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Abstract
Recent progress in quantum computing has advanced research in
quantum-assisted information retrieval and recommender systems,
especially for feature selection via Quadratic Unconstrained Binary
Optimization (QUBO). However, while existing work primarily fo-
cuses on effectiveness and efficiency, However, it often neglects
the inherent noise and probabilistic nature of quantum hardware.
In this paper, we propose a method based on Extreme Value The-
ory (EVT) to estimate the number of quantum executions (shots)
needed to reliably obtain high-quality solutions—comparable to or
better than classical baselines. Experiments on both simulators and
two physical quantum devices demonstrate that our method effec-
tively estimates the number of required runs to obtain satisfactory
solutions on two widely used benchmark datasets.

CCS Concepts
•Mathematics of computing→ Probability and statistics; •
Information systems→ Recommender systems; • Computer
systems organization→ Quantum computing.
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Extreme value theory
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1 Introduction
Recent advancements in quantum technology, along with growing
media attention toward commercial quantum computers, suggest
that qubit-based hardware may not only complement but in certain
domains may outperform traditional transistor-based computing
systems that have dominated for decades [1, 16]. Researchers have
begun to explore how these quantum techniques can benefit In-
formation Retrieval and Recommender Systems (RecSys). For in-
stance, Nembrini et al. [12] embedded several classical feature selec-
tion strategies into Quadratic Unconstrained Binary Optimization
(QUBO) formulations, while Niu et al. [20] applied counterfactual
analysis to assess individual feature contributions to model per-
formance and integrated these insights into their QUBO model.
However, these studies primarily focus on the effectiveness and the
efficiency when using quantum annealers (e.g., D-Wave), leaving
two key research gaps: (1) Because quantum measurements are
inherently probabilistic, it is necessary to run many shots1, so as to
determine the most likely or optimal results. For a fixed problem
(e.g., feature selection in RecSys), it remains unclear how many
shots are required to obtain high-quality results. (2) Compared
to quantum annealers, gate-based quantum computers are more
powerful and versatile, as they support a broader class of quantum
algorithms beyond optimisation. Thus, exploring their use in this
domain holds significant potential.

In this paper, we aim to answer the research question: How
to estimate the number of required shots for gate-based quantum
computers to achieve good results in feature selection for recommen-
dation tasks? Specifically, we propose Quantum-EVT, a practical
and theoretically grounded framework based on Extreme Value
Theory (EVT) [17] for estimating the required number of quan-
tum executions (shots), which provides confidence-based estimates
that predict when quantum solvers are likely to outperform clas-
sical baseline model in terms of energy optimisation. Following
existing work [12, 19, 20], we frame the feature selection problem
in recommendation as a QUBO formulation for a click-through-
rate prediction task and solve it using the Quantum Approximate
Optimisation Algorithm (QAOA) [11], which is designed to solve

1A shot refers to a single execution of a quantum program, including measurement.
Multiple shots are used to sample from the output distribution.
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combinatorial problems on a gate-based quantum device. However,
there are two main challenges: (1) Deploying EVT requires several
key statistical parameters, which must be estimated from many
quantum executions to obtain some extreme value samples. While
more samples generally lead to better results, there is a trade-off
with computational cost. Thus, determining the minimum sufficient
number of extreme samples becomes essential. (2) The quantum
energy values derived from QUBO problems are inherently discrete,
while EVT assumes a continuous distribution. Therefore, we must
adapt the discrete quantum outputs to be compatible with EVT. To
overcome these challenges, (1) we propose an algorithm that statis-
tically determines the minimal number of extreme samples needed
for stable EVT parameter estimation; (2) we introduce a technique
to approximate a continuous distribution by adding uniform noise
to the discrete quantum energy values.

