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Abstract

This study addresses three current limitations
in Grammatical Error Correction (GEC): the
absence of comprehensive evaluation of the
newest Large Language Models (LLMs), the
reliance on single evaluation metrics for com-
parative analysis, and the underestimation of
system performance by reference-based met-
rics. We address these limitations first by fine-
tuning state-of-the-art LLMs (GPT-40, LLaMA
3.3 70B) and incorporating these along with
zero-shot DeepSeek V3 in an ensemble, which
outperformed previous GEC systems in multi-
ple reference-based metrics. We also present
the first comprehensive GEC system compar-
ison, evaluating performance across multiple
sequence tagging, sequence-to-sequence, and
LLM-based approaches using both reference-
based and reference-free metrics. Finally, using
LLM-as-a-Judge with human validation, we
demonstrate that 73.76% of fine-tuned GPT-
40’s corrections which did not match the gold
reference are either equally valid grammatically
or preferred over the gold reference, revealing
that reference-based metrics significantly un-
derestimate GEC system performance.

1 Introduction

Effective Grammatical Error Correction (GEC) sys-
tems would ideally not only achieve high accu-
racy but also align closely with human correction
patterns. This alignment is particularly crucial
in language learning context, where both under-
correction (minimal edits) and over-correction can
impede effective learning. In order to address this
challenge, multiple GEC systems have been de-
veloped, which typically fall into three main cate-
gories: (1) Sequence Tagging (Omelianchuk et al.,
2020); (2) Sequence-to-Sequence (Seq2seq) mod-
els, which translate incorrect sentences to correct
ones (Yuan and Briscoe, 2016); and (3) Large Lan-
guage Models (LLMs), which generate corrections

through conditional text generation (Omelianchuk
et al., 2024; Davis et al., 2024).

However, each approach has inherent limita-
tions as sequence tagging struggles with long-
range dependencies (Omelianchuk et al., 2020)
and seq2seq models struggle with over-correction
(Omelianchuk et al., 2024). These challenges
have remained difficult to solve because GEC sys-
tems must balance making enough corrections (re-
call) without making unnecessary ones (precision),
while also accounting for grammar’s contextual
nature. While newer LLM architectures might po-
tentially address some of these limitations, com-
prehensive evaluations of the newest generation
of LLMs (e.g., LLaMA 3.3 70B (Grattafiori et al.,
2024), GPT-40 (OpenAl, 2024), and DeepSeek v3
671B (DeepSeek-Al et al., 2025b)) are notably ab-
sent. Previous studies (Omelianchuk et al., 2024)
on LLMs evaluated older models (e.g., LLaMA-2),
leaving practitioners without current data to help
inform deployment decisions.

Beyond these challenges, most research relies on
a single evaluation metric, typically ERRANT Fg 5
(Bryant et al., 2017), which evaluates correction
quality on individual edit level (Omelianchuk et al.,
2024). But there is scarcity of research evaluating
different types of GEC systems on higher-level
dimensions like fluency or meaning preservation
after correction, which can be retrieved using other
reference based metrics like GLEU (Napoles et al.,
2016) and PT-ERRANT (Gong et al., 2022).

Additionally, reference-based metrics severely
penalize systems that generate valid alternative cor-
rections simply because they differ from the pro-
vided reference. This limitation is further propelled
by LLMs as they introduce stylistic enhancements
that frequently diverge from gold references by
generating alternative but equally valid corrections
(Bryant et al., 2023). Alternatively, the creation
of comprehensive datasets containing all possible
valid corrections for each error remains practically



infeasible due to the combinatorial explosion of
grammatical alternatives, contextual variations, and
stylistic preferences. To address this, reference-free
metrics, like IMPARA (Maeda et al., 2022), are
developed to directly assess semantic and grammat-
ical acceptability without references, but they often
exhibit bias towards minimal edits and struggle
with comprehensive corrections that make multiple
changes.

To address these challenges, first, we conducted
experiments with latest LLMs (LLaMA 3.3 70B,
GPT-40, and DeepSeek v3) in both zero-shot and
fine-tuned settings. Second, we developed an en-
semble architecture by combining our best models
using sentence-level majority voting, with an inno-
vative fallback strategy that selects corrections with
the highest n-gram overlap across candidate cor-
rections when there is no majority. Third, instead
of using one metric for evaluation, we present the
first multi-metric comparative analysis across mul-
tiple sequence tagging, seq2seq, and LLM-based
GEC approaches, utilizing both reference-based
and reference free metrics. This helps us capture
different dimensions of correction quality, includ-
ing edit accuracy and fluency. Finally, to address
the fundamental reference-based evaluation prob-
lem, we conduct LLM-as-a-Judge evaluation with
human validation to properly estimate our system’s
performance'. Our key contributions are:

* A fine-tuned GPT-40 model established a new
state-of-the-art for individual GEC systems,
an achievement further validated by our top-
ranking performance in XXX Shared Task?.

* A majority voting ensemble with n-gram over-
lap fallback that further advances the state-of-
the-art on ERRANT Fy 5 and PT-ERRANT.

* First extensive GEC system comparison with
reference-based and reference-free metrics.

* A hybrid evaluation framework combining
LLM-as-a-Judge with human evaluation, re-
vealing that 73.76% of our model’s correc-
tions that differ from gold standards are actu-
ally equally valid or preferred, demonstrating
limitations in reference-based metrics.

'All code, fine-tuned models and annotated data will be
made available at xxx
The shared task link has been anonymized for review

2 Related Work

This section examines the evolution of GEC sys-
tems from sequence tagging to LLMs, their ensem-
ble methods and evaluation challenges.

