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Abstract001

This study addresses three current limitations002
in Grammatical Error Correction (GEC): the003
absence of comprehensive evaluation of the004
newest Large Language Models (LLMs), the005
reliance on single evaluation metrics for com-006
parative analysis, and the underestimation of007
system performance by reference-based met-008
rics. We address these limitations first by fine-009
tuning state-of-the-art LLMs (GPT-4o, LLaMA010
3.3 70B) and incorporating these along with011
zero-shot DeepSeek V3 in an ensemble, which012
outperformed previous GEC systems in multi-013
ple reference-based metrics. We also present014
the first comprehensive GEC system compar-015
ison, evaluating performance across multiple016
sequence tagging, sequence-to-sequence, and017
LLM-based approaches using both reference-018
based and reference-free metrics. Finally, using019
LLM-as-a-Judge with human validation, we020
demonstrate that 73.76% of fine-tuned GPT-021
4o’s corrections which did not match the gold022
reference are either equally valid grammatically023
or preferred over the gold reference, revealing024
that reference-based metrics significantly un-025
derestimate GEC system performance.026

1 Introduction027

Effective Grammatical Error Correction (GEC) sys-028

tems would ideally not only achieve high accu-029

racy but also align closely with human correction030

patterns. This alignment is particularly crucial031

in language learning context, where both under-032

correction (minimal edits) and over-correction can033

impede effective learning. In order to address this034

challenge, multiple GEC systems have been de-035

veloped, which typically fall into three main cate-036

gories: (1) Sequence Tagging (Omelianchuk et al.,037

2020); (2) Sequence-to-Sequence (Seq2seq) mod-038

els, which translate incorrect sentences to correct039

ones (Yuan and Briscoe, 2016); and (3) Large Lan-040

guage Models (LLMs), which generate corrections041

through conditional text generation (Omelianchuk 042

et al., 2024; Davis et al., 2024). 043

However, each approach has inherent limita- 044

tions as sequence tagging struggles with long- 045

range dependencies (Omelianchuk et al., 2020) 046

and seq2seq models struggle with over-correction 047

(Omelianchuk et al., 2024). These challenges 048

have remained difficult to solve because GEC sys- 049

tems must balance making enough corrections (re- 050

call) without making unnecessary ones (precision), 051

while also accounting for grammar’s contextual 052

nature. While newer LLM architectures might po- 053

tentially address some of these limitations, com- 054

prehensive evaluations of the newest generation 055

of LLMs (e.g., LLaMA 3.3 70B (Grattafiori et al., 056

2024), GPT-4o (OpenAI, 2024), and DeepSeek v3 057

671B (DeepSeek-AI et al., 2025b)) are notably ab- 058

sent. Previous studies (Omelianchuk et al., 2024) 059

on LLMs evaluated older models (e.g., LLaMA-2), 060

leaving practitioners without current data to help 061

inform deployment decisions. 062

Beyond these challenges, most research relies on 063

a single evaluation metric, typically ERRANT F0.5 064

(Bryant et al., 2017), which evaluates correction 065

quality on individual edit level (Omelianchuk et al., 066

2024). But there is scarcity of research evaluating 067

different types of GEC systems on higher-level 068

dimensions like fluency or meaning preservation 069

after correction, which can be retrieved using other 070

reference based metrics like GLEU (Napoles et al., 071

2016) and PT-ERRANT (Gong et al., 2022). 072

Additionally, reference-based metrics severely 073

penalize systems that generate valid alternative cor- 074

rections simply because they differ from the pro- 075

vided reference. This limitation is further propelled 076

by LLMs as they introduce stylistic enhancements 077

that frequently diverge from gold references by 078

generating alternative but equally valid corrections 079

(Bryant et al., 2023). Alternatively, the creation 080

of comprehensive datasets containing all possible 081

valid corrections for each error remains practically 082
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infeasible due to the combinatorial explosion of083