The main contributions of this work are: (i)An EVT-based frame-
work for estimating the required number of quantum executions,
providing confidence-based shot estimates that predict when quan-
tum solvers outperform classical simulated annealing (SA). (ii) The
first application of gate-based quantum computers to solve the
feature selection problem in recommender systems. (iii) A com-
prehensive evaluation of EVT-based predictions, demonstrating
that the estimated number of runs is both accurate and robust un-
der realistic settings, which also validates EVT as a robust tool for
modelling quantum optimisation behaviour.

2 RELATEDWORKS
Recent studies have explored the use of quantum optimization, par-
ticularly Quadratic Unconstrained Binary Optimization (QUBO), for
feature and instance selection in information retrieval [21] (IR) and
recommender systems (RecSys). CQFS [19], MIQUBO, CoQUBO,
QUBO-Boosting [12], and PDQUBO [20] all formulate the feature
selection task as a QUBO problem by designing different strategies
for constructing the coefficient matrix 𝑄 . These strategies range
from leveraging collaborative signals [19], to statistical measures
such as mutual information and correlation [12], to performance-
oriented counterfactual analysis [20]. These works also emphasize
that quantum annealers, particularly D-Wave systems, are well-
suited to solving QUBO problems due to their hardware design.
However, PDQUBO additionally notes that annealer performance
deteriorates as problem size increases, revealing stability concerns.
Zaborniak et al. [26] also quantitatively benchmark the Hamilton-
ian noise on different generations of D-Wave hardware, showing
significantly higher noise levels in newer systems (e.g., Advan-
tage_system1.1) compared to earlier models.

Unlike quantum annealers, gate-based quantum computers are
universal devices capable of running a broader class of quantum
algorithms. The Quantum Approximate Optimization Algorithm
(QAOA) [11] is a prominent candidate for solving QUBO problems
on such devices. QAOA leverages parameterized variational cir-
cuits to approximate optimal solutions, enabling hybrid quantum-
classical optimization pipelines. To complement the empirical use
of QAOA, we adopt Extreme Value Theory (EVT) [5, 13] as a princi-
pled statistical framework to model the distribution of low-energy
outcomes obtained from repeated quantum executions. EVT nat-
urally fits the structure of quantum optimization, allowing us to

estimate how many repetitions are required to reach a target so-
lution quality (e.g., matching classical baselines) under a specified
confidence level.

3 PRELIMINARIES
Quadratic Unconstrained Binary Optimization (QUBO) is a
mathematical framework for representing binary optimization prob-
lems. It optimizes a binary vector x ∈ {0, 1}𝑛 (with the 𝑖-th entry
𝑥𝑖 denoting the 𝑖-th feature) over a symmetric matrix 𝑄 ∈ R𝑛×𝑛 :

min
x

𝑌 = x⊤𝑄x +
(
𝑛∑︁
𝑖=1

𝑥𝑖 − 𝑘
)2

, x ∈ {0, 1}𝑛 (1)

where 𝑌 is the ground state energy in quantum solutions, and the
penalty term (∑𝑖 𝑥𝑖 − 𝑘)2 enforces a cardinality constraint, ensur-
ing that exactly 𝑘 features are selected. This constraint-augmented
QUBO formulation is particularly well-suited for tasks such as fea-
ture selection [12], where selecting a fixed-size subset of features is
required. The resulting energy𝑌 from QUBO optimization serves as
a proxy for the quality of the selected subset—the lower the energy,
the better the expected recommendation performance.

QuantumApproximateOptimizationAlgorithm (QAOA) [11]
is a hybrid quantum-classical method designed for solving combi-
natorial optimization problems on gate-based quantum devices. To
apply QAOA to a QUBO problem, binary variables 𝑥𝑖 ∈ {0, 1} are
first mapped to spin variables 𝑧𝑖 ∈ {−1, 1} via 𝑥𝑖 = 1+𝑧𝑖

