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ABSTRACT

Recent findings raise concerns about whether the evaluation of Multiple-Choice
Question Answering (MCQA) accurately reflects the comprehension abilities of
large language models. This paper explores the concept of choice sensitivity,
which refers to the tendency for model decisions to be more influenced by the
answer options than by a genuine understanding of the question. We introduce a
new scoring method called Normalized Probability Shift by the Question (NPSQ),
designed to isolate the impact of the question itself and provide a more reliable
assessment of comprehension. Through experiments involving various input for-
mats, including cloze, symbols, and hybrid formats, we find that traditional scor-
ing methods — such as those based on log-likelihood or its length-normalized
variant — are vulnerable to superficial characteristics of the answer choices. In
contrast, NPSQ remains stable even when modifications are made to the answer
options.

1 INTRODUCTION

Multiple-choice question answering (MCQA) has emerged as a standard method for evaluating large
language models (LLMs) due to its clear objectives, automatic grading, and alignment with hu-
man assessment protocols (Robinson et al., 2023; Achiam et al., 2023; Team et al., 2023; Jiang
et al., 2024; Dubey et al., 2024). LLMs are tested across a variety of tasks within MCQA bench-
marks (Clark et al., 2018; Talmor et al., 2019; Sakaguchi et al., 2021; Srivastava et al., 2023), rang-
ing from commonsense reasoning (e.g., HellaSwag (Zellers et al., 2019)) to professional knowledge
(e.g., MMLU (Hendrycks et al., 2020)). As LLMs advance rapidly, many have begun to achieve,
and in some instances exceed, human-level performance on various MCQA benchmarks.

However, despite the widespread use of LLMs, concerns are growing regarding the reliability and
fairness of their evaluation methods (Li et al., 2024; Lyu et al., 2024; Alzahrani et al., 2024; Molfese
et al., 2025). Recent studies have demonstrated that even minor variations in prompt phrasing (Sclar
et al., 2023; Zhuo et al., 2024; Zhu et al., 2024), the arrangement of few-shot examples (Zhao et al.,
2021; Lu et al., 2022; Ma et al., 2023; Guo et al., 2024), or changes in the position of answer
options (Zheng et al., 2023; Pezeshkpour & Hruschka, 2024; Wang et al., 2024) can significantly
affect model performance. Observations indicate that LLMs often achieve high accuracy—higher
than what might be expected from random guessing—when presented solely with answer choices
(also referred to as options) without the corresponding questions (Balepur et al., 2024). This suggests
that the final answer selected by a model may be influenced as much by external factors as by its
comprehension of the question itself.

We would like to highlight a concerning observation: LLMs can sometimes arrive at correct answers
by focusing solely on the answer choices, without even reading the question. This raises a funda-
mental issue about whether these models are genuinely understanding the task or merely exploiting
patterns in the answer options. To illustrate this problem, consider a simple analogy: imagine a
person who selects the correct answer to a multiple-choice question without reading the question
itself, merely by looking at the options. Even if their choice is correct, it is difficult to argue that
they truly understood the content or solved the problem as intended. The same reasoning applies to
LLMs. If a model can frequently choose the correct answer without relying on the actual question,
its accuracy does not genuinely reflect true comprehension.

This paper examines the degree to which LLMs depend on answer choices instead of properly un-
derstanding the questions in MCQA benchmarks. We define and quantify a phenomenon called

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

choice sensitivity, which occurs when model predictions are predominantly influenced by the pro-
vided answer choices rather than the actual questions. We empirically measure the prevalence of
this phenomenon across various datasets, input formats, and model sizes.

Building on this analysis, we introduce a new evaluation method called Normalized Probability
Shift by the Question (NPSQ). This method more accurately isolates the impact of the question
from that of the answer choices. Through extensive experiments, we demonstrate that traditional
MCQA evaluation metrics are often highly sensitive to superficial features of the answer choices. In
contrast, our proposed approach allows for a more robust and interpretable assessment of a model’s
true understanding of the questions.

2 RELATED WORK

MCQA has become a standard framework for evaluating LLMs. However, recent work has revealed
that MCQA performance is highly sensitive to subtle changes in input formatting. Studies have
shown that variations in prompt phrasing, the format of answer choices, and the order of examples
in few-shot settings can lead to significant shifts in model predictions (Lu et al., 2022; Zheng et al.,
2023; Pezeshkpour & Hruschka, 2024; Alzahrani et al., 2024).

These observations have brought into a question whether models truly comprehend the information
provided in the prompt or are instead influenced by superficial aspects of the input. Consequently,
many studies have sought to develop prompt selection and formatting techniques that more accu-
rately capture a model’s underlying language understanding capabilities (Webson & Pavlick, 2022;
Wei et al., 2022; Min et al., 2022; Leidinger et al., 2023). Meanwhile, such findings raise serious
concerns regarding the reliability and fairness of current evaluation methodologies (Li et al., 2024;
Lyu et al., 2024; Wang et al., 2025; Balepur et al., 2025).