grammatical alternatives, contextual variations, and084

stylistic preferences. To address this, reference-free085

metrics, like IMPARA (Maeda et al., 2022), are086

developed to directly assess semantic and grammat-087

ical acceptability without references, but they often088

exhibit bias towards minimal edits and struggle089

with comprehensive corrections that make multiple090

changes.091

To address these challenges, first, we conducted092

experiments with latest LLMs (LLaMA 3.3 70B,093

GPT-4o, and DeepSeek v3) in both zero-shot and094

fine-tuned settings. Second, we developed an en-095

semble architecture by combining our best models096

using sentence-level majority voting, with an inno-097

vative fallback strategy that selects corrections with098

the highest n-gram overlap across candidate cor-099

rections when there is no majority. Third, instead100

of using one metric for evaluation, we present the101

first multi-metric comparative analysis across mul-102

tiple sequence tagging, seq2seq, and LLM-based103

GEC approaches, utilizing both reference-based104

and reference free metrics. This helps us capture105

different dimensions of correction quality, includ-106

ing edit accuracy and fluency. Finally, to address107

the fundamental reference-based evaluation prob-108

lem, we conduct LLM-as-a-Judge evaluation with109

human validation to properly estimate our system’s110

performance1. Our key contributions are:111

• A fine-tuned GPT-4o model established a new112

state-of-the-art for individual GEC systems,113

an achievement further validated by our top-114

ranking performance in XXX Shared Task2.115

• A majority voting ensemble with n-gram over-116

lap fallback that further advances the state-of-117

the-art on ERRANT F0.5 and PT-ERRANT.118

• First extensive GEC system comparison with119

reference-based and reference-free metrics.120

• A hybrid evaluation framework combining121

LLM-as-a-Judge with human evaluation, re-122

vealing that 73.76% of our model’s correc-123

tions that differ from gold standards are actu-124

ally equally valid or preferred, demonstrating125

limitations in reference-based metrics.126

1All code, fine-tuned models and annotated data will be
made available at xxx

2The shared task link has been anonymized for review

2 Related Work 127

This section examines the evolution of GEC sys- 128

tems from sequence tagging to LLMs, their ensem- 129

ble methods and evaluation challenges. 130

2.1 Individual GEC Systems 131

Sequence tagging GEC approaches like GECToR 132

(Omelianchuk et al., 2020) use pre-trained encoders 133

(BERT, RoBERTa, XLNet) to predict specific edit 134

operations for each token from a large vocabulary 135

of transformation tags, with larger version of these 136

encoders giving better performance (Tarnavskyi 137

et al., 2022). However these approaches struggle 138

with complex, interconnected errors which requires 139

broader contextual understanding. 140

On the other hand, Seq2seq models approach 141

GEC as a translation task from incorrect to correct 142

sentences. These systems, like Neural Machine 143

Translation has evolved over time from attention- 144

enhanced RNNs (Yuan and Briscoe, 2016) to 145

CNNs (Chollampatt and Ng, 2018) and eventu- 146

ally to Transformer-based models (T5) (Rothe 147

et al., 2021). They can capture complex error pat- 148

terns which overcame the shortcomings of previ- 149

ous Seq2seq systems (Flachs et al., 2019), but they 150

suffered from computational demands and over- 151

correction tendencies. 152

Distinct from previous methods, LLMs approach 153

GEC through conditional text generation, leverag- 154

ing knowledge acquired during pre-training. In 155

zero-shot settings, models like GPT-3.5 excel at 156

error detection but exhibit low precision due to 157

unnecessary corrections (Fang et al., 2023), with 158

GPT-3.5, GPT-4, and LLaMA-2 variants all achiev- 159

ing ERRANT F0.5 scores below 50 on the BEA-dev 160

set (Omelianchuk et al., 2024). Fine-tuning dramat- 161

ically improves performance, with LLaMA-7B and 162

13B models reaching competitive F0.5 scores of 163

55.4 and 56.4 respectively which is comparable to 164

specialized seq2seq and sequence tagging systems 165

on the same benchmark (Omelianchuk et al., 2024). 166

2.2 Ensembles of GEC Systems 167

While these individual models show promising 168

results, ensemble approaches consistently outper- 169

form them. Qorib et al. (2022) introduced Edit- 170

based System Combination (ESC) using logistic 171

regression on extracted edit features to select cor- 172

rections, while Tarnavskyi et al. (2022) extended 173

this with span-level majority voting. Qorib and 174

Ng (2023) developed GRECO, a DeBERTA-based 175
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grammaticality scorer for re-ranking grammati-176

cal corrections but their systems are optimized177

to perform well in specific datasets, rather than178

a single generalizable model. Building on these,179

Omelianchuk et al. (2024) analyzed various en-180

sembling techniques (GRECO, GPT-based rank-181

ing, and second-order ensembles), achieving state-182

of-the-art performance (62.9 F0.5 on BEA-dev)183

through a simple edit-span level majority voting en-184

semble, without any dataset specific optimization.185

2.3 Evaluation of GEC Systems186

Reference-based metrics like ERRANT, GLEU and187

PT-ERRANT evaluate corrections by comparing188

them with gold references. But these metrics under-189

estimate system performance by failing to account190

for the diversity of valid corrections. Rozovskaya191

and Roth (2021) demonstrated that system scores192

improved by 20–40 points when references were193

adjusted to accept any valid correction. Reference-194

free metrics like IMPARA (Maeda et al., 2022)195

attempt to overcome these limitations by directly196

measuring semantic and grammatical acceptabil-197

ity of corrections without requiring gold standards.198

However, they are biased toward minimal edits199

and have difficulty in scoring comprehensive cor-200

rections (Bryant et al., 2023). Human evaluation201

remains the ideal option but is often impractical202

at scale. To bridge this gap, LLM-as-a-Judge ap-203

proaches (Gu et al., 2025) have emerged as promis-204

ing alternatives, as they evaluate correction quality205

with inter-annotator agreement comparable to hu-206

man evaluators. However, using a single LLM for207

evaluation risks introducing biases that could com-208

promise assessment objectivity and reliability.209

3 Methodology210

To address these challenges, we experiment with211

newest LLMs and multiple ensemble architectures,212

conduct the first comprehensive multi-metric GEC213

system comparison, and utilize a hybrid LLM-214

human framework to validate corrections.215

3.1 Dataset216

For our experiments, we utilized the217

W&I+LOCNESS dataset from the BEA 2019218

Shared Task on GEC (Bryant et al., 2019; Granger,219

1998), organized by CEFR levels: A (beginner),220

B (intermediate), C (advanced), and N (native).221

We fine-tuned models on the ABC train partition222

(combining beginner, intermediate, and advanced223

texts) and used the ABCN development set 224

(including native texts) as our test set. 225

While several established GEC benchmark 226

datasets exist, including CoNLL-14 (Ng et al., 227

2014), JFLEG (Napoles et al., 2017), and FCE 228

(Yannakoudakis et al., 2011), our evaluation is 229

intentionally limited to W&I+LOCNESS due to 230

practical constraints. Comprehensive multi-dataset 231

evaluations significantly increase computational 232

demands when evaluating multiple LLM variants, 233

while our hybrid LLM-human evaluation frame- 234

work introduces substantial cost considerations that 235

would multiply across test sets. This is why we al- 236

located resources towards more thorough model 237

comparisons on a single standardized benchmark. 238

3.2 Model Selection and Fine-tuning 239

We evaluated three leading LLMs representing di- 240

verse architectures and accessibility paradigms: 241

GPT-4o (commercial, OpenAI), LLaMA-3.3-70B- 242

Instruct (open-source, Meta), and DeepSeek-V3- 243

671B (Mixture-of-Experts architecture activating 244

only 37B of 671B parameters per token). 245

The W&I LOCNESS dataset contains origi- 246

nal sentences annotated using ERRANT (ERRor 247

ANnotation Toolkit) (Bryant et al., 2017), which 248

standardizes error annotation by aligning source- 249

corrected text pairs, extracting edits, and classify- 250

ing them into specific edit types. We parsed these 251

ERRANT annotations to extract the specified edit 252

operations and applied them to create gold refer- 253

ences for fine-tuning. 254

We first evaluated all three models in a zero-shot 255

setting using the prompt in Figure 2 in the Ap- 256

pendix, to establish a baseline for each model’s in- 257

herent GEC capabilities without additional training. 258

Following this, we fine-tuned two of the three mod- 259

els (GPT-4o3 and LLaMA 3.3) on the BEA training 260

data for two epochs with cross-entropy loss func- 261

tion and using the same prompt template as in zero- 262

shot inference. DeepSeek-V3 was maintained in its 263

zero-shot configuration due to the prohibitive com- 264

putational costs of fine-tuning a 671B-parameter 265

model and its superior baseline performance, mak- 266

ing it valuable for ensemble integration without 267

fine-tuning. 268

3.3 Ensemble System 269

We experimented with four ensemble systems com- 270

bining the outputs from our two fine-tuned mod- 271

3GPT-4o fine-tuned using OpenAI API:
https://openai.com/index/gpt-4o-fine-tuning/
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els (GPT-4o and LLaMA-3.3) and the zero-shot272