2.1 Individual GEC Systems

Sequence tagging GEC approaches like GECToR
(Omelianchuk et al., 2020) use pre-trained encoders
(BERT, RoBERTa, XLNet) to predict specific edit
operations for each token from a large vocabulary
of transformation tags, with larger version of these
encoders giving better performance (Tarnavskyi
et al., 2022). However these approaches struggle
with complex, interconnected errors which requires
broader contextual understanding.

On the other hand, Seq2seq models approach
GEC as a translation task from incorrect to correct
sentences. These systems, like Neural Machine
Translation has evolved over time from attention-
enhanced RNNs (Yuan and Briscoe, 2016) to
CNNs (Chollampatt and Ng, 2018) and eventu-
ally to Transformer-based models (T5) (Rothe
et al., 2021). They can capture complex error pat-
terns which overcame the shortcomings of previ-
ous Seq2seq systems (Flachs et al., 2019), but they
suffered from computational demands and over-
correction tendencies.

Distinct from previous methods, LLMs approach
GEC through conditional text generation, leverag-
ing knowledge acquired during pre-training. In
zero-shot settings, models like GPT-3.5 excel at
error detection but exhibit low precision due to
unnecessary corrections (Fang et al., 2023), with
GPT-3.5, GPT-4, and LLaMA-2 variants all achiev-
ing ERRANT F 5 scores below 50 on the BEA-dev
set (Omelianchuk et al., 2024). Fine-tuning dramat-
ically improves performance, with LLaMA-7B and
13B models reaching competitive Fy 5 scores of
55.4 and 56.4 respectively which is comparable to
specialized seq2seq and sequence tagging systems
on the same benchmark (Omelianchuk et al., 2024).

2.2 Ensembles of GEC Systems

While these individual models show promising
results, ensemble approaches consistently outper-
form them. Qorib et al. (2022) introduced Edit-
based System Combination (ESC) using logistic
regression on extracted edit features to select cor-
rections, while Tarnavskyi et al. (2022) extended
this with span-level majority voting. Qorib and
Ng (2023) developed GRECO, a DeBERTA-based



grammaticality scorer for re-ranking grammati-
cal corrections but their systems are optimized
to perform well in specific datasets, rather than
a single generalizable model. Building on these,
Omelianchuk et al. (2024) analyzed various en-
sembling techniques (GRECO, GPT-based rank-
ing, and second-order ensembles), achieving state-
of-the-art performance (62.9 Fy5 on BEA-dev)
through a simple edit-span level majority voting en-
semble, without any dataset specific optimization.

2.3 Evaluation of GEC Systems

Reference-based metrics like ERRANT, GLEU and
PT-ERRANT evaluate corrections by comparing
them with gold references. But these metrics under-
estimate system performance by failing to account
for the diversity of valid corrections. Rozovskaya
and Roth (2021) demonstrated that system scores
improved by 20—40 points when references were
adjusted to accept any valid correction. Reference-
free metrics like IMPARA (Maeda et al., 2022)
attempt to overcome these limitations by directly
measuring semantic and grammatical acceptabil-
ity of corrections without requiring gold standards.
However, they are biased toward minimal edits
and have difficulty in scoring comprehensive cor-
rections (Bryant et al., 2023). Human evaluation
remains the ideal option but is often impractical
at scale. To bridge this gap, LLM-as-a-Judge ap-
proaches (Gu et al., 2025) have emerged as promis-
ing alternatives, as they evaluate correction quality
with inter-annotator agreement comparable to hu-
man evaluators. However, using a single LLM for
evaluation risks introducing biases that could com-
promise assessment objectivity and reliability.

3 Methodology

To address these challenges, we experiment with
newest LLLMs and multiple ensemble architectures,
conduct the first comprehensive multi-metric GEC
system comparison, and utilize a hybrid LLM-
human framework to validate corrections.

3.1 Dataset

For our experiments, we utilized the
W&I+LOCNESS dataset from the BEA 2019
Shared Task on GEC (Bryant et al., 2019; Granger,
1998), organized by CEFR levels: A (beginner),
B (intermediate), C (advanced), and N (native).
We fine-tuned models on the ABC train partition
(combining beginner, intermediate, and advanced

texts) and used the ABCN development set
(including native texts) as our test set.

While several established GEC benchmark
datasets exist, including CoNLL-14 (Ng et al,,
2014), JFLEG (Napoles et al., 2017), and FCE
(Yannakoudakis et al., 2011), our evaluation is
intentionally limited to W&I+LOCNESS due to
practical constraints. Comprehensive multi-dataset
evaluations significantly increase computational
demands when evaluating multiple LLM variants,
while our hybrid LLM-human evaluation frame-
work introduces substantial cost considerations that
would multiply across test sets. This is why we al-
located resources towards more thorough model
comparisons on a single standardized benchmark.

3.2 Model Selection and Fine-tuning

We evaluated three leading LL.Ms representing di-
verse architectures and accessibility paradigms:
GPT-40 (commercial, OpenAl), LLaMA-3.3-70B-
Instruct (open-source, Meta), and DeepSeek-V 3-
671B (Mixture-of-Experts architecture activating
only 37B of 671B parameters per token).

The W&I LOCNESS dataset contains origi-
nal sentences annotated using ERRANT (ERRor
ANnotation Toolkit) (Bryant et al., 2017), which
standardizes error annotation by aligning source-
corrected text pairs, extracting edits, and classify-
ing them into specific edit types. We parsed these
ERRANT annotations to extract the specified edit
operations and applied them to create gold refer-
ences for fine-tuning.

