion-free token-level optimal watermarking scheme with ϵ = 0,
sampling the auxiliary variable adaptively based on the LLM NTP distribution, as illustrated in Figure
4 and detailed in Appendix J. Below, we elaborate on the key steps.

Watermarked Text Generation. Using the detector γdawa from (7), we define the auxiliary alphabet
Z from unique mappings {hkey(x)}x∈V plus a redundant ζ̃. At each t, Pζt|xt−1

1 ,pt is adaptive to
QXt|xt−1

1 ,pt: {
P
ζt|xt−1

1 ,pt
(ζ)← (Q

Xt|xt−1
1 ,pt

(h−1
key(ζ)) ∧ η),∀ζ ∈ Z\{ζ̃}.

P
ζt|xt−1

1 ,pt
(ζ̃)←

∑
x∈V(QXt|xt−1

1 ,pt
(x)− η)+.

(A1)

The Gumbel-max trick is then used to sample ζt:
ζt ← argmax

ζ∈Z
log(P

ζt|xt−1
1 ,pt

(ζ)) +Gt,ζ . (A2)

where Gt,ζ is sampled from the Gumbel distribution using a shared key and the previous tokens. If
ζt is non-redundant, xt = h−1

key(ζt); otherwise, xt is sampled via a multinomial distribution:

xt ∼
( (Q

Xt|xt−1
1 ,pt

(x)− η)+∑
x∈V

(
Q

Xt|xt−1
1 ,pt

(x)− η
)
+

)
x∈V

. (A3)
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Table 1: Detection performance across different LLMs
and datasets.

LLMs Methods C4 ELI5

ROC-AUC TP@1% FP TP@10% FP ROC-AUC TP@1% FP TP@10% FP

Llama2-13B

KGW-1 0.995 0.991 1.000 0.989 0.974 0.986
EXP-edit 0.986 0.968 0.996 0.983 0.960 0.995
Gumbel-Max 0.996 0.993 0.994 0.999 0.991 0.994
Ours 0.999 0.998 1.000 0.998 0.997 1.000

Mistral-8×7B

KGW-1 0.997 0.995 1.000 0.993 0.983 0.994
EXP-edit 0.993 0.970 0.997 0.994 0.972 0.996
Gumbel-Max 0.994 0.989 0.999 0.987 0.970 0.990
Ours 0.999 0.998 1.000 0.999 0.999 1.000

Table 2: Detection performance under token replace-
ment attack.

LLMs Methods C4 ELI5

ROC-AUC TP@1% FP TP@10% FP ROC-AUC TP@1% FP TP@10% FP

Llama2-13B

KGW-1 0.965 0.833 0.952 0.973 0.892 0.973
EXP-edit 0.973 0.857 0.978 0.967 0.889 0.975
Gumbel-Max 0.968 0.858 0.970 0.965 0.887 0.975
Ours 0.989 0.860 0.976 0.995 0.969 0.994

Mistral-8×7B

KGW-1 0.977 0.860 0.962 0.969 0.890 0.970
EXP-edit 0.980 0.861 0.975 0.983 0.932 0.988
Gumbel-Max 0.972 0.865 0.960 0.971 0.889 0.975
Ours 0.990 0.881 0.966 0.993 0.991 0.995

Watermarked Text Detection. A surrogate NTP distribution Q̃Xt|xt−1
1

is approximated by the SLM

for each t. We then use (A1) to approximate Pζt|xt−1
1 ,pt from Q̃Xt|xt−1

1
and sample ζt using (A2)

with the shared key. At each position t, the score 1{hkey(xt) = ζt} is 1 if ζt non-redundant and 0

otherwise. Compute 1
T

∑T
t=1 1{hkey(xt) = ζt} and compare with a threshold λ. If above λ, the text

is detected as watermarked.

6 EXPERIMENTS
The specifics of our experimental setup are provided in Appendix A, covering implementation details,
baselines (KGW-1 (Kirchenbauer et al., 2023a), EXP-edit (Kuditipudi et al., 2023), and Gumbel-Max
(Aaronson, 2023)), datasets (C4 (Raffel et al., 2020a) and ELI5 (Fan et al., 2019)) and prompts, as
well as evaluation metrics (ROC-AUC score, True Positive (TP) Rate and False Positive (FP) Rate).

6.1 MAIN EXPERIMENTAL RESULTS

Watermark Detection Performance. A low FPR is essential to avoid incorrectly identifying
unwatermarked text as watermarked. To explore our detection performance at a very low FPR, we
conduct experiments using Llama2-13B on 100k texts from the Wikipedia dataset and compute the
TPR at 1e−01, 1e−02, 1e−03, 1e−04, and 1e−05 FPR respectively. Figure 1 shows that DAWA
significantly outperforms other baselines. Furthermore, we compare the detection performance across
various language models and tasks, as presented in Table 1. Our watermarking method demonstrates
superior performance, especially on the relatively low-entropy QA dataset. This success stems
from the design of our watermarking scheme, which reduces the likelihood of low-entropy tokens
being falsely detected as watermarked, thereby lowering the FPR. Moreover, this suggests that even
without knowing the watermarked LLM during detection, we can still use the proposed SLM and
Gumbel-max trick to successfully detect the watermark.

Robustness. We assess the robustness of our watermarking methods against a token replacement
attack. As discussed in Proposition 4, the proposed token-level optimal watermarking scheme has
inherent robustness against token replacement. For each watermarked text, we randomly mask 50%
of the tokens and use T5-large (Raffel et al., 2020b) to predict the replacement for each masked
token based on the context. For each prediction, the predicted token retains a chance of being the
original one, as we do not force the replacement to differ from the original to maintain the sentence’s
semantics and quality. Yet, about 35% of tokens in watermarked sentences are still replaced on
average. Table 2 exhibits watermark detection performance under token replacement attacks across
different language models and tasks. It presents the robustness of our proposed watermarking method
against the token replacement attack. Our method remains high ROC-AUC, TPR@1%FPR, and
TPR@10%FPR under this attack compared with other baselines. This result supports our theoretical
analysis on robustness in Proposition 4.

Table 3: Comparison of BLEU score and average per-
plexity across different watermarking methods.

Methods Human KGW-1 EXP-Edit Gumbel-Max Ours

BLEU Score 0.219 0.158 0.203 0.210 0.214
Avg Perplexity 8.846 14.327 12.186 11.732 6.495

Watermarked Text Quality. To evaluate
the quality of watermarked text generated
by our watermarking methods, we report
the perplexity on C4 dataset using GPT-3
(Brown et al., 2020), and the BLEU score
on the machine translation task using the
WMT19 dataset (Barrault et al., 2019) and MBART Model (Liu et al., 2020), as shown in Table 3.
It can be observed that our scheme achieves a higher BLEU score and a lower perplexity than the
baseline distortion-free schemes and is close to the score on datasets. This demonstrates that our
scheme, employing an NTP distribution-adaptive approach, has minimal impact on the generated text
quality, preserving its naturalness and coherence.
Additional Results. In Appendix K, we show that: (1) our theoretical choice of η effectively
controls the empirical FPR; (2) our watermarking scheme does not affect generation time; and (3)
detection remains accurate and robust even with a much smaller SLM from a different model family
and without prompts.
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A EXPERIMENT SETTINGS

Implementation Details. Our approach is implemented on two language models: Llama2-13B (Tou-
vron et al., 2023), and Mistral-8×7B (Jiang et al., 2023). Llama2-7B serves as the surrogate model
for Llama2-13B, while Mistral-7B is used as the surrogate model for Mistral-8×7B. We conduct our
experiments on Nvidia A100 GPUs. In the DAWA, we set η = 0.2 and T = 200.

Baselines. We compare our methods with three existing watermarking methods: KGW-1 (Kirchen-
bauer et al., 2023a), EXP-edit (Kuditipudi et al., 2023), and Gumbel-Max (Aaronson, 2023), where
the EXP-edit and Gumbel-Max are distortion-free watermark. KGW-1 employs the prior 1 token as a
hash to create a green/red list, with the watermark strength set at 2.

Dataset and Prompt. Our experiments are conducted using two distinct datasets. The first is an
open-ended high-entropy generation dataset, a realnewslike subset from C4 (Raffel et al., 2020a).
The second is a relatively low-entropy generation dataset, ELI5 (Fan et al., 2019). The realnewslike
subset of C4 is tailored specifically to include high-quality journalistic content that mimics the style
and format of real-world news articles. We utilize the first two sentences of each text as prompts
and the following 200 tokens as human-generated text. The ELI5 dataset is specifically designed for
the task of long-form question answering (QA), with the goal of providing detailed explanations for
complex questions. We use each question as a prompt and its answer as human-generated text.

Evaluation Metrics. To evaluate the performance of watermark detection, we report the ROC-AUC
score, where the ROC curve shows the True Positive (TP) Rate against the False Positive (FP) Rate.
A higher ROC-AUC score indicates better overall performance. Additionally, we report the TP at
FR values ranging from 1e−01 to 1e−05 to specifically assess detection accuracy with a particularly
low risk of falsely classifying unwatermarked text as watermarked. The detection threshold λ is
determined empirically by the ROC-AUC score function based on unwatermarked and watermarked
sentences.

B OTHER EXISTING WATERMARKING SCHEMES

Here, we discuss additional existing watermarking schemes utilizing auxiliary variables, which can
be encompassed within our LLM watermarking formulation.

• The Gumbel-max watermarking scheme (Aaronson, 2023) applies the Gumbel-max trick (Gum-
bel, 1954) to sample the next token Xt, where the Gumbel variable is exactly the auxiliary variable
ζt, which is a |V|-dimensional vector, indexd by x. For t = 1, 2, . . . ,

– Compute a hash using the previous n tokens Xt−n
t−1 and a shared secret key, i.e., h(Xt−n

t−1 , key),
where h : Vn × R→ R.

