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Abstract
In this work, we introduce Modulated Flows
(ModFlows), a novel approach for color style
transfer between images based on rectified flows.
The primary goal of the color transfer is to adjust
the colors of a target image to match the color
distribution of a reference image. Our technique
is based on optimal transport and executes color
transfer as an invertible transformation within the
RGB color space. The ModFlows utilizes the
bijective property of flows, enabling us to intro-
duce a common intermediate color distribution
and build a dataset of rectified flows. We train an
encoder on this dataset to predict the weights of a
rectified model for unseen images. We show that
the trained encoder provides an image embedding,
associated only with its color style. The presented
method is capable of processing 4K images and
achieves the state-of-the-art performance in terms
of content and style similarity.

1. Introduction
Color adjustment is one of the most frequently used image
editing operations. While minor corrections can often be
made quickly, achieving a precise color palette typically
requires more time and attention to detail.

Classical Methods. The idea of image modifications based
on features of another image appeared in the early 2000s
under the name ”image analogies” (Jacobs et al., 2001).
Soon the problem of example-based color transfer was for-
mulated in the following way (Reinhard et al., 2001). A
pair of images known as “content” and “style” in the current
literature is introduced. The aim of the transfer is to alter the
colors of the content image to fit the colors of the style im-
age without visible distortions and artifacts. The proposed
solution (called as ColorTransfer, CT) treats images as 3D
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distributions in the lαβ color space (Ruderman et al., 1998)
and adjusts the mean and the variance along the main axes
(i.e. marginal moments).

The pioneering works on the color transfer have already
considered it as a problem of the optimal transport (Morovic
& Sun, 2003). For instance, one would prefer to keep the
shades of red as close to each other as possible. Technically,
one defines a distance in the color space and tries to fit
the desired mass distribution with a minimal effort. The
effort needed can be defined as a transportation cost, i.e. the
problem can be formulated within the framework of optimal
transport (OT) theory. In general case, the exact solution
of OT problem is hard to obtain. For instance, in the case
of discrete distributions the optimal histogram matching
could be utilized (Morovic & Sun, 2003). However, an
exact calculation of the transport cost was computationally
heavy; for this reason other histogram-based approaches
dropped the optimality constraint and considered the color
transfer as the mass preserving transport problem (Neumann
& Neumann, 2005; Pitie et al., 2005).

Unfortunately, the first attempts suffered from artifacts and
additional (sometimes even manual) adjustments were still
needed to work around their limitations. Pitié & Kokaram
(2007) were the first who switched to a continuous for-
mulation of OT problem in color transfer. The authors
made several simplifications, assuming color distributions
to be Gaussian. Referred to as Monge-Kantorovitch Linear
(MKL) (Mahmoud, 2023) it is still a strong competitor, as
shown in Fig. 2.

Neural Methods. Gatys et al. (2016) turned the research
into a different direction. It adapted deep convolutional
neural networks (CNN) for a high-level style extraction. The
algorithm (often referred as Neural Style (Johnson, 2015))
was shown to be able to perform an example-based color
transfer when applied to a pair of images. The transfer was
not ideal though. Neural Style targets a painting technique
and textures. Hence, it blends into a stylized image not only
a reference color palette but also unwanted patterns.

The ability of deep CNNs to separate a color style from
a content has inspired follow-up studies, primarily focus-
ing on artifact removal. This has resulted in a series of
algorithms such as DPST (Luan et al., 2017), WCT (Li
et al., 2017), PhotoWCT (Li et al., 2018), WCT2 (Yoo et al.,
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Figure 1. Qualitative comparison. Examples from Unsplash Lite test set. Our model achieves the most exact match with the reference
palette without visible distortion (zoom in for better quality).

2019), PhotoNAS (An et al., 2020), PhotoWCT2 (Chiu &
Gurari, 2022) and DAST (Hong et al., 2021).

A step aside was taken by Deep Preset (Ho & Zhou, 2021)
which is based on the U-net architecture. Deep Preset is
aimed at automatic retouching and achieves the high quality
in terms of absence of artifacts. It changes the color dis-
tribution only slightly. While this is desirable in the case
of retouching, it does not suit the color transfer task well.
Nevertheless, we have included Deep Preset in comparison
to give a reference values of scores for image retouching.

