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Abstract

We investigate how context granularity, i.e.001
whether fine or coarse distinctions need to be002
made, influences an emerging lexicon. We con-003
duct an agent-based simulation of a concept-004
level reference game, in which agents learn005
to communicate about concepts that are opera-006
tionalized by combining multiple objects. We007
create three experimental conditions by manip-008
ulating the context in which the instances of009
the target concept appear: In the fine context010
condition, agents must make precise distinc-011
tions between similar targets and distractors. In012
the coarse context condition, targets are easy013
to discriminate because they share no overlap-014
ping features with the distractors. In the mixed015
baseline condition, both fine and coarse dis-016
tinctions are necessary. Our results suggest017
that agents adapt their communication strate-018
gies to the granularity of the context in which019
they learned the concepts. In the fine con-020
text and baseline conditions, agents develop021
a communication protocol heavily based on022
one-to-one mappings between messages and023
concepts. Conversely, in the coarse context024
condition agents communicate more efficiently025
by vastly relying on abstract references that026
may refer to more than a single concept but are027
unambiguous in context. These results show028
that ambiguity emerges in coarse contexts and029
that ambiguous abstract terms are used for more030
efficient communication.031

1 Introduction032

Context plays a crucial role when communicating033

information. Not only does the immediate con-034

text help to constrain the meaning of an ambigu-035

ous utterance, but also recent research suggests036

that context shapes the formation of lexical conven-037

tions (see e.g. Hawkins et al., 2018; Winters et al.,038

2018). The question of how context granularity,039

i.e. whether a target needs to be discriminated in040

a fine or coarse context, influences the emergence041

of abstract and specific references has been inves- 042

tigated in a recent study with human participants 043

and a small set of hierarchically organized targets 044

(Hawkins et al., 2018). The goal of our current 045

research is to investigate the scalability of their 046

findings to larger conceptual hierarchies and larger 047

lexica by adapting their setup to a language emer- 048

gence simulation between artificial neural network 049

agents. 050

Our work is based on two previous lines of re- 051

search. On the one hand, research on the evolution 052

of artificial languages between human participants 053

has shown that lexical conventions are shaped by 054

communicative pressures, such as the communica- 055

tive environment and pragmatic demands of context 056

(Nölle et al., 2020; Hawkins et al., 2018; Winters 057

et al., 2018; Silvey et al., 2015; Winters et al., 2015; 058

Tinits et al., 2017). Specifically, Hawkins et al. 059

(2018) found that when fine-grained distinctions 060

are necessary to disambiguate a target from the 061

context, the emerging lexical systems contain more 062

one-to-one mappings between words and meanings. 063

Contrastingly, when such fine-grained distinctions 064

are not necessary, emerging lexical systems con- 065

tain more abstract references which can be used 066

to refer to more than one object (Hawkins et al., 067

2018). This line of research makes use of the arti- 068

ficial language learning paradigm (see e.g. Smith 069

and Wonnacott, 2010; Kirby et al., 2008): Two par- 070

ticipants play a reference game. The speaker’s task 071

is to communicate a target to the listener who has 072

to select the target from a context, i.e. a set of dis- 073

tractor objects. The speaker select their messages 074

from a small set of artificial words or syllables. 075

After several interactions, an artificial lexicon has 076

emerged. In other words, speakers and listeners 077

have converged on the meanings of the artificial 078

words in the context of the reference game. 079

The task design and setup bears close resem- 080

blance to the second line of research we base our 081

work on: In language emergence research, two neu- 082
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ral network agents play a similar reference game083