– Use h(Xt−n
t−1 , key) as a seed to uniformly sample the auxiliary vector ζt from [0, 1]|V|.

– Sample Xt using the Gumbel-max trick

Xt = argmax
x∈V

logQXt|xt−1
1

(x)− log(− log ζt(x)).

• In the inverse transform watermarking scheme (Kuditipudi et al., 2023), the vocabulary V is
considered as [|V|] and the combination of the uniform random variable and the randomly permuted
index vector is the auxiliary variable ζt.

– Use key as a seed to uniformly and independently sample {Ut}Tt=1 from [0, 1], and {πt}Tt=1 from
the space of permutations over [|V|]. Let the auxiliary variable ζt = (Ut, πt), for t = 1, 2, . . . , T .

– Sample Xt as follows

Xt = π−1
t

(
min

{
i ∈ [|V|] :

∑
x∈[|V|]

(
QXt|xt−1

1
(x)1{πt(x) ≤ i}

)
≥ Ut

})
,

where π−1
t denotes the inverse permutation.

• In adaptive watermarking by Liu & Bu (2024), the authors introduce a watermarking scheme
that adopts a technique similar to the Green-Red List approach but replaces the hash function with
a pretrained neural network h. The auxiliary variable ζt is sampled from the set {v ∈ {0, 1}|V| :
∥v∥1 = ρ|V|} using the seed h(ϕ(Xt−1

1 ), key), where h takes the semantics ϕ(Xt−1
1 ) of the
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generated text and the secret key as inputs. They sample Xt using the same process as the Green-Red
List approach.

C PROOF OF THEOREM 1

According to the Type-I error constraint, we have ∀xT
1 ∈ VT ,

α ≥ max
Q

XT
1

EQ
XT

1
P

ζT1

[1{(XT
1 , ζ

T
1 ) ∈ A1}]

≥ Eδ
xT
1
P

ζT1

[1{(XT
1 , ζ

T
1 ) ∈ A1}]

= EP
ζT1

[1{(xT
1 , ζ

T
1 ) ∈ A1}]

=

{∑
ζT
1
PζT

1
(ζT1 )1{(xT

1 , ζ
T
1 ) ∈ A1}, Z is discrete;∫

PζT
1
(ζT1 )1{(xT

1 , ζ
T
1 ) ∈ A1} dζT1 , Z is continuouts;

.

In the following, for notational simplicity, we assume thatZ is discrete. However, the derivations hold
for both discreteZ and continuousZ . The Type-II error is given by 1−EP

XT
1 ,ζT1

[1{(XT
1 , ζ

T
1 ) ∈ A1}].

We have

EP
XT

1 ,ζT1

[1{(XT
1 , ζ

T
1 ) ∈ A1}] =

∑
xT
1

∑
ζT
1

PXT
1 ,ζT

1
(xT

1 , ζ
T
1 )1{(xT

1 , ζ
T
1 ) ∈ A1}

︸ ︷︷ ︸
C(xT

1 )

, (8)

where for all xT
1 ∈ VT ,

C(xT
1 ) ≤ PXT

1
(xT

1 ) and C(xT
1 ) ≤

∑
ζT
1

PζT
1
(ζT1 )1{(xT

1 , ζ
T
1 ) ∈ A1} ≤ α

according to the Type-I error bound. Therefore,

EP
XT

1 ,ζT1

[1{(XT
1 , ζ

T
1 ) ∈ A1}] =

∑
xT
1

C(xT
1 ) ≤

∑
xT
1

(PXT
1
(xT

1 ) ∧ α)

= 1−
∑
xT
1

(PXT
1
(xT

1 )− α)+ (9)

where (9) is maximized at

P ∗
XT

1
:= argmin

P
XT

1
:D(P

XT
1
,Q

XT
1
)≤ϵ

∑
xT
1

(PXT
1
(xT

1 )− α)+. (10)

For any PXT
1

, the Type-II error is lower bounded by

EP
XT

1 ,ζT1

[1{(XT
1 , ζ

T
1 ) /∈ A1}] ≥

∑
xT
1

(PXT
1
(xT

1 )− α)+.

By plugging P ∗
XT

1
into this lower bound, we obtain a Type-II lower bound that holds for all γ and

PXT
1 ,ζT

1
. Recall that Huang et al. (2023) proposed a type of detector and watermarking scheme that

achieved this lower bound. As we demonstrate, it is actually the universal minimum Type-II error
over all possible γ and PXT

1 ,ζT
1

, denoted by β∗
1(QXT

1
, ϵ, α).

Specifically, define ϵ∗(xT
1 ) = QXT

1
(xT

1 )− P ∗
XT

1
(xT

1 ) and we have∑
xT
1 :P∗

XT
1

(xT
1 )≥α

ϵ∗(xT
1 ) =

∑
xT
1 :P∗

XT
1

(xT
1 )≥α,ϵ∗(xT

1 )≥0

ϵ∗(xT
1 ) +

∑
xT
1 :P∗

XT
1

(xT
1 )≥α,ϵ∗(xT

1 )≤0

ϵ∗(xT
1 )

︸ ︷︷ ︸
≤0

≤
∑

xT
1 :P∗

XT
1

(xT
1 )≥α,ϵ∗(xT

1 )≥0

ϵ∗(xT
1 )
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=
∑

xT
1 :P∗

XT
1

(xT
1 )≥α,Q

XT
1
(xT

1 )≥P∗
XT

1

(xT
1 )

ϵ∗(xT
1 )

≤
∑

xT
1 :Q

XT
1
(xT

1 )≥P∗
XT

1

(xT
1 )

ϵ∗(xT
1 ) ≤ ϵ

where the last inequality follows from the total variation distance constraint DTV(PXT
1
, QXT

1
) ≤ ϵ.

We rewrite β∗
1(QXT

1
, ϵ, α) as follows:

β∗
1(QXT

1
, ϵ, α) = min

P
XT

1
:DTV(PXT

1
,Q

XT
1
)≤ϵ

∑
xT
1

(PXT
1
(xT

1 )− α)+ (11)

=
∑

xT
1 :P∗

XT
1

(xT
1 )≥α

(P ∗
XT

1
(xT

1 )− α),

=
∑

xT
1 :P∗

XT
1

(xT
1 )≥α

(QXT
1
(xT

1 )− ϵ∗(xT
1 )− α)

=
∑

xT
1 :P∗

XT
1

(xT
1 )≥α

(QXT
1
(xT

1 )− α)−
∑

xT
1 :P∗

XT
1

(xT
1 )≥α

ϵ∗(xT
1 )

≥
∑
xT
1

(QXT
1
(xT

1 )− α)+ − ϵ,

where the last inequality follows from
∑

xT
1 :P∗

XT
1

(xT
1 )≥α ϵ∗(xT

1 ) ≤ ϵ, i.e. the total variation constraint

limits how much the distribution P ∗
XT

1
can be perturbed from QXT

1
. Since β∗

1(QXT
1
, ϵ, α) ≥ 0, finally

we have

β∗
1(QXT

1
, ϵ, α) ≥

(∑
xT
1

(QXT
1
(xT

1 )− α)+ − ϵ

)
+

.

Notably, the lower bound is achieved when {xT
1 : P ∗

XT
1
(xT

1 ) ≥ α} = {xT
1 : QXT

1
(xT

1 ) ≥ P ∗
XT

1
(xT

1 )}
and DTV(QXT

1
, P ∗

XT
1
) = ϵ. That is, to construct P ∗

XT
1

, an ϵ amount of the mass of QXT
1

above α

is moved to below α, which is possible only when
∑

xT
1
(α − QXT

1
(xT

1 ))+ ≥ ϵ. Note that Huang
et al. (2023, Theorem 3.2) points out a sufficient condition for this to hold: |V|T ≥ 1

α . The optimal
distribution P ∗

XT
1

thus satisfies∑
xT
1 :Q

XT
1
(xT

1 )≥α

(QXT
1
(xT

1 )− P ∗
XT

1
(xT

1 )) =
∑

xT
1 :Q

XT
1
(xT

1 )≤α

(P ∗
XT

1
(xT

1 )−QXT
1
(xT

1 )) = ϵ.

Refined constraints for optimization. We notice that the feasible region of (Opt-I) can be further
reduced as follows:

min
P

XT
1

min
P

ζT1 |XT
1

EP
XT

1
P

ζT1 |XT
1

[1− γ(XT
1 , ζ

T
1 )] (Opt-II)

s.t.
∫

PζT
1 |XT

1
(ζT1 |xT

1 ) dζ
T
1 = 1, ∀xT

1∫
PζT

1 |XT
1
(ζT1 |xT

1 )γ(x
T
1 , ζ

T
1 ) ≤ 1 ∧ α

PXT
1
(xT

1 )
, ∀xT

1 (12)

DTV(PXT
1
, QXT

1
) ≤ ϵ,

sup
Q

XT
1

∑
xT
1

QXT
1
(xT

1 )

∫ (∑
yT
1

PζT
1 |XT

1
(ζT1 |yT1 )PXT

1
(yT1 )

)
γ(xT

1 , ζ
T
1 ) dζ

T
1 ≤ α,
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where (12) is an additional constraint on PζT
1 |XT

1
. If and only if (12) can be achieved with equality,

the minimum of the objective function EP
XT

1
P

ζT1 |XT
1

[1− γ(XT
1 , ζ

T
1 )] reaches (2).

D AN EXAMPLE OF SUBOPTIMAL DETECTORS AND ITS PROOF

To better illustrate the universal optimality of the class of detectors Γ∗, we provide an example of
suboptimal detectors where no watermarking scheme can achieve universally optimal performance.