We first evaluated all three models in a zero-shot
setting using the prompt in Figure 2 in the Ap-
pendix, to establish a baseline for each model’s in-
herent GEC capabilities without additional training.
Following this, we fine-tuned two of the three mod-
els (GPT-40° and LLaMA 3.3) on the BEA training
data for two epochs with cross-entropy loss func-
tion and using the same prompt template as in zero-
shot inference. DeepSeek-V3 was maintained in its
zero-shot configuration due to the prohibitive com-
putational costs of fine-tuning a 671B-parameter
model and its superior baseline performance, mak-
ing it valuable for ensemble integration without
fine-tuning.

3.3 Ensemble System

We experimented with four ensemble systems com-
bining the outputs from our two fine-tuned mod-

3GPT-40 fine-tuned using OpenAl API:
https://openai.com/index/gpt-4o-fine-tuning/



els (GPT-40 and LLLaMA-3.3) and the zero-shot
DeepSeek-V3 model. All our ensemble variants
use a majority voting mechanism as their primary
decision rule: when two or three systems agree on
a correction, the agreed correction is applied. How-
ever, the ensembles differ in their fallback strategy
for cases where no agreement exists among the
three models:

Best Model Fallback: Our baseline ensemble
relies on the best model’s correction as fallback
when no majority exists. This approach is based on
the assumption that the best model is most likely
to produce the optimal correction when consensus
cannot be reached.

Qwen Fallback: This ensemble uses Qwen-2.5-
7B-Instruct (Qwen et al., 2025) as a meta-model to
select among candidate corrections when models
disagree, using the prompt in Figure 3 in Appendix.
This approach leverages Qwen’s language under-
standing to make informed grammatical judgments
when models disagree, rather than relying on sim-
ple statistical measures.

Perplexity Fallback: When models disagree,
this ensemble computes the perplexity score of
each candidate correction using base Qwen-7B*
and selects the correction with the lowest perplex-
ity. This approach is based on the fundamental na-
ture of LLMs, which are pre-trained primarily on
grammatically correct text, causing them to assign
higher probabilities (lower perplexity) to correc-
tions that follow grammatical patterns they have
encountered during pre-training.

N-gram Fallback: Our final ensemble resolves
disagreements by selecting the correction with the
highest n-gram overlap with other candidate correc-
tions. This approach operates on the principle that
correct edits often share common subsequences
across different models’ outputs, even when full
agreement isn’t reached.

3.4 Automated Metrics Evaluation

For comprehensive evaluation of GEC systems of
different categories, we use three reference-based
metrics (ERRANT Fj 5, GLEU and PT-ERRANT)
to assess correction quality against gold standards.
ERRANT Fg 5 focuses on precision, ensuring our
system makes accurate corrections without making
unnecessary edits. GLEU assesses overall correc-
tion quality through n-gram matching with refer-
ence corrections, indicating how well the model

*https://huggingface.co/Qwen/Qwen-7B

produces naturally fluent corrections that align with
human judgment (Equations provided in Appendix
A.1). PT-ERRANT uses pre-trained models to
evaluate phrase-level and structural modifications
with semantic understanding, specifically show-
ing a model’s ability to preserve intended meaning
while making corrections. Alongside reference-
based metrics, we also incorporate reference-free
metrics like IMPARA, which evaluates correction
quality without gold standards.

3.5 LLM-as-a-Judge and Human Evaluation

To move beyond purely quantitative metrics in as-
sessing grammatical corrections, we introduce a
hybrid evaluation framework that combines LLM-
as-a-Judge with targeted human evaluation. This
is a core contribution of our work as it addresses
critical limitations in automated GEC evaluation
approaches while validating the reliability of our
systems and quality of its produced corrections.

Our hybrid evaluation protocol first employs
two state-of-the-art LLMs, Claude 3.7 Sonnet®
and DeepSeek-R1 as primary judges to assess
whether corrections from our best-performing
fine-tuned model are preferred over gold refer-
ences. We selected these specific models based on
Claude’s demonstrated high inter-annotator agree-
ment with human evaluators (Zheng et al., 2023)
and DeepSeek-R1’s powerful reasoning capabili-
ties (DeepSeek-Al et al., 2025a).

For each edit, the LLM judges categorize com-
parisons into one of three categories: (1) The gold
reference is preferred, (2) The model’s correction
is preferred, or (3) Both corrections are equally
grammatically valid (even if syntactically differ-
ent). When both models reach consensus on a
preference, their determination is considered final,
as LLMs are known to have similar inter-annotator
agreement to humans (Gu et al., 2025). In cases
where the LLM judges disagree, two qualified hu-
man GEC evaluators apply the same three category
framework to resolve discrepancies.

This evaluation framework offers two key ad-
vantages: (1) Substantially reduced time and re-
sources compared to comprehensive human as-
sessment, as human judgment is invoked only for
contested cases, making the evaluation approach
highly scalable; (2) Improved reliability through
two-model consensus mechanisms that mitigate
individual LLM biases.

Shttps://assets.anthropic.com/m/785¢23 1869ea8b3b/original/claude-

3-7-sonnet-system-card.pdf



4 Results and Analysis

As demonstrated in Table 1, our approach achieves
state-of-the-art performance on all 3 reference-
based metrics (ERRANT Fj 5, GLEU, and PT-
ERRANT), surpassing existing sequence tagging,
seq2seq, and LLM-based GEC approaches.

4.1 Analysis of Individual Models

Upon initial examination, Table 1 reveals that fine-
tuned GPT-40 achieved the highest overall perfor-
mance among all individual models tested. Addi-
tionally, it demonstrates that fine-tuning gives sub-
stantial performance gains, with GPT-40 improving
by 22.07 points in ERRANT Fy 5 and LLaMA by
24.94 points. This significant gap confirms that
fine-tuning remains essential for competitive GEC
performance, even as base model sizes of LLMs
continue to increase.