DeepSeek-V3 model. All our ensemble variants273

use a majority voting mechanism as their primary274

decision rule: when two or three systems agree on275

a correction, the agreed correction is applied. How-276

ever, the ensembles differ in their fallback strategy277

for cases where no agreement exists among the278

three models:279

Best Model Fallback: Our baseline ensemble280

relies on the best model’s correction as fallback281

when no majority exists. This approach is based on282

the assumption that the best model is most likely283

to produce the optimal correction when consensus284

cannot be reached.285

Qwen Fallback: This ensemble uses Qwen-2.5-286

7B-Instruct (Qwen et al., 2025) as a meta-model to287

select among candidate corrections when models288

disagree, using the prompt in Figure 3 in Appendix.289

This approach leverages Qwen’s language under-290

standing to make informed grammatical judgments291

when models disagree, rather than relying on sim-292

ple statistical measures.293

Perplexity Fallback: When models disagree,294

this ensemble computes the perplexity score of295

each candidate correction using base Qwen-7B4296

and selects the correction with the lowest perplex-297

ity. This approach is based on the fundamental na-298

ture of LLMs, which are pre-trained primarily on299

grammatically correct text, causing them to assign300

higher probabilities (lower perplexity) to correc-301

tions that follow grammatical patterns they have302

encountered during pre-training.303

N-gram Fallback: Our final ensemble resolves304

disagreements by selecting the correction with the305

highest n-gram overlap with other candidate correc-306

tions. This approach operates on the principle that307

correct edits often share common subsequences308

across different models’ outputs, even when full309

agreement isn’t reached.310

3.4 Automated Metrics Evaluation311

For comprehensive evaluation of GEC systems of312

different categories, we use three reference-based313

metrics (ERRANT F0.5, GLEU and PT-ERRANT)314

to assess correction quality against gold standards.315

ERRANT F0.5 focuses on precision, ensuring our316

system makes accurate corrections without making317

unnecessary edits. GLEU assesses overall correc-318

tion quality through n-gram matching with refer-319

ence corrections, indicating how well the model320

4https://huggingface.co/Qwen/Qwen-7B

produces naturally fluent corrections that align with 321

human judgment (Equations provided in Appendix 322

A.1). PT-ERRANT uses pre-trained models to 323

evaluate phrase-level and structural modifications 324

with semantic understanding, specifically show- 325

ing a model’s ability to preserve intended meaning 326

while making corrections. Alongside reference- 327

based metrics, we also incorporate reference-free 328

metrics like IMPARA, which evaluates correction 329

quality without gold standards. 330

3.5 LLM-as-a-Judge and Human Evaluation 331

To move beyond purely quantitative metrics in as- 332

sessing grammatical corrections, we introduce a 333

hybrid evaluation framework that combines LLM- 334

as-a-Judge with targeted human evaluation. This 335

is a core contribution of our work as it addresses 336

critical limitations in automated GEC evaluation 337

approaches while validating the reliability of our 338

systems and quality of its produced corrections. 339

Our hybrid evaluation protocol first employs 340

two state-of-the-art LLMs, Claude 3.7 Sonnet5 341

and DeepSeek-R1 as primary judges to assess 342

whether corrections from our best-performing 343

fine-tuned model are preferred over gold refer- 344

ences. We selected these specific models based on 345

Claude’s demonstrated high inter-annotator agree- 346

ment with human evaluators (Zheng et al., 2023) 347

and DeepSeek-R1’s powerful reasoning capabili- 348

ties (DeepSeek-AI et al., 2025a). 349

For each edit, the LLM judges categorize com- 350

parisons into one of three categories: (1) The gold 351

reference is preferred, (2) The model’s correction 352

is preferred, or (3) Both corrections are equally 353

grammatically valid (even if syntactically differ- 354

ent). When both models reach consensus on a 355

preference, their determination is considered final, 356

as LLMs are known to have similar inter-annotator 357

agreement to humans (Gu et al., 2025). In cases 358

where the LLM judges disagree, two qualified hu- 359

man GEC evaluators apply the same three category 360

framework to resolve discrepancies. 361

This evaluation framework offers two key ad- 362

vantages: (1) Substantially reduced time and re- 363

sources compared to comprehensive human as- 364

sessment, as human judgment is invoked only for 365

contested cases, making the evaluation approach 366

highly scalable; (2) Improved reliability through 367

two-model consensus mechanisms that mitigate 368

individual LLM biases. 369

5https://assets.anthropic.com/m/785e231869ea8b3b/original/claude-
3-7-sonnet-system-card.pdf
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4 Results and Analysis370