and the emerging message-meaning mappings can084

be investigated for their language-like properties085

(e.g. Lazaridou et al., 2018). The rapid advance-086

ment of artificial intelligence and deep learning087

techniques has created new opportunities for ex-088

ploring emergent communication - now between ar-089

tificial agents instead of human participants. Agent-090

based simulations provide valuable insights into091

language’s intrinsic properties and evolution by092

enabling researchers to observe the emergence of093

communication in a controlled environment, where094

variables can be precisely manipulated and no prior095

knowledge exists. Numerous studies have used096

neural network models to investigate the develop-097

ment of artificial communication protocols through098

reference games similar to those employed in ar-099

tificial language learning studies (see e.g. Ohmer100

et al., 2022; Mu and Goodman, 2021; Lazaridou101

et al., 2018; Dagan et al., 2021; Bernard et al.,102

2024). In the reference games employed in these103

simulations, a sender agent describes a target object104

to help a receiver agent identify it among distrac-105

tors. Going beyond the communication of single106

objects, in Mu and Goodman (2021) and Kobrock107

et al. (2024), the sender describes groups of ob-108

jects with shared features, forming a concept that109

guides the receiver’s selection (see also Akkerman110

et al., 2024, for a different approach to commu-111

nication about multiple targets). We build on the112

simulations by Kobrock et al. (2024) where agents113

learned to communicate about concepts at various114

levels of abstraction. Their main finding suggests115

that when agents are provided with contextual in-116

formation, they take this context information into117

account when communicating. This leads to the118

development of a more efficient and natural com-119

munication protocol.120

The research gap that our study addresses is121

the successful synthesis between the findings of122

Hawkins et al. (2018) on the influence of different123

context granularities (fine vs. coarse distinctions)124

on human language and the modeling approach by125

Kobrock et al. (2024) which allows us to investi-126

gate whether the results from Hawkins et al. (2018)127

scale to larger conceptual hierarchies and to larger128

lexica. Scalability is important to provide further129

evidence on mechanisms of natural languages be-130

cause natural languages typically consist of very131

large lexica and can be used to refer to basically132

any object or concept. The aim of our study is to133

investigate how the simple context manipulation as134

in Hawkins et al. (2018) scales to larger conceptual 135

hierarchies and to a larger set of possible messages. 136

We do this by building on the concept-level refer- 137

ence game simulations from Kobrock et al. (2024) 138

and systematically manipulating the context gran- 139

ularity, i.e. whether agents have to make fine or 140

coarse distinctions between targets and distractors 141

during training. Based on Hawkins et al. (2018), 142

we have the following expectations: Fine-grained 143

contexts will result in precise, one-to-one mappings 144

between messages and concepts. Coarse-grained 145

contexts will encourage abstract references, with 146

fewer one-to-one-mappings but greater lexical effi- 147

ciency through context-based disambiguation. 148

2 Methods 149

2.1 General setup and game scenarios 150

We extend the framework proposed by Kobrock 151

et al. (2024) to examine the effects of context gran- 152

ularity on the lexicalization of abstract and spe- 153

cific references in an emerging language. Follow- 154

ing Hawkins et al. (2018), specific references are 155

used to refer to only one specific entity and ab- 156

stract references are references with more than one 157

meaning. In Kobrock et al. (2024), agents iter- 158

atively learn to communicate about concepts at 159

different levels of abstraction through a concept- 160

level reference game. Drawing on this foundation, 161

we design two novel game scenarios, systemati- 162

cally manipulating context granularity in similar 163

manner to (Hawkins et al., 2018). In a concept- 164

level reference game G = (TS , DS , TR, DR) be- 165

tween sender S and receiver R, target concepts 166

TS = {tT1 , ..., tTg } need to be communicated in a 167

given context DS = {dS1 , ..., dSg }, where g is the 168

game size, i.e. the number of target and distrac- 169

tor objects in the input. TR and DR are defined 170

analogously for the receiver and TS ̸= TL and 171

DS ̸= DR, as proposed in (Mu and Goodman, 172

2021). These target concepts are operationalized 173

by combining multiple target objects that share a 174

specific amount of fixed attributes. The number of 175

fixed attributes within a target concept determines 176

how specific (all attributes fixed) or generic (one 177

attribute fixed) a target concept is. The target con- 178

cepts are presented in a context determined by the 179

distractor objects (Kobrock et al., 2024). In each 180

round of the game, sender S receives targets TS 181

and distractors DS , presented in this order. Uti- 182

lizing this information, S constructs a message 183

m = (sj)j≤M , where sj signifies a symbol from 184
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the vocabulary V , and M refers to the maximum185

length of the message. The receiver R obtains the186

message m along with their own set of targets TL187

and distractors DR, which are mixed together (de-188

noted subsequently as XR = xR1 , . . . , x
R
i , where189

i = 2 · g, reflecting the fact that R is unaware190

of which items are targets and which are distrac-191

tors). From these inputs, R generates a prediction192

for each object xRi in its input, producing a label193

yRi ∈ 0, 1 (where 0 indicates a distractor and 1 in-194

dicates a target). Following Hawkins et al. (2018),195

we design two novel game scenarios, a coarse and a196

fine context condition, in which we train the agents197

in only coarse or only fine contexts. In the coarse198

context condition, the objects belonging to the tar-199

get concept do not share any relevant features with200

the distractors. In the fine context condition, each201

distractor differs from the target objects by only202

one relevant feature. We compare these conditions203

to a baseline “mixed” condition that was introduced204

in previous work (see Kobrock et al., 2024)1. The205

sender’s task is to produce a message to guide the206

receiver in the identification of the target concept.207

The receiver agent must assign a label to each one208

of the input objects to distinguish them between tar-209

gets and distractors. The agents are implemented as210

neural networks and are trained in a reinforcement211

learning paradigm, where the agents are rewarded212

depending on whether the receiver agent assigns213

the correct label (target/distractor) to each one of214

the input objects.215

The code for the experiment is available in the216

GitHub repository: https://anonymous.4open.217

science/r/context-granularity-BE08218

2.2 Datasets219

We train the agents on six symbolic datasets which220

have been introduced in previous work (Kobrock221

et al., 2024). They are denoted by the number of at-222

tributes n and values k that objects in each dataset223

can take. For example, objects in the dataset D(3,4)224

have three attributes that can each take four val-225

ues. We train the agents on datasets D(3,4), D(3,8),226

D(3,16), D(4,4), D(4,8), and D(5,4) with varying227

numbers of attributes and values to ensure gener-228

alizability of results. The datasets feature hierar-229

chical concepts ranging from specific to generic230

concepts. The specificity of a concept depends on231

the number of fixed attribute values. For instance,232

consider a world where objects are geometrical fig-233

1The condition we refer to was called “context-aware” in
Kobrock et al. (2024).