Among zero-shot models, DeepSeek outper-
forms both GPT-40 and LLaMA across all metrics,
likely due to its mixture-of-experts (MoE) archi-
tecture. Unlike its competitors’ dense transformer
design, DeepSeek selectively activates specialized
sub-networks for each token, possibly enabling it
to better handle diverse linguistic patterns, while
also making it faster in inference for GEC applica-
tions. On the other hand, GPT-4o0 is outperformed
by both open-source LLMs in zero-shot setting, par-
ticularly DeepSeek. Furthermore, after fine-tuning,
GPT-40’s modest advantage over LLaMA demon-
strates the competitiveness of open-source models,
which offer greater accessibility and transparency
to the broader community.

4.2 Analysis of Ensemble Systems

The Majority Voting with N-gram Fallback (where
N=3%) ensemble outperforms all individual mod-
els and other ensemble approaches, achieving the
highest ERRANT Fy 5 score of 0.6623 and PT-
ERRANT score of 0.7122. This suggests it is
best at effectively balancing grammatical correct-
ness with semantic meaning preservation. Fur-
thermore, this fallback approach outperforms sim-
ply defaulting to GPT-40 when models disagree,
proving that selecting corrections based on maxi-
mum subsequence agreement between candidate
outputs yields better results than relying solely on
the strongest individual model. However, fine-
tuned GPT-4o0 still maintains the highest GLEU

®N=3 produced best performance among N={2,3,4}.
Higher N values will make it biased towards minimal edits

score (0.8400), indicating its corrections are the
most fluent among all the GEC systems we tested.
The Qwen and Perplexity Fallback ensembles
underperform compared to N-gram Fallback be-
cause they make decisions based on external crite-
ria (LLM judgments or fluency scores) rather than
analyzing patterns of overlap among the candidate
corrections. Their superior performance on IM-
PARA, a metric known to favor minimal edits (ex-
plained further in Section 4.3), suggests these exter-
nal evaluation criteria inherently prioritize conser-
vative corrections over comprehensive ones even if
comprehensive corrections are necessary.

4.3 Comparative Analysis of Existing Systems

Our N-gram Fallback Ensemble model advances
the state-of-the-art in GEC by surpassing all exist-
ing systems on all three reference-based metrics
(ERRANT Fg 5, PT-ERRANT, and GLEU), with
even our individual fine-tuned GPT-40 model out-
performing all existing systems on ERRANT F 5
and GLEU. This strong performance across these
metrics indicates our approach makes precise and
fluent corrections, with minimal unnecessary edits,
while preserving intended meaning. This highlights
both the effectiveness of our ensemble strategy and
remarkable capabilities of our individual models.

Despite these impressive results with fine-tuned
models, Table 1 reveals state-of-the-art LLMs, in
its base form, under-perform compared to estab-
lished seq2seq and sequence tagging approaches,
and even fine-tuned significantly smaller LLMs,
across all reference-based metrics. However, our
fine-tuned models outperform LLaMA 2 variants
by around 10 percentage points in ERRANT, re-
flecting architecture advances in newer LLMs.
Compared to Seq2Seq models, we see larger gaps
in ERRANT and PT-ERRANT but closer GLEU
scores, suggesting decoder-only architectures excel
at precise corrections while encoder-decoder mod-
els still maintain competitive fluency. The largest
performance gap exists against sequence tagging
systems, demonstrating that token-level edit pre-
diction through sequence labeling is less effective
than large-scale pre-training with fine-tuning for
comprehensive GEC. While our systems achieve
strong IMPARA scores, we emphasize more on
other metrics due to IMPARA’s documented bias
toward minimal edits and tendency to penalize com-
prehensive corrections.

Our systems’ performance was further validated
in the Shared Task, where our ensemble with GPT-



Model | ERRANT Fo5 | GLEU | PT-ERRANT | IMPARA

Our Individual Models
Fine-Tuned GPT-40 0.6599 0.8400 0.7064 0.7768
Fine-Tuned LLaMA 3.3 0.6420 0.8281 0.6842 0.7705
Base DeepSeck 0.4926 0.7677 0.5666 0.7754
Base GPT-40 0.4592 0.7420 0.5484 0.7564
Base LLaMA 3.3 0.4826 0.7345 0.4973 0.7122

Our Ensemble Systems
Majority Voting + GPT-40 Fallback 0.6607 0.8392 0.7039 0.7746
Majority Voting + Qwen Fallback 0.6249 0.8312 0.6905 0.7855
Majority Voting + Perplexity Fallback 0.6251 0.8304 0.6879 0.7858
Majority Voting + N-gram Fallback 0.6623 0.8347 0.7122 0.7749

LLMs (Decoder Only Transformers)
Fine-Tuned LLaMA 2 7B (Omelianchuk et al., 2024) 0.5530 0.7985 0.6157 0.7529
Fine-Tuned LLaMA 2 13B (Omelianchuk et al., 2024) 0.5640 0.8027 0.6399 0.7554
Seq2Seq Models (Encoder-Decoder Transformer)

Fine-Tuned TS5 11B (Omelianchuk et al., 2024) 0.5860 0.8231 0.6656 0.7629
Fine-Tuned FLAN 20B (Omelianchuk et al., 2024) 0.5770 0.8149 0.6630 0.7582
Sequence Tagging Systems

GeCTOR (XLNet) (Omelianchuk et al., 2020) 0.5630 0.7687 0.6248 0.7058

CTC-Copy (Zhang et al., 2023) 0.5270 0.7714 0.6096 0.7302

EditScorer (Sorokin, 2022) 0.5740 0.7565 0.6285 0.7072
Ensemble and Model Ranking Approaches