2 . Substitut-
ing this into the QUBO formulation yields an equivalent objective
expressed entirely in terms of 𝑧𝑖 :

min
x

𝑌 =
1
4

∑︁
𝑖, 𝑗

𝑄𝑖 𝑗 (1 + 𝑧𝑖 ) (1 + 𝑧 𝑗 ) +
1
4

(
𝑛∑︁
𝑖=1
(1 + 𝑧𝑖 ) − 2𝑘

)2

,

=
1
2

𝑛∑︁
𝑖=1

©­«
𝑛∑︁
𝑗=1

𝑄𝑖 𝑗 + 𝑛 − 2𝑘ª®¬ 𝑧𝑖 + 1
4

𝑛∑︁
𝑖, 𝑗=1

(
𝑄𝑖 𝑗 + 1

)
𝑧𝑖𝑧 𝑗

(2)

This transformation converts the QUBO objective into an Ising
Hamiltonian composed of single-qubit (𝑍𝑖 ) and two-qubit (𝑍𝑖𝑍 𝑗 )
terms. QAOA constructs a parameterized quantum state by alter-
nately applying two unitaries: a cost operator 𝑈𝐶 (𝛾) = 𝑒−𝑖𝛾𝐻𝐶 ,
where 𝐻𝐶 =

∑
𝑖 ℎ𝑖𝑍𝑖 +

∑
𝑖< 𝑗 𝐽𝑖 𝑗𝑍𝑖𝑍 𝑗 encodes the problem structure,

and a mixer operator𝑈𝑀 (𝛽) = 𝑒−𝑖𝛽𝐻𝑀 , where𝐻𝑀 =
∑
𝑖 𝑋𝑖 enables

state exploration. These operations are applied in 𝑝 layers to an ini-
tial uniform superposition |𝜓0⟩ = 𝐻⊗𝑛𝑋 ⊗𝑛 |0⟩⊗𝑛 . The variational
parameters (𝛾, 𝛽) are optimized classically to minimize the expected
energy ⟨𝜓 (𝛾, 𝛽) |𝐻𝐶 |𝜓 (𝛾, 𝛽)⟩. Low-energy measurement outcomes
correspond to better approximate solutions to the QUBO problem.

PDQUBO [20] formulates feature selection as a QUBO problem
by encoding the impact of individual and joint feature removals
on model performance into the matrix 𝑄 in Eq. 1. Specifically, the
diagonal and off-diagonal elements of 𝑄 are computed as: 𝑄𝑖 𝑗 =

𝐺 (F ) −𝐺 (F 𝑖
mask) when 𝑖 = 𝑗 ; otherwise 𝑄𝑖 𝑗 = 𝐺 (F ) −𝐺 (F 𝑖 𝑗

mask),
where𝐺 (·) is the performance metric (e.g., Area Under the Curve

- AUC) of a trained recommendationmodel. F 𝑖
mask and F

𝑖 𝑗

mask denote
feature subsets with one or two features removed. Thus, 𝑄 reflects
both individual feature relevance and pairwise interactions.
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4 Quantum-EVT (Q-EVT)
We propose Q-EVT (as shown in Figure 1), a framework for es-
timating the number of quantum executions (shots) required for
a given task. It formulates feature selection in recommendation
as a QUBO problem, solved using QAOA to obtain extreme value
samples for applying Extreme Value Theory (EVT). Q-EVT outputs
confidence-based estimates predicting when quantum solvers are
likely to outperform classical models in energy optimisation.

Figure 1: The Overview of Q-EVT

4.1 Extreme Value Theory (EVT)
QAOA yields probabilistic outputs, where each execution (shot)
returns only one candidate solution. Due to noise and inherent
randomness, optimal solutions are obtained only with limited prob-
ability, motivating the use of repeated shots. Extreme Value Theory
(EVT) [17, 18, 23, 24] offers a natural framework to analyze the min-
imum energy values obtained across these repeated executions. By
modeling the distribution of such extreme outcomes, EVT enables
principled estimation of quantum resources required to achieve
desired solution quality.

