
Forster Decomposition and Learning Halfspaces with
Noise

Ilias Diakonikolas
University of Wisconsin-Madison

ilias@cs.wisc.edu

Daniel M. Kane
University of California, San Diego

dakane@cs.ucsd.edu

Christos Tzamos
University of Wisconsin-Madison

tzamos@wisc.edu

Abstract

A Forster transform is an operation that turns a distribution into one with good anti-
concentration properties. While a Forster transform does not always exist, we show
that any distribution can be efficiently decomposed as a disjoint mixture of few
distributions for which a Forster transform exists and can be computed efficiently.
As the main application of this result, we obtain the first polynomial-time algorithm
for distribution-independent PAC learning of halfspaces in the Massart noise model
with strongly polynomial sample complexity, i.e., independent of the bit complexity
of the examples. Previous algorithms for this learning problem incurred sample
complexity scaling polynomially with the bit complexity, even though such a
dependence is not information-theoretically necessary.

1 Introduction

The motivating application for this paper is the problem of (distribution-independent) PAC learning
of halfspaces in the presence of label noise, and more specifically in the Massart (or bounded noise)
model. Recent work [DGT19] obtained the first computationally efficient learning algorithm with
non-trivial error guarantee for this problem. Interestingly, the sample complexity of the [DGT19]
algorithm scales polynomially with the bit complexity of the examples (in addition, of course, to
the dimension and the inverse of desired accuracy). This bit-complexity dependence in the sample
complexity is an artifact of the algorithmic approach in [DGT19]. Information-theoretically, no such
dependence is needed — alas, the standard VC-dimension-based sample upper bound [MN06] is non-
constructive. Motivated by this qualitative gap in our understanding, here we develop a methodology
that leads to a computationally efficient learning algorithm for Massart halfspaces (matching the
error guarantee of [DGT19]) with “strongly polynomial” sample complexity, i.e., sample complexity
completely independent of the bit complexity of the examples.

Halfspaces and Efficient Learnability We study the binary classification setting, where the goal
is to learn a Boolean function from random labeled examples with noisy labels. Our focus is on the
problem of learning halfspaces in Valiant’s PAC learning model [Val84] when the labels have been
corrupted by Massart noise [MN06].

A halfspace is any function h : Rd → {±1} of the form h(x) = sign(w ·x−θ), where the vector
w ∈ Rd is called the weight vector, θ ∈ R is called the threshold, and sign : R→ {±1} is defined by
sign(t) = 1 if t ≥ 0 and sign(t) = −1 otherwise. Halfspaces (or Linear Threshold Functions) are a
central concept class in learning theory, starting with early work in the 1950s [Ros58, Nov62, MP68]
and leading to fundamental and practically important techniques [Vap98, FS97]. Learning halfspaces
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is known to be efficiently solvable without noise (see, e.g., [MT94]) and computationally hard
with adversarial (aka, agnostic) noise [GR06, FGKP06, Dan16]. The Massart model is a natural
compromise, in the sense that it is a realistic noise model that may allow for efficient algorithms
without distributional assumptions. An essentially equivalent formulation of this model was already
defined in the 80s by Sloan and Rivest [Slo88, Slo92, RS94, Slo96], and a very similar definition had
been considered even earlier by Vapnik [Vap82].

Definition 1.1 (Massart Noise). Let C be a class of Boolean functions over X = Rd, DX be a
distribution over X , and 0 ≤ η < 1/2. Let f be an unknown target function in C. A noisy example
oracle, EXMas(f,DX , η), works as follows: Each time EXMas(f,DX , η) is invoked, it returns a
labeled example (x, y), where x ∼ DX , y = f(x) with probability 1− η(x) and y = −f(x) with
probability η(x), for an unknown parameter η(x) ≤ η. Let D denote the joint distribution on (x, y)
generated by the above oracle. The learner is given i.i.d. samples from D and wants to output a
hypothesis h such that with high probability the error Pr(x,y)∼D[h(x) 6= y] is small.