In addition to sensitivity to input formatting, another line of research has examined which compo-
nents of the input most influence model decisions. Recent studies have investigated the true extent
of model comprehension by evaluating performance under partial-input conditions, where only lim-
ited information from the prompt is provided (Gururangan et al., 2018; Poliak et al., 2018; Belinkov
et al., 2019; Feng et al., 2019; Srikanth & Rudinger, 2022). These studies indicate that models can
often solve problems or achieve high accuracy without needing the complete prompt. This suggests
that correct answers can sometimes be reached without a true understanding of the problem.

Moreover, recent findings have demonstrated that models can select the correct answer even when
the question is entirely omitted, relying solely on the answer choices (Balepur et al., 2024; Balepur
& Rudinger, 2024). This challenges the fundamental assumption of MCQA that the question mean-
ingfully guides the model toward the correct answer. It also highlights the necessity for evaluation
methods that more accurately assess a model’s understanding of the question.

Building on these insights, we demonstrate that the traditional MCQA-based evaluation method
can be significantly influenced by a model’s inherent preference for certain answer choices, rather
than the intended relationship between the question and the correct answer. While previous studies
have primarily identified such choice-driven artifacts or format sensitivities through observational
analyses, we take a step further by formally defining and quantifying choice sensitivity. To address
this issue, we propose a new evaluation framework that isolates the impact of the question from the
undesired effects introduced by the answer choices. This approach enables a more robust assessment
using a principled, quantitative metric.

3 CHOICE SENSITIVITY

Previous studies have demonstrated that language models can solve MCQA to a certain extent by
relying solely on the information provided in the answer choices (Balepur et al., 2024). This find-
ing suggests that the answer choices significantly influence model performance, possibly more than
initially anticipated. In this section, we systematically analyze the extent to which overall perfor-
mance can be attributed to the information contained in the answer choices by comparing model
performance with and without the questions.
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3.1 MEASUREMENT OF CHOICE SENSITIVITY

Choice Sensitivity refers to the extent to which a model’s predictions are influenced by the answer
choices rather than by its understanding of the question itself. To examine this phenomenon more
closely, we will express the model’s scoring behavior in a way that distinctly separates the influence
of the question from that of the answer choices.

Formally, let Q represent the question-related input (such as the question text), C signify the choice-
related input (such as the set of answer choices), and x be a specific answer candidate. The model
assigns a score, denoted as Score(Q,C, x), to each choice, conditioned on both the question-related
and choice-related input components. In practice, this score typically reflects the model’s log-
probability of generating x when given the prompt (e.g., logP (x | Q,C)), depending on the chosen
scoring method (e.g., log-likelihood, length-normalized log-likelihood, etc.).

The score Score(Q,C, x) can be expressed as the sum of two components: choice-driven
(Scorechoice(Q,C, x)) and question-driven (Scorequestion(Q,C, x)) as follows.

Score(Q,C, x) = Scorechoice(Q,C, x) + Scorequestion(Q,C, x)

The choice-driven component represents the influence of the answer choices alone, independent
of the question. It is determined by calculating the score with the question replaced by an empty
string. The question-driven component captures the additional contribution from the question itself.
It is calculated by subtracting the choice-driven component from the overall score, expressed as
Score(Q,C, x)− Scorechoice(Q,C, x).

To determine the relative contribution of the question and the answer choices to the model’s fi-
nal decision, we analyze the top two candidate choices x1 and x2 ranked by Score(Q,C, x). We
compare the difference in their choice-driven components (choice-driven difference denoted as
∆choice) to the difference in their question-driven components (question-driven difference denoted
as ∆question):

∆choice = Scorechoice(Q,C, x1)− Scorechoice(Q,C, x2)

and

∆question = [Score(Q,C, x1)− Scorechoice(Q,C, x1)]−[Score(Q,C, x2)− Scorechoice(Q,C, x2)] .

∆choice captures how much more the model prefers x1 over x2 based solely on the answer choices
provided. In contrast, ∆question assesses how much the presence of the question influences this
preference. If ∆choice > ∆question, it indicates that the model’s preference for x1 over x2 is more
strongly driven by differences in the answer choices than by any influence from the question itself.
In such cases, we consider the model’s decision to be choice sensitive.

We now define the choice sensitivity as a measure that quantifies how often a model’s decisions are
influenced by the answer choices rather than by the question itself. It is defined as:

Choice sensitivity =
1

N

N∑
i=1

1
(
∆

(i)
choice > ∆

(i)
question

)
,

where N is the total number of evaluated examples, and 1
(
∆

(i)
choice > ∆

(i)
question

)
is the indicator

function that is 1 when the condition ∆
(i)
choice > ∆

(i)
question is true and 0 otherwise.