Example 3 (Suboptimal detectors). Consider a detector γ(XT
1 , ζ

T
1 ) = 1{f(XT

1 ) =
ζT1 }, for some surjective function f : VT → S ⊆ ZT . The minimum Type-
II error attained by the corresponding optimal watermarking scheme from (Opt-I) is
minP

XT
1
:D(P

XT
1
,Q

XT
1
)≤ϵ

∑
s∈S

((∑
xT
1 :f(xT

1 )=s PXT
1
(xT

1 )
)
− α

)
+

, higher than β∗
1(QXT

1
, α, ϵ).

In the robustness discussion at the end of the paper, we will further show that this is, in fact, optimal
in the presence of certain types of text modifications.

In this proof, we assume that Z is discrete for simplicity. However, the result holds for continuous Z
without loss of generality. If the detector accepts the form γ(XT

1 , ζ
T
1 ) = 1{f(XT

1 ) = ζT1 } for some
surjective function f : VT → S and S ⊆ ZT , we have for any s ∈ S,

α ≥ sup
Q

XT
1

EQ
XT

1
P

ζT1

[1{f(XT
1 ) = ζT1 }] ≥ EP

ζT1

[1{s = ζT1 }]

=
∑
ζT
1

PζT
1
(ζT1 )1{s = ζT1 },

and (8) can be rewritten as

EP
XT

1 ,ζT1

[1{f(XT
1 ) = ζT1 }] =

∑
s∈S

∑
xT
1 :f(xT

1 )=s

∑
ζT
1

PXT
1 ,ζT

1
(xT

1 , ζ
T
1 )1{f(xT

1 ) = ζT1 }︸ ︷︷ ︸
C(s)

,

where

C(s) ≤
∑

xT
1 :f(xT

1 )=s

PXT
1
(xT

1 ) and C(s) ≤
∑
ζT
1

PζT
1
(ζT1 )1{s = ζT1 } ≤ α.

Therefore, the Type-II error for such type of detector γ is lower bounded by

EP
XT

1 ,ζT1

[1{f(XT
1 ) ̸= ζT1 }]

= 1−
∑
s∈S

C(s) ≥ 1−
∑
s∈S

(( ∑
xT
1 :f(xT

1 )=s

PXT
1
(xT

1 )

)
∧ α

)

=
∑
s∈S

(( ∑
xT
1 :f(xT

1 )=s

PXT
1
(xT

1 )

)
− α

)
+

≥ min
P

XT
1
:DTV(PXT

1
,Q

XT
1
)≤ϵ

∑
s∈S

(( ∑
xT
1 :f(xT

1 )=s

PXT
1
(xT

1 )

)
− α

)
+

,

where the last inequality holds with equality when

PXT
1
= argmin

P
XT

1
:DTV(PXT

1
,Q

XT
1
)≤ϵ

∑
s∈S

(( ∑
xT
1 :f(xT

1 )=s

PXT
1
(xT

1 )

)
− α

)
+

.

This minimum achievable Type-II error is higher than β∗
1(QXT

1
, α, ϵ) (cf. (11)) due to the summation

over {xT
1 : f(xT

1 ) = s}.

E FORMAL STATEMENT OF THEOREM 2 AND ITS PROOF

Theorem 2 [Formal] (Optimal type of detectors and watermarking schemes). The set of all detectors
that achieve the minimum Type-II error β∗

1(QXT
1
, α, ϵ) in Theorem 1 for all text distribution QXT

1
∈

16



Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

P(VT ) and distortion level ϵ ≥ 0 is precisely

Γ∗ :=
{
γ |γ(XT

1 , ζ
T
1 ) = 1{XT

1 = g(ζT1 )}, for some surjective g : ZT → S ⊃ VT
}
.

For any valid function g, choose a redundant auxiliary value ζ̃T1 ∈ ZT such that xT
1 ̸= g(ζ̃T1 ) for all

xT
1 ∈ VT . The detailed construction of the optimal watermarking scheme is as follows:

P ∗
XT

1
= min

P
XT

1
:D(P

XT
1
,Q

XT
1
)≤ϵ

∑
xT
1

(PXT
1
(xT

1 )− α)+,

and for any xT
1 ∈ VT , P ∗

ζT
1 |XT

1
(ζT1 |xT

1 ) satisfies (13)
P ∗
XT

1
(xT

1 )
∑

ζT
1
P ∗
ζT
1 |XT

1
(ζT1 |xT

1 )γ(x
T
1 , ζ

T
1 ) = P ∗

XT
1
(xT

1 ) ∧ α, ∀ζT1 s.t. γ(xT
1 , ζ

T
1 ) = 1;

P ∗
XT

1
(xT

1 )P
∗
ζT
1 |XT

1
(ζT1 |xT

1 ) =
(
P ∗
XT

1
(xT

1 )− α
)
+
, if ζT1 = ζ̃T1 ;

P ∗
ζT
1 |XT

1
(ζT1 |xT

1 ) = 0, otherwise.

Proof. First, we observe that the lower bound on the Type-II error in (2) is attained if and only if
the constraint in (12) holds with equality for all xT

1 and for the optimizer. Thus, it suffices to show
that for any detector γ /∈ Γ∗, the constraint in (12) cannot hold with equality for all xT

1 given any
text distributions QXT

1
. First define an arbitrary surjective function g : ZT → S, where S is on

the same metric space as VT . Cases 1 and 2 prove that VT ⊂ S. Case 3 proves that γ can only be
γ(XT

1 , ζ
T
1 ) = 1{XT

1 = g(ζT1 )}.

• Case 1: γ(XT
1 , ζ

T
1 ) = 1{XT

1 = g(ζT1 )} but S ⊂ VT . There exists x̃T
1 such that for all ζT1 ,

1{x̃T
1 = g(ζT1 )} = 0. Under this case, (12) cannot hold with equality for x̃T

1 since the LHS
is always 0 while the RHS is positive.

• Case 2: γ(XT
1 , ζ

T
1 ) = 1{XT

1 = g(ζT1 )} but S = VT . Let us start from the simple case where
T = 1, V = {x1, x2}, Z = {ζ1, ζ2}, and g is an identity mapping. Given any QX and any feasible
PX such that DTV(PX , QX) ≤ ϵ, when (12) holds with equality, i.e.,

PX,ζ(x1, ζ1) = PX(x1) ∧ α and PX,ζ(x2, ζ2) = PX(x2) ∧ α,
then the marginal Pζ is given by: Pζ(ζ1) = PX(x1) ∧ α+ (PX(x2)− α)+, Pζ(ζ2) = PX(x2) ∧
α+ (PX(x1)− α)+. The worst-case Type-I error is given by

sup
QX

(
QX(x1)

(
PX(x1) ∧ α+ (PX(x2)− α)+

)
+QX(x2)

(
PX(x2) ∧ α+ (PX(x1)− α)+

))

≥ PX(x1) ∧ α+ (PX(x2)− α)+

> α, if PX(x1) > α,PX(x2) > α.
It implies that for any QX such that {PX ∈ P(V) : DTV(PX , QX) ≤ ϵ} ⊆ {PX ∈ P(V) :
PX(x1) > α,PX(x2) > α}, the false-alarm constraint is violated when (12) holds with equality.
It can be easily verified that this result also holds for larger (T,V,Z) and other functions g : ZT →
VT .

• Case 3: Let Ξγ(x
T
1 ) := {ζT1 ∈ ZT : γ(xT

1 , ζ
T
1 ) = 1}. ∃xT

1 ̸= yT1 ∈ VT , s.t. Ξ(xT
1 ) ∩ Ξ(yT1 ) ̸= ∅.

For any detector γ /∈ Γ∗ that does not fall into Cases 1 and 2, it falls into Case 3. Let us start
from the simple case where T = 1, V = {x1, x2}, Z = {ζ1, ζ2, ζ3}. Consider a detector γ as
follows: γ(x1, ζ1) = γ(x2, ζ1) = 1 and γ(x, ζ) = 0 for all other pairs (x, ζ) ∈ V × Z . Hence,
Ξ(x1) ∩ Ξ(x2) = {ζ1}. When (12) holds with equality, i.e.,

PX,ζ(x1, ζ1) = PX(x1) ∧ α and PX,ζ(x2, ζ1) = PX(x2) ∧ α,
we have the worst-case Type-I error lower bounded by

sup
QX

(
QX(x1)Pζ(ζ1) +QX(x2)Pζ(ζ1)

)
= Pζ(ζ1) = PX(x1) ∧ α+ PX(x2) ∧ α

> α, if PX(x1) > α or PX(x2) > α.
Thus, for any QX such that {PX ∈ P(V) : DTV(PX , QX) ≤ ϵ} ⊆ {PX ∈ P(V) : PX(x1) >
α or PX(x2) > α}, the false-alarm constraint is violated when (12) holds with equality.
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If we consider a detector γ as follows: γ(x1, ζ1) = γ(x2, ζ1) = γ(x2, ζ2) = 1 and γ(x, ζ) = 0
for all other pairs (x, ζ) ∈ V × Z . We still have Ξ(x1) ∩ Ξ(x2) = {ζ1}. When (12) holds with
equality, i.e.,

PX,ζ(x1, ζ1) = PX(x1) ∧ α and PX,ζ(x2, ζ1) + PX,ζ(x2, ζ2) = PX(x2) ∧ α,
we have the worst-case Type-I error lower bounded by

sup
QX

(
QX(x1)Pζ(ζ1) +QX(x2)(Pζ(ζ1) + Pζ(ζ2))

)
= sup

QX

(
Pζ(ζ1) +QX(x2)Pζ(ζ2)

)
= Pζ(ζ1) + Pζ(ζ2) = PX(x1) ∧ α+ PX(x2) ∧ α > α, if PX(x1) > α or PX(x2) > α,

which is the same as the previous result.