Two most recent studies are closely related to our work.
The first one is the Neural Preset approach proposed by Ke
et al. (2023), where the color transfer is executed in RGB
space by a multilayer perceptron with the hidden weights
predicted by an encoder network. The algorithm could be
trained in self-supervised fashion. It achieves impressive
visual quality and is capable of processing of high-resolution
images. However, it heavily depends on external Look-
Up-Table (LUT) filters. Designing a diverse set of LUT
filters of a high quality requires domain expertise and time.
One may treat them as a part of the dataset. These filters,
along with the model, are not currently available. Since
the test set consists of more than a thousand of images,
we only included Neural Preset in qualitative comparison.
The results for Neural Preset were obtained via officially
distributed application.

The second one is Sparse Dictionaries (Huang et al., 2023),

the method based on a discrete optimal transport applied to
learned style dictionaries. However, the algorithm is slow
compared to the other methods based on neural networks
and its code is also unavailable at the moment.

In order to address these limitations, we aimed on develop-
ing a model that could be trained without additional LUT
filters, could be quickly applied to new images and consid-
ers the color transfer problem from the optimal transport
point of view. To this end, we utilize rectified flows with
parameters, predicted by an encoder network. In order to
simplify the training process, we introduce a uniform latent
(or intermediate) space. The rectified flows transport the
color distribution of a given image to the latent space. Upon
application of a particular style, we use the inverse rectified
flow to transfer color distribution back from the uniform
distribution to target distribution of the style image.

Our contribution. The contribution of this paper can be
summarized as follows:

• We describe a new method of color transfer based on
rectified flows and the common latent distribution.

• We produce the dataset of 5896 flow-image pairs and
train the generalizing encoder model.

• We show that the encoder-predicted vector of weights
is an image embedding strongly associated with a color
style of the image.
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Figure 2. Transfer results and corresponding distributions in RGB space (zoom in for better quality).

2. Background
2.1. Problem setting

In RGB space an image can be associated with a continuous
3-dimensional probability density function. We denote the
density functions as π0 for a content image and as π1 for a
style one. Here the random variables X0 ∼ π0 and X1 ∼
π1 represent pixels taken from the correspondent images.
The color transfer problem may be defined as finding a
deterministic transport map T (X0) = X1, where T :
RD → RD is a change of variables, i.e.

π0(x) = π1(T (x)) |det JT (x)| , (1)

where JT (x) is the Jacobian of T taken at point x.

Monge’s optimal transportation. By introducing a cost
function c : RD × RD → R, one arrives to a minimization
problem. For instance, the quadratic cost function c(x, y) =

∥x− y∥2 gives a total expected cost of a transport map T

Cost [T ] = E
(
∥X1 −X0∥2

)
=

∫
X0

(T (x)− x)2π0(x)dx.

(2)

Finding of the optimal deterministic map T ∗ that minimizes
the Cost [T ] for a fixed cost function is called Monge prob-
lem. It does not always have a solution. However, the
quadratic cost function and the continuous density functions
π0, π1 with finite second moments guarantee that a solution
always exists and it is unique (Villani et al., 2009). In some
cases T can be obtained explicitly. For monochrome images
X0, X1 ∈ R and monotonically increasing cumulative dis-
tribution functions F0, F1 the optimal transport map T (x)
reads

T (x) = F−1
1

(
F0(x)

)
. (3)

In practice it is possible to construct T (x) even when F1,
F2 do not have an inverse (Neumann & Neumann, 2005).
Below we make the use of this fact by proposing a new
content metric, a normalized gray-scale image.

Another important case for a known T ∗ : RD → RD is
matching of two multivariate Gaussian distributions. Men-
tioned earlier MKL Pitié & Kokaram (2007) relies on the
Gaussian approximations and this result.

Monge–Kantorovich formulation. A correspondence be-
tween X0 ∼ π0 and X1 ∼ π1 can be non-deterministic in
general. Instead of transport mapping T one could consider
a transport plan π(X0, X1) (also called a coupling), a joint
probability distribution with marginals π0 and π1,∫

X0

π(x, y)dx = π1(y),

∫
X1

π(x, y)dy = π0(x). (4)

An example of a transport plan that always exists is a trivial
coupling π = π0 × π1, i.e. with initial and target random
variables being independent.

Monge–Kantorovich minimization finds π∗(X0, X1) that
minimizes the expected cost

Cost [π] = E
(
c(X0, X1)

)
=

∫
X0×X1

c(x, y)π(x, y)dxdy.