Assume energy samples {𝑦1, 𝑦2, . . . , 𝑦𝑛} from repeated quantum
executions are independent and identically distributed (i.i.d.) from
an unknown distribution 𝐹 . EVT primarily analyzes the distribution
of block maxima [13, 15]:

𝑀𝑛 = max(𝑦1, 𝑦2, . . . , 𝑦𝑛). (3)

Under certain conditions, the normalized block maximum 𝑀𝑛

converges to a Generalized Extreme Value (GEV) distribution [15]:

P

(
𝑀𝑛 − 𝜇

𝜎
≤ 𝑧

)
→ 𝐺 (𝑧) =


exp

(
−

[
1 + 𝜉 𝑧−𝜇𝜎

]−1/𝜉 )
, 𝜉 ≠ 0,

exp
(
− exp

(
−𝑧−𝜇𝜎

))
, 𝜉 = 0,

(4)
where 𝜇 ∈ R is the location parameter, 𝜎 > 0 is the scale parameter,
and 𝜉 ∈ R is the shape parameter. While the original formulation
focuses on maxima, analyzing minima can be achieved by negating
observations (−𝑦𝑖 ). However, accurately applying EVT demands
reliable estimation of GEV distribution parameters.

4.2 Estimating Required Extreme Samples
The estimation of the GEV parameters (𝜇, 𝜎 , and 𝜉) requires a
sufficient number of extreme value samples. While larger sam-
ple sizes improve the stability of parameter estimates, practical
constraints—such as the cost and latency of quantum executions
necessitate a careful trade-off. Thus, identifying the minimal num-
ber of samples required for reliable estimation becomes essential.
To address this, we follow the previous work by [4] (that provided
an estimation method for minimum samples with return level as

the objective with univariate Shapiro-Wilk normality test) and the
idea of the bootstrap method [7, 8] to design a statistical procedure
that estimates the smallest sufficient sample size 𝑛estimate. Start-
ing with a large set of extreme values 𝑌sim (Each value in 𝑌sim is
a block-wise extreme like 𝑀𝑛 , collected from repeated quantum
executions) obtained from quantum simulations, we compute a
stable reference GEV parameter set 𝜃sim = (𝜇sim, 𝜎sim, 𝜉sim). Then,
for a range of candidate sample sizes 𝑛 ∈ [𝑛min, 𝑁max], we repeat-
edly draw random subsets from 𝑌sim, estimate GEV parameters
for each subset, and perform two statistical tests on the resulting
estimates: Hotelling’s 𝑇 2 test [2] to check for consistency with
the reference mean and the multivariate Shapiro-Wilk test [25] to
assess normality.

The average 𝑝-values from these tests indicate the stability of
parameter estimation at each 𝑛. The smallest 𝑛 for which both tests
yield 𝑝-values exceeding 0.05 is selected as 𝑛estimate. Note.: 𝑁max
should be chosen conservatively. If the subset size approaches the
total pool 𝑁 , the samples become nearly identical due to the limited
size of discrete quantum outcomes. This causes the multivariate
Shapiro-Wilk test to fail, as the sampled distributions collapse to
a point. While assuming continuous distributions could mitigate
this, such an assumption is generally unjustified given the discrete
nature of quantum outputs. The complete procedure is summarized
in Algorithm 1.

4.3 Estimation of the Required Shots
Quantum energy samples from QAOA are inherently discrete due
to the binary nature of solution vectors, whereas EVT assumes
continuous distributions. To address this, we add uniform nois
to each energy sample: 𝑦𝑖 = 𝑦𝑖 + 𝜖𝑖 , where 𝜖𝑖 ∼ U(−𝛿/2, 𝛿/2)
and 𝛿 is the smallest nonzero difference between sorted unique
energy values [5, 9, 10, 15]. This smoothing step allows EVT to
more accurately model the distribution of extreme values.