Ensemble Best 7 (Omelianchuk et al., 2024) 0.6290 0.7854 0.7040 0.7153

Ensemble Best 3 (Omelianchuk et al., 2024) 0.6250 0.7907 0.7000 0.7216

GRECO Rank 7 (Omelianchuk et al., 2024) 0.6200 0.8032 0.7084 0.7366

GPT-4 Rank 3 (Omelianchuk et al., 2024) 0.5810 0.8270 0.6654 0.7753

Shared Task Competing Systems
Sugiyama et al. (2025) 0.4283 0.7603 0.4761 0.8171
Goto et al. (2025) 0.6189 0.7597 0.6483 0.6987

Table 1: Performance comparison of our models against GEC Systems on BEA-dev dataset. Existing systems results
obtained from Omelianchuk et al. (2024) (https://github.com/grammarly/pillars-of-gec/tree/main/data/system_preds),
except shared task systems which was provided by organizers. As stated by (Omelianchuk et al., 2024), Ensemble
Best 7 includes all 7 models (Fine-T LLaMA 2 7B, Fine-Tuned LLaMA 2 13B, Fine-Tuned T5 11B, Fine-Tuned
FLAN 20B, GeCTOR (XLNet), CTC-Copy, and EditScorer); Ensemble Best 3 contains top three: LLaMA-2-13B-
Fine-Tuned, FLAN-20B, and LLaMA-2-7B-Fine-Tuned; GRECO Rank 7 uses quality estimation guided beam
search to combine edits from 7 models; GPT-4 Rank 3 ranks outputs from best models of each type: LLaMA-2-
13B-Fine-Tuned (LLMs), T5-11B (Seq2seq), and EditScorer (Sequence Tagging).

40 Fallback and Fine-tuned GPT-40 model ranked
highest across all three reference-based evaluation
metrics, as shown in Table 1 (We did not submit
our best ensemble because it was implemented after
the shared task concluded). Among other notable
systems, Sugiyama et al. (2025) used zero-shot
GPT-40, while Goto et al. (2025) implemented an
ensemble approach using the GECToR framework,
combining three fine-tuned encoders (RoBERTa-
large, XLNet-large-cased, and DeBERTa-v1-large)
with majority voting.

One of the objectives of the shared task was
to examine GEC evaluation metric vulnerabilities,
particularly how reference based metrics can un-
fairly penalize valid corrections that differ from
the reference. And how reference free metrics like
IMPARA will prioritize making minimal edits and
penalize comprehensive corrections even if they
are necessary. As seen in Table 2, first couple of

corrections are penalized simply because it is dif-
ferent from the gold reference, even though both
are equally grammatically correct. And these kinds
of linguistic differences are common in preposi-
tional (on/at) and verb form edits (are suffering/-
suffer), as shown in the Table. This demonstrates
the inherent limitations of relying exclusively on
reference-based metrics for evaluating GEC system
performance.

To address these limitations reference free met-
rics like IMPARA was developed. But our analy-
sis, which was also supported by Sugiyama et al.
(2025) and Gotd et al. (2025), reveals significant bi-
ases in IMPARA, which favors minimal edits while
severely penalizing essential comprehensive cor-
rections. As demonstrated in Table 2 sentences re-
quiring multiple corrections receive extremely low
scores regardless of quality and necessity of the
correction. This limitation stems from IMPARA’s



Original Gold Reference Ensemble Correction | ERRANT | GLEU | PT-ERRANT
I had a wonderful day | I had a wonderful day | I had a wonderful day 50.00 73.05 63.88
yesterday because I was | yesterday because I was | yesterday because I was

in the beach all the after- | on the beach all after- | at the beach all after-

noon . noon . noon .

In our modern world | In our modern world | In our modern world 50.00 76.60 62.29

, many people are suf- | , many people are suf- | , many people suffer

fered from stress that | fering from stress that | from stress that springs

spring from life condi- | springs from life condi- | from life conditions .

tions . tions .

Original Ensemble Correction IMPARA
I take too much photos because you don’t visit places | Itake too many photos because you don’t visit places 0.0006
like that everyday. like that every day.

What if you don’t have none of those requierments? | What if you don’t have any of those requirements? 0.0116

Table 2: GEC examples with evaluation metrics. Here Ensemble is the Majority Voting with GPT-40 Fallback.
Incorrect phrases in Red, their corresponding correction in Green

BERT-based architecture, which measures seman-
tic similarity via vector distances. Multiple edits
push original and corrected sentences too far apart
in embedding space, causing IMPARA to penalize
them. Thus, it can be argued that IMPARA proves
unreliable as a GEC evaluation metric.

4.4 LLM-as-a-Judge and Human Evaluation

To address these metric limitations, we imple-
mented a hybrid evaluation combining LL.M-as-a-
Judge with human assessment to compare our fine-
tuned GPT-40 corrections against gold standards.
Table 3 shows the two LLLM judges (reaching con-
sensus in 64.34% of cases) preferred our model’s
corrections (30.87%) over gold standards (19.77%),
with 13.70% rated the corrections equally valid.
Following human evaluation to resolve LLM dis-
agreements, final results revealed that GPT-40’s
corrections were preferred for 35.61% of edits,
gold standards for 26.34%, while 38.15% of ed-
its were judged equally grammatically valid.

So, in 73.76% of cases, where our model pro-
duced corrections which were different from gold
standards, these are actually judged as either supe-
rior or equally valid compared to gold references.
This further validates that our system not only out-
performs existing GEC approaches on automated
metrics, but also produces corrections that are fre-
quently preferred over or considered the same as
the gold standards themselves. This complemen-
tary evaluation brings forward an argument that
while reference based metrics remain valuable for
standardized comparison with existing systems,
they should be supplemented with human judgment
(assisted by LLM judges for scalability purposes)
to comprehensively assess correction quality.