(5)

Let Π(π0, π1) be all possible couplings of π0 and π1. Then
the optimal transport cost between the initial and target
distributions is

C(π0, π1) = inf
π∈Π(π0,π1)

∫
X0×X1

c(x, y)dπ(x, y). (6)
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The optimal transport cost is tightly connected with the
Wasserstein distance between two distributions. Note that
the equation above is written for an unspecified cost func-
tion, i.e. the axioms of distance are not satisfied. By replac-
ing a cost c(x, y) with a proper distance function d(x, y)
(the quadratic cost suits this purpose) one gets a Wasserstein
distance of order one

W(π0, π1) = inf
π∈Π(π0,π1)

∫
X0×X1

d(x, y)dπ(x, y). (7)

2.2. Rectified flows

The optimal transport problem can be approximately solved
by Rectified flows (Liu et al., 2022). Its key idea is in
converting an arbitrary initial coupling into a deterministic
transport plan. The new transport plan guarantees to yield no
larger transport cost than initial one simultaneously for all
convex cost functions. First, the independent pairs (X0, X1)
from the trivial transport plan are sampled

πtrivial(X0, X1) = π0(X0)× π1(X1). (8)

Secondly, a linear interpolation between the initial and target
samples is introduced by settingXt = tX1 + (1 − t)X0 .
With this, one trains a neural network vθ(Xt, t) to minimize
the loss

min
θ

∫ 1

t=0

E(X0,X1)∼πtrivial

[
∥X1 −X0 − vθ(Xt, t)∥2

]
dt.

(9)
Given a trained rectified flow one can transport samples
from the initial distribution π0 to the target distribution π1

in a deterministic way by numerically solving the ordinary
differential equation (ODE)

dZt

dt
= vθ(Zt, t) (10)

for t ∈ [0, 1] with Z0 ∼ π0. Thus, for this particular case
the deterministic transport map reads

T1-rectified(Z0) = Z0 +

∫ 1

t=0

vθ(Zt, t)dt. (11)

The deterministic transport map T1-rectified gives rise to the
deterministic transport plan π1-rectified,

π1-rectified(X0, X1) = π0(X0)× δ(X1 − T1-rectified(X0)).
(12)

This transport plan has a much lower transport cost than the
naı̈ve transport plan πtrivial(X0, X1).

3. Method
Our method is inspired by the increasing rearrangement
coupling (Villani et al., 2009) given by Eq. 3. The transfer

Algorithm 1 Encoder training
Require: trained image-flow pairs (I, θ)
1: repeat
2: get batch I = {I}Ni , θ = {θ}Ni
3: for i = 1, . . . N do
4: sample X ∼ I
5: Z = Flowθ(X)
6: collect t ∼ Uniform [0, 1]
7: collect Zt = tZ + (1− t)X
8: collect vt = vθ(Zt, t)
9: end for

10: Randomly reflect and rotate I ∈ I
11: e = Enc(I)
12: t = {t}Ni , Zt = {Zt}Ni , vt = {vt}Ni
13: Apply e as parameters for ModFlow to get ve(Zt, t)
14: Take gradient step with respect to Enc weights on

∇ E
[
∥vt − ve(Zt, t)∥2

]
15: until converged

task is complicated as we want the model to generalize well
across all possible pairs (πi, πj) of color distributions. How-
ever, having the opportunity to learn bijective mappings, one
could greatly simplify the task by introducing a universal
intermediate distribution U .

The distribution U is implicitly present in the increasing
rearrangement, such that for any random variable X ∼
π,X ∈ R having monotonically increasing CDF

F (x) =

∫ x

−∞
dπ(y) it holds that

U = F (X) ∼ Uniform [0, 1] .

(13)

Therefore, for a pair of such random variables Xi, Xj ∈ R a
composition T = F−1

j ◦Fi is a transport plan that traverses
through a Uniform [0, 1] distribution.

We are extending this idea to random variables Xi ∈ RD

by learning bijective mappings Ti : RD → RD such that
Ti(Xi) = UD, where UD is random variable in RD with
all components uniformly distributed in [0, 1]. For any pair
Xi, Xj we define T (Xi) = Xj as T = T−1

j ◦ Ti

Here rectified flow offers three important benefits. Firstly,
as a solution of ordinary differential equation 9 it is bijective.
Secondly, it keeps the marginal distributions close to the
desired ones. Lastly, the rectification step allows us to
substantially increase the inference speed without adding
the transport cost. Thus, we are able to efficiently compute
T as a composition.