3.2 EXPERIMENTS FOR MEASURING CHOICE SENSITIVITY

Our experiments reveal systematic differences in outcomes resulting from variations in the model’s
sensitivity to choices. Based on these differences, we have made some key observations.

Models. We experiment with several variants of the Qwen 2.5 (Qwen et al., 2025), Llama
3.1 (Dubey et al., 2024), and Mistral (Jiang et al., 2023) model families, examining different
sizes and training configurations. To analyze how model size influences choice sensitivity, we use
instruction-tuned versions of Qwen 2.5 across multiple scales (from 0.5B to 7B). Additionally, to
investigate the effects of instruction tuning, we compare pretrained and instruction-tuned versions of
the models at similar scales. All evaluations are conducted using the LM Evaluation Harness (Gao
et al., 2024).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Datasets. To evaluate the LLMs, we use HellaSwag (Zellers et al., 2019), ARC-Challenge (Clark
et al., 2018), and MMLU (Hendrycks et al., 2020), which are widely recognized multiple-choice
question-answering benchmarks. These benchmarks cover a range of domains, including common-
sense reasoning, science, and academic knowledge. For detailed statistics and examples of each
dataset, see Appendix A.

Input formats. We use three input formats for MCQA tasks for our experiments, following the
categorization in Alzahrani et al. (2024): cloze, symbols, and hybrid. In the cloze format, each
answer choice is incorporated into a prompt designed for completion, and the model selects the
choice with the highest (possibly normalized) probability. In the symbols format, the question and
all answer options are structured in a multiple-choice format, and the model is tasked with predicting
the correct label (symbol) (e.g., ’A’, ’B’, ’C’, and ’D’). The hybrid format follows the same structure
as the symbols format, but instead of predicting the label token, the model evaluates the full text of
each answer choice. For further details and examples, please refer to Appendix B.

Scoring. We assess model performance using two scoring methods: log-likelihood and length-
normalized log-likelihood. We report the corresponding metrics: accuracy (acc) and length-
normalized accuracy (acc norm) (Holtzman et al., 2021). The acc metric is calculated by check-
ing whether the model selects the correct answer based on the ranking of raw log-likelihood values.
However, language models often assign higher probabilities to shorter outputs due to their additive
log-probability structure, which can lead to a bias toward selecting shorter choices, even if they are
semantically incorrect. To address this bias, we also calculate acc norm, which is derived from
length-normalized log-likelihood. This is obtained by dividing the log-likelihood of each choice by
its token length (Biderman et al., 2024; Ide et al., 2025; Gu et al., 2025).

3.3 OBSERVATIONS

To gain a clearer understanding of the reliability of MCQA as a measure of model reasoning, we
systematically analyze choice sensitivity derived from our experiments. Our investigation explores
choice sensitivity across different formats, normalization techniques, model scales, few-shot set-
tings, and instruction styles. This comprehensive analysis reveals both when and why models tend
to rely on superficial choice-level cues. Additionally, it highlights strategies—such as prompt de-
sign and instruction tuning—that can help mitigate this issue. As a result, we have made several key
observations as follows.

1. Approximately 20–60% of the answer choices by language models are primarily influ-
enced by the choices themselves. Our analysis shows that choice sensitivity ranges from
approximately 0.2 to 0.4 for the symbols and hybrid formats and from around 0.5 to 0.6
for the cloze format. This indicates that 20–60% of the models’ selections are determined
by intrinsic differences among the answer choices, independent of the question context.
These findings highlight the importance of carefully evaluating MCQA benchmarks to en-
sure they accurately assess genuine question understanding instead of relying on superficial
characteristics of the answer choices.

2. The symbols and hybrid formats consistently exhibit lower choice sensitivity com-
pared to the cloze format. This trend is evident regardless of the model architecture,
benchmark dataset, or the number of few-shot examples, as illustrated in Figure 1 (a) and
(b). Since both the symbols and hybrid formats explicitly include answer choice informa-
tion in the model input, incorporating answer choice information in the prompt may help
reduce the model’s reliance on spurious patterns, resulting in lower choice sensitivity.

3. Normalization by token length fails to mitigate choice sensitivity. Previous research
proposed normalizing the score logP (x | Q,C) by the number of tokens in x to reduce
biases related to token length (Brown et al., 2020). However, our findings indicate that this
normalization has a limited impact on choice sensitivity. As illustrated in Figure 1, choice
sensitivity does not decrease after applying length normalization. In fact, in some cases —
particularly with the ARC-Challenge benchmark and cloze format — length normalization
even increases choice sensitivity.