4.5 Edit Type Analysis

Figure 1 shows the distribution of edit types where
GPT-4o0 corrections are different from gold stan-
dards, and their subsequent evaluation through
LLM-as-a-Judge and human validation. The most
common differences between GPT-40 corrections
and gold standards are in replacement edits indi-
cating our model often chooses different, yet valid,
replacement strategies when correcting the same
underlying grammatical issues. Presence of signifi-
cant punctuation edits in GPT-4o corrections indi-
cate our model often adds marks absent in gold cor-
rections (M:PUNCT), preserves punctuation that
gold standard removes (U:PUNCT), and selects
alternative punctuation marks (R:PUNCT). Deter-
miner errors (189 instances across unnecessary, re-
placement, and missing articles) reflect GPT-40’s
distinct handling of English articles, a grammatical
feature that allows multiple acceptable forms in any
given context.

After these correction edits are evaluated by hu-
man evaluators and LLM judges, it can be seen
from Figure 1 that our model’s punctuation addi-
tions (M:PUNCT) are strongly preferred over gold
standard (130 vs 9 instances), while gold standard
reference is preferred when GPT-40 omitted some
necessary punctuation (U:PUNCT). This suggests
GPT-40 excels at identifying missing punctuation
but occasionally makes incorrect omissions. Evalu-
ators also preferred our model’s orthography cor-
rections (R:ORTH) and determiner choices, with
determiner edits from our model consistently rated
superior to or at least equal to gold standard alter-
natives.

Additionally, 38.15% of edits across all er-
ror types were judged equally valid, revealing
reference-based metrics penalize alternatives sim-



Evaluation Stage

Gold Standard Preferred GPT-4o0 Preferred Both Equally Valid Disagreement

LLM Consensus
After Human Resolution

342 (19.77%)
454 (26.24%)

534 (30.87%)
616 (35.61%)

237 (13.70%) 617 (35.66%)
660 (38.15%) -

Table 3: LLM-as-a-Judge and Human Evaluation Results (In the BEA-dev dataset, there were 1,730 edits in total
where fine-tuned GPT-40 produced different edit corrections compared to gold reference)

RIOTHER - 221

M:PUNCT 163

Edit Type

Edits Different from Gold

Gold Standard Edit Preferred

Category

-200

175

Count

Fine-tuned GPT-do Edits Preferred Both Edits Equally Preferred

Figure 1: Edit Type Counts where fine-tuned GPT-40 produced different corrections compared to gold standard.
Table 4 in the Appendix provides detailed descriptions of all edit type codes.

ply for differing from the gold reference. This
limitation is most evident in replacement opera-
tions related to prepositions (R:PREP) and verbs
(R:VERB), for example. This highlights the inher-
ent flexibility of English preposition usage where
multiple alternatives can be grammatically correct
and also showcases how verb usage is highly con-
text dependent, with multiple tense or form options
often being grammatically acceptable.

This provides evidence that for certain grammat-
ical features, especially punctuations, determinants,
prepositions, and verb tense, there is bound to be
multiple valid corrections, even if we strictly fol-
low the approach of minimal edits. These findings
substantiate the argument that reference based met-
rics exclusively does not provide a good estimation
of GEC system performance, but rather it requires
to be supported by human evaluation to obtain a
more accurate representation of correction quality.
Appendix A.5 further provides examples where
GPT-4o edits are different from gold reference.

5 Conclusion

Our experiments reveal that fine-tuned LLMs sig-
nificantly outperform traditional GEC approaches,

with our fine-tuned GPT-40 model establishing a
new state-of-the-art for individual systems, sur-
passing previous benchmarks across a couple of
reference-based metrics. This performance advan-
tage is further extended by our majority voting
ensemble with N-gram overlap fallback, which
achieves even higher scores on ERRANT Fg 5
and PT-ERRANT. However, reference-based met-
rics systematically underestimate system perfor-
mance by penalizing legitimate alternatives, as
demonstrated by our hybrid LLM-human evalu-
ation framework, which reveals that 73.76% of cor-
rections diverging from gold standards are judged
equally valid or superior. Through systematic error
type analysis, we provide empirical evidence that
certain grammatical features, particularly punctua-
tion, determiners, prepositions, and verb forms in-
herently support multiple valid corrections, further
challenging the exclusive use of reference-based
metrics for assessing GEC performance. These
findings underscore the necessity of complement-
ing automated metrics with human evaluation, po-
tentially aided by LLMs for scalability, to accu-
rately assess GEC system performance.



6 Limitation

While our approach demonstrates advancement in
GEC performance, several important limitations
should be considered when interpreting our results.
The effectiveness of our fine-tuned models is con-
tingent on the error type distribution in the train-
ing data. Despite achieving state-of-the-art per-
formance, our models may excel at correcting er-
ror types well-represented in the ABC train set of
W&I+LOCNESS dataset while potentially under-
performing on less common error types.

One of the limitation is related to potential data
contamination. LL.LMs may have encountered our
test datasets during pre-training, artificially inflat-
ing performance metrics. We cannot fully elimi-
nate this possibility without proper knowledge of
the training data used during pre-training. Future
work could address this by creating entirely new
test sets with recent content or techniques to detect
contamination effects.

While our zero-shot experiments included
DeepSeek V3 (671B parameters), we could not
host and fine-tune this model due to prohibitive in-
frastructure requirements. In contrast, we success-
fully fine-tuned GPT-40 via OpenAI’s API without
hosting the model locally, and adapted LLaMA
70B using parameter-efficient methods like LoRA.
However, DeepSeek’s superior zero-shot perfor-
mance suggests it might have established an even
higher benchmark if fine-tuned. This highlights an
important trade-off between model size, accessibil-
ity, and performance in GEC research.