During the experiments we observed that lightweight shal-
low models with a number of trained parameters ranging
from approximately 500 to 10,000 could work as color trans-
fer flows. The number of parameters lies in the same range
with an output vector length of encoders so one may hope
to use the output vector as flow parametrization, thus gener-
alizing the approach.
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The proposed method consists of two stages:

1. Produce a dataset of flow-image pairs, where flows’
weights θi are trained to map a color distribution Xi of
an image Ii into the uniform cube U . We follow (Liu
et al., 2022) with an interpolation Xt = t U+(1−t)Xi

min
θi

∫ 1

t=0

E(U,Xi)∼πtrivial

[
∥U −Xi − vθi(Xt, t)∥2

]
dt.

(14)

2. Train the encoder on batches from the dataset, such that
the output vector Enc(Ii) = ei is a flow parametriza-
tion for an image Ii.

Note, that the second stage does not include any distances
d(θ, e). A flow parameterized by the encoder (or the mod-
ulated flow) is not obliged to have the same architecture
as models in a dataset. We train the encoder using the loss
function that allows a distillation

min
Enc

∫ 1

t=0

E(Zi,Xi)∼π1-rectified

[
∥Zi −Xi − vei(Zit, t)∥2

]
dt,

(15)
where Enc(Ii) = ei and target Zi is generated from a Xi

by trained flow θi

Zi = T1-rectified(Xi) = Xi +

∫ 1

t=0

vθi(Zt, t)dt (16)

and Zit are points sampled from an interpolation line con-
necting original Xi with its target Zi

Zit = tZi + (1− t)Xi. (17)

The predicted velocity vei(·, t) is given by the modulated
flow with ei weights. Generally, it is not advised to take the
dimension of e much higher than the bottleneck of selected
encoder.

The Algorithm 1 gives the pseudo-code for the proposed
solution.

4. Experiments and metrics
Dataset. To implement the approach described above one
needs a dataset of images with sufficiently different color
styles and resolutions. We construct our dataset by combin-
ing DIV2K (Ignatov et al., 2019) and CLIC2020 (Toderici
et al., 2020) (designed for image compression challenges)
with a subset of “laion-art-en-colorcanny” (ghoskno, 2023)
(mostly consisting of cakes). The total number of images is
5,826.

For every image we train a small two-layer MLP with 1024
hidden units (8195 parameters in total) and tanh activation,

storing in the dataset 5,826 rectified models. Generation of
a model-image pair takes approximately 100k iterations.

Encoder. EfficientNet B6 is used as an encoder model (Tan
& Le, 2019). For simplicity we set the output dimension to
8195 for it to be the same with the dataset of trained flows.
The encoder was trained with Adam optimiser (Kingma &
Ba, 2014) for 751k iterations with the batch size equals to 8
images. We decreased the learning rate from lr = 5e-4 to lr
= 1e-4 after the first 100k iterations.

Test set. Tests were conducted on 1891 content-style
pairs selected from Unsplash Lite 1.2.2 (Unsplash, 2023).
Searches were run on 25,000 Unsplash pictures. Our pic-
tures are generated in 8 steps of ODE solver (16 steps in
total for forward and inverse passes).

Metrics. The seminal work (Gatys et al., 2016) defines
style loss as a distance between Gram matrices of feature
maps, taken from convolutional layers of VGG encoder.
Despite being capable of extracting a palette, this approach
cannot reliably separate a color style from textures. Monge’s
problem (Eqs. 1 and 2) offers a more precise setting and a
straightforward metric, namely, Wasserstein distance, Eq.
7. Therefore we estimate the Wasserstein distance between
resulting and reference color distributions taking 6,000 pixel
samples for a style metric (Bonneel et al., 2011; Flamary
et al., 2021).

Contrary to the style, a content metric is not uniquely de-
fined. To measure the amount of visible artifacts we com-
pute a set of colorless metrics based on depth-maps by
recently released DepthFM (Gui et al., 2024), normalized
grayscale pictures and edge-maps by HED (Xie & Tu, 2015;
Niklaus, 2018) and LDC (Soria et al., 2022) models. The
variants of the colorless representation are demonstrated in
Fig. 3. The difference between colorless images is evaluated
with DISTS (Ding et al., 2020) producing the content score.