4. Choice sensitivity decreases as model size increases. To assess the effect of model scale,
we evaluated four instruction-tuned versions of Qwen2.5 at different sizes: 0.5B, 1.5B, 3B,
and 7B. Figure 1 (a) illustrates that larger models generally exhibit lower choice sensitivity.
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(a) Choice sensitivity across model sizes on the Qwen2.5 series (instruction-tuned). Larger
models tend to exhibit lower choice sensitivity, particularly in the cloze format.
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(b) Impact of the number of few-shot examples on choice sensitivity in Llama3.1-8B-Instruct.
Increasing the number of few-shot examples does not consistently reduce choice sensitivity and
often increases it in the symbols and hybrid formats.

Figure 1: Choice sensitivity across model sizes and few-shot examples.
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(a) Instruction-tuned models consistently show reduced choice sensitivity across datasets
and formats. Darker bars represent instruction-tuned models, while lighter bars indicate
models without instruction tuning (base models).
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task for the model. Darker bars represent experiments conducted with question-solving
instruction, while lighter bars indicate experiments conducted without it.

Figure 2: The impact of instruction tuning and task instructions on choice sensitivity.
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This trend is particularly evident in the cloze format. In contrast, for the symbols and hybrid
formats, choice sensitivity sometimes increases as the model size grows.

5. Increasing the number of few-shot examples does not decrease choice sensitivity. We
investigated how varying the number of few-shot examples (ranging from 0 to 10) affects
choice sensitivity using the Llama 3.1-8B-Instruct model. As illustrated in Figure 1 (b),
cloze-based choice sensitivity remains relatively stable regardless of the number of few-
shot examples. In contrast, the symbols and hybrid formats show higher choice sensitivity
as the number of few-shot examples increases.

6. Instruction-tuned models demonstrate lower choice sensitivity compared to their base
versions. We conducted a comparison of Llama3.1-8B, Qwen2.5-7B, and Mistral-7B-
v0.3 with their instruction-tuned variants to assess the impact of instruction tuning. As
illustrated in Figure 2 (a), all instruction-tuned models, except for one case, exhibit reduced
choice sensitivity. This indicates that instruction tuning not only enhances models’ ability
to follow user instructions but also helps to minimize spurious, choice-driven behavior.

7. The effect of question-solving instructions on choice sensitivity varies across different
benchmarks. To assess how these instructions — framed as task-defining phrases that
guide the model to respond to the question, such as ”Answer the given question” — influ-
ence choice sensitivity, we removed these prompts and reevaluated choice sensitivity. As
illustrated in Figure 2 (b), he results indicate that in the case of HellaSwag, choice sensi-
tivity significantly decreases when the instruction is present. For other benchmarks, while
sensitivity does not increase, the reduction in choice sensitivity is much less pronounced
than with HellaSwag. These findings suggest that providing appropriate instructions can
help mitigate choice sensitivity to some extent.

4 NORMALIZED PROBABILITY SHIFT BY THE QUESTION

The analysis presented in Section 3 highlights a limitation in traditional MCQA evaluation methods:
a significant portion of model decisions is primarily influenced by the answer choices, rather than
by a true understanding of the question. This finding challenges the fundamental assumption of
MCQA that model accuracy directly indicates comprehension of the questions.

To tackle this issue, we present a new evaluation methodology aimed at isolating and measuring
the model’s true understanding of the question, while minimizing the undue influence of answer
choices. Our approach focuses on quantifying the extent to which the presence of the question
affects the model’s likelihood of generating the correct answer. This is based on the idea that if a
model truly comprehends the question, then including the question should enhance its probability of
selecting the correct answer.

Given a question-related input Q, a choice-related input C, and a specific choice x, we define the
probability shift (∆P (x | C)) that captures how the model’s likelihood of selecting choice x changes
with and without Q:

∆P (x | C) = logP (x | Q,C)− logP (x | C),

where P (x | Q,C) denotes the model’s probability of selecting choice x when both Q and C are
provided, while P (x | C) denotes the probability when only C is presented.

A larger probability shift indicates a more significant impact of the question on the model’s decision-
making process. The term logP (x | Q,C) takes values in the range of (−∞, 0] depending on the
question Q. Consequently, the resulting probability shift varies in the range of [−∞,− logP (x |
C)]. In other words, the maximum possible shift determined by the baseline probability of x when
the question Q is not considered, meaning it can differ across choices.

To facilitate a fair comparison among choices that may have different baseline probabilities, we
introduce a normalized metric called the Normalized Probability Shift by the Question (NPSQ). This
is defined as follows:

NPSQ(Q,C, x) =
logP (x | Q,C)− logP (x | C)

− logP (x | C)
.