As demonstrated in Table 1, our approach achieves371

state-of-the-art performance on all 3 reference-372

based metrics (ERRANT F0.5, GLEU, and PT-373

ERRANT), surpassing existing sequence tagging,374

seq2seq, and LLM-based GEC approaches.375

4.1 Analysis of Individual Models376

Upon initial examination, Table 1 reveals that fine-377

tuned GPT-4o achieved the highest overall perfor-378

mance among all individual models tested. Addi-379

tionally, it demonstrates that fine-tuning gives sub-380

stantial performance gains, with GPT-4o improving381

by 22.07 points in ERRANT F0.5 and LLaMA by382

24.94 points. This significant gap confirms that383

fine-tuning remains essential for competitive GEC384

performance, even as base model sizes of LLMs385

continue to increase.386

Among zero-shot models, DeepSeek outper-387

forms both GPT-4o and LLaMA across all metrics,388

likely due to its mixture-of-experts (MoE) archi-389

tecture. Unlike its competitors’ dense transformer390

design, DeepSeek selectively activates specialized391

sub-networks for each token, possibly enabling it392

to better handle diverse linguistic patterns, while393

also making it faster in inference for GEC applica-394

tions. On the other hand, GPT-4o is outperformed395

by both open-source LLMs in zero-shot setting, par-396

ticularly DeepSeek. Furthermore, after fine-tuning,397

GPT-4o’s modest advantage over LLaMA demon-398

strates the competitiveness of open-source models,399

which offer greater accessibility and transparency400

to the broader community.401

4.2 Analysis of Ensemble Systems402

The Majority Voting with N-gram Fallback (where403

N=36) ensemble outperforms all individual mod-404

els and other ensemble approaches, achieving the405

highest ERRANT F0.5 score of 0.6623 and PT-406

ERRANT score of 0.7122. This suggests it is407

best at effectively balancing grammatical correct-408

ness with semantic meaning preservation. Fur-409

thermore, this fallback approach outperforms sim-410

ply defaulting to GPT-4o when models disagree,411

proving that selecting corrections based on maxi-412

mum subsequence agreement between candidate413

outputs yields better results than relying solely on414

the strongest individual model. However, fine-415

tuned GPT-4o still maintains the highest GLEU416

6N=3 produced best performance among N={2,3,4}.
Higher N values will make it biased towards minimal edits

score (0.8400), indicating its corrections are the 417

most fluent among all the GEC systems we tested. 418

The Qwen and Perplexity Fallback ensembles 419

underperform compared to N-gram Fallback be- 420

cause they make decisions based on external crite- 421

ria (LLM judgments or fluency scores) rather than 422

analyzing patterns of overlap among the candidate 423

corrections. Their superior performance on IM- 424

PARA, a metric known to favor minimal edits (ex- 425

plained further in Section 4.3), suggests these exter- 426

nal evaluation criteria inherently prioritize conser- 427

vative corrections over comprehensive ones even if 428

comprehensive corrections are necessary. 429

4.3 Comparative Analysis of Existing Systems 430

Our N-gram Fallback Ensemble model advances 431

the state-of-the-art in GEC by surpassing all exist- 432

ing systems on all three reference-based metrics 433

(ERRANT F0.5, PT-ERRANT, and GLEU), with 434

even our individual fine-tuned GPT-4o model out- 435

performing all existing systems on ERRANT F0.5 436

and GLEU. This strong performance across these 437

metrics indicates our approach makes precise and 438

fluent corrections, with minimal unnecessary edits, 439

while preserving intended meaning. This highlights 440

both the effectiveness of our ensemble strategy and 441

remarkable capabilities of our individual models. 442

Despite these impressive results with fine-tuned 443

models, Table 1 reveals state-of-the-art LLMs, in 444

its base form, under-perform compared to estab- 445

lished seq2seq and sequence tagging approaches, 446

and even fine-tuned significantly smaller LLMs, 447

across all reference-based metrics. However, our 448

fine-tuned models outperform LLaMA 2 variants 449

by around 10 percentage points in ERRANT, re- 450

flecting architecture advances in newer LLMs. 451

Compared to Seq2Seq models, we see larger gaps 452

in ERRANT and PT-ERRANT but closer GLEU 453

scores, suggesting decoder-only architectures excel 454

at precise corrections while encoder-decoder mod- 455

els still maintain competitive fluency. The largest 456

performance gap exists against sequence tagging 457

systems, demonstrating that token-level edit pre- 458

diction through sequence labeling is less effective 459

than large-scale pre-training with fine-tuning for 460

comprehensive GEC. While our systems achieve 461

strong IMPARA scores, we emphasize more on 462

other metrics due to IMPARA’s documented bias 463

toward minimal edits and tendency to penalize com- 464

prehensive corrections. 465

Our systems’ performance was further validated 466

in the Shared Task, where our ensemble with GPT- 467
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Model ERRANT F0.5 GLEU PT-ERRANT IMPARA
Our Individual Models

Fine-Tuned GPT-4o 0.6599 0.8400 0.7064 0.7768
Fine-Tuned LLaMA 3.3 0.6420 0.8281 0.6842 0.7705

Base DeepSeek 0.4926 0.7677 0.5666 0.7754
Base GPT-4o 0.4592 0.7420 0.5484 0.7564

Base LLaMA 3.3 0.4826 0.7345 0.4973 0.7122
Our Ensemble Systems

Majority Voting + GPT-4o Fallback 0.6607 0.8392 0.7039 0.7746
Majority Voting + Qwen Fallback 0.6249 0.8312 0.6905 0.7855

Majority Voting + Perplexity Fallback 0.6251 0.8304 0.6879 0.7858
Majority Voting + N-gram Fallback 0.6623 0.8347 0.7122 0.7749

LLMs (Decoder Only Transformers)
Fine-Tuned LLaMA 2 7B (Omelianchuk et al., 2024) 0.5530 0.7985 0.6157 0.7529
Fine-Tuned LLaMA 2 13B (Omelianchuk et al., 2024) 0.5640 0.8027 0.6399 0.7554

Seq2Seq Models (Encoder-Decoder Transformer)
Fine-Tuned T5 11B (Omelianchuk et al., 2024) 0.5860 0.8231 0.6656 0.7629

Fine-Tuned FLAN 20B (Omelianchuk et al., 2024) 0.5770 0.8149 0.6630 0.7582
Sequence Tagging Systems

GeCTOR (XLNet) (Omelianchuk et al., 2020) 0.5630 0.7687 0.6248 0.7058
CTC-Copy (Zhang et al., 2023) 0.5270 0.7714 0.6096 0.7302

EditScorer (Sorokin, 2022) 0.5740 0.7565 0.6285 0.7072
Ensemble and Model Ranking Approaches

Ensemble Best 7 (Omelianchuk et al., 2024) 0.6290 0.7854 0.7040 0.7153
Ensemble Best 3 (Omelianchuk et al., 2024) 0.6250 0.7907 0.7000 0.7216
GRECO Rank 7 (Omelianchuk et al., 2024) 0.6200 0.8032 0.7084 0.7366
GPT-4 Rank 3 (Omelianchuk et al., 2024) 0.5810 0.8270 0.6654 0.7753

Shared Task Competing Systems
Sugiyama et al. (2025) 0.4283 0.7603 0.4761 0.8171

Gotō et al. (2025) 0.6189 0.7597 0.6483 0.6987

Table 1: Performance comparison of our models against GEC Systems on BEA-dev dataset. Existing systems results
obtained from Omelianchuk et al. (2024) (https://github.com/grammarly/pillars-of-gec/tree/main/data/system_preds),
except shared task systems which was provided by organizers. As stated by (Omelianchuk et al., 2024), Ensemble
Best 7 includes all 7 models (Fine-T LLaMA 2 7B, Fine-Tuned LLaMA 2 13B, Fine-Tuned T5 11B, Fine-Tuned
FLAN 20B, GeCTOR (XLNet), CTC-Copy, and EditScorer); Ensemble Best 3 contains top three: LLaMA-2-13B-
Fine-Tuned, FLAN-20B, and LLaMA-2-7B-Fine-Tuned; GRECO Rank 7 uses quality estimation guided beam
search to combine edits from 7 models; GPT-4 Rank 3 ranks outputs from best models of each type: LLaMA-2-
13B-Fine-Tuned (LLMs), T5-11B (Seq2seq), and EditScorer (Sequence Tagging).