Given a reference energy value𝑦ideal obtained from classical Sim-
ulated Annealing (SA), we estimate how many quantum executions
(each with 𝑠 shots) are required to achieve, with confidence level 𝛼 ,
at least one result no worse than 𝑦ideal. Letting 𝑝 = P(𝑦 ≤ 𝑦ideal)
denote the probability that a single quantum execution yields a
satisfactory result (as determined via the fitted GEV distribution),
the required number of executions 𝑛EVT satisfies:

1 − (1 − 𝑝)𝑛EVT ≥ 𝛼 ⇒ 𝑛EVT ≥
log(1 − 𝛼)
log(1 − 𝑝) .

The total number of required quantum shots is then simply 𝑛EVT×𝑠 .
𝑠 denotes the number of shots executed to compute a single extreme
point 𝑦𝑖 .

5 EXPERIMENT
5.1 Experiment Setup
5.1.1 Quantum Devices and Algorithm Configuration. Experiments
are conducted on two gate-based quantum devices via AWS Braket:
Ankaa-3 (superconducting) and Forte Enterprise 1 (ion-trap), and a
simulator that is also offered by AWS Braket to be consistent with
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Algorithm 1: Estimate Required Extreme Samples
Input :𝑌sim — sequence of simulated extreme values

𝑛min, 𝑁max — range of sample sizes to test
𝐼 , 𝐽 — number of repetitions per estimation
𝜃sim = (𝜇sim, 𝜎sim, 𝜉sim) — reference GEV

parameters
Output :𝑛estimate — estimated number of extreme samples

required

1 for 𝑛 = 𝑛min to 𝑁max do
2 for 𝑗 = 1 to 𝐽 do
3 for 𝑖 = 1 to 𝐼 do
4 Draw 𝑛 samples 𝑌𝑖 𝑗𝑛 from 𝑌sim with

replacement;
5 Estimate GEV parameters from 𝑌𝑖 𝑗𝑛 :

𝜃𝑖 𝑗𝑛 = (𝜇𝑖 𝑗𝑛, 𝜎̂𝑖 𝑗𝑛, 𝜉𝑖 𝑗𝑛);
6 Let 𝜃 𝑗𝑛 denote the collection of estimates for

𝑖 = 1, . . . , 𝐼 ;
7 Perform Hotelling’s 𝑇 2 test for the null hypothesis

𝐻0 : 𝐸 (𝜃 𝑗𝑛) = 𝜃sim,

and obtain the p-value 𝑝 𝑗𝑛,ℎ𝑡2;
8 Perform the multivariate Shapiro-Wilk normality

test on 𝜃 𝑗𝑛 and obtain the p-value 𝑝 𝑗𝑛,𝑚𝑠𝑡 ;
9 Compute the average p-values:

𝑝𝑛,ℎ𝑡2 = 𝐸 (𝑝 𝑗𝑛,ℎ𝑡2) and 𝑝𝑛,𝑚𝑠𝑡 = 𝐸 (𝑝 𝑗𝑛,𝑚𝑠𝑡 )

over 𝑗 = 1, . . . , 𝐽 ;
10 Fit regression lines to the pairs (𝑛, 𝑝𝑛,ℎ𝑡2) and (𝑛, 𝑝𝑛,𝑚𝑠𝑡 );
11 Determine the smallest 𝑛 such that both 𝑝𝑛,ℎ𝑡2 and 𝑝𝑛,𝑚𝑠𝑡

exceed 0.05 based on the intersection of regression lines
and 𝑝 = 0.05, and let these be 𝑛ℎ𝑡2 and 𝑛𝑚𝑠𝑡 respectively;

12 if 𝑛ℎ𝑡2 < 𝑛𝑚𝑠𝑡 then
13 𝑛estimate ← 𝑛𝑚𝑠𝑡 // Hotelling’s 𝑇 2 test requires

normality

14 else
15 𝑛estimate ← 𝑛ℎ𝑡2

16 return 𝑛estimate;

these platforms 2. The simulator performs ideal (noise-free) quan-
tum circuit emulation using the native gate sets of each correspond-
ing quantum device. We solve QUBO instances using the Quantum
Approximate Optimization Algorithm (QAOA) with a circuit depth
of 𝑝 = 3, optimized using COBYLA [22]. All QAOA parameters are
first tuned on a simulator, from which the best-performing set is
transferred to real quantum devices. In real device, all experiments
use 2000 shots. Additional platform-specific implementation details
are available in the Braket SDK documentation 3.