If we let V = {x1, x2, x3}, Z = {ζ1, ζ2, ζ3, ζ4} and γ(x3, ζ3) = 1 in addition to the afore-
mentioned γ, we can similarly show that the worst-case Type-I error is larger than α for some
distributions QX .

Therefore, it can be observed that as long as Ξ(xT
1 ) ∩ Ξ(yT1 ) ̸= ∅ for some xT

1 ̸= yT1 ∈ VT , (12)
can not be achieved with equality for all QXT

1
and ϵ even for larger (T,V,Z) as well as continuous

Z .

In conclusion, for any detector γ /∈ Γ∗, the universal minimum Type-II error in (2) cannot be obtained
for all QXT

1
and ϵ.

Since the optimal detector takes the form γ(XT
1 , ζ

T
1 ) = 1{XT

1 = g(ζT1 )} for some surjective
function g : ZT → S, S ⊃ VT , and the token vocabulary is discrete, it suffices to consider discrete
Z to derive the optimal watermarking scheme.

Under the watermarking scheme P ∗
XT

1 ,ζT
1

(cf. (10) and (13)), the Type-I and Type-II errors are given
by:

Type-I error:

∀yT1 ∈ VT , EP∗
ζT1

[1{yT1 = g(ζT1 )}] =
∑
ζT
1

P ∗
ζT
1
(ζT1 )1{yT1 = g(ζT1 )}

=
∑
ζT
1

∑
xT
1

P ∗
XT

1 ,ζT
1
(xT

1 , ζ
T
1 )1{yT1 = g(ζT1 )}

= P ∗
XT

1
(yT1 )

∑
ζT
1

P ∗
ζT
1 |XT

1
(ζT1 |yT1 )1{yT1 = g(ζT1 )} = P ∗

XT
1
(yT1 ) ∧ α

≤ α,

and since any distribution QXT
1

can be written as a linear combinations of δyT
1

, we have

max
Q

XT
1

EQ
XT

1
P∗

ζT1

[1{XT
1 = g(ζT1 )}] ≤ α.

Type-II error:
1− EP∗

XT
1 ,ζT1

[1{XT
1 = g(ζT1 )}]

= 1−
∑
xT
1

∑
ζT
1

P ∗
XT

1 ,ζT
1
(xT

1 , ζ
T
1 )1{xT

1 = g(ζT1 )}

= 1−
∑
xT
1

P ∗
XT

1
(xT

1 )
∑
ζT
1

P ∗
ζT
1 |XT

1
(ζT1 |xT

1 )1{xT
1 = g(ζT1 )}

= 1−
∑
xT
1

(
P ∗
XT

1
(xT

1 ) ∧ α
)

=
∑

xT
1 :P∗

XT
1

(xT
1 )>α

(P ∗
XT

1
(xT

1 )− α).
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The optimality of P ∗
XT

1 ,ζT
1

is thus proved. We note that (12) in (Opt-II) holds with equality under this
optimal conditional distribution P ∗

ζT
1 |XT

1
.

Compared to Huang et al. (2023, Theorem 3.2), their proposed detector is equivalent to γ(XT
1 , ζ

T
1 ) =

1{XT
1 = ζT1 }, where ZT = VT ∪ {ζ̃T1 } and ζ̃T1 /∈ VT , meaning that it belongs to Γ∗.

F ILLUSTRATION OF CONSTRUCTION OF THE OPTIMAL WATERMARKING
SCHEME

Using a toy example in Figure 5, we now illustrate how to construct the optimal watermarking
schemes, where

P ∗
XT

1
= argmin

P
XT

1
:D(P

XT
1
,Q

XT
1
)≤ϵ

∑
xT
1

(PXT
1
(xT

1 )− α)+.

redundant

Figure 5: A toy example of the optimal detector and watermarking scheme. Links between V and Z
suggest P ∗

X1,ζ1
> 0.

Constructing the optimal watermarking scheme P ∗
XT

1 ,ζT
1

is equivalent to transporting the probability

mass P ∗
XT

1
on V to Z , maximizing P ∗

XT
1 ,ζT

1
(xT

1 , ζ
T
1 ) when xT

1 = g(ζT1 ), while keeping the worst-case
Type-I error below α. Without loss of generality, by letting T = 1, we present Figure 5 to visualize
the optimal watermarking scheme. The construction process is given step by step as follows:
– Identify text-auxiliary pairs: We begin by identifying text-auxiliary pairs (x, ζ) ∈ V × Z with
γ(x, ζ) = 1{x = g(ζ)} = 1 and connect them by blue solid lines.
– Introducing redundant auxiliary value: We enlarge Z to include an additional value ζ̃ and set
γ(x, ζ̃) = 0 for all x. We will call ζ̃ “redundant”.
– Mass allocation for P ∗

X1
(x) > α: If P ∗

X1
(x) > α, we transfer α mass of P ∗

X1
(x) to the ζ connected

by the blue solid lines. The excess mass is transferred to the redundant ζ̃ (orange dashed lines).
Specifically, for x(1), where P ∗

X1
(x(1)) > α and x(1) = g(ζ(1)) = g(ζ(2)), we move α units of

mass from P ∗
X1

(x(1)) to P ∗
ζ1
(ζ(1)) and P ∗

ζ1
(ζ(2)), ensuring that P ∗

ζ1
(ζ(1)) + P ∗

ζ1
(ζ(2)) = α. The

rest (P ∗
X1

(x(1)) − α) units of mass is moved to ζ̃. Similarly, for x(2), where P ∗
X1

(x(2)) > α and
x(2) = g(ζ(3)), we move α mass from P ∗

X1
(x(2)) to P ∗

ζ1
(ζ(3)) and (P ∗

X1
(x(2)) − α) mass to ζ̃.

Consequently, the probability of ζ̃ is Pζ1(ζ̃) = (P ∗
X1

(x(1)) − α) + (P ∗
X1

(x(2)) − α). In this way,
there is a chance for the lower-entropy texts x(1) and x(2) to be mapped to the redundant ζ̃ during
watermark generation.
– Mass allocation for P ∗

X1
(x) < α: For x(3), where P ∗

X1
(x(3)) < α and x(3) = g(ζ(4)), we move

the entire mass P ∗
X1

(x(3)) to P ∗
ζ1
(ζ(4)) along the blue solid line. It means that higher-entropy texts

will not be mapped to the redundant ζ̃ during watermark generation.
– Outcome: This construction ensures that P ∗

ζ1
(ζ) ≤ α for all ζ ∈ {ζ(1), ζ(2), ζ(3), ζ(4)}, keeping

the worst-case Type-I error under control. The Type-II error is equal to P ∗
ζ1
(ζ̃), which is exactly the

universally minimum Type-II error. This scheme can be similarly generalized to T > 1.

In Figure 5, when there is no link between (x, ζ) ∈ V ×Z , the joint probability P ∗
X1,ζ1

(x, ζ) = 0. By
letting ϵ = 0, the scheme guarantees that the watermarked LLM remains unbiased (distortion-free).
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Note that the detector proposed in Huang et al. (2023, Theorem 3.2) is also included in our framework,
see Appendix E.

G CONSTRUCTION OF TOKEN-LEVEL OPTIMAL WATERMARKING SCHEME

The toke-level optimal watermarking scheme is the optimal solution to the following optimization
problem:

inf
P

Xt,ζt|X
t−1
1 ,ζ

t−1
1

EP
Xt,ζt|X

t−1
1 ,ζ

t−1
1

[1− 1{Xt = gtk(ζt)}]

s.t. sup
Q

Xt|X
t−1
1

EQ
Xt|X

t−1
1

⊗P
ζt|ζ

t−1
1

[1{Xt = gtk(ζt)}] ≤ η, DTV(PXt|Xt−1
1

, QXt|Xt−1
1

) ≤ ϵ.

The optimal solution P ∗
Xt,ζt|Xt−1

1 ,ζt−1
1

follows the similar rule as that of P ∗
XT

1 ,ζT
1

in Theorem 2 with

(QXT
1
, PXT

1
, α) replaced by (QXt|Xt−1

1
, PXt|Xt−1

1
, η). We refer readers to Appendix E for further

details.

H FORMAL STATEMENT OF LEMMA 3 AND ITS PROOF

Let P token∗
XT

1 ,ζT
1

and P token∗
ζT
1

denote the joint distributions induced by the token-level optimal watermark-
ing scheme.

Lemma 3 (Formal) (Token-level optimal watermarking detection errors). Let η = (α/
(

T
⌈Tλ⌉

)
)

1
⌈Tλ⌉ .

Under the detector γ in (5) and the token-level optimal watermarking scheme P ∗
Xt,ζt|Xt−1

1 ,ζt−1
1

, the
Type-I error is upper bounded by

sup
Q

XT
1

β0(γ,QXT
1
, P token∗

ζT
1

) ≤ α.

Assume that when T and n ≤ T are both large enough, token Xt is independent of Xt−i, i.e.,
PXt,Xt−i = PXt ⊗ PXt−i , for all i ≥ n+ 1 and t ∈ [T ]. Let IT,n(i) = ([i− n, i+ n] ∩ [T ])\{i}.
By setting the detector threshold as λ = a

T

∑T
t=1 EXt,ζt [1{Xt = g(ζt)}] for some a ∈ [0, 1], the

Type-II error exponent is

− log β1(γ, P
token∗
XT

1 ,ζT
1
) = Ω

(
T

n

)
.

The following is the proof of Lemma 3.