ures characterized by three attributes: size, color, 234

and shape. The most specific concepts have fixed 235

values for all attributes. Examples of such con- 236

cepts are SMALL BLUE TRIANGLE and BIG RED 237

SQUARE. In contrast, concepts like RED, SMALL, 238

and SQUARE are the most generic, since objects 239

are required to satisfy only one attribute value to 240

belong to those concepts. Concepts defined in this 241

way are hierarchical: for instance, the object small 242

blue triangle: belongs to the concept SMALL BLUE 243

TRIANGLE, but also to the concepts that fix only 244

one or two of those attributes values, such as small, 245

blue, small blue, and blue triangle. 246

The concepts are presented in context. We call 247

objects which are part of the target concept targets 248

and objects which are part of the context distractors. 249

The context for each input is defined by the num- 250

ber of concept-defining attributes (the attributes 251

whose value is fixed in the target concept) that 252

are shared between targets and distractors. Previ- 253

ous work has presented concepts in all possible 254

context conditions ranging from fine, where all 255

but one concept-defining attributes are shared be- 256

tween targets and distractors 2, to coarse, where 257

no concept-defining attribute is shared between tar- 258

gets and distractors (Kobrock et al., 2024). We will 259

call this the ’mixed’ context condition and use it 260

as a baseline. To build our novel game scenarios, 261

we generate datasets where target concepts are pre- 262

sented only in fine or only in coarse contexts. This 263

way, consistently with (Hawkins et al., 2018), we 264

create two conditions that differ by the granularity 265

of the context, i.e. the number of concept-defining 266

attributes that must be specified to correctly identify 267

the target objects among the distractors. Hawkins 268

et al. (2018) present a single-target reference game 269

where the coarse context condition presents a target 270

that differs by two attributes from the distractors. 271

Differently, we decided to implement the coarse 272

context condition as the coarsest condition possible, 273

i.e. targets differ by all concept-defining attributes 274

from the distractors. Additionally, we introduce 275

the mixed baseline to capture trials of all sorts, i.e. 276

where distinctions based on 1 − n attributes are 277

necessary. Figures 1 and 2 present examples for 278

items in coarse and fine context conditions for the 279

target concept YELLOW TRIANGLE if attributes of 280

the dataset are size, color, and shape. Note that the 281

2The concept-defining attribute which is not shared be-
tween targets and distractors can vary among distractors. For
example, in Figure 2 one distractor differs by shape and the
other by color.
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Figure 1: Coarse context: The target concept (“T”) OR-
ANGE TRIANGLE shares no concept-defining attributes
(color and shape) with distractors.

Figure 2: Fine context: The target concept (“T”) OR-
ANGE TRIANGLE shares all but one of the two concept-
defining attributes (color and shape) with distractors.

sender and receiver are given different inputs, but282

in both inputs, targets are instances of the same con-283

cept and distractors fulfill the same context condi-284

tion (following Mu and Goodman, 2021; Kobrock285

et al., 2024). For comparison, the dataset used in286

Hawkins et al. (2018) uses three hierarchical fea-287

tures (shape, color/texture and frequency/intensity)288

which could take two values at each hierarchy level.289

However, unlike their dataset, we do not use a fixed290

hierarchy of stimuli. Rather, all possible combi-291

nations of attributes are included in our datasets,292

and instead of a fixed hierarchy of objects we use293

concepts.294

2.3 Architectures and training295

The implementation of the concept-level reference296

game is based on Kobrock et al. (2024) and makes297

use of the EGG framework (Kharitonov et al., 2019,298

MIT license). The sender and receiver are imple-299

mented as GRUs (Gated Recurrent Units) with a300

single layer of size 128 and are trained in a re-301

inforcement learning paradigm with the Gumbel-302

softmax relaxation3 which ensures differentiability303

for backpropagation (Jang et al., 2017). To ensure304

comparability of our novel fine and coarse context305

granularity conditions to the mixed baseline from306

previous work, we adopt the same settings and hy-307

3We use temperature τ = 2 and a decay rate of 0.99.

perparameters as in the context-aware condition 308

from Kobrock et al. (2024). The inputs for both 309

the sender and receiver consist of 10 target objects 310

T and 10 distractors D, i.e. game size g is 10. 311

For each item, the sender can produce a message 312

in the form of a vector, with a maximum length 313

M = n+ 1. Agents use a zero as the End Of Se- 314

quence (EOS) symbol. The vocabulary size V , i.e. 315

the number of symbols that sender can use in their 316

messages, is set to V = 3 · (k + 1) (as in Ohmer 317

et al., 2022; Kobrock et al., 2024). The receiver 318

predicts a label yi ∈ {0, 1} for each object xi in its 319

input based on whether it believes it to be a target 320

(1) or a distractor (0). We use binary cross-entropy 321

loss for training: 322

LBCE(S,L,G) = −
∑
i

log pL(yLi |xLi , m̂), (1) 323

where m̂ ∼ pS(m|TS , DS) and pL(yLi |xLi , m̂) = 324

σ(GRUL(m̂) · embed(xLi )). Following (Kobrock 325

et al., 2024), we use 60% of each dataset for train- 326

ing, 20% for validation, and 20% for testing. Each 327

split contains different concepts presented in the 328

relevant novel context condition (coarse or fine). 329

We run the training process five times to account 330

for the random initialization of the parameters of 331

the neural networks and train for 300 epochs with a 332

batch size of 32. The testing split is used only once 333

at the end of the training to evaluate the agents’ gen- 334

eralization capabilities on unseen concepts, while 335

the validation split is used to measure performance 336

after every training epoch. 337

2.4 Metrics 338

We first measure the training, validation, and test ac- 339

curacies for all context conditions. We then evalu- 340

ate the emerging languages based on three entropy- 341

based scores calculated on the set of messages M 342

and the set of concepts C (Ohmer et al., 2022) and 343

take the means over five runs. These are: 344

• Normalized Mutual Information (NMI), 345

which measures how closely messages and 346

concepts correspond to each other in a one-to- 347

one relationship. Therefore, if the NMI score 348

takes its maximal value 1.0, it is possible to 349

construct a bijective map between the set of 350

messages produced by the agents and the set 351

of target concepts presented to them in the 352

game. The NMI can take values ∈ [0, 1] and 353

is calculated as follows: 354

NMI(C,M) =
H(M)−H(M |C)