4o Fallback and Fine-tuned GPT-4o model ranked468

highest across all three reference-based evaluation469

metrics, as shown in Table 1 (We did not submit470

our best ensemble because it was implemented after471

the shared task concluded). Among other notable472

systems, Sugiyama et al. (2025) used zero-shot473

GPT-4o, while Gotō et al. (2025) implemented an474

ensemble approach using the GECToR framework,475

combining three fine-tuned encoders (RoBERTa-476

large, XLNet-large-cased, and DeBERTa-v1-large)477

with majority voting.478

One of the objectives of the shared task was479

to examine GEC evaluation metric vulnerabilities,480

particularly how reference based metrics can un-481

fairly penalize valid corrections that differ from482

the reference. And how reference free metrics like483

IMPARA will prioritize making minimal edits and484

penalize comprehensive corrections even if they485

are necessary. As seen in Table 2, first couple of486

corrections are penalized simply because it is dif- 487

ferent from the gold reference, even though both 488

are equally grammatically correct. And these kinds 489

of linguistic differences are common in preposi- 490

tional (on/at) and verb form edits (are suffering/- 491

suffer), as shown in the Table. This demonstrates 492

the inherent limitations of relying exclusively on 493

reference-based metrics for evaluating GEC system 494

performance. 495

To address these limitations reference free met- 496

rics like IMPARA was developed. But our analy- 497

sis, which was also supported by Sugiyama et al. 498

(2025) and Gotō et al. (2025), reveals significant bi- 499

ases in IMPARA, which favors minimal edits while 500

severely penalizing essential comprehensive cor- 501

rections. As demonstrated in Table 2 sentences re- 502

quiring multiple corrections receive extremely low 503

scores regardless of quality and necessity of the 504

correction. This limitation stems from IMPARA’s 505
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Original Gold Reference Ensemble Correction ERRANT GLEU PT-ERRANT
I had a wonderful day
yesterday because I was
in the beach all the after-
noon .

I had a wonderful day
yesterday because I was
on the beach all after-
noon .

I had a wonderful day
yesterday because I was
at the beach all after-
noon .

50.00 73.05 63.88

In our modern world
, many people are suf-
fered from stress that
spring from life condi-
tions .

In our modern world
, many people are suf-
fering from stress that
springs from life condi-
tions .

In our modern world
, many people suffer
from stress that springs
from life conditions .

50.00 76.60 62.29

Original Ensemble Correction IMPARA
I take too much photos because you don’t visit places
like that everyday.

I take too many photos because you don’t visit places
like that every day.

0.0006

What if you don’t have none of those requierments? What if you don’t have any of those requirements? 0.0116

Table 2: GEC examples with evaluation metrics. Here Ensemble is the Majority Voting with GPT-4o Fallback.
Incorrect phrases in Red, their corresponding correction in Green

BERT-based architecture, which measures seman-506

tic similarity via vector distances. Multiple edits507

push original and corrected sentences too far apart508

in embedding space, causing IMPARA to penalize509

them. Thus, it can be argued that IMPARA proves510

unreliable as a GEC evaluation metric.511

4.4 LLM-as-a-Judge and Human Evaluation512

To address these metric limitations, we imple-513

mented a hybrid evaluation combining LLM-as-a-514

Judge with human assessment to compare our fine-515

tuned GPT-4o corrections against gold standards.516

Table 3 shows the two LLM judges (reaching con-517

sensus in 64.34% of cases) preferred our model’s518

corrections (30.87%) over gold standards (19.77%),519

with 13.70% rated the corrections equally valid.520

Following human evaluation to resolve LLM dis-521

agreements, final results revealed that GPT-4o’s522

corrections were preferred for 35.61% of edits,523

gold standards for 26.34%, while 38.15% of ed-524

its were judged equally grammatically valid.525

So, in 73.76% of cases, where our model pro-526

duced corrections which were different from gold527

standards, these are actually judged as either supe-528

rior or equally valid compared to gold references.529

This further validates that our system not only out-530

performs existing GEC approaches on automated531

metrics, but also produces corrections that are fre-532

quently preferred over or considered the same as533

the gold standards themselves. This complemen-534

tary evaluation brings forward an argument that535

while reference based metrics remain valuable for536

standardized comparison with existing systems,537

they should be supplemented with human judgment538

(assisted by LLM judges for scalability purposes)539

to comprehensively assess correction quality.540

4.5 Edit Type Analysis 541

Figure 1 shows the distribution of edit types where 542

GPT-4o corrections are different from gold stan- 543

dards, and their subsequent evaluation through 544

LLM-as-a-Judge and human validation. The most 545

common differences between GPT-4o corrections 546

and gold standards are in replacement edits indi- 547

cating our model often chooses different, yet valid, 548

replacement strategies when correcting the same 549

underlying grammatical issues. Presence of signifi- 550

cant punctuation edits in GPT-4o corrections indi- 551

cate our model often adds marks absent in gold cor- 552

rections (M:PUNCT), preserves punctuation that 553

gold standard removes (U:PUNCT), and selects 554

alternative punctuation marks (R:PUNCT). Deter- 555

miner errors (189 instances across unnecessary, re- 556

placement, and missing articles) reflect GPT-4o’s 557

distinct handling of English articles, a grammatical 558

feature that allows multiple acceptable forms in any 559

given context. 560

After these correction edits are evaluated by hu- 561

man evaluators and LLM judges, it can be seen 562

from Figure 1 that our model’s punctuation addi- 563

tions (M:PUNCT) are strongly preferred over gold 564

standard (130 vs 9 instances), while gold standard 565

reference is preferred when GPT-4o omitted some 566

necessary punctuation (U:PUNCT). This suggests 567

GPT-4o excels at identifying missing punctuation 568

but occasionally makes incorrect omissions. Evalu- 569

ators also preferred our model’s orthography cor- 570

rections (R:ORTH) and determiner choices, with 571

determiner edits from our model consistently rated 572

superior to or at least equal to gold standard alter- 573

natives. 574

Additionally, 38.15% of edits across all er- 575

ror types were judged equally valid, revealing 576

reference-based metrics penalize alternatives sim- 577

7



Evaluation Stage Gold Standard Preferred GPT-4o Preferred Both Equally Valid Disagreement
LLM Consensus 342 (19.77%) 534 (30.87%) 237 (13.70%) 617 (35.66%)
After Human Resolution 454 (26.24%) 616 (35.61%) 660 (38.15%) -