5.1.2 Datasets and Base model. We use two standard click-through-
rate (CTR) prediction datasets: Avazu and Criteo [3, 6]. To match
quantum hardware limitations, we construct feature subsets of sizes
2AWS Quantum Device
3Braket SDK Docs

10, 13, 15, and 18. Feature selection is guided by XGBoost importance
scores: the top 3 and bottom 2 features are retained, and the remain-
ing are sampled from importance-ranked groups to ensure diversity.
QUBO matrices 𝑄 are derived from a base recommendation mode
(DeepFM [14]) following the PDQUBO framework. We also impose
cardinality constraints on the number of selected features (as shown
in Eq. 1), set to 8, 11, 12, and 14 for each subset size, respectively. Our
code is available at https://github.com/jiayangniu/Recsys25_QEVT

Table 1: Estimated executions 𝑛EVT needed for quantum sim-
ulators and Quantum Processing Unit (QPU) to match or
surpass classical SA at 95% and 90% confidence, across vari-
ous feature selection scales

Dataset Avazu Criteo
simulator Ankaa-3 Forte Ankaa-3 Forte

Scale shots 95% /90% >= SA

10
500 7/6 13/10 6/5 10/8
1000 5/4 9/7 4/3 6/5
2000 4/3 5/4 5/4 4/3

13
500 23/16 24/16 15/12 24/19
1000 13/11 16/13 7/6 13/11
2000 8/6 9/7 5/4 7/6

15
500 62/47 103/80 62/48 70/54
1000 30/25 71/54 34/26 36/28
2000 19/15 46/35 22/17 31/24

QPU Ankaa-3 Forte Ankaa-3 Forte
10 500 16/13 25/19 23/17 31/24
13 500 27/21 68/52 51/39 97/75
15 500 76/58 111/87 114/88 209/161

5.2 Experiment Results
5.2.1 EVT-Based Shot Estimation. We conduct experiments on the
Avazu and Criteo datasets using feature subset sizes of [10, 13, 15].
We compare against classical simulated annealing (SA) since prior
QUBO studies have commonly used SA as a performance baseline
for quantum optimization [12, 20]. For each configuration, we run
quantum simulations under shot settings of [500, 1000, 2000] to
estimate the number of runs required to reach classical SA per-
formance using EVT. On real quantum hardware (Ankaa-3 and
Forte), we execute only the 500-shot setting for selected scales. The
required number of extreme samples to fit the GEV distribution
is estimated using the procedure described in Section 4.2, which
suggests a threshold of 70–80 samples for stable estimation. To
ensure robustness, we conservatively collect 200 extreme samples
per configuration. Each sample corresponds to the minimum en-
ergy obtained from a single quantum run. These values are then
fitted to a GEV model, which is used to estimate the total number
of quantum executions needed to exceed SA performance with 95%
and 90% confidence levels.

Table 1 presents the estimated number of runs (blocks of shots)
required for quantum simulators and real quantum devices to match
or exceed classical simulated annealing (SA) performance at 95%
and 90% confidence levels across different feature selection scales.
A clear trend emerges: as the feature selection scale increases, more
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(a) Avazu (13 features) (b) Criteo (13 features) (c) Average min. energy vs. runs (500 shots each) for scales 10 & 15

Figure 2: (a) and (b) Evaluation on simulators, and (c) Evaluation and trend on physical quantum processor Ankaa-3. Note the
red dashed line denotes the 95% confidence target.