0.5 · (H(C) +H(M))
(2) 355
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• Effectiveness, which quantifies the usage of356

messages that uniquely identify a concept, in357

other words messages are non-polysemous or358

not abstract. Effectiveness can take values359

∈ [0, 1] and is calculated as:360

effectiveness(C,M) = 1− H(C|M)

H(C)
(3)361

• Consistency, which measures whether agents362

are consistent in choosing always the same363

message to communicate the same concept, in364

other words messages are non-synonymous.365

Consistency can take values ∈ [0, 1] and is366

calculated as:367

consistency(C,M) = 1− H(M |C)

H(M)
(4)368

To quantify differences in scores between the369

different conditions, we use Bayesian estimation370

following Kruschke (2013). We report estimated371

means and 95% Credible Intervals (CrIs) over five372

runs as well as mean differences and their CrIs.373

We then perform a more qualitative analysis374

of the communication protocols by mapping each375

message to the concept(s) it was used to refer to.376

2.5 Hypotheses377

We hypothesize that the communication protocol378

developed by the agents is influenced by the con-379

text condition in which it is learned. We expect380

that in the fine context condition, agents will de-381

velop more one-to-one mappings (i.e., higher NMI)382

between messages and concepts than in the mixed383

baseline. In other words, we expect only specific384

references to be lexicalized, since the context con-385

dition requires fine-grained distinctions between386

concepts. In the coarse context condition, on the387

other hand, we expect agents to develop fewer one-388

to-one mappings (i.e., lower NMI) between mes-389

sages and concepts than in the mixed baseline. In390

other words, we expect agents to include more ab-391

stract references in their communication, as the392

contextual information can be leveraged by agents393

to identify the target concept. Following this, we394

expect higher effectiveness in the fine context con-395

dition than in the baseline and lower effectiveness396

in the coarse context condition than in the baseline.397

Lower effectiveness in the coarse context condi-398

tion with the same accuracy would indicate that399

agents use words with many meanings, or abstract400

references in the terminology used in Hawkins et al.401

(2018). These predictions are in line with the re- 402

sults obtained in Hawkins et al. (2018), who found 403

that abstract references were lexicalized only in 404

the coarse context condition. We expect high over- 405

all consistency across context conditions, reflecting 406

minimal use of synonymous references. This aligns 407

with Kobrock et al. (2024), who noted that agents 408

use synonyms for the same concept in varying con- 409

texts—a scenario not applicable here since context 410

conditions remain constant across trials. 411

3 Results 412

3.1 Performance and generalization 413

Agents achieve very good performance on training 414

and validation sets in both fine and coarse context 415

conditions. Mean train and validation accuracies 416

across runs are ≥ 0.94 for the fine context condi- 417

tion and ≥ 0.99 for the coarse context condition 418

for all datasets. These results are comparable to 419

the ones obtained in (Kobrock et al., 2024) for the 420

baseline mixed condition (mean train and valida- 421

tion accuracies across runs for all datasets ≥ 0.96). 422

These results are an indication that agents are able 423

to learn to communicate about concepts in the set- 424

ting of the concept-level reference game also when 425

trained only in fine or coarse contexts. 426

Accuracies on the test split differ more across 427

context conditions. The mean test accuracies across 428

runs are 0.98 (SD=0.02) for the coarse context con- 429

dition, and 0.75 (SD=0.14) for the fine context 430

condition indicating that while agents can also rea- 431

sonably well generalize in the fine context condi- 432

tion, they are much better at generalizing when 433

they have been trained in the coarse context condi- 434

tion. The mean test accuracy in the baseline con- 435

dition is 0.87 (SD=0.11) which is in the middle 436

between the fine and coarse condition. This shows 437

that the generalization abilities of the agents de- 438

pends on the context condition in which they have 439

been trained: When being trained to make fine dis- 440

tinctions, agents come up with a mapping that does 441

not generalize well. On the other and, when be- 442

ing trained to make coarse distinctions only (or a 443

mix), then agents come up with a mapping that 444

generalizes better. 445

3.2 Contextual pressures shape the emerging 446

language 447

To obtain information on the emerging language 448

at its final stage of development, information- 449

theoretic scores are calculated on the interactions 450
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of the last training epoch (see Kobrock et al., 2024;451