Table 3: LLM-as-a-Judge and Human Evaluation Results (In the BEA-dev dataset, there were 1,730 edits in total
where fine-tuned GPT-4o produced different edit corrections compared to gold reference)

Figure 1: Edit Type Counts where fine-tuned GPT-4o produced different corrections compared to gold standard.
Table 4 in the Appendix provides detailed descriptions of all edit type codes.

ply for differing from the gold reference. This578

limitation is most evident in replacement opera-579

tions related to prepositions (R:PREP) and verbs580

(R:VERB), for example. This highlights the inher-581

ent flexibility of English preposition usage where582

multiple alternatives can be grammatically correct583

and also showcases how verb usage is highly con-584

text dependent, with multiple tense or form options585

often being grammatically acceptable.586

This provides evidence that for certain grammat-587

ical features, especially punctuations, determinants,588

prepositions, and verb tense, there is bound to be589

multiple valid corrections, even if we strictly fol-590

low the approach of minimal edits. These findings591

substantiate the argument that reference based met-592

rics exclusively does not provide a good estimation593

of GEC system performance, but rather it requires594

to be supported by human evaluation to obtain a595

more accurate representation of correction quality.596

Appendix A.5 further provides examples where597

GPT-4o edits are different from gold reference.598

5 Conclusion599

Our experiments reveal that fine-tuned LLMs sig-600

nificantly outperform traditional GEC approaches,601

with our fine-tuned GPT-4o model establishing a 602

new state-of-the-art for individual systems, sur- 603

passing previous benchmarks across a couple of 604

reference-based metrics. This performance advan- 605

tage is further extended by our majority voting 606

ensemble with N-gram overlap fallback, which 607

achieves even higher scores on ERRANT F0.5 608

and PT-ERRANT. However, reference-based met- 609

rics systematically underestimate system perfor- 610

mance by penalizing legitimate alternatives, as 611

demonstrated by our hybrid LLM-human evalu- 612

ation framework, which reveals that 73.76% of cor- 613

rections diverging from gold standards are judged 614

equally valid or superior. Through systematic error 615

type analysis, we provide empirical evidence that 616

certain grammatical features, particularly punctua- 617

tion, determiners, prepositions, and verb forms in- 618

herently support multiple valid corrections, further 619

challenging the exclusive use of reference-based 620

metrics for assessing GEC performance. These 621

findings underscore the necessity of complement- 622

ing automated metrics with human evaluation, po- 623

tentially aided by LLMs for scalability, to accu- 624

rately assess GEC system performance. 625
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6 Limitation626