Table 1 contains average style distances and aggregated
scores for compared methods. The aggregated score is
calculated as a distance to the ideal point p, similarly with
(Ke et al., 2023),

aggr. score =
√
(p − style score)2 + (p − content score)2

(18)

Please refer to the Table 3 (supplemental materials) for the
same evaluation with SSIM.

Search of similar color styles. Once trained, the output
vector of parameters e could serve as an embedding of an
image color style. To evaluate its expressive ability we
compare e against standard statistics for RGB channels
(µ,Σ), that is, the vector of mean values concatenated with
flattened covariance matrix. An example of a search is given
in Fig. 9 and Fig. 10 in supplemental materials.
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Table 1. Comparison of algorithms

Aggregated scores (DISTS)↓
Algorithm Grayscale Depth Edge (Xie & Tu, 2015)

ModFlows (ours) 0.129 0.217 0.220
MKL 0.146 0.227 0.224
CT 0.169 0.234 0.232
WCT2 0.170 0.228 0.249
PhotoWCT2 0.191 0.236 0.217
DAST d 0.204 0.267 0.224
DAST da 0.214 0.282 0.229
PhotoNAS 0.224 0.276 0.270
Deep Preset 0.384 0.400 0.387

Style distance↓
Algorithm mean ± std

DAST d 0.112 ± 0.039
ModFlows (ours) 0.123 ± 0.049
DAST da 0.127 ± 0.042
PhotoWCT2 0.129 ± 0.055
MKL 0.145 ± 0.060
WCT2 0.163 ± 0.065
CT 0.166 ± 0.064
PhotoNAS 0.183 ± 0.069
Deep Preset 0.384 ± 0.171

Content ModFlows (ours) PhotoWCT2

grayscale

depth map

edges HED

edges LDC

Figure 3. Colorless content metrics. The choice of the best content metric is not obvious. Edges detection by HED model (Xie & Tu,
2015) grasp mostly the main objects of a scene, while canny LDC (Soria et al., 2022) images are capturing the too detailed edges. Both
of them are not sensitive to low-frequency artifacts. To show the absence of such artifacts in the Modflows we additionally compute
similarity scores between the normalized grayscale images, which are processed to have a linear intensity histogram through histogram
matching, and the depth maps (Gui et al., 2024).

Table 2. Ablation study

Aggregated ablation scores (DISTS)↓
Algorithm Grayscale Depth (Gui et al., 2024) Edge (Xie & Tu, 2015) Style Distance↓
ModFlows (B6), dim(e) = 8195 0.129 0.217 0.220 0.123
Rectified flows (8195) 0.137 0.250 0.235 0.114
ModFlows (B0), dim(e) = 515 0.145 0.217 0.220 0.141
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Content ModFlows (B0) Rectified flows (8195) ModFlows (B6) Style

Figure 4. Ablation study. ModFlows models reach a better trade-off between style and content similarity when compared to dataset
models used in their training.

Content
 

Neural Preset
strength: 0.4 
steps: 8

ModFlows (ours)
strength: 1.0 
steps: 8

Style

Figure 5. Limitations and algorithm tuning. An example of color switching in two pictures generated with fixed number of steps for ODE
solver (steps) and varied percent of interpolation curve passed (strength).
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5. Ablation study
All comparisons in this section are computed on a test set
described above. We describe qualitatively and numerically
the performance of

1. Transfers made with rectified flows (8195 parameters)
through the uniform intermediate space.

2. Model based on EfficientNet B6 with output dim(e)
= 8195 trained on 5,826 flows-8195 from the main
dataset.

3. Model based on EfficientNet B0 with output dim(e) =
515 trained on 4,767 rectified flows (515 parameters)
from the laion-art-en-colorcanny.

As the Table 2 proves, the low style distance in transfers
made with rectified flows comes with artifacts which are
detected by all content metrics, which is shown in Fig. 4.
At the same time the generalization done by the ModFlows
models reaches a better trade-off between style and content
similarity. As expected, providing larger and more diverse
dataset along with increased number of parameters results
in a better performance.

6. Limitations and algorithm tuning
The framework of the transport theory gives us an opportu-
nity to design an unsupervised algorithm. In the same time
it puts a limitation, that is a greater dependence of the result
on the reference image. For instance, depending on the tar-
get picture, the method could perform a color replacement,
i.e yellow shades may be transformed to red ones, while
staying coherent to each other, Fig. 5.