Ohmer et al., 2022). First, we look at the NMI452

scores. The NMI scores averaged across runs for453

all datasets and context conditions are summarized454

in Figure 3.4 For the mixed context condition, the455

mean NMI is estimated at M=0.87 [0.85, 0.89].456

For the fine context condition, the mean NMI is457

M=0.92 [0.90, 0.93]. There seems to be a small458

difference between the fine and mixed context con-459

dition, where the NMI scores are higher for the fine460

context condition. To quantify this difference statis-461

tically, we used Bayesian estimation following Kr-462

uschke (2013). We find a substantial, though very463

small, difference in NMI between the fine condition464

and our mixed baseline (M=0.05, CrI5=[0.02, 0.07],465

pd=100%, 1% in ROPE). For the coarse context466

condition, the mean NMI is M=0.59 [0.58, 0.61].467

The difference between the coarse context condi-468

tion and our mixed baseline is quite large and sub-469

stantial (M=-0.28, CrI=[-0.30, -0.25], pd=100%,470

0% in ROPE). In summary, we find that NMI scores471

in the fine and coarse context condition differ sig-472

nificantly from the mixed condition baseline with473

NMIs in the fine context condition being slightly474

higher than the baseline and NMIs in the coarse475

context condition being much lower than the base-476

line. This suggests that agents tend to create one-477

to-one mappings between concepts and messages,478

assigning to each concept its own message in the479

fine context condition. Agents likely adopt this480

communication strategy because they are required481

to draw very fine-grained distinctions to correctly482

discriminate the targets from the distractors in the483

fine context condition. In the coarse context con-484

dition, on the other hand, the low NMI scores in-485

dicate that the communication protocol emerging486

from the coarse context condition is not based on a487

strict one-to-one correspondence between concepts488

and messages.489

Second, we look at the effectiveness score. For490

the mixed context baseline, the estimated mean ef-491

fectiveness is M=0.88 [0.85, 0.91]. For the fine con-492

text condition, the mean effectiveness is M=0.90493

[0.87, 0.94]. The difference in effectiveness be-494

tween the fine and mixed context conditions is not495

substantial (M=0.02, CrI=[-0.02, 0.07], pd=85%,496

46% in ROPE). For the coarse context condition,497

the mean effectiveness is M=0.44 [0.42, 0.46]. The498

4Plots for effectiveness and consistency scores can be
found in appendix B.

5The Credible Interval (CrI) was estimated as the 95%
Highest Density Interval.

difference between the coarse and the mixed con- 499

text condition is large and substantial (M=-0.44, 500

CrI=[-0.47, -0.40], pd=100%, 0% in ROPE). The 501

low effectiveness scores in the coarse context con- 502

dition indicate that agents use the same message 503

to identify multiple target concepts, i.e. they use 504

abstract references. One possible cause for these 505

results is that agents might rely on context to clar- 506

ify which concept they are referring to, rather than 507

using one message for each concept regardless of 508

the context. This is possible in the coarse context 509

condition: As targets and distractors are very dif- 510

ferent from each other and share no attributes, a 511

message that does not encode all information about 512

the target concept (i.e. an abstract message) can 513

still be informative enough to correctly identify the 514

target objects. 515

Third, we look at the consistency scores. For the 516

mixed context condition, the estimated mean con- 517

sistency is M=0.87 [0.86, 0.88]. For the fine con- 518

text condition, consistency is estimated at M=0.94 519

[0.93, 0.95]. The difference in consistency be- 520

tween the fine and mixed context condition is very 521

small but substantial (M=0.07, CrI=[0.06, 0.09], 522

pd=100%, 0% in ROPE). For the coarse context 523

condition, mean consistency is M=0.92 [0.90, 0.94]. 524

The difference in consistency between the coarse 525

and mixed context conditions is small and substan- 526

tial (M=0.05, CrI=[0.03, 0.08], pd=100%, 0% in 527

ROPE). The values for consistency are comparable 528

to the ones of the fine context condition, indicat- 529

ing that agents make very limited use of synonymy 530

in the coarse context condition, too. In both the 531

fine and the coarse context condition, we observe 532

higher consistency scores than in the mixed base- 533

line which suggests that agents come up with non- 534

synonymous mappings, or, in other words, there 535

are no concepts that can be referred to with more 536

than one distinct message.6 537

3.3 Coarse contexts drive the emergence of 538

smaller and more efficient lexica 539

To further investigate the communicative strategy 540

adopted by agents in the coarse and fine context 541

condition, we reconstruct the emergent lexica (i.e. 542

the mappings between messages and concepts) 543

from the interactions of the last training epoch. A 544

description of the methodology we used, along with 545

6The observed differences might also vary with respect
to the conceptual hierarchy. For this reason, in Appendix
C, we analyze the entropy scores depending on the level of
specificity of the concepts.
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Figure 3: Mean NMI scores for coarse, mixed and fine context condition for each dataset. The different datasets are
identified by the number for attributes and the number of possible values each of those attributes can take.

some examples, can be found in Appendix D.546

Dataset # Concepts Context Condition # Messages

D(3,4) 99
Coarse 33
Fine 133

D(3,8) 582
Coarse 41
Fine 438

D(3,16) 3929
Coarse 133
Fine 1308

D(4,4) 499
Coarse 204
Fine 1071

D(4,8) 5248
Coarse 788
Fine 6636

D(5,4) 2499
Coarse 1443
Fine 4337

Table 1: Lexicon sizes for all datasets in coarse and fine
context conditions. We present the number of unique
concepts and the number of unique messages.