While our approach demonstrates advancement in627

GEC performance, several important limitations628

should be considered when interpreting our results.629

The effectiveness of our fine-tuned models is con-630

tingent on the error type distribution in the train-631

ing data. Despite achieving state-of-the-art per-632

formance, our models may excel at correcting er-633

ror types well-represented in the ABC train set of634

W&I+LOCNESS dataset while potentially under-635

performing on less common error types.636

One of the limitation is related to potential data637

contamination. LLMs may have encountered our638

test datasets during pre-training, artificially inflat-639

ing performance metrics. We cannot fully elimi-640

nate this possibility without proper knowledge of641

the training data used during pre-training. Future642

work could address this by creating entirely new643

test sets with recent content or techniques to detect644

contamination effects.645

While our zero-shot experiments included646

DeepSeek V3 (671B parameters), we could not647

host and fine-tune this model due to prohibitive in-648

frastructure requirements. In contrast, we success-649

fully fine-tuned GPT-4o via OpenAI’s API without650

hosting the model locally, and adapted LLaMA651

70B using parameter-efficient methods like LoRA.652

However, DeepSeek’s superior zero-shot perfor-653

mance suggests it might have established an even654

higher benchmark if fine-tuned. This highlights an655

important trade-off between model size, accessibil-656

ity, and performance in GEC research.657

For our LLM-as-a-Judge approach with human658

verification, we limited our human evaluation to659

GPT-4o corrections due to resource constraints, as660

this model demonstrated the strongest overall per-661

formance in automated metrics.662

Our evaluations were conducted on standardized663

academic datasets. Performance may vary in real-664

world applications with domain-specific writing665

styles, specialized terminology, or less common666

error patterns not represented in the evaluation data.667

Furthermore, our research focuses exclusively on668

English grammatical error correction. The architec-669

tures, fine-tuning approaches, and evaluation frame-670

works may not directly transfer to other languages,671

particularly those with significantly different gram-672

matical structures, morphological complexity, or673

writing systems. This limitation is particularly rel-674

evant given the global need for grammatical error675

correction across diverse languages.676

Finally, while grammatical error correction sys- 677

tems primarily aim to assist users in improving 678

their writing, several ethical considerations merit 679

acknowledgment. Our evaluation framework and 680

models may embed normative assumptions about 681

"correct" grammar that could disadvantage speak- 682

ers of non-standard English dialects. The Large 683

Language Models employed in this study (GPT- 684

4o, LLaMA 3.3, and DeepSeek V3) may perpetu- 685

ate linguistic biases present in their training data, 686

potentially resulting in corrections that privilege 687

certain language varieties over others. Addition- 688

ally, while our dual-LLM-as-a-Judge evaluation 689

approach helps mitigate individual model biases, 690

residual biases from each model may still sep- 691

arately influence which corrections are deemed 692

"equally valid" or "preferred" compared to gold 693

references. We also acknowledge that widespread 694

deployment of automated GEC systems could influ- 695

ence language standardization in ways that require 696

careful consideration by the research community. 697

7 Ethics Statement 698

This research utilizes established public benchmark 699

datasets with appropriate consent and no additional 700

personal data collection. We also recognize that 701

our GEC systems may embed assumptions about 702

"correct" grammar that could disadvantage non- 703

standard English dialects, supported by our finding 704

that 73.76% of model corrections differing from 705

gold standards were equally valid or preferred high- 706

lights the inherent flexibility in grammatical cor- 707

rectness. Furthermore, the LLMs employed may 708

perpetuate linguistic biases from their training data. 709

Additionally, human evaluators for our LLM-as- 710

a-Judge framework participated voluntarily with 711

appropriate compensation, and all evaluator identi- 712

ties were anonymized in research records. 713

Our work intends to enhance educational prac- 714

tices by providing supplementary tools for gram- 715

mar assessment rather than substituting expert hu- 716

man evaluation. The GEC systems developed here 717

are designed primarily for instructional feedback 718

and learning support, and we caution against their 719

use in critical assessment scenarios without sub- 720

stantial human supervision and review. 721
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A Appendix 936

A.1 Equations of Automated Metrics 937

The equation for ERRANT F0.5 is given below: 938

ERRANT F0.5 =
1.25× precision × recall
0.25× precision + recall

(1) 939

The equation for GLEU is given below: 940

GLEU = min
(
1, exp

(
1− r

c

))
× exp

(
N∑

n=1

wn log pn

)
(2) 941

where r is reference length, c is candidate length, 942

N is the maximum n-gram order, wn are n-gram 943

weights, and pn is the modified n-gram precision. 944

11

https://aclanthology.org/2024.bea-1.3/
https://aclanthology.org/2024.bea-1.3/
https://aclanthology.org/2024.bea-1.3/
https://aclanthology.org/2024.bea-1.3/
https://aclanthology.org/2024.bea-1.3/
https://aclanthology.org/2024.bea-1.3/
https://aclanthology.org/2024.bea-1.3/
https://openai.com/index/gpt-4o-system-card/
https://openai.com/index/gpt-4o-system-card/
https://openai.com/index/gpt-4o-system-card/
https://doi.org/10.18653/v1/2022.naacl-main.143
https://doi.org/10.18653/v1/2022.naacl-main.143
https://doi.org/10.18653/v1/2022.naacl-main.143
https://doi.org/10.18653/v1/2023.emnlp-main.785
https://doi.org/10.18653/v1/2023.emnlp-main.785
https://doi.org/10.18653/v1/2023.emnlp-main.785
https://doi.org/10.18653/v1/2023.emnlp-main.785
https://doi.org/10.18653/v1/2023.emnlp-main.785
https://arxiv.org/abs/2412.15115
https://doi.org/10.18653/v1/2021.acl-short.89
https://doi.org/10.18653/v1/2021.acl-short.89
https://doi.org/10.18653/v1/2021.acl-short.89
https://doi.org/10.18653/v1/2021.eacl-main.231
https://doi.org/10.18653/v1/2021.eacl-main.231
https://doi.org/10.18653/v1/2021.eacl-main.231
https://doi.org/10.18653/v1/2022.emnlp-main.785
https://doi.org/10.18653/v1/2022.emnlp-main.785
https://doi.org/10.18653/v1/2022.emnlp-main.785
https://doi.org/10.18653/v1/2022.acl-long.266
https://doi.org/10.18653/v1/2022.acl-long.266
https://doi.org/10.18653/v1/2022.acl-long.266
https://doi.org/10.18653/v1/2022.acl-long.266
https://doi.org/10.18653/v1/2022.acl-long.266
https://aclanthology.org/P11-1019/
https://aclanthology.org/P11-1019/
https://aclanthology.org/P11-1019/
https://doi.org/10.18653/v1/N16-1042
https://doi.org/10.18653/v1/N16-1042
https://doi.org/10.18653/v1/N16-1042
https://doi.org/10.18653/v1/2023.emnlp-main.437
https://doi.org/10.18653/v1/2023.emnlp-main.437
https://doi.org/10.18653/v1/2023.emnlp-main.437


A.2 Prompt for GEC Inference and945

Fine-tuning946

Figure 2 shows the prompt used for fine-tuning and947

also for generating the corrections in inference.948

Prompt

You are an English linguist and your task is to correct
the grammatical and mechanical errors in English
sentences.
Please make only necessary corrections to the extent
that a sentence will be free from errors and compre-
hensible.
Do not alter word choices unnecessarily (e.g., replac-
ing words with synonyms) or make stylistic improve-
ments.
Also, the sentences are tokenized, which means punc-
tuation marks are separated from the English words
by spaces.
When returning the corrected sentences, please use
the same tokenized format.
Please respond in the following JSON format:
{{
"corrected": "..."
}}
The original sentence is:
{original}

Figure 2: Inference and Fine-tune Prompt

A.3 Prompt for Qwen Meta-Model949

Figure 3 shows the prompt used for the Qwen-2.5-950

7B-Instruct model to judge which correction out of951

the three model correction is better.952

A.4 ERRANT Error Type Descriptions953

Table 4 provides descriptions of the ERRANT edit954

types referenced in Figure 1.955

A.5 Examples of Edit Differences956

Tables 5 and 6 show examples of instances where957

the correction edits generated by GPT-4o model is958

different from the gold references, and the verdict959

and preference explanation of the LLM and human960

judges.961

Prompt

Compare the sentences given below and tell me
which one (A, B, or C) is the most grammatically
correct version of the original given below.
Original: "{original_sentence}"
A: "{correction_a}"
B: "{correction_b}"
C: "{correction_c}"

Provide your response in JSON format as follows:
{
"best_option": "The letter of the best option (A, B, C,
etc.)",
"reasoning": "A brief explanation of why this is the
best option",
}