To choose ⌈Tλ⌉ indices out of {1, . . . , T}, there are
(

T
⌈Tλ⌉

)
choices. Let k = 1, . . . ,

(
T

⌈Tλ⌉
)

and Sk

be the k-th set of the chosen indices. The Type-I error is upper bounded by

β0(γ,QX(T ) , P token∗
ζT
1

) = Pr

(
1

T

T∑
t=1

1{Xt = g(ζt)} ≥ λ | H0

)

≤ Pr

( ( T
⌈Tλ⌉)⋃
k=1

{1{Xt = g(ζt)} = 1,∀t ∈ Sk} | H0

)

≤
( T
⌈Tλ⌉)∑
k=1

Pr

(
{1{Xt = g(ζt)} = 1,∀t ∈ Sk} | H0

)
︸ ︷︷ ︸

PFA,k

.

Without loss of generality, let m = ⌈Tλ⌉ and Sk = {1, 2, . . . ,m}. We can rewrite PFA,k as

PFA,k = EQ
X(T )⊗P

ζ(T )
[{1{Xt = g(ζt)} = 1,∀t ∈ Sk}]

= EQ
X(T )⊗P

ζ(T )
[
∏
t∈Sk

1{Xt = g(ζt)}]
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= EQX1
⊗Pζ1

[
1{X1 = g(ζ1)}EQX2|X1

⊗Pζ2|ζ1

[
1{X2 = g(ζ2)} · · ·

· · ·EQ
Xm|Xm−1

1
⊗P

ζm|ζm−1
1

[1{Xm = g(ζm)}]
]
· · ·

]]
≤ ηm, ∀QXT

1
.

Then the Type-I error is finally upper bounded by

sup
Q

XT
1

β0(γ,QXT
1
, P token∗

ζT
1

) ≤
(

T

⌈Tλ⌉

)
η⌈Tλ⌉ ≤ α.

We prove the Type-II error bound by applying Janson (1998, Theorem 10).

Theorem 5 (Theorem 10, Janson (1998)). Let {Ii}i∈I be a finite family of indicator random variables,
defined on a common probability space. Let G be a dependency graph of I, i.e., a graph with vertex
set I such that if A and B are disjoint subsets of I, and Γ contains no edge between A and B,
then {Ii}i∈A and {Ii}i∈B are independent. We write i ∼ j if i, j ∈ I and (i, j) is an edge in
G. In particular, i ̸∼ i. Let S =

∑
i∈I Ii and ∆ = E[S]. Let Ψ = maxi∈I

∑
j∈I,j∼i E[Ij ] and

Φ = 1
2

∑
i∈I

∑
j∈I,j∼i E[IiIj ]. For any 0 ≤ a ≤ 1,

Pr(S ≤ a∆) ≤ exp

{
−min

{
(1− a)2

∆2

8Φ + 2∆
, (1− a)

∆

6Ψ

}}
. (14)

Given any detector γ that accepts the form in (5) and the corresponding optimal watermarking scheme,
for some a ∈ (0, 1), we first set the threshold in γ as

Tλ = a

T∑
t=1

EXt,ζt [1{Xt = g(ζt)}] = a

T∑
t=1

EXt−1
1

[∑
x

(
P ∗
Xt|Xt−1

1
(x|Xt−1

1 )− η
)
+

]
=: a∆T ,

where P ∗
Xt|Xt−1

1

is induced by P ∗
Xt,ζt|Xt−1

1 ,ζt−1
1

. The Type-II error is given by

β1(γ, P
token∗
XT

1 ,ζT
1
) = P token∗

XT
1 ,ζT

1

( T∑
t=1

1{Xt = g(ζt)} < a∆T

)
which is exactly the left-hand side of (14).

Assume that when T and n ≤ T are large enough, token Xt is independent of all Xt−i for all
i ≥ n+1 and t ∈ [T ], i.e., PXt,Xt−i

= PXt
⊗PXt−i

. Let IT,n(i) = ([i−n, i+n]∩ [T ])\{i}. The
Ψ and Φ on the right-hand side of (14) are given by:

Ψ := max
i∈[T ]

∑
t∈[T ],t∼i

EXt,ζt [1{Xt = g(ζt)}] = max
i∈[T ]

∑
t∈IT,n(i)

EXt,ζt [1{Xt = g(ζt)}] = Θ(n),

Φ :=
1

2

∑
i∈[T ]

∑
j∈[T ],j∼i

E[1{Xi = g(ζi)}1{Xj = g(ζj)}]

=
1

2

∑
i∈[T ]

∑
j∈IT,n(i)

E[1{Xi = g(ζi)}1{Xj = g(ζj)}] = Θ(Tn).

By plugging ∆T , Ω and Θ back into the right-hand side of (14), we have the upper bound

β1(γ, P
token∗
XT

1 ,ζT
1
) ≤ exp

{
−min

{
(1− a)2

∆2
T

8Φ + 2∆T
, (1− a)

∆T

6Ψ

}}
where Ut = EXt−1

1

[∑
x

(
P ∗
Xt|Xt−1

1

(x|Xt−1
1 ) − η

)
+

]
, ∆T :=

∑T
t=1 Ut, Ψ =

maxi∈[T ]

∑
t∈IT,n(i)

Ut, and Φ = 1
2

∑
i∈[T ]

∑
j∈IT,n(i)

E[1{Xi = g(ζi)}1{Xj = g(ζj)}]. This
implies

− log β1(γ, P
token∗
XT

1 ,ζT
1
) ≥ min

{
(1− a)2Θ

(
T

n

)
, (1− a)Θ

(
T

n

)}
=⇒− log β1(γ, P

token∗
XT

1 ,ζT
1
) = Ω

(
T

n

)
.
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I OPTIMAL WATERMARKING SCHEME WITH UNIFORM PζT1
FOR γ ∈ Γ∗

With any detector γ ∈ Γ∗ from the class of optimal detectors proposed in Theorem 2, we consider
constructing an optimal watermarking scheme with fixed the marginal distribution PζT

1
= Unif(ZT ).

This simplifies the transmission of ζT1 to the detector by using a shared key to sample ζT1 via a hash
function.

The optimization problem is (Opt-I), where we choose the distortion metric as DTV and aim to solve
the joint distribution PXT

1 ,ζT
1

that maximizes the detection performance with distortion guarantee.
The alternative watermarking scheme optimal for γ ∈ Γ∗ when g is an identity mapping is given in
the following lemma. Note that this result can be generalized to other functions g.

Lemma 6 (Optimal watermarking scheme for γ = 1{XT
1 = ζT1 } when Pζt = Unif(Z)).

When γ = 1{XT
1 = ζT1 }, Pζt = Unif(Z), and α ≥ 1

|Z|T , the minimum Type-II error is
minP

XT
1
:DTV(PXT

1
∥Q

XT
1
)≤ϵ

∑
xT
1

(
PXT

1
(xT

1 )− 1
|Z|T

)
+

. The optimal ϵ-distorted watermarking scheme
that achieves the minimum Type-II error is

P ∗
XT

1 ,ζT
1
(xT

1 , ζ
T
1 ) =


min{P ∗

XT
1
(xT

1 ),
1

|Z|T }, if xT
1 = ζT1 ;(

P∗
XT

1
(xT

1 )− 1

|Z|T

)
+
·
(

1

|Z|T
−P∗

XT
1
(ζT

1 )
)
+

DTV(P∗
XT

1

,Unif(ZT ))
, otherwise,

where P ∗
XT

1
= argminP

XT
1
:DTV(PXT

1
∥Q

XT
1
)≤ϵ

∑
xT
1

(
PXT

1
(xT

1 )− 1
|Z|T

)
+

.

The proof of Lemma 6 follows from the fact that DTV(µ, ν) = infπ∈Π(µ,ν) π(X ̸= Y ) Thorisson
(1995), where X ∼ µ, Y ∼ ν and Π(µ, ν) is the set of all couplings of Borel probability measures µ
and ν. Note that when Pζt = Unif(Z), if α < 1

|Z|T , the feasible region of (Opt-I) becomes empty.
With this watermarking scheme, the detector can fully recover ζT1 using a pseudorandom generator
and shared key. However, the resulting minimum Type-II error is larger than β∗

1(QXT
1
, α, ϵ) from

Theorem 1, as α ≥ 1
|Z|T . In practice, the gap is significant since 1

|Z|T = O(10−4T ) is much smaller
than typical values of α. This gap reflects the cost of pseudo-transmitting ζT1 using only the shared
key. Nonetheless, if T = 1, it is possible to set false alarm constraint to α = 1

|Z| and mitigate the
performance loss. Motivated by this, we move on to discuss the token-level optimal watermarking
scheme in the subsequent sections.

Proof. Consider γ(XT
1 , ζ

T
1 ) = 1{XT

1 = ζT1 } and VT ⊆ ZT , which is a model-agnostic detector.
We first start the proof from the distortion-free setting with ϵ = 0 and an arbitrary distribution PζT

1

on ZT . The objective function (i.e. Type-II error) becomes PXT
1 ,ζT

1
(XT

1 ̸= ζT1 ), whose minimum is
well-known as DTV(QXT

1
, PζT

1
) and the minimizer is

P ∗
XT

1 ,ζT
1
(xT

1 , ζ
T
1 ) =

min{QXT
1
(xT

1 ), PζT
1
(ζT1 )}, if xT

1 = ζT1 ;
(Q

XT
1
(xT

1 )−P
ζT1

(xT
1 ))+·(P

ζT1
(ζT

1 )−Q
XT

1
(ζT

1 ))+

DTV(QXT
1
,P

ζT1
) , otherwise.