The developed transfer model is able to change a color dis-
tribution significantly. Hence, in some cases the strength of
transformation should be controlled to avoid artifacts and to
achieve a satisfying result. In addition to a linear interpola-
tion between original and resulting image, in a rectified flow
model there are two parameters of generation process that
naturally control the strength of transfer, namely, a number
of steps for ODE solver and a percent of interpolation curve
passed (strength) after which generation is stopped. The
transfer examples where these two parameters are varied are
given in Figs. 5 and 7 (in Appendix section).

7. Conclusion
We have introduced a novel approach to color style transfer,
a process that modifies the colors of an image to match a
reference palette, such as the color distribution of a style
image. Trained on a set of unlabeled images with diverse
color styles, our transfer model offers a unique method of

performing color transfer as a density transformation in
RGB color space. The use of rectified neural ODEs to learn
mappings between three-dimensional distributions is a sig-
nificant departure from existing methods. The existence
of an inverse function of the transformation allows us to
introduce a common latent space for all densities. By con-
structing a transformation as a composition of a forward and
an inverse pass through the latent space, we simplifying the
training of generalizing model, which is able to predict the
mappings for unseen images.

Our proposed approach has shown superior performance in
comparison to the available state-of-the-art neural methods.
Additionally, it not bound to the specific data and could be
robustly reproduced.
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A. Appendix / supplemental material
All experiments were conducted on a workstation equipped
with two NVIDIA RTX 4090 graphics cards and 256 GB of
RAM. Our code is avalable at
https://github.com/maria-larchenko/
modflows.

10

https://github.com/maria-larchenko/modflows
https://github.com/maria-larchenko/modflows


Submission and Formatting Instructions for ICML 2024

Figure 6. General scheme of our color style transfer approach. First, we generate a set of 5,826 flow-image pairs. Each flow T is trained
to map an RGB density of an image into a uniform cube. Note that a rectified flow T is bijective. Then, we train an encoder model to
produce weights e for T . Color style transfer is a composition of two flows applied to the content image: A content forward flow and a
style inverse flow.

Table 3. Aggregated score and style distances given for more widespread SSIM and OpenCV Canny edge detection. For CV2 Canny low
threshold is 100, high threshold is 200. Here, DAST d refers to DAST with a vanilla decoder, whereas DAST da represents DAST using a
decoder with an adversarial loss (Hong et al., 2021).

Aggregated scores (SSIM)↓
Algorithm Grayscale Depth Edge

ModFlows (ours) 0.131 0.177 0.422
MKL 0.146 0.189 0.321
CT 0.170 0.197 0.330
WCT2 0.178 0.194 0.468
PhotoNAS 0.298 0.237 0.500
PhotoWCT2 0.349 0.193 0.334
DAST d 0.375 0.218 0.494
DAST da 0.377 0.236 0.492
Deep Preset 0.384 0.389 0.413

Style distance↓
Algorithm mean ± std

DAST d 0.112 ± 0.039
ModFlows (ours) 0.123 ± 0.049
DAST da 0.127 ± 0.042
PhotoWCT2 0.129 ± 0.055
MKL 0.145 ± 0.060
WCT2 0.163 ± 0.065
CT 0.166 ± 0.064
PhotoNAS 0.183 ± 0.069
Deep Preset 0.384 ± 0.171
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Content
 

Neural Preset
strength: 0.1 
steps: 100

ModFlows (ours)
strength: 0.1 
steps: 10

Style

Figure 7. Algorithm tuning. Variation of a number of steps for ODE solver (steps) and a percent of interpolation curve passed (strength)
results in different amount of changes for a distribution. In this example, increasing the strength or decreasing the number of steps further
leads to the appearance of artifacts.

Content ModFlows (ours) PhotoWCT2

grayscale

depth map

edges HED

edges LDC

Figure 8. Colorless content metrics. Depth maps are given by (Gui et al., 2024) model. Edges detection by HED model (Xie & Tu, 2015)
grasp mostly the main objects of a scene, while canny LDC (Soria et al., 2022) images are capturing the too detailed edges. Both of them
are not sensitive to low-frequency artifacts. Absence of such artifacts should be additionally detected.
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Query

Figure 9. Search for similar color styles in the Unsplash Lite dataset (25k of images) based on the ModFlows (B6) model output.

Query

Figure 10. Search for similar color styles in the Unsplash Lite dataset (25k of images) based on image statistics, specifically flattened
vectors representing the first and second centered moments of the color distribution.

13