Figure 3: Prompt used for Qwen to judge which model
correction is best
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Edit Code Description
M:PUNCT Missing punctuation - punctuation present in the correction but absent in gold standard
U:PUNCT Unnecessary punctuation - punctuation present in gold standard but omitted in correction
R:PUNCT Replacement of punctuation - different punctuation used in correction compared to gold
R:PREP Replacement of preposition - different preposition used in correction compared to gold
R:VERB Replacement of verb - different verb used in correction compared to gold
R:VERB:TENSE Replacement of verb tense - different tense of the same verb used in correction
R:VERB:FORM Replacement of verb form - different form of the same verb used in correction
R:NOUN Replacement of noun - different noun used in correction compared to gold
R:NOUN:NUM Replacement of noun number - singular/plural variation of the same noun
U:DET Unnecessary determiner - determiner present in gold standard but omitted in correction
R:DET Replacement of determiner - different determiner used in correction compared to gold
M:DET Missing determiner - determiner present in the correction but absent in gold standard
R:ORTH Replacement of orthography - spelling or formatting differences
R:OTHER Other replacements not falling into above categories
U:OTHER Other unnecessary words not falling into above categories
M:OTHER Other missing words not falling into above categories
R:ADJ Replacement of adjective - different adjective used in correction compared to gold
U:PREP Unnecessary preposition - preposition present in gold standard but omitted in correction
R:MORPH Replacement of morphology - different word form used in correction compared to gold
U:NOUN Unnecessary noun - noun present in gold standard but omitted in correction

Table 4: ERRANT Edit Type Descriptions
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Original Gold Reference GPT-4o Reasoning
Different Replacement Strategies (R:OTHER)
I have taken that decision
because...

I took that decision... I made that decision... Both ’took’ and ’made’ are gram-
matically valid. ’Made that de-
cision’ is a more idiomatic and
standard collocation in English
compared to ’took that decision’.
Original "have taken" is gram-
matically correct as well.

I think the government
will slow down the fee in
public transportation, that
could make people to use
public transportation and
caring the environment
from CO2 emissions and
prevent the global heating.

I think the government
should reduce the fares
on public transportation.
That could make people
use public transportation
and protect the environ-
ment from CO2 emissions
and prevent global warm-
ing.

I think the government
will lower the fee for
public transportation.
That could make people
use public transportation
and care for the environ-
ment by reducing CO2
emissions and preventing
global warming.

Both ’reduce’ (Gold) and ’lower’
(GPT-4o) are grammatically
valid verbs to correct ’slow
down’. While Gold changes ’fee’
to ’fares’ and GPT-4o retains
’fee’, both successfully address
the original error with different
but equally appropriate lexical
choices. The same is true for the
use of "protect" and "care", and
"prevent" and "preventing".

Punctuation Differences
Adding punctuation marks (M:PUNCT)
It can be passed on to hu-
mans through eating parts
of the animal such as the
brain which is affected...

It can be passed on to hu-
mans through eating parts
of the animal such as the
brain which is affected...

It can be passed on to hu-
mans through eating parts
of the animal, such as the
brain, which is affected...

GPT-4o adds commas to set
off the non-restrictive example
clause and relative clause, im-
proving clarity and grammatical
correctness.

Preserving punctuation (U:PUNCT)
One month ago I ordered
two batteries...

One month ago, I ordered
two batteries...

One month ago I ordered
two batteries...

Gold reference correctly has a
comma after the introductory
time phrase ’One month ago’ to
adhere to standard punctuation
rules.

Alternative punctuation (R:PUNCT)
When I was little I had
tried a lot of sports, Hand-
ball, Swimming, Tennis,
but...

When I was little, I tried
a lot of sports; handball,
swimming, tennis, but...

When I was little, I tried
a lot of sports: handball,
swimming, tennis, but...

A colon is grammatically pre-
ferred to introduce a list after
’sports’, whereas a semicolon is
incorrect in this context.

Table 5: Comparison of Gold Reference and GPT-4o Correction Edits [1 of 2]. "Reasoning" contains the reasoning
provided by both Claude and DeepSeek LLM judges, along with human evaluators, which are holistically combined
and presented here. Red shows edits in original sentences, while green shows its corresponding correction edits

14



Original Gold Reference GPT-4o Reasoning
Orthography Corrections (R:ORTH)
Nowadays everybody
watches T.V.

Nowadays, everybody
watches TV.

Nowadays, everybody
watches T.V.

Gold Reference’s correction of
’T.V.’ to ’TV’ without periods
follows modern standard abbre-
viation conventions, while GPT-
4o maintains the original format.
This shows how orthographic
preferences can vary, with the
Gold standard version considered
more contemporary.

Preposition Replacements (R:PREP)
Finally, in the future,
the commodity of people
maybe is going to determi-
nate the most use of the
cars than the public trans-
port.

Finally, in the future, the
commodity of people is
maybe going to determine
the most use of the cars
than the public transport.

Finally, in the future, the
convenience for people
maybe is going to deter-
mine the greater use of
cars than public transport.

Both versions use different but
valid prepositions: Gold Refer-
ence retains ’of people’ while
GPT-4o uses ’for people’. Nei-
ther choice is grammatically in-
correct, demonstrating the inher-
ent flexibility of English preposi-
tion usage where alternatives can
be equally correct depending on
intended meaning.

Verb Replacements (R:VERB)
After her 18th birthday,
Anna felt a sudden ne-
cessity of knowing what
happened to her bilogical
mother and why did she
gave Anna away.

After her 18th birthday,
Anna felt a sudden need
to know what happened to
her biological mother and
why she gave Anna away.

After her 18th birthday,
Anna felt a sudden need to
know what had happened
to her biological mother
and why she had given
Anna away.

Gold Reference uses simple past
tense (’happened’, ’gave’) while
GPT-4o uses past perfect (’had
happened’, ’had given’). Both
are grammatically valid choices
that reflect different temporal per-
spectives, with GPT-4o’s version
emphasizing sequence more ex-
plicitly. This demonstrates how
multiple verb tense options can
be acceptable in the same con-
text.

Original Gold Reference GPT-4o Reasoning
Determiner Differences
The town has also im-
proved the management
and treatment of waste sys-
tem...

The town has also im-
proved the management
and treatment of waste...

The town has also im-
proved the management
and treatment of the waste
system...

Both corrections are grammati-
cally valid. Gold Reference re-
moves ’the’, while GPT-4o adds
’the’ before ’waste’. Both struc-
tures are grammatically correct.

This is the guestion for ev-
ery one...

This is the question for ev-
eryone...

This is a question for ev-
eryone...

Both ’the question’ and ’a ques-
tion’ are grammatically correct.
The choice between ’the’ and ’a’
is stylistic, not grammatical.

Table 6: Comparison of Gold Reference and GPT-4o Correction Edits (continued) [2 of 2]
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