(15)

This holds for any given pair of (QXT
1
, PζT

1
). This watermarking scheme basically tries to force

XT
1 = ζT1 as often as possible. However, we need to design PζT

1
such that the Type-I error probability

supQ
XT

1

EQ
XT

1
P

ζT1

[1{XT
1 = ζT1 }] ≤ α, i.e.,

P ∗
ζT
1
:= argmin

P
ζT1

: sup
Q

XT
1

EQ
XT

1
⊗P

ζT1

[1{XT
1 =ζT

1 }]≤α

DTV(QXT
1
, PζT

1
)

= argmin
P

ζT1
: sup
Q

XT
1

⟨Q
XT

1
,P

ζT1
⟩≤α

∑
xT
1 ∈VT

(
QxT

1
(xT

1 )− PζT
1
(xT

1 )
)
+
.
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To further consider cases where we allow distortion D(PXT
1
∥QXT

1
) ≤ ϵ for some ϵ ≥ 0, we solve

(P ∗
XT

1
, P ∗

ζT
1
) := argmin

(P
XT

1
,P

ζT1
):

DTV(PXT
1
∥Q

XT
1
)≤ϵ,

sup
Q

XT
1

⟨Q
XT

1
,P

ζT1
⟩≤α

D(PXT
1
, PζT

1
)

= argmin
(P

XT
1
,P

ζT1
):

D(P
XT

1
∥Q

XT
1
)≤ϵ,

sup
Q

XT
1

⟨Q
XT

1
,P

ζT1
⟩≤α

∑
xT
1 ∈VT

(
PxT

1
(xT

1 )− PζT
1
(xT

1 )
)
+
,

and plug them into (15). We then move to the special case when PζT
1

is uniform.

Special case (VT ⊆ S ⊆ ZT and PζT
1
= Unif(S)). For any ζT1 ∈ S, PζT

1
(ζT1 ) =

1
|S| . To ensure

that the false alarm constraint is satisfied, we require α ≥ supQ
XT

1

∑
xT
1
QXT

1
(xT

1 ) · 1
|S| =

1
|S| . In

other words, to enforce lower false alarm probability, we need to increase the size of S . The minimum
Type-II error probability is given by

DTV(QXT
1
,Unif(S)) =

∑
xT
1 ∈VT

(
QXT

1
(xT

1 )−
1

|S|

)
+

.

If |S| = 1
α , this minimum Type-II error is equal to the optimal result

∑
xT
1 ∈VT (QXT

1
(xT

1 ) − α)+.
Otherwise, if |S| > 1

α , this Type-II error is larger and the gap represents the price paid by using the
uniform distribution PζT

1
, i.e., sending pseudorandom numbers.

J DAWA PSEUDO-CODES

Algorithm 1 Watermarked Text Generation

Input: LLM Q, Vocabulary V , Prompt u, Secret key, Token-level false alarm η.
1: Z = {hkey(x)}x∈V ∪ {ζ̃}
2: for t = 1, ..., T do
3: Pζt|xt−1

1 ,u(ζ)← (QXt|xt−1
1 ,u(h

−1
key(ζ)) ∧ η), ∀ζ ∈ Z\{ζ̃}.

4: Pζt|xt−1
1 ,u(ζ̃)←

∑
x∈V(QXt|xt−1

1 ,u(x)− η)+.

5: Compute a hash of tokens xt−1
t−n with key, and use it as a seed to generate (Gt,ζ)ζ∈Z from Gumbel

distribution.
6: ζt ← argmaxζ∈Z log(Pζt|xt−1

1 ,u(ζ)) +Gt,ζ .

7: if ζt ̸= ζ̃ then
8: xt ← h−1

key(ζt)
9: else

10: Sample xt ∼
(

(Q
Xt|x

t−1
1 ,u

(x)−η)+∑
x∈V

(
Q

Xt|x
t−1
1 ,u

(x)−η
)
+

)
x∈V

11: end if
12: end for
Output: Watermarked text xT

1 = (x1, ..., xT ).
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Algorithm 2 Watermarked Text Detection

Input: SLM Q̃, Vocabulary V , Text xT
1 , Secret key, Token-level false alarm η, Threshold λ.

1: score = 0, Z = {hkey(x)}x∈V ∪ {ζ̃}
2: for t = 1, ..., T do
3: P̃ζt|xt−1

1
(ζ)← (Q̃Xt|xt−1

1
(h−1

key(ζ)) ∧ η), ∀ζ ∈ Z\{ζ̃}.
4: P̃ζt|xt−1

1
(ζ̃)←

∑
x∈V(Q̃Xt|xt−1

1
(x)− η)+.

5: Compute a hash of tokens xt−1
t−n with key, and use it as a seed to generate (Gt,ζ)ζ∈Z from Gumbel

distribution.
6: ζt ← argmaxζ∈Z log(P̃ζt|xt−1

1
(ζ)) +Gt,ζ .

7: score← score +1{hkey(xt) = ζt}
8: end for
9: if score > Tλ then

10: return 1 ▷ Input text is watermarked
11: else
12: return 0 ▷ Input text is unwatermarked
13: end if

K ADDITIONAL EXPERIMENTAL RESULTS

Empirical analysis on False Alarm Control. We conduct experiments to show the relationship
between theoretical FPR (i.e., α) and the corresponding empirical FPR. As discussed in Lemma 3, we
set the token-level false alarm rate as η = 0.1 and the sequence length as T = 200, which controls
the sequence-level false alarm rate under α =

(
T

⌈Tλ⌉
)
η⌈Tλ⌉, where λ is the detection threshold. For a

given theoretical FPR α, we calculate the corresponding threshold λ and the empirical FPR based
on 100k unwatermarked sentences. The results, as shown in Table 4, confirm that our theoretical
guarantee effectively controls the empirical false alarm rate.

Table 4: Theoretical and empirical FPR under different thresholds.

Theoretical FPR 9e-03 2e-03 5e-04 9e-05

Empirical FPR 1e-04 4e-05 2e-05 2e-05

Efficiency of Watermark Scheme. To evaluate the efficiency of our watermarking method, we
conduct experiments to measure the average generation time for both watermarked and unwatermarked
text. In both scenarios, we generated 500 texts, each containing 200 tokens. Table 5 indicates that
the difference in generation time between unwatermarked and watermarked text is less than 0.5
seconds. This minimal difference confirms that our watermarking method has a negligible impact on
generation speed, ensuring practical applicability.

Table 5: Average generation time comparison for watermarked and unwatermarked text using Llama2-
13B.

Language Model Setting Avg Generation Time (s)
Llama2-13B Unwatermarked 9.110
Llama2-13B Watermarked 9.386

Surrogate Language Model. SLM plays a crucial role during the detection process of our wa-
termarking method. We examine how the choice of SLM affects the detection performance of our
watermarking scheme. The selection of the surrogate model is primarily based on its vocabulary
or tokenizer rather than the specific language model within the same family. This choice is critical
because, during detection, the text must be tokenized exactly using the same tokenizer as the water-
marking model to ensure accurate token recovery. As a result, any language model that employs the
same tokenizer can function effectively as the surrogate model. To validate our approach, we apply

24



Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

our watermarking algorithm to GPT-J-6B (a model with 6 billion parameters) and use GPT-2 Large
(774 million parameters) as the SLM. Despite differences in developers, training data, architecture,
and training methods, these two models share the same tokenizer, making them compatible for this
task. We conduct experiments using the C4 dataset, and the results are presented in Table 6. The
results demonstrate the effectiveness of our proposed watermarking method with or without attack
even when using a surrogate model from a different family than the watermarking language model.
Notably, the surrogate model, despite having fewer parameters and lower overall capability compared
to the watermarking language model, does not compromise the watermarking performance.

Table 6: Performance comparison of different language models and surrogate models under two
scenarios: without attack and with token replacement attack.

Scenario Language Model Surrogate Model ROC-AUC TPR@1% FPR TPR@10% FPR

Without Attack
Llama2-13B Llama2-7B 0.999 0.998 1.000
Mistral-8 × 7B Mistral-7B 0.999 0.998 1.000
GPT-J-6B GPT-2 large 0.997 0.990 0.997

With Attack
Llama2-13B Llama2-7B 0.989 0.860 0.976
Mistral-8 × 7B Mistral-7B 0.990 0.881 0.966
GPT-J-6B GPT-2 large 0.987 0.892 0.962

Prompt Agnostic. Prompt agnosticism is a crucial property of LLM watermark detection. We
investigate the impact of prompts on our watermark detection performance by conducting experiments
to compare detection accuracy with and without prompts attached to the watermarked text during
the detection process. The results are presented in Table 7. Notably, even when prompts are absent
and the SLM cannot perfectly reconstruct the same distribution of ζt as in the generation process,
our detection performance remains almost unaffected. This demonstrates the robustness of our
watermarking method, regardless of whether a prompt is included during the detection phase.

Table 7: Performance comparison of Llama2-13B under two scenarios: without attack and with token
replacement attack, with and without prompts.

Scenario Language Model Surrogate Model Setting ROC-AUC TPR@1% FPR TPR@10% FPR

Without Attack Llama2-13B Llama2-7B Without Prompt 0.997 0.983 0.995
Llama2-13B Llama2-7B With Prompt 0.998 0.989 0.996

With Attack Llama2-13B Llama2-7B Without Prompt 0.977 0.818 0.953
Llama2-13B Llama2-7B With Prompt 0.979 0.816 0.960

L EXTENSION TO JOINTLY OPTIMAL ROBUST WATERMARKING SCHEME AND
DETECTOR

Thus far, we have theoretically examined the optimal detector and watermarking scheme without
considering adversarial scenarios. In practice, users may attempt to modify LLM output to remove
watermarks through techniques like replacement, deletion, insertion, paraphrasing, or translation. We
now show that our framework can be extended to incorporating robustness against these attacks.

We consider a broad class of attacks, where the text can be altered in arbitrary ways as long as certain
latent pattern, such as its semantics, is preserved. Specifically, let f : VT → [K] be a function
that maps a sequence of tokens XT

1 to a finite latent space [K] ⊂ N+; for example, [K] may index
K distinct semantics clusters and f is a function extracting the semantics. Clearly, f induces an
equivalence relation, say, denoted by ≡f , on VT , where xT

1 ≡f x′T
1 if and only if f(xT

1 ) = f(x′T
1 ).