For our LLM-as-a-Judge approach with human
verification, we limited our human evaluation to
GPT-40 corrections due to resource constraints, as
this model demonstrated the strongest overall per-
formance in automated metrics.

Our evaluations were conducted on standardized
academic datasets. Performance may vary in real-
world applications with domain-specific writing
styles, specialized terminology, or less common
error patterns not represented in the evaluation data.

Furthermore, our research focuses exclusively on
English grammatical error correction. The architec-
tures, fine-tuning approaches, and evaluation frame-
works may not directly transfer to other languages,
particularly those with significantly different gram-
matical structures, morphological complexity, or
writing systems. This limitation is particularly rel-
evant given the global need for grammatical error
correction across diverse languages.

Finally, while grammatical error correction sys-
tems primarily aim to assist users in improving
their writing, several ethical considerations merit
acknowledgment. Our evaluation framework and
models may embed normative assumptions about
"correct" grammar that could disadvantage speak-
ers of non-standard English dialects. The Large
Language Models employed in this study (GPT-
40, LLaMA 3.3, and DeepSeek V3) may perpetu-
ate linguistic biases present in their training data,
potentially resulting in corrections that privilege
certain language varieties over others. Addition-
ally, while our dual-LLM-as-a-Judge evaluation
approach helps mitigate individual model biases,
residual biases from each model may still sep-
arately influence which corrections are deemed
"equally valid" or "preferred" compared to gold
references. We also acknowledge that widespread
deployment of automated GEC systems could influ-
ence language standardization in ways that require
careful consideration by the research community.

7 Ethics Statement

This research utilizes established public benchmark
datasets with appropriate consent and no additional
personal data collection. We also recognize that
our GEC systems may embed assumptions about
"correct” grammar that could disadvantage non-
standard English dialects, supported by our finding
that 73.76% of model corrections differing from
gold standards were equally valid or preferred high-
lights the inherent flexibility in grammatical cor-
rectness. Furthermore, the LLMs employed may
perpetuate linguistic biases from their training data.
Additionally, human evaluators for our LLM-as-
a-Judge framework participated voluntarily with
appropriate compensation, and all evaluator identi-
ties were anonymized in research records.

Our work intends to enhance educational prac-
tices by providing supplementary tools for gram-
mar assessment rather than substituting expert hu-
man evaluation. The GEC systems developed here
are designed primarily for instructional feedback
and learning support, and we caution against their
use in critical assessment scenarios without sub-
stantial human supervision and review.
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A Appendix

A.1 Equations of Automated Metrics
The equation for ERRANT Fg 5 is given below:

1L .
ERRANT Fo.5 — 25 X precision X recall

ey

0.25 x precision + recall

The equation for GLEU is given below:

. r =
GLEU = min (Lexp (1 - E)) X exp (; W, logpn>
@
where 7 is reference length, c is candidate length,
N is the maximum n-gram order, w,, are n-gram
weights, and p,, is the modified n-gram precision.
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A.2 Prompt for GEC Inference and
Fine-tuning

Figure 2 shows the prompt used for fine-tuning and
also for generating the corrections in inference.

You are an English linguist and your task is to correct
the grammatical and mechanical errors in English
sentences.

Please make only necessary corrections to the extent
that a sentence will be free from errors and compre-
hensible.

Do not alter word choices unnecessarily (e.g., replac-
ing words with synonyms) or make stylistic improve-
ments.

Also, the sentences are tokenized, which means punc-
tuation marks are separated from the English words
by spaces.

When returning the corrected sentences, please use
the same tokenized format.

Please respond in the following JSON format:

{{

"corrected": "...

1)

The original sentence is:
{original}

Figure 2: Inference and Fine-tune Prompt

A.3 Prompt for Qwen Meta-Model

Figure 3 shows the prompt used for the Qwen-2.5-
7B-Instruct model to judge which correction out of
the three model correction is better.

A4 ERRANT Error Type Descriptions

Table 4 provides descriptions of the ERRANT edit
types referenced in Figure 1.

A.5 Examples of Edit Differences

Tables 5 and 6 show examples of instances where
the correction edits generated by GPT-40 model is
different from the gold references, and the verdict
and preference explanation of the LLM and human
judges.
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Compare the sentences given below and tell me
which one (A, B, or C) is the most grammatically
correct version of the original given below.
Original: "{original_sentence}"

A: "{correction_a}"

B: "{correction_b}"

C: "{correction_c}"

Provide your response in JSON format as follows:

{

"best_option": "The letter of the best option (A, B, C,
etc.)",

"reasoning": "A brief explanation of why this is the
best option",

}

Figure 3: Prompt used for Qwen to judge which model
correction is best



Edit Code

Description

M:PUNCT
U:PUNCT
R:PUNCT
R:PREP
R:VERB
R:VERB:TENSE
R:VERB:FORM
R:NOUN
R:NOUN:NUM
U:DET

R:DET

M:DET
R:ORTH
R:OTHER
U:OTHER
M:OTHER
R:ADJ

U:PREP
R:MORPH
U:NOUN

Missing punctuation - punctuation present in the correction but absent in gold standard
Unnecessary punctuation - punctuation present in gold standard but omitted in correction
Replacement of punctuation - different punctuation used in correction compared to gold
Replacement of preposition - different preposition used in correction compared to gold
Replacement of verb - different verb used in correction compared to gold

Replacement of verb tense - different tense of the same verb used in correction
Replacement of verb form - different form of the same verb used in correction
Replacement of noun - different noun used in correction compared to gold
Replacement of noun number - singular/plural variation of the same noun

Unnecessary determiner - determiner present in gold standard but omitted in correction
Replacement of determiner - different determiner used in correction compared to gold
Missing determiner - determiner present in the correction but absent in gold standard
Replacement of orthography - spelling or formatting differences

Other replacements not falling into above categories

Other unnecessary words not falling into above categories

Other missing words not falling into above categories

Replacement of adjective - different adjective used in correction compared to gold
Unnecessary preposition - preposition present in gold standard but omitted in correction
Replacement of morphology - different word form used in correction compared to gold
Unnecessary noun - noun present in gold standard but omitted in correction

Table 4: ERRANT Edit Type Descriptions
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Original

| Gold Reference

Different Replacement Strategies (R:OTHER)

GPT-40

Reasoning

I have taken that decision
because...