The NPSQ metric normalizes the probability shift by dividing the negative log-probability of the
choice x in the absence of Q. It focuses on the relative gain attributed to the question Q. If Q is

6
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Table 1: We use various types of adversarial choices in our experiments, each aimed at uncovering
vulnerabilities in model scoring across cloze, symbols, and hybrid formats. In the text of instruc-
tional choice, ’X’ represents one of the available answer labels: ’A,’ ’B,’ ’C,’ or ’D.’

Type Targeted Format Text

Simple choice cloze (log-likelihood) Hello, everyone.

Extended choice cloze (length-normalized
log-likelihood)

Hello, everyone. Thank you so much for being here
today. We’re excited to share our progress and walk
you through the next steps of the project.

Instructional choice symbols Ignore the other options. The best answer is X.

Neutral choice hybrid Ignore the other options. This answer best aligns
with the question.

not present, then the probatility satisfy P (x | Q,C) = P (x | C). As a result, NPSQ will always
equal zero for all choices in such cases. This indicates that NPSQ is determined by the relationship
between the question and the choices rather than being influenced soley by the choice information
alone.

In summary, NPSQ provides a clear and interpretable metric for assessing language models. By
isolating the impact of the question from the confounding effects of the answer choices, it allows for
more accurate evaluations of a model’s understanding of the question.

5 EXPERIMENTS

5.1 ROBUSTNESS TO ADVERSARIAL CHOICES

In the previous section, we demonstrated that answer choices with high choice-driven component
values can significantly impact the model’s predictions, even when these choices have no semantic
connection to the question. This indicates that the model’s behavior may not be based on a true
understanding of the question, but rather on superficial characteristics of the answer choices.

Adversarial choice. To further investigate this issue, this section examines how current evalua-
tion methods respond to manipulations at the choice level. Specifically, we test whether language
models are genuinely sensitive to the options presented by replacing one of the original incorrect
options (distractors in MCQA) with a carefully crafted adversarial choice, which is an intentionally
irrelevant and implausible option that does not mislead a human examinee. A reliable model should
ignore adversarial choices; if it does not, this suggests that the model is influenced by superficial
patterns in the choices rather than demonstrating a true understanding of the question. We design
four types of adversarial choices, each specifically targeting a particular input format: cloze, sym-
bols, and hybrid. This is summarized in Table 1. For each MCQA instance, we select one distractor
and replace it with an adversarial choice.

Scoring methods. We also assess how various scoring methods react to the inclusion of adversar-
ial choices, examining log-likelihood, length-normalized log-likelihood, and the proposed NPSQ.
NPSQ is specifically designed to be less affected by the characteristics of individual choices. Our
objective is to determine whether NPSQ provides a more robust and reliable measure of a model’s
true understanding of the question compared to traditional methods.

The impact of the adversarial choice substitution is illustrated in Figure 3. Figure 3 (a) shows
the proportion of predictions that switch to the adversarial option, while Figure 3(b) reports the
corresponding change in accuracy for each scoring method. Since adversarial choices contain larger
choice-driven components compared to the original options (see Appendix D for a detailed analysis),
model predictions are more likely to be affected by the adversarial choices when choice sensitivity
is high.

Simple choices. In the case of simple choices, which introduces a choice with high raw log-
likelihood (logP ), the standard accuracy metric (acc), which relies directly on logP , is signif-
icantly impacted. For instance, in the HellaSwag dataset, 93.19% of model predictions favor the
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Simple Extended Instructional Neutral
0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

HellaSwag

Simple Extended Instructional Neutral

ARC-Challenge

Simple Extended Instructional Neutral

MMLU

acc acc_norm acc_npsq original accuracy changed accuracy

(b) Overall performance change after inserting adversarial choices; lighter bars in-
dicate original accuracy, darker bars indicate accuracy after replacing one distractor
with an adversarial choice.

Figure 3: Impact of adversarial choices on Llama3.1-8B-Instruct.

simple choice (as illustrated in Figure 3 (a)). As a result, there is a 54.23% decrease in accuracy
compared to the original setup, as shown in Figure 3 (b).

Extended choices. For scenarios involving extended choices—those that are longer and have a
high length-normalized log-likelihood—the most significant effect is seen on the length-normalized
accuracy metric (acc norm). In the ARC-Challenge, 41.30% of predictions shift to the adversarial
choice, leading to an 18.17% drop in performance. In contrast, both simple and extended choices
show that the acc npsq metric remains largely unaffected, with fewer than 0.17% of predictions
opting for the adversarial choice, and performance differences staying below 0.05%.

Instructional choices. Instructional choices introduce prompts that are designed to favor specific
options in the symbols format. These choices significantly impact accuracy measures, such as acc
and acc norm. In the MMLU dataset, 27.47% of predictions shift to the adversarial choice, leading
to an 11.53% decrease in measured performance. However, acc npsq remains much more stable,
with only 10.13% of predictions affected in the MMLU, and at most 11.29% affected in HellaSwag.