Let Bf (xT
1 ) be an equivalence class containing xT

1 . Under the assumption that the adversary is
arbitrarily powerful except that it is unable to move any xT

1 outside its equivalent class Bf (xT
1 ) (e.g.,

unable to alter the semantics of xT
1 ), the “f -robust” Type-I and Type-II errors are then defined as

β0(γ,QXT
1
, PζT

1
, f) := EQ

XT
1
⊗P

ζT1

[
supx̃T

1 ∈Bf (X
T
1 ) 1{γ(x̃

T
1 , ζ

T
1 ) = 1}

]
,

β1(γ, PXT
1 ,ζT

1
, f) := EP

XT
1 ,ζT1

[
supx̃T

1 ∈Bf (XT
1 ) 1{γ(x̃T

1 , ζ
T
1 ) = 0}

]
.
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Designing universally optimal f -robust detector and watermarking scheme can then be formulated
as jointly minimizing the f -robust Type-II error while constraining the worst-case f -robust Type-I
error, namely, solving the optimization problem

inf
γ,P

XT
1 ,ζT1

β1(γ, PXT
1 ,ζT

1
, f) s.t. sup

Q
XT

1

β0(γ,QXT
1
, PζT

1
, f) ≤ α, DTV(PXT

1
, QXT

1
) ≤ ϵ. (Opt-R)

We prove the following theorem.
Theorem 7 (Universally minimum f -robust Type-II error). The universally minimum f -robust
Type-II error attained from (Opt-R) is

β∗
1 (QXT

1
, α, ϵ, f) := min

P
XT

1
:D(P

XT
1

,Q
XT

1
)≤ϵ

∑
k∈[K]

(( ∑
xT
1 :f(xT

1 )=k

PXT
1
(xT

1 )

)
− α

)
+

.

Notably, β∗
1(QXT

1
, α, ϵ, f) aligns with the minimum Type-II error in Example 3, which is suboptimal

without an adversary but becomes optimal under the adversarial settting of (Opt-R). The gap between
β∗
1(QXT

1
, α, ϵ, f) in Theorem 7 and β∗

1(QXT
1
, α, ϵ) in Theorem 1 reflects the cost of ensuring robust-

ness, widening as K decreases (i.e., as perturbation strength increases), see Figure 6 in appendix for
an illustration of the optimal f -robust minimum Type-II error when f is a semantic mapping. Similar
to Theorem 2, we derive the optimal detector and watermarking scheme achieving β∗

1(QXT
1
, α, ϵ, f),

detailed in Appendix N. These solutions closely resemble those in Theorem 2. For implementation,
if the latent space [K] is significantly smaller than VT , applying the optimal f -robust detector and
watermarking scheme becomes more effective than those presented in Theorem 2. Additionally, a
similar algorithmic strategy to the one discussed in Sections 4 and 5 can be employed to address the
practical challenges discussed earlier. These extensions and efficient implementations of the function
f in practice are promising directions of future research.

M PROOF OF THEOREM 7

According to the Type-I error constraint, we have ∀xT
1 ∈ VT ,

α ≥ max
Q

XT
1

EQ
XT

1
⊗P

ζT1

[
sup

x̃T
1 ∈Bf (XT

1 )

1{γ(x̃T
1 , ζ

T
1 ) = 1}

]

≥ Eδ
xT
1
⊗P

ζT1

[
sup

x̃T
1 ∈Bf (XT

1 )

1{γ(x̃T
1 , ζ

T
1 ) = 1}

]
= EP

ζT1

[
sup

x̃T
1 ∈Bf (xT

1 )

γ(x̃T
1 , ζ

T
1 )

]
=

∑
ζT
1

PζT
1
(ζT1 ) sup

x̃T
1 ∈Bf (xT

1 )

γ(x̃T
1 , ζ

T
1 ).

For brevity, let B(k) := Bf (xT
1 ) if f(xT

1 ) = k. The f -robust Type-II error is equal to
1− EP

XT
1 ,ζT1

[inf x̃T
1 ∈Bf (XT

1 ) γ(x̃
T
1 , ζ

T
1 )]. We have

EP
XT

1 ,ζT1

[
inf

x̃T
1 ∈Bf (XT

1 )
γ(x̃T

1 , ζ
T
1 )

]
≤ EP

XT
1 ,ζT1

[
sup

x̃T
1 ∈Bf (XT

1 )

γ(x̃T
1 , ζ

T
1 )

]
=

∑
k∈[K]

∑
xT
1 :f(xT

1 )=k

∑
ζT
1

PXT
1 ,ζT

1
(xT

1 , ζ
T
1 ) sup

x̃T
1 ∈Bf (xT

1 )

γ(x̃T
1 , ζ

T
1 )︸ ︷︷ ︸

C(k)

,

where according to the f -robust Type-I error constraint, for all k ∈ [K],

C(k) ≤
∑

xT
1 :f(xT

1 )=k

PXT
1
(xT

1 ), and

C(k) =
∑
ζT
1

PζT
1
(ζT1 )

∑
xT
1 :f(xT

1 )=k

PXT
1 |ζT

1
(xT

1 |ζT1 ) sup
x̃T
1 ∈B(k)

γ(x̃T
1 , ζ

T
1 )

≤
∑
ζT
1

PζT
1
(ζT1 ) sup

x̃T
1 ∈B(k)

γ(x̃T
1 , ζ

T
1 ) ≤ α.
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Therefore,

EP
XT

1 ,ζT1

[
inf

x̃T
1 ∈B(f(XT

1 ))
γ(x̃T

1 , ζ
T
1 )

]
≤

∑
k∈[K]

C(k)

≤
∑

k∈[K]

(( ∑
xT
1 :f(xT

1 )=k

PXT
1
(xT

1 )

)
∧ α

)
= 1−

∑
k∈[K]

(( ∑
xT
1 :f(xT

1 )=k

PXT
1
(xT

1 )

)
− α

)
+

,(16)

where (16) is maximized by taking

PXT
1
= P ∗,f

XT
1

:= argmin
P

XT
1
:D(P

XT
1
,Q

XT
1
)≤ϵ

∑
k∈[K]

(( ∑
xT
1 :f(xT

1 )=k

PXT
1
(xT

1 )

)
− α

)
+

.

For any PXT
1

, the f -robust Type-II error is lower bounded by

EP
XT

1 ,ζT1

[
sup

x̃T
1 ∈Bf (XT

1 )

1{γ(x̃T
1 , ζ

T
1 ) = 0}

]
≥

∑
k∈[K]

(( ∑
xT
1 :f(xT

1 )=k

PXT
1
(xT

1 )

)
− α

)
+

.

By plugging P ∗,f
XT

1
into the lower bound, we obtain the universal minimum f -robust Type-II error

over all possible γ and PXT
1 ,ζT

1
, denoted by

β∗
1(f,QXT

1
, ϵ, α) := min

P
XT

1
:D(P

XT
1
,Q

XT
1
)≤ϵ

∑
k∈[K]

(( ∑
xT
1 :f(xT

1 )=k

PXT
1
(xT

1 )

)
− α

)
+

. (17)

N OPTIMAL TYPE OF f -ROBUST DETECTORS AND WATERMARKING
SCHEMES

Theorem 8 (Optimal type of f -robust detectors and watermarking schemes). Let Γ∗
f be a collection

of detectors that accept the form

γ(XT
1 , ζ

T
1 ) = 1{XT

1 = g(ζT1 ) or f(XT
1 ) = g(ζT1 )}

for some function g : ZT → S, S ∩ ([K] ∪ VT ) ̸= ∅ and |S| > K. If an only if the detector
γ ∈ Γ∗

f , the minimum Type-II error attained from (Opt-R) reaches β∗
1(QXT

1
, ϵ, α, f) in (17) for all

text distribution QXT
1
∈ P(VT ) and distortion level ϵ ∈ R≥0.

After enlarging ZT to include redundant auxiliary values, the ϵ-distorted optimal f -robust water-
marking scheme P ∗,f

XT
1 ,ζT

1
(xT

1 , ζ
T
1 ) is given as follows:

P ∗,f
XT

1

:= argmin
P

XT
1
:DTV(PXT

1
,Q

XT
1
)≤ϵ

∑
k∈[K]

(( ∑
xT
1 :f(xT

1 )=k

PXT
1
(xT

1 )

)
− α

)
+

,

and for any xT
1 ∈ VT ,

1) for all ζT1 s.t. supx̃T
1 ∈B(f(xT

1 )) γ(x̃
T
1 , ζ

T
1 ) = 1: P ∗,f

ζT
1 |XT

1
(ζT1 |xT

1 ) satisfies∑
x̃T
1 ∈Bf (xT

1 )

P ∗,f
XT

1
(x̃T

1 )
∑
ζT
1

P ∗,f
ζT
1 |XT

1
(ζT1 |x̃T

1 ) sup
x̃T
1 ∈Bf (xT

1 )

γ(x̃T
1 , ζ

T
1 ) =

( ∑
x̃T
1 ∈Bf (xT

1 )

P ∗,f
XT

1
(x̃T

1 )

)
∧ α.

2) ∀ζT1 s.t. |{xT
1 ∈ VT : γ(xT

1 , ζ
T
1 ) = 1}| = 0: P ∗,f

XT
1 ,ζT

1
(xT

1 , ζ
T
1 ) satisfies∑

x̃T
1 ∈Bf (xT

1 )

P ∗,f
XT

1
(xT

1 )
∑

ζT
1 :|{xT

1 :γ(xT
1 ,ζT

1 )=1}|=0

P ∗,f
ζT
1 |XT

1
(ζT1 |xT

1 ) =

(( ∑
x̃T
1 ∈Bf (xT

1 )

P ∗,f
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1
(x̃T

1 )

)
− α

)
+

.