I took that decision...

I made that decision...

Both ’took’ and "'made’ are gram-
matically valid. "Made that de-
cision’ is a more idiomatic and
standard collocation in English
compared to ’took that decision’.
Original "have taken" is gram-
matically correct as well.

I think the government
will slow down the fee in
public transportation, that
could make people to use
public transportation and
caring the environment
from CO2 emissions and
prevent the global heating.

I think the government
should reduce the fares
on public transportation.
That could make people
use public transportation
and protect the environ-
ment from CO2 emissions
and prevent global warm-

ing.

I think the government
will lower the fee for
public transportation.
That could make people
use public transportation
and care for the environ-
ment by reducing CO2
emissions and preventing
global warming.

Both ’reduce’ (Gold) and ’lower’
(GPT-40) are grammatically
valid verbs to correct ’slow
down’. While Gold changes ’fee’
to ’fares’ and GPT-4o0 retains
“fee’, both successfully address
the original error with different
but equally appropriate lexical
choices. The same is true for the
use of "protect" and "care", and
"prevent" and "preventing".

Punctuation Differences

Adding punctuation marks

(M:PUNCT)

It can be passed on to hu-
mans through eating parts
of the animal such as the
brain which is affected...

It can be passed on to hu-
mans through eating parts
of the animal such as the
brain which is affected...

It can be passed on to hu-
mans through eating parts
of the animal, such as the
brain, which is affected...

GPT-40 adds commas to set
off the non-restrictive example
clause and relative clause, im-
proving clarity and grammatical
correctness.

Preserving punctuation (U:PUNCT)

One month ago I ordered
two batteries...

One month ago, I ordered
two batteries...

One month ago I ordered
two batteries...

Gold reference correctly has a
comma after the introductory
time phrase ’One month ago’ to
adhere to standard punctuation
rules.

Alternative punctuation (R:

PUNCT)

When I was little I had
tried a lot of sports, Hand-
ball, Swimming, Tennis,
but...

When I was little, I tried
a lot of sports; handball,
swimming, tennis, but...

When I was little, I tried
a lot of sports: handball,
swimming, tennis, but...

A colon is grammatically pre-
ferred to introduce a list after
’sports’, whereas a semicolon is
incorrect in this context.

Table 5: Comparison of Gold Reference and GPT-40 Correction Edits [1 of 2]. "Reasoning" contains the reasoning
provided by both Claude and DeepSeek LLM judges, along with human evaluators, which are holistically combined
and presented here. Red shows edits in original sentences, while green shows its corresponding correction edits
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| GPT-40

Reasoning

Original ‘ Gold Reference
Orthography Corrections (R:ORTH)

Nowadays everybody | Nowadays, everybody
watches T.V. watches TV.

Nowadays,
watches T.V.

everybody

Gold Reference’s correction of
"T.V. to TV’ without periods
follows modern standard abbre-
viation conventions, while GPT-
40 maintains the original format.
This shows how orthographic
preferences can vary, with the
Gold standard version considered
more contemporary.

Preposition Replacements (R:PREP)

Finally, in the future,
the commodity of people
maybe is going to determi-
nate the most use of the
cars than the public trans-
port.

Finally, in the future, the
commodity of people is
maybe going to determine
the most use of the cars
than the public transport.

Finally, in the future, the
convenience for people
maybe is going to deter-
mine the greater use of
cars than public transport.

Both versions use different but
valid prepositions: Gold Refer-
ence retains ‘of people’ while
GPT-40 uses ’for people’. Nei-
ther choice is grammatically in-
correct, demonstrating the inher-
ent flexibility of English preposi-
tion usage where alternatives can
be equally correct depending on
intended meaning.

Verb Replacements (R:VERB)

After her 18th birthday,
Anna felt a sudden ne-
cessity of knowing what
happened to her bilogical
mother and why did she
gave Anna away.

After her 18th birthday,
Anna felt a sudden need
to know what happened to
her biological mother and
why she gave Anna away.

After her 18th birthday,
Anna felt a sudden need to
know what had happened
to her biological mother
and why she had given
Anna away.

Gold Reference uses simple past
tense (Chappened’, *gave’) while
GPT-40 uses past perfect ("had
happened’, ’had given’). Both
are grammatically valid choices
that reflect different temporal per-
spectives, with GPT-40’s version
emphasizing sequence more ex-
plicitly. This demonstrates how
multiple verb tense options can
be acceptable in the same con-
text.

Original

Gold Reference

GPT-40

Reasoning

Determiner Differences

The town has also im-
proved the management
and treatment of waste sys-
tem...

The town has also im-
proved the management
and treatment of waste...

The town has also im-
proved the management
and treatment of the waste
system...

Both corrections are grammati-
cally valid. Gold Reference re-
moves 'the’, while GPT-40 adds
"the’ before *waste’. Both struc-
tures are grammatically correct.

This is the guestion for ev-
ery one...

This is the question for ev-
eryone...

This is a question for ev-
eryone...

Both ’the question’ and ’a ques-
tion” are grammatically correct.
The choice between "the’ and ’a’
is stylistic, not grammatical.

Table 6: Comparison of Gold Reference and GPT-40 Correction Edits (continued) [2 of 2]
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