A comparison of the sizes of the lexica can be547

found in Table 1. Across all datasets, agents con-548

verge to smaller lexica in the coarse context con-549

dition, where agents consistently lexicalize fewer550

messages than the total number of target concepts.551

By doing so, they appear to develop an efficient552

communication protocol that avoids encoding each553

concept into a unique message, but likely leverages554

contextual information to disambiguate the target555

concept. Conversely, in the fine context condition,556

agents make use of a bigger set of messages. A pos-557

sible explanation for this is that agents in the fine558

context condition create specific messages to be559

able to unambiguously identify the target concept560

among similar distractors.561

How do agents in the coarse context condition562

achieve this efficient mapping? Figure 4 shows for563

each message the number of concepts that it refers564

to, normalized by the total number of concepts in565

each dataset and condition. A high concept ratio566

means that this message refers to many different567

concepts in a dataset, and a ratio close to 0 means568

that this message refers to only one concept in 569

the dataset. Agents in the fine context condition 570

use messages that refer to one or only very few 571

concepts, while in the coarse context condition 572

agents incorporate abstract messages and use them 573

to refer to a bigger set of concepts. Those messages 574

are the ones mapped to most generic concepts. This 575

is particularly interesting, as it indicates that agents 576

in the coarse context condition rely on messages 577

that encode minimal information (i.e. one attribute 578

value corresponding to a generic concept) also to 579

identify more specific concepts in certain contexts. 580

4 Discussion 581

This work employs an agent-based simulation of 582

a concept-level reference game to investigate the 583

influence of context granularity on the emergent 584

communication protocol. We compare our findings 585

to the results obtained in the artificial language 586

learning study with human participants and compa- 587

rable context conditions (Hawkins et al., 2018). 588

First, we observe higher accuracies for the coarse 589

context condition than the fine context condition 590

with the mixed baseline in between in both per- 591

formance (i.e. on the train and validation sets) 592

and generalization (on the test set). The superior 593

performance of agents in the coarse context and 594

their lower performance in the fine context align 595

with the findings of Hawkins et al. (2018), who 596

observed more correct responses by the listeners in 597

the coarse than in the fine context condition. They 598

explain this by the fine condition being hardest and 599

the coarse condition being easiest, with the mixed 600

condition in between. Similarly, the difficulty of 601

the task may explain the differences in performance 602

we observe in the agent-based simulation. While 603

exhibiting similar performance on the train and val- 604

idation sets, agents trained in the coarse context 605

7



Figure 4: Concept coverage in the messages: Number of concepts referred to by each message normalized by the
total number of concepts across datasets and conditions. Messages referring to most generic concepts (i.e. the ones
with only one fixed attribute) are identified by the star marks.

condition generalize better than agents trained in606

the fine context condition or in the mixed baseline607

condition. As Hawkins et al. (2018) did not test608

generalization, this is a novel finding and suggests609

that languages that have been shaped by coarse con-610

texts serve better for generalization. Second, the611

granularity of the context plays an important role612

in shaping the emerging language. In line with our613

hypotheses, agents trained in the fine context con-614

dition tend to associate each concept with a unique615

message, and we do not find many synonymous or616

polysemous messages in their protocols, whereas617

agents in the coarse context condition exhibit fewer618

one-to-one mappings and tend to reuse the same619

message for multiple target concepts. The use of620

more specific references, i.e. references with a sin-621

gle meaning, in the fine context condition and more622

abstract references, i.e. references with more than623

one meaning or polysemous references, is in line624

with the results obtained in Hawkins et al. (2018).625

These abstract references seem to be the reason626

for the better generalization abilities in the coarse627

context condition due to the fact that polysemous628

messages foster flexibility and hence allow for a629

better adaption to newly encountered concepts. Pol-630

ysemy in human language has been argued to make631

human languages particularly efficient (e.g. Pianta-632

dosi et al., 2012). Third, we have shown that these633

abstract references that emerge only in the coarse634

context condition are used to refer to a very high635

number of concepts in the datasets. Agents in the636

coarse context condition seem to develop a commu-637

nication protocol that extensively employs abstract638

messages, allowing them to correctly identify tar-639

get concepts, including specific ones, by relying on640

contextual information. This suggests that agents 641

can develop a more efficient communication strat- 642

egy, which goes beyond mere one-to-one mappings 643

between messages and concepts, when the context 644

allows it. Importantly, agents did not have any 645

external incentive such as a regularization cost or 646

efficiency pressure to modify their communication 647

based on the granularity of the context. Therefore, 648

the adaptation to the granularity of the context ap- 649

pears to be an emergent feature: The manipulation 650

of the context alone drives the agents to a more 651

efficient communication strategy. 652

In conclusion, the results of this study suggest 653

that the granularity of the context significantly in- 654

fluences the development of emerging languages. 655

Specifically, agents can leverage contextual in- 656

formation to create more effective and efficient 657

communication protocols that utilize abstract refer- 658

ences. These results are in line with but go beyond 659

previous work on human language by scaling the 660

number of possible referents (dataset size) and the 661

number of possible messages (vocabulary size and 662

message length, Hawkins et al., 2018). The effec- 663

tiveness of abstract references increases with scal- 664

ing: In our setup, agents use abstract references to 665

refer to up to one fifth of the entire dataset. Viewed 666

through the lens of pragmatic inference and cost- 667

efficiency, our results reveal how context-driven 668

conventions can balance communicative precision 669

with pressures for lexical economy. Our findings 670

also connect to ongoing theoretical discussions in 671

emergent communication research about efficiency 672

principles and information bottlenecks, highlight- 673

ing the role of context-based conventions on effi- 674

cient lexical choices (Gualdoni et al., 2024). 675
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5 Limitations676

This work has been carried out on symbolic677

datasets with hierarchical concepts. Future work678

could investigate whether these findings generalize679

to more natural datasets. One possible limitation of680

our setup is that dataset sizes vary between condi-681

tions. Future work could use a sampling approach682

to make sure that dataset sizes are comparable be-683

tween conditions. Future work could explore a sim-684

ilar concept-level reference game and manipulate685

other dynamics of context additional to fine and686

coarse only. For example, our setup could be used687

to investigate what happens if the contextual com-688

plexity is not a binary of extremes (fine vs. coarse)689

but rather continuously varied. Another idea would690

be to look at what happens if the training envi-691

ronment’s distribution of context types is skewed.692

Additionally, constraints that encourage the use of693

fewer messages or shorter messages could be im-694

plemented to try to promote the emergence of an695

even more efficient language.696
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sizes793