3) all other cases of ζT1 : P ∗,f
XT

1 ,ζT
1
(xT

1 , ζ
T
1 ) = 0.
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Proof of Theorem 8. When f is an identity mapping, it is equivalent to Theorem 2. When f : VT →
[K] is some other function, following from the proof of Theorem 2, we consider three cases.

• Case 1: S ∩ ([K] ∪ VT ) ̸= ∅ but |S| < K. It is impossible for the detector to detect all the water-
marked text sequences. That is, there exist x̃T

1 such that for all ζT1 , γ(x̃T
1 , ζ

T
1 ) = 0. Under this case,

in Appendix M, C(f(x̃T
1 )) = 0 ̸= (

∑
xT
1 :f(xT

1 )=f(x̃T
1 ) PXT

1
(xT

1 )) ∧ α, which means the f -robust
Type-II error cannot reach the lower bound.

• Case 2: S ∩ ([K] ∪ VT ) ̸= ∅ but |S| = K. Under this condition, the detector needs to accept the
form γ(XT

1 , ζ
T
1 ) = 1{f(XT

1 ) = g(ζT1 )} so as to detect all possible watermarked text. Otherwise,
it will degenerate to Case 1. We can see f(XT

1 ) as an input variable and rewrite the detector as
γ′(f(XT

1 ), ζ
T
1 ) = γ(XT

1 , ζ
T
1 ) = 1{f(XT

1 ) = g(ζT1 )}. Similar the proof technique of Theorem
2, it can be shown that C(k) in Appendix M cannot equal (

∑
xT
1 :f(xT

1 )=k PXT
1
(xT

1 )) ∧ α for all
k ∈ [K], while the worst-case f -robust Type-I error remains upper bounded by α for all QXT

1
and

ϵ.

• Case 3: Let Ξγ(x
T
1 ) := {ζT1 ∈ ZT : γ(xT

1 , ζ
T
1 ) = 1}. ∃xT

1 , y
T
1 ∈ VT , s.t. f(xT

1 ) ̸= f(yT1 )

and Ξγ(x
T
1 ) ∩ Ξγ(y

T
1 ) ̸= ∅. For any detector γ /∈ Γ∗

f that does not belong to Cases 1 and 2, it
belongs to Case 3. Let us start from a simple case where T = 1, V = {x1, x2, x3}, K = 2, Z =
{ζ1, ζ2, ζ3}, and S = [2]. Consider the mapping f and the detector as follows: f(x1) = f(x2) = 1,
f(x3) = 2, γ(x1, ζ1) = γ(x1, ζ1) = 1, γ(x3, ζ2) = 1, and γ(x, ζ) = 0 for all other pairs (x, ζ).
When C(k) = (

∑
xT
1 :f(xT

1 )=k PXT
1
(xT

1 )) ∧ α for all k ∈ [K], i.e.,

PX,ζ(x1, ζ1) + PX,ζ(x1, ζ2) + PX,ζ(x2, ζ1) + PX,ζ(x2, ζ2) = (PX(x1) + PX(x2)) ∧ α,

and PX,ζ(x3, ζ2) = PX(x3) ∧ α,
then the worst-case f -robust Type-I error is lower bounded by

max
Q

XT
1

EQ
XT

1
⊗P

ζT1

[
sup

x̃T
1 ∈Bf (XT

1 )

1{γ(x̃T
1 , ζ

T
1 ) = 1}

]

≥ EP
ζT1

[
sup

x̃T
1 ∈B(1)

1{γ(x̃T
1 , ζ

T
1 ) = 1}

]
= (PX(x1) + PX(x2)) ∧ α+ PX(x3) ∧ α

> α, if PX(x1) + PX(x2) > α or PX(x3) > α.
Thus, for any QX such that {PX ∈ P(V) : DTV(PX , QX) ≤ ϵ} ⊆ {PX ∈ P(V) :
PX(x1) + PX(x2) > α or PX(x2) > α}, the false-alarm constraint is violated when C(k) =
(
∑

xT
1 :f(xT

1 )=k PXT
1
(xT

1 )) ∧ α for all k ∈ [K]. The result can be generalized to larger
(T,V,Z,K,S), other functions f and other detectors that belong to Case 3.

In conclusion, if and only if γ ∈ Γ∗, the minimum Type-II error attained from (Opt-R) reaches
the universal minimum f -robust Type-II error β∗

1(f,QXT
1
, ϵ, α) in (17) for all QXT

1
∈ P(VT ) and

ϵ ∈ R≥0.

Under the watermarking scheme P ∗,f
XT

1 ,ζT
1

, the f -robust Type-I and Type-II errors are given by:

f -robust Type-I error:

∵∀yT1 ∈ VT , EP∗,f
ζT1

[
sup

x̃T
1 ∈Bf (yT

1 )

1{γ(x̃T
1 , ζ

T
1 ) = 1}

]
=

∑
ζT
1

∑
xT
1

P ∗,f
XT

1 ,ζT
1
(xT

1 , ζ
T
1 ) sup

x̃T
1 ∈Bf (yT
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1{γ(x̃T
1 , ζ

T
1 ) = 1}

=
∑

xT
1 ∈Bf (yT

1 )

P ∗,f
XT

1
(xT

1 )
∑
ζT
1

P ∗,f
ζT
1 |XT

1
(ζT1 |xT

1 ) sup
x̃T
1 ∈Bf (yT

1 )

1{γ(x̃T
1 , ζ

T
1 ) = 1}
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Figure 6: Universally minimum Type-II error w/o distortion and with semantic-invariant text modifi-
cation.

=

( ∑
xT
1 ∈Bf (yT

1 )

P ∗,f
XT

1
(xT

1 )

)
∧ α ≤ α,

and since any distribution QXT
1

can be written as a linear combinations of δyT
1

,

∴ sup
Q

XT
1

EQ
XT

1
P∗,f

ζT1

[
sup

x̃T
1 ∈Bf (XT

1 )

1{γ(x̃T
1 , ζ

T
1 ) = 1}

]
≤ α.

f -robust Type-II error:

1− EP∗,f
XT

1 ,ζT1

[
sup

x̃T
1 ∈Bf (XT

1 )

1{γ(x̃T
1 , ζ

T
1 ) = 1}

]
= 1−

∑
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1

∑
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1
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1
(xT

1 , ζ
T
1 ) sup
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1 ∈Bf (xT

1 )

1{γ(x̃T
1 , ζ
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1 ) = 1}

= 1−
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∑
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1
(xT

1 )
∑
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1
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ζT
1 |XT

1
(ζT1 |xT

1 ) sup
x̃T
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= 1−
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1
(xT

1 )
)
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=
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1
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.

The optimality of P ∗,f
XT

1 ,ζT
1

is thus proved.

Figure 6 compares the universally minimum Type-II errors with and without semantic-invariant text
modification.

O IMPLEMENTATION OF WATERMARKING SCHEME WITH UNIFORM Pζt

O.1 ALGORITHM DESCRIPTION

Algorithm 3 describes the optimal watermarking scheme with uniform Pζt . We first uniformly sample
ζt from Z = {hkey(x)}x∈V . Then, with the sampled ζt, we can derive the new NTP distribution
such that PXt|xt−1

1 ,u(x) = |V|min{QXt|xt−1
1 ,u(x),

1
|V|} for hkey(x) = ζt, while PXt|xt−1

1 ,u(x) =

|V|
(
Q

Xt|x
t−1
1 ,u

(x)− 1
|V|

)
+
·
(

1
|V|−Q

Xt|x
t−1
1 ,u

(h−1
key (ζt))

)
+

DTV(QXt|x
t−1
1 ,u

,Unif(V)) otherwise. Next token is then sampled from

obtained PXt|xt−1
1 ,u(x).
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Algorithm 4 outlines the corresponding detection process. For any given suspicious text, we analyze
each token sequentially, mirroring the generation process. First, we uniformly sample ζt using
previous tokens as a hash. Then, we compute the score as 1

T

∑T
t=1 1{hkey(xt) = ζt}. Any text with

a score greater than a threshold λ ∈ (0, 1), will be classified as watermarked.

Algorithm 3 Watermarked Text Generation with Uniform Pζt

Input: Language Model Q, Vocabulary V , Prompt u, Secret key, Token-level False alarm η
1: Z ← {hkey(x)}x∈V
2: for t = 1, . . . , T do
3: Compute a hash of previous n tokens, and use it as a seed to uniformly sample ζt from Z .

4: PXt|xt−1
1 ,u(x) =


|V|min{QXt|xt−1

1 ,u(x),
1
|V|}, if hkey(x) = ζt;

|V|
(
Q

Xt|x
t−1
1 ,u

(x)− 1
|V|

)
+
·
(

1
|V|−Q

Xt|x
t−1
1 ,u

(h−1
key (ζt))

)
+

DTV(QXt|x
t−1
1 ,u

,Unif(V)) , otherwise,

5: Sample xt ∼ PXt|xt−1
1 ,u

6: end for
Output: Watermarked text xT

1 = (x1, . . . , xT ).

Algorithm 4 Watermarked Text Detection with Uniform Pζt

Input: Language Model Q, Vocabulary V , Prompt u, Secret key, Token-level False alarm η
1: Z ← {hkey(x)}x∈V
2: score = 0

3: for t = 1, . . . , T do
4: Compute a hash of previous n tokens, and use it as a seed to uniformly sample ζt from V .
5: score = score +1{hkey(xt) = ζt}
6: if score > Tλ then
7: return 1 ▷ Input text is watermarked
8: else
9: return 0 ▷ Input text is unwatermarked

10: end if
11: end for
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