Neutral choices. Neutral choices modify a single choice using a neutral, high-probability phrase
in the hybrid format. They produce patterns similar to those of instructional choices. In the MMLU,
24.69% and 38.84% of answers have been changed under the metrics acc and acc norm, resulting
in performance drops of 8.60% and 17.17%, respectively. In contrast, acc npsq shows only a
5.72% shift in predictions, and notably, the model’s performance under acc npsq is increased by
3.31%.

In contrast to the cloze format, where NPSQ is calculated independently for each choice, the symbols
and hybrid formats compute the NPSQ for all choices together. Consequently, altering one choice
impacts the NPSQ values of the others. This interaction partially accounts for the small but non-zero
shift in the behavior of acc npsq under instructional and neutral choices.

These results show that evaluation metrics based on raw or normalized log-likelihoods are highly
sensitive to the choice-driven component. In contrast, NPSQ offers much more stable assessments
that are less affected by irrelevant answer choice properties.
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Figure 4: Accuracy across various formats and scoring methods for the models. Results are outlined
for the cloze, symbols, and hybrid formats using three metrics: acc (log-likelihood), acc norm
(length-normalized log-likelihood), and acc npsq (NPSQ).

Table 2: Analysis of correct and incorrect predictions for Llama-3.1-8B-Instruct on MMLU, il-
lustrating the relative impact of the question-driven (By Question) and choice-driven (By Choice)
components across various formats and metrics.

Format
acc acc norm

By Question (%) By Choice (%) By Question (%) By Choice (%)
Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect

Cloze 28.19 19.78 16.39 35.64 28.07 21.04 18.69 32.20
Symbols 53.75 22.62 14.08 9.55 53.75 22.62 14.08 9.55
Hybrid 48.70 26.94 13.24 11.12 48.33 25.94 13.09 12.65

5.2 ACCURACY ACROSS CHOICE SCORING METHODS

We investigate how model performance evaluation is affected by the use of the acc npsq met-
ric. As summarized in Figure 4, the NPSQ metric yields higher scores than acc and acc norm
in the cloze format, while it produces slightly lower scores in the symbols and hybrid formats. To
understand this behavior, we analyze the distribution of correct and incorrect predictions made by
the question-driven and choice-driven components. As shown in Table 2, in the cloze format, the
choice-driven component has a greater influence on incorrect predictions than on correct ones. Con-
versely, for the symbols and hybrid formats, the choice-driven component aligns more frequently
with correct predictions than with incorrect ones.

This suggests that the choice-driven component negatively affects model performance in the cloze
format but has a positive impact in the symbols and hybrid formats. Since NPSQ isolates and re-
moves the influence of the choice-driven component, it reports higher performance in cases where
this component is detrimental (such as in the cloze format) and lower performance where it is bene-
ficial (such as in the symbols and hybrid formats).

Additionally, while the overall rankings of the models remain relatively stable when evaluated using
acc and acc norm, we do see some changes when using acc npsq. These results highlight the
significance of evaluation metrics that focus on the understanding of questions. The NPSQ metric
indicates that models previously deemed strong may not consistently exhibit true comprehension,
resulting in a reordering of their performance rankings.

6 CONCLUSION

In this study, we investigate the impact of choice sensitivity on MCQA evaluations, where the fea-
tures of the answer options significantly influence model predictions. To address this issue, we
introduce Normalized Probability Shift by the Question (NPSQ), a scoring method aimed at sepa-
rating the effects of the question itself from those of the answer choices. Our experiments, conducted
across various formats, reveal that commonly used likelihood-based methods may be biased by su-
perficial characteristics of the choices. In contrast, NPSQ demonstrates stability and successfully
identifies differences in question comprehension that are obscured by these choice-driven effects.
This highlights the need for robust evaluation methods that more accurately reflect a model’s gen-
uine understanding.
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A DATASETS USED IN EXPERIMENTS

A.1 HELLASWAG

HellaSwag (Zellers et al., 2019) is a benchmark for evaluating commonsense natural language infer-
ence (NLI). The task involves selecting the most appropriate continuation of a given sentence. We
use the validation set, which consists of 10,042 examples, for our experiment. For few-shot settings,
demonstration examples are randomly sampled from the training split using a fixed seed (1234).

Table 3: Evaluation prompts for HellaSwag

Problem Context:
A man is being pulled on a water ski as he floats in the water casually. he

Choices:
- mounts the water ski and tears through the water at fast speeds.
- goes over several speeds, trying to stay upright.
- struggles a little bit as he talks about it.
- is seated in a boat with three other people.

Answer:
is seated in a boat with three other people.

Cloze Context Answer the most appropriate completion for the given incomplete context.
Incomplete context: A man is being pulled on a water ski as he floats in the
water casually. he
Completion:

Endings is seated in a boat with three other people.