In recent years, the algorithmic task of learning halfspaces in the Massart model has attracted
significant attention in the learning theory community. In the distribution-specific PAC model, where
structural assumptions are imposed on the marginal distribution DX , the work of [ABHU15] initiated
the study of learning homogeneous halfspaces with Massart noise. Since this work, a sequence of
papers [ABHZ16, YZ17, ZLC17, BZ17, DKTZ20, ZSA20, ZL21] developed efficient algorithms for
this problem, achieving error OPT + ε, for various classes of structured distributions.

In the distribution-independent setting, where no assumptions are made on the distribution DX ,
progress has been slow. The existence of an efficient PAC learning algorithm for Massart halfspaces
had been a long-standing open question posed in a number of works [Slo88, Coh97, Blu03], with no
algorithmic progress until recently. Recent work [DGT19] gave the first polynomial-time algorithm
with non-trivial error guarantees for this problem, specifically achieving error η + ε, where η is the
upper bound on the noise rate. Since the dissemination of [DGT19], a number of works have studied
the complexity of learning halfspaces and other concept classes in the presence of Massart noise.
[CKMY20] gave a proper learning algorithm for Massart halfspaces matching the error guarantee
of [DGT19]. On the lower bound side, hardness results were established for both exact [CKMY20]
and approximate learning [DK20]. Specifically, [DK20] gave a Statistical Query (SQ) lower bound
ruling out efficient SQ learning algorithms achieving any polynomial relative approximation for
Massart halfspaces. Interestingly, the [DGT19] approach also motivated the design of the first
boosting algorithm for Massart PAC learning [DIK+21]. The boosting algorithm of [DIK+21]
efficiently achieves error η+ ε, for any concept class, starting from a black-box Massart weak learner.

To motivate our results, we state the guarantees of the [DGT19] algorithm in more detail. (The
proper algorithm of [CKMY20] builds on the same ideas and has qualitatively similar guarantees.) Let
DX ⊂ Rd be the marginal distribution on the examples and b be an upper bound on the bit complexity
of points x in the support of DX . Then, the algorithm of [DGT19] requires n = poly(d, b, 1/ε)
labeled examples, runs in time poly(n, b) and achieves misclassification error η+ ε. The dependence
on b in the runtime is likely to be inherent. (Learning halfspaces without noise amounts to solving a
general linear program (LP); removing the b dependence from the runtime would yield a strongly
polynomial algorithm for general LP.) On the other hand, there is no a priori reason to believe that the
poly(b) dependence is needed in the sample complexity. In fact, it is known [MN06] that poly(d/ε)
samples information-theoretically suffice to achieve optimal misclassification error. Of course, this
sample complexity bound is non-constructive, in the sense that the sample upper bound argument does
not yield a sub-exponential time learning algorithm. The above discussion motivates the following
natural question: Is there an efficient learning algorithm for Massart halfspaces using only poly(d/ε)
samples? The main result of this paper provides an affirmative answer to this question.

1.1 Our Results and Techniques

The main learning theory result of this paper is the following.

Theorem 1.2 (Main Learning Result). There is an algorithm that for all 0 < η < 1/2, on input a
set of n = poly(d, 1/ε) i.i.d. examples from a distribution D = EXMas(f,DX , η) on Rd+1, where
f is an unknown halfspace on Rd, it runs in poly(n, b, 1/ε) time, where b is an upper bound on
the bit complexity of the examples, and outputs a hypothesis h that with high probability satisfies
Pr(x,y)∼D[h(x) 6= y] ≤ η + ε.
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Brief Overview of [DGT19] Algorithm To explain the source of our qualitative improvement, we
start with a high-level description of the previous algorithm from [DGT19]. At a high-level, this
algorithm works in two steps: First, one designs an efficient learner for the special case where the
target halfspace has some non-trivial anti-concentration (aka “large” margin). Then, one develops an
efficient reduction of the general (no margin) case to the large-margin case. Formally speaking, such
a reduction is not entirely “black-box”; this description is for the purpose of intuition.

First, we note that without loss of generality the target halfspace is homogeneous (since we are
working in the distribution-independent setting). The aforementioned reduction, used in [DGT19],
relies on a method from [BFKV96] (refined in [DV04]). The idea is to slightly modify the distribution
on the unlabeled points to guarantee a (weak) margin property. After this modification, there exists
an explicit margin parameter σ = Ω(1/poly(d, b)), such that any hyperplane through the origin
has a non-trivial mass of the distribution at distance at least σ standard deviations from it. If σ is a
bound on the margin, the algorithm developed in step one has sample complexity (and running time)
poly(d, 1/σ, 1/ε). This is the source of the “b-dependence” in the sample complexity of the [DGT19]
algorithm (recalling that σ = Ω(1/poly(d, b))).