We ran the simulations for the fine and coarse con-794

text condition using an NVIDIA Tesla T4 GPU.795

The whole training process lasted about 4 days.796

The dataset sizes can be inspected in Table 2. We797

report the number of samples for each dataset and798

condition for train, validation and test data split.799

Datasets for the fine and coarse context condition800

have the same sizes. They present each concept801

in either a fine or coarse context condition, respec-802

tively. In the mixed baseline, however, the concepts803

were presented in each possible context condition,804

leading to larger datasets (Kobrock et al., 2024).805

B Effectiveness and consistency heatmaps 806

For purposes of visualization, Figures 5 and 6 dis- 807
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Dataset # Concepts Context Condition # Train # Validation # Test

D(3,4) 99
Fine/Coarse 742 248 250

Mixed 1852 618 530

D(3,8) 582
Fine/Coarse 4364 1456 1460

Mixed 11654 3886 3900

D(3,16) 3929
Fine/Coarse 29467 9823 9830

Mixed 83294 27766 27660

D(4,4) 499
Fine/Coarse 3742 1248 1250

Mixed 11917 3973 4110

D(4,8) 5248
Fine/Coarse 39359 13121 13120

Mixed 139957 46653 46670

D(5,4) 2499
Fine/Coarse 18742 6248 6250

Mixed 74962 24988 25050

Table 2: Dataset sizes for all datasets in coarse and fine context conditions. We present the number of unique
concepts and the number of samples in the train, validation and test splits.

Figure 5: Mean effectiveness scores for coarse, mixed and fine context condition for each dataset. The different
datasets are identified by the number for attributes and the number of possible values each of those attributes can
take.

Figure 6: Mean consistency scores for coarse, mixed and fine context condition for each dataset. The different
datasets are identified by the number for attributes and the number of possible values each of those attributes can
take.

C Analysis of entropy scores by concept812

level813

We investigate how the specificity of the target con-814

cept influences the entropy-based scores. Figure815

7 reports mean entropy scores across all datasets816

plotted against concept specificity. 817

In the mixed baseline, we have not enough ev- 818

idence for a substantial difference in NMI scores 819

between specific and generic concepts (M=-0.03, 820

CrI=[-0.07, 0.02], pd=91.5%, 19% in ROPE). 821
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Figure 7: Mean entropy scores across all datasets for different concept levels in coarse and fine context conditions.
The specificity of the concepts is indicated by the number of fixed attributes. The more attributes are fixed, the more
specific are the concepts. Error bars indicate bootstrapped 95% confidence intervals.

Rather, the NMI score seems to be relatively con-822

stant throughout the different levels of concept823

specificity (see Figure 7, in line with Kobrock824

et al., 2024). In the fine context condition, we825

observe that the NMI increases with increasing826

concept specificity. The mean NMI score for the827

most general concepts is 0.89 [0.88, 0.91], while828

the mean NMI for the most specific concepts rises829

to 0.95 [0.92, 0.96] for concepts with five fixed830

attributes. The difference in NMI between spe-831

cific and generic concepts is small but substan-832

tial (M=0.05, CrI=[0.01, 0.09], pd=97.6%, 3% in833

ROPE). This indicates that high concept specificity834

enforces the tendency of agents to build one-to-one835

mappings between concepts and messages when836

the context is fine. In the coarse context condition,837

we observe the opposite trend: With increasing con-838

cept specificity, NMI drops and we find a substan-839

tial difference in NMI between specific and generic840

concepts (M=-0.23, CrI=[-0.29, -0.18], pd=100%,841

0% in ROPE). The lowest mean NMI score is ob-842

served for concepts with three fixed attributes, at843

0.61 [0.59, 0.63]. A possible explanation for these844

fluctuations in entropy scores in the coarse context845

condition is that agents might initially create a sin-846

gle message for each of the most general concepts847

(with only one fixed attribute value). Subsequently,848

they may reuse these messages to refer to more849

specific concepts and rely on contextual cues to850

disambiguate the targets. The slight drop in con-851

sistency for concepts with four and five attribute852

values suggests that agents utilize multiple mes-853

sages to refer to the same concept. This behavior854

could be attributed to the flexibility agents have in855

specifying any attribute to identify a concept in the856

coarse context condition. As concepts accumulate 857

more fixed attribute values, agents have a broader 858

range of messages at their disposal to identify these 859

concepts. 860
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D Example Lexica861

We chose to reconstruct the lexica from the agents’862

interactions of the last traning epoch for the coarse863

and fine context conditions, which are the main864

objects of interest in this study. We proceeded865

as follows for each dataset. We began by retriev-866

ing the message used by the sender in each trial867

and associating it with the target concept for that868

trial. For each message, this process yielded a869

corresponding list of target concepts. Next, we870

compared the concepts within each list (i.e., the871

concepts referred to by the same message) to deter-872

mine whether they satisfied a more generic concept.873

If this was the case for 90% or more of the concepts874

in the list, we assigned that more generic concept875

as the meaning of the message. For instance, imag-876

ine a message m referring to the concepts BLUE877

TRIANGLE and BLUE SQUARE: in this case we878

would establish m to be an ending for the concept879

BLUE. Table 3 displays an example of the complete880

lexicon for D(3, 4) in the coarse condition, while881

Table 4 presents a sample (for space reasons) of the882

lexica emerged in the fine context condition for the883

same dataset.884

The first column of each lexicon table (Tables885

3 and 4) contains the messages sent by the agents,886

while the second column lists the symbols used887

in each message (excluding the EOS symbol 0).888

The third column indicates the number of unique889

concepts referenced by the corresponding message.890

The fourth column shows the meaning of the mes-891

sage, i.e., the concept encoded by the message,892

which was reconstructed as explained above. The893

question marks represent unfixed attributes. Con-894

cepts with all but one question mark (i.e., those895

with only one fixed attribute value) are the most896

generic concepts in that dataset.897
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Message Symbols # Referred Concepts Encoded Concept
(1, 1, 1, 0) {1} 7 (?, 3, ?)
(1, 1, 8, 0) {8, 1} 1 (?, 3, 3)