Symbols Context Given the following incomplete context and four possible completions (A, B, C
and D), select the best completion.
Incomplete context: A man is being pulled on a water ski as he floats in the
water casually. he
A. mounts the water ski and tears through the water at fast speeds.
B. goes over several speeds, trying to stay upright.
C. struggles a little bit as he talks about it.
D. is seated in a boat with three other people.
Your response should end with ”The best completion is [the letter]” where the
[the letter] is one of A, B, C or D.
The best completion is

Endings D

Hybrid Context Given the following incomplete context and four possible completions, select
the best completion.
Incomplete context: A man is being pulled on a water ski as he floats in the
water casually. he
A. mounts the water ski and tears through the water at fast speeds.
B. goes over several speeds, trying to stay upright.
C. struggles a little bit as he talks about it.
D. is seated in a boat with three other people.
Your response should end with ”The best completion is [the letter].
[the completion]” where the [the letter] is one of A, B, C or D and
[the completion] is the completion corresponding to that letter.
The best completion is

Endings D. is seated in a boat with three other people.

A.2 ARC-CHALLENGE

The AI2 Reasoning Challenge(ARC) (Clark et al., 2018) comprises science questions and answers
targeted at students from grade 3 to grade 9. It is divided into two difficulty levels: easy and chal-
lenge. For model evaluation, we use the test set of the challenge level. The ARC-Challenge test
set contains 1,172 questions. For few-shot settings, demonstration examples are randomly sampled
from the training split using a fixed seed (1234).
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Table 4: Evaluation prompts for ARC-Challenge

Problem Question:
An astronomer observes that a planet rotates faster after a meteorite impact. Which is the most likely
effect of this increase in rotation?

Choices:
- Planetary density will decrease.
- Planetary years will become longer.
- Planetary days will become shorter.
- Planetary gravity will become stronger.

Answer:
Planetary days will become shorter.

Cloze Context Answer the given question.
Question: An astronomer observes that a planet rotates faster after a meteorite
impact. Which is the most likely effect of this increase in rotation?
Answer:

Endings Planetary days will become shorter.

Symbols Context Given the following question and four candidate answers (A, B, C and D), select
the best answer.
Question: An astronomer observes that a planet rotates faster after a meteorite
impact. Which is the most likely effect of this increase in rotation?
A. Planetary density will decrease.
B. Planetary years will become longer.
C. Planetary days will become shorter.
D. Planetary gravity will become stronger.
Your response should end with ”The best completion is [the letter]” where the
[the letter] is one of A, B, C or D.
The best answer is

Endings C

Hybrid Context Given the following question and four candidate answers, select the best answer.
Question: An astronomer observes that a planet rotates faster after a meteorite
impact. Which is the most likely effect of this increase in rotation?
A. Planetary density will decrease.
B. Planetary years will become longer.
C. Planetary days will become shorter.
D. Planetary gravity will become stronger.
Your response should end with ”The best answer is [the letter].
[the answer choice text]” where the [the letter] is one of A, B, C or D
and [the answer choice text] is the full text of the answer corresponding to that
letter.
The best answer is

Endings C. Planetary days will become shorter.

A.3 MMLU

Massive Multitask Language Understanding(MMLU) (Hendrycks et al., 2020) evaluates a model’s
breadth and depth of knowledge across various domains. The dataset covers 57 topics, including
STEM, humanities, and social sciences. Our experiments use the comprehensive test set, which
contains 14,042 questions. Each multiple-choice question assesses the model’s ability to integrate
diverse knowledge. For few-shot settings, demonstration examples are randomly sampled from the
training split using a fixed seed (1234).

B INPUT FORMATS USED IN EXPERIMENTS

In addition to the brief description in the main text, we provide further details on how input formats
and few-shot examples are implemented in our experiments.
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Table 5: Evaluation prompts for MMLU

Problem Question:
The sign of the charge carriers in a doped semiconductor can be deduced by measuring which of the
following properties?

Choices:
- Specific heat
- Thermal conductivity
- Electrical resistivity
- Hall coefficient

Answer:
Hall coefficient

Cloze Context Answer the given question.
Question: The sign of the charge carriers in a doped semiconductor can be
deduced by measuring which of the following properties?
Answer:

Endings Hall coefficient

Symbols Context Given the following question and four candidate answers (A, B, C and D), select
the best answer.
Question: The sign of the charge carriers in a doped semiconductor can be
deduced by measuring which of the following properties?
A. Specific heat
B. Thermal conductivity
C. Electrical resistivity
D. Hall coefficient
Your response should end with ”The best completion is [the letter]” where the
[the letter] is one of A, B, C or D.
The best answer is