As we will explain below, the approach of [BFKV96, DV04] inherently leads to a “b-dependence”
in the margin parameter σ. At a very high-level, the key to our improvement is to develop a new
efficient preprocessing routine that achieves σ = Ω(1/poly(d)). This leads to the desired strongly
polynomial sample complexity.

Preprocessing Requirements Before we can get into the details of these preprocessing algorithms,
we first need to specify the anti-concentration property that we need to guarantee. Essentially, our
algorithms need there to be a decent fraction of points that are reasonably far from the defining
hyperplane. More specifically, if the true separating hyperplane is defined by a linear function
L(x) = w∗ ·x (for some weight vector with ‖w∗‖2 = 1), we need that a non-trivial fraction of points
x (say, a 1/poly(d)-fraction) should have |L(x)| be a non-trivial fraction of E[L2(x)]1/2.

One might ask how we can hope to achieve such a guarantee without knowing the true separator
L(x) ahead of time. This can be guaranteed if, for example, the points are in radial isotropic position.
In particular, this means that for every point x in the support of our distribution it holds that ‖x‖2 = 1
and that E[xxT ] = (1/d) Id, where Id is the d× d identity matrix. The latter condition implies that
E[L2(x)] = 1/d. Combining this with the fact that |L(x)| ≤ 1 for all points x in the support, it is
not hard to see that with probability at least 1/d we have that L2(x) is at least 1/d — implying an
appropriate anti-concentration bound. In fact, it will suffice to have our point set be in approximate
radial isotropic position, allowing E[xxT ] to merely be proportional to (1/d) Id and allowing ‖x‖2
to be more than one, as long as it satisfies some polynomial upper bound. We note that the size of
this upper bound will affect the quality of the anti-concentration result, and hence the performance of
the remainder of the algorithm.

Unfortunately, not all point sets are in radial isotropic position. However, there is a natural way to
try to fix this issue. It is not hard to see that our original halfspace learning problem is invariant under
linear transformations, and it is a standard result that (unless our support lies in a proper subspace)
there always exists a linear transformation that can be applied to ensure that E[xxT ] = (1/d) Id.
However, after applying this transformation, we may still have points whose norms are too large.
Essentially, we need to ensure that no point is too large in terms of Mahalanobis distance. Namely,
that if Σ = E[xxT ], we want to ensure that |xTΣ−1x| is never too large. Unfortunately, in the data
set we are given, this might still not be the case.

Preprocessing Routine of [BFKV96, DV04] The key idea in [BFKV96] and [DV04] is to find
a core set S of sample points such that the Mahalanobis distance of the points in S (with respect
to the second-moment matrix of S) is not too large. This will correspond to a reasonable sized
sub-distribution of our original data distribution on which our desired anti-concentration bounds hold,
allowing our learning algorithm to learn the classifier at least on this subset. In [BFKV96], it is shown
that this can be achieved by a simple iterative approach, where points with too-large Mahalanobis
norm are repeatedly thrown away. This step needs to be performed in several stages, as throwing
away points will alter the second-moment matrix, and thus change the norm in question. Interestingly,
[BFKV96] show that the number of iterations required by this procedure can be bounded in terms of
the numerical complexity of the points involved.
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Unfortunately, in order to avoid throwing away too many of the original samples, the procedure
in [BFKV96] needs to sacrifice the quality of the resulting anti-concentration bound. This reduced
quality will result in an increased sample complexity of the resulting algorithm, in particular causing
it to scale polynomially with the bit complexity of the samples. The subsequent work [DV04]
makes some quantitative improvements to the “outlier removal” procedure, however the final anti-
concentration quality still has polynomial dependence on the bit complexity of the inputs, which is
then passed on to the sample complexity of the resulting algorithm. What is worse is that [DV04]
prove a lower bound showing that any outlier removal algorithm must have a similar dependence on
the bit complexity.