(1, 1, 12, 0) {1, 12} 1 (3, 3, 1)
(1, 2, 2, 0) {1, 2} 1 (3, 3, 0)
(1, 7, 1, 0) {1, 7} 1 (3, 3, 2)

(1, 12, 1, 0) {1, 12} 1 (3, 3, 1)
(1, 12, 12, 0) {1, 12} 1 (?, 3, 1)

(2, 1, 2, 0) {1, 2} 1 (?, 3, 0)
(2, 2, 2, 0) {2} 5 (?, ?, 0)
(3, 3, 3, 0) {3} 8 (?, 1, ?)
(3, 6, 6, 0) {3, 6} 1 (2, 1, ?)
(3, 9, 9, 0) {9, 3} 1 (0, 1, 3)
(4, 4, 4, 0) {4} 17 (1, ?, ?)
(6, 6, 6, 0) {6} 14 (2, ?, ?)

(6, 6, 15, 0) {6, 15} 2 (2, 0, ?)
(6, 15, 6, 0) {6, 15} 3 (2, 0, ?)
(6, 15, 15, 0) {6, 15} 1 (2, 0, 2)

(7, 1, 1, 0) {1, 7} 1 (3, 3, 2)
(7, 7, 7, 0) {7} 2 (3, ?, ?)
(8, 1, 8, 0) {8, 1} 1 (?, 3, 3)
(8, 8, 1, 0) {8, 1} 1 (?, 3, 3)
(8, 8, 8, 0) {8} 2 (?, ?, 3)
(9, 9, 3, 0) {9, 3} 1 (0, 1, 1)
(9, 9, 9, 0) {9} 20 (0, ?, ?)

(9, 9, 15, 0) {9, 15} 1 (0, 0, 2)
(9, 15, 9, 0) {9, 15} 1 (0, 0, 2)
(12, 1, 12, 0) {1, 12} 1 (?, 3, 1)
(12, 12, 12, 0) {12} 2 (?, ?, 1)
(14, 14, 14, 0) {14} 20 (?, 2, ?)
(15, 6, 6, 0) {6, 15} 3 (2, 0, ?)
(15, 9, 9, 0) {9, 15} 2 (0, 0, ?)
(15, 9, 15, 0) {9, 15} 1 (0, 0, ?)
(15, 15, 15, 0) {15} 6 (?, 0, ?)

Table 3: Example lexicon for the language emerging from the concept-level reference game in the coarse context
condition with the D(3, 4) dataset.
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Message Symbols # Referred Concepts Encoded Concept
(1, 1, 1, 0) {1} 1 (2, 0, ?)
(1, 1, 2, 0) {1, 2} 1 (2, 0, 2)
(1, 1, 4, 0) {1, 4} 1 (2, 0, 3)
(1, 1, 11, 0) {1, 11} 1 (2, 0, 3)
(1, 1, 13, 0) {1, 13} 1 (2, 0, 2)
(1, 1, 14, 0) {1, 14} 1 (2, 0, ?)
(1, 2, 13, 0) {1, 2, 13} 1 (1, 0, 2)
(1, 13, 2, 0) {1, 2, 13} 1 (1, 0, 2)
(1, 13, 13, 0) {1, 13} 1 (1, 0, 2)
(1, 14, 14, 0) {1, 14} 2 (1, 0, ?)
(1, 15, 1, 0) {1, 15} 1 (2, 0, 1)
(1, 15, 14, 0) {1, 14, 15} 1 (1, 0, 1)
(2, 2, 1, 0) {1, 2} 1 (1, ?, 2)
(2, 2, 2, 0) {2} 2 (1, ?, 2)
(2, 2, 10, 0) {2, 10} 1 (1, ?, 2)
(2, 2, 13, 0) {2, 13} 1 (1, 1, 2)
(2, 4, 4, 0) {2, 4} 1 (2, ?, 3)
(2, 10, 4, 0) {2, 10, 4} 1 (1, ?, 3)
(3, 3, 8, 0) {8, 3} 1 (3, 1, ?)
(3, 3, 11, 0) {11, 3} 1 (3, 1, 2)
(3, 3, 12, 0) {3, 12} 1 (3, 1, 1)
(3, 3, 13, 0) {3, 13} 1 (3, 1, 2)
(3, 5, 3, 0) {3, 5} 1 (0, 1, ?)
(3, 5, 5, 0) {3, 5} 1 (0, 1, ?)
(3, 5, 12, 0) {3, 12, 5} 1 (0, 1, 1)
(3, 12, 12, 0) {3, 12} 1 (3, 1, 0)
(3, 13, 4, 0) {3, 4, 13} 1 (0, 1, 3)
(3, 13, 5, 0) {5, 3, 13} 1 (0, 1, 2)
(4, 3, 4, 0) {3, 4} 1 (?, ?, 3)

Table 4: Sample from an example lexicon for the language emerging from the concept-level reference game in the
fine context condition with the D(3, 4) dataset.
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