runs are required. For instance, on the Avazu dataset using the
Ankaa-3 simulator with 500 shots per run, the required number of
runs under 95% confidence grows from 7 at scale 10 to 62 at scale 15.
Similarly, the Forte simulator requires 13 and 103 runs, respectively,
over the same scales. Additionally, increasing the number of shots
per run reduces the required number of runs for a fixed scale. For
example, at scale 13 on Avazu, the Ankaa-3 simulator requires 23, 13,
and 8 runs when using 500, 1000, and 2000 shots, respectively. Since
each configuration was independently sampled, this monotonic
reduction supports the consistency and reliability of EVT-based
estimation. Finally, real quantum devices require more runs than
simulators, likely due to noise. On Criteo at scale 15 with 500 shots,
the Ankaa-3 simulator requires 62 runs for 95% confidence, while
the physical Ankaa-3 device requires 114 runs. This gap reflects
real hardware imperfections and reinforces the need for robust
estimation in practical quantum optimization.

5.2.2 Evaluation on Simulator. To test whether our EVT model
accurately predicts the number of quantum executions required
to match or exceed classical SA performance, we conducted 1,000
independent QAOA runs on the Avazu and Criteo datasets at a fixed
feature scale of 13. For each dataset, we used three per-run shot
budgets 𝑠 ∈ {500, 1000, 2000} and measured, for each total-shot
count (𝑛EVT +𝛿) ×𝑠 , the fraction of runs whose minimal energy fell
at or below the SA baseline, which is defined as our empirical “ratio”.
Then, we plotted these ratios against 𝛿 from the corresponding Q-
EVT run count 𝑛EVT in Figures 2a and 2b. Specifically, an accurate
prediction implies that the curve crosses the horizontal dashed line
precisely at 𝛿 = 0. Indeed, for both the 500-shot and 2000-shot
settings, the empirical curves intersect at 𝛿 ≈ 0, confirming that
our EVT estimates pinpoint the required number of repetitions
with high precision. While the 1000-shot configuration on Criteo
exhibits slightly more scatter, its crossing remains very close to
𝛿 = 0, demonstrating that the method remains robust even under
realistic device noise and sampling variability.

5.2.3 Evaluation on PhysicalQuantum Processors. We evaluate this
by demonstrating the trend of optimisation results while increasing
the number of runs on a real quantum processor. Using the Ankaa-3
superconducting QPU, we solve the Avazu feature-selection prob-
lem at two fixed scales (13 and 15 features). For each scale, we sweep
the per-run shot budget 𝑠 from 500 to 20000 in steps of 1000. At each

𝑠 , we perform 20 independent QAOA executions, record the mini-
mum energy observed in each execution, and plot the average of
these 20 minima. Figure 2c shows that, for both scales, the average
best-observed energy steadily approaches the classical SA baseline
(dashed line) as 𝑠 increases. In particular, small shot budgets (below
5000) yield noticeably higher energies, while beyond ∼ 10 000 shots
the averagedminimum energy nearly converges to the SA reference.
These results demonstrate that, even on noisy gate-based quantum
hardware, simply allocating more shots per run can substantially
improve the probability of finding high-quality solutions.

5.2.4 Limitations and Breakdown Scenarios. While our EVT-based
framework provides accurate shot estimates across a variety of
settings, we observe two scenarios where the approach may begin
to break down. First, when the quantum algorithm consistently
yields identical optimal outputs within a small number of shots,
the lack of output variability limits the statistical basis required
for reliable EVT modeling. Second, when quantum outputs remain
significantly suboptimal even after many executions, the estimated
shot count may become unstable or overestimated due to poor
alignment with the classical solution landscape.

6 Conclusion
Our results demonstrate that Extreme Value Theory (EVT) provides
an effective framework for estimating the number of quantum ex-
ecutions (runs) required to match or exceed classical simulated
annealing (SA) performance. Across both quantum simulators and
real gate-based devices, the predictions of Q-EVT align with em-
pirical outcomes at various feature selection scales. This allows for
robust, confidence-based shot estimation without requiring exhaus-
tive empirical tuning.
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