Endings D

Hybrid Context Given the following question and four candidate answers, select the best answer.
Question: The sign of the charge carriers in a doped semiconductor can be
deduced by measuring which of the following properties?
A. Specific heat
B. Thermal conductivity
C. Electrical resistivity
D. Hall coefficient
Your response should end with ”The best answer is [the letter].
[the answer choice text]” where the [the letter] is one of A, B, C or D
and [the answer choice text] is the full text of the answer corresponding to that
letter.
The best answer is

Endings D. Hall coefficient

Prompt templates. For symbols and hybrid formats, we adopt the task-specific prompt templates
provided in the Llama-3.2-3B-Instruct-evals dataset.1 For cloze format, we retain the original ques-
tion text with question and answer prefixes but exclude the set of answer choices and answer format
instructions. This ensures that cloze prompts are purely completion-based without explicit label
guidance. See Figure 5 for an illustration of these formats.

Few-shot examples. In the N-shot setting, we prepend N demonstration examples to the target
instance. Each demonstration follows the corresponding input format and contains the question-
related input (Q), the choice-related input (C), and the correct answer (x). Demonstrations are
randomly sampled using a fixed seed (1234) to ensure reproducibility.

Choice-driven component computation. To compute Scorechoice(Q,C, x), we remove the
question-related input Q from the target instance, while keeping all demonstration examples un-
changed in their full form (Q, C, and x). This isolates the effect of the answer choices of the target
instance from the question content.

1https://huggingface.co/datasets/meta-llama/Llama-3.2-3B-Instruct-evals
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Answer choices

Answer format instruction

Answer prefix

Question-solving instruction

Question prefix

Question text

Answer candidate

Q C

x

Answer the given question.



Question: <question>

Answer: <choice x>

Cloze Format

Given the following question and four 
candidate answers (A, B, C and D), 
select the best answer.



Question: <question>

A. <choice 1>

B. <choice 2>

C. <choice 3>

D. <choice 4>



Your response should end with 

"The best answer is [the_answer_letter]" 

where the [the_answer_letter] is one of 
A, B, C or D.



The best answer is <answer symbol>

Symbols Format

Given the following question and four 
candidate answers (A, B, C and D), 
select the best answer.



Question: <question>

A. <choice 1>

B. <choice 2>

C. <choice 3>

D. <choice 4>



Your response should end with 

"The best answer is [the_answer_letter]. 
[the_answer_choice_text]" 

where the [the_answer_letter] is one of 
A, B, C or D and 
[the_answer_choice_text] is the full 
text of the answer corresponding to that 
letter.



The best answer is <answer symbol>. 
<choice x>

Hybrid Format

Figure 5: Three MCQA input formats considered in this study, following the categorization
of Alzahrani et al. (2024): cloze, symbols, and hybrid formats. Here, Q, C, and x correspond
to the question-related input, the choice-related input, and a specific answer candidate, respectively.
Instruction refers to task-defining text (e.g., ”Answer the given question”), while prefix refers to
fixed labels in the prompt (e.g., ”Question:”, ”Answer:”) used to structure the input.

C CHOICE SENSITIVITY AND ACCURACY
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HellaSwag: Accuracy vs. Choice Sensitivity
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Figure 6: Relationship between accuracy and choice sensitivity on HellaSwag. No strong linear
correlation is observed, and accuracy does not predict choice sensitivity.

We examine the relationship between choice sensitivity and model accuracy on the HellaSwag
benchmark. Figure 6, which plots the results from the previous experiments in Section 3 together
with accuracy for convenience, categorizes models into three groups (Llama 3.1, Qwen2.5, and
Mistral-v0.3). The figure shows a scatter plot with a red regression line representing a fitted lin-
ear model, and the pink shaded region denoting its 95% confidence interval. Most data points lie
outside this interval, indicating the absence of a linear relationship. Furthermore, the Pearson corre-
lation coefficient is -0.36, suggesting a weak or negligible association between accuracy and choice
sensitivity.
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D DISTRIBUTION OF CHOICE-DRIVEN COMPONENTS FOR ADVERSARIAL
CHOICES
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Figure 7: Distribution of choice-driven components for adversarial choices. KDE plots show that
adversarial choices (red) generally have much higher choice-driven component scores than original
choices (blue). This indicates that if a model predominantly determines its selections based on
the choice-driven component—meaning that the choice sensitivity is high—it is likely to select
adversarial choices in most cases.

To demonstrate that adversarial choices exhibit high choice-driven components, we compare them
with original answer choices across datasets (HellaSwag, ARC-Challenge, and MMLU). For each
dataset, we randomly sample 20 problems and visualize the choice-driven components of both the
original choices and the adversarial choices introduced in Section 5.1 (see Table 1) using kernel
density estimation (KDE) plots. As shown in Figure 7, adversarial choices consistently yield higher
choice-driven component scores than the original answer choices.
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