Our Approach The aforementioned lower bound of [DV04] shows that no combination of point
removal and linear transformation can put the input points into approximate radial isotropic position
without losing polynomial factors of the bit complexity in either the quality or the fraction of
remaining points. However, there is another operation that we can apply to the data without affecting
the underlying learning problem.

In particular, since we are dealing with homogeneous halfspaces (without loss of generality), the
problem will be unaffected by replacing a sample point x with the point λx for any scaling factor
λ > 0 (since sign(L(x)) = sign(L(λx)) no matter what L is). This gives us another tool to leverage
in our preprocessing step.

In particular, by applying an appropriate linear combination to our points, we can ensure that
they are in isotropic position (i.e., having second-moment matrix (1/d) Id). Similarly, by rescaling
individual points, we can ensure that our points are in radial position (i.e., that ‖x‖2 = 1 for all x).
The question we need to ask is whether by applying some combination of these two operations, we
can ensure that both of these conditions hold simultaneously. In other words, we would like to find
an invertible linear transformation A such that after replacing each point x by the point Ax/‖Ax‖2
(in order to make it unit-norm), the resulting points are in (approximate) isotropic position.

The problem of finding such transformations was studied in early work by Forster [For02] (see
also [Bar98]) who showed that it is possible to achieve under certain assumptions, including for
example the natural setting where the points are drawn from a continuous distribution. Unfortunately,
there are cases where appropriate linear transformations A do not exist. In particular, if there was
some d/3-dimensional subspace that contained half of the points, then after applying any such
transformation to our dataset, this will still be the case, and thus there will be a d/3-dimensional
subspace over which the trace of the covariance matrix is at least 1/2. Interestingly, in a refinement of
Forster’s work, the recent work [HKLM20] showed that this is the only thing that can go wrong. That
is, a matrix A exists unless there is a k-dimensional subspace containing more than a k/d-fraction of
the points.

Suppose that we end-up in the latter case. Then, by restricting our attention to only the points of
this subspace (and a subspace of that, if necessary), we can always find a relatively large subset of our
initial dataset so that after applying a combination of linear transformations and pointwise-rescaling,
they can be put into radial isotropic position.

Of course, to take advantage of such a transformation, one must be able to find it efficiently.
While prior work [HM13, AKS20] has obtained algorithmic results for this problem, none appear to
apply in quite the generality that we require. Our main algorithmic result is that such transformations
exist and can be efficiently (approximately) computed. We start with the following simple definition:
Definition 1.3. Given an inner product space V and an invertible linear transformation A : V → V ,
we define the mapping fA : (V \{0})→ (V \{0}) by fA(x) = Ax/‖Ax‖2.

We can now state our main algorithmic result (see Theorem 3.4 for a more detailed statement):
Theorem 1.4 (Algorithmic Generalized Forster Transform). There exists an algorithm that, given
a set S of n points in Zd\{0} of bit complexity at most b and δ > 0, runs in poly(n, d, b, log(1/δ))
time and returns a subspace V of Rd containing at least a dim(V )/d-fraction of the points in S and
a linear transformation A : V → V such that 1

|S∩V |
∑
x∈S∩V fA(x)fA(x)T = (1/ dim(V )) IV +

O(δ) , where the error is in spectral norm.

By applying Theorem 1.4 iteratively to the points of S \ (S ∩ V ), we obtain a decomposition of S
into not too many subsets T , so that each T has a Forster transform over the subspace which it spans.
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1.2 Preliminaries

For n ∈ Z+, we denote [n]
def
= {1, . . . , n}. We write E & F to denote that E ≥ c F , where c > 0

is a sufficiently large universal constant. For V ⊆ Rd and f : Rd → R, we use 1V (f) for the
characteristic function of f on V , i.e., 1V (f) : V → {0, 1} and 1V (f)(x) = 1 iff f(x) 6= 0, x ∈ V .

For a vector x ∈ Rd, and i ∈ [d], xi denotes the i-th coordinate of x, and ‖x‖2
def
= (

∑d
i=1 x

2
i )

1/2

denotes the `2-norm of x. We will use x · y for the inner product between x, y ∈ Rd. For a (linear)
subspace V ⊂ Rd, we use dim(V ) to denote its dimension. For a set S ⊂ Rd, span(S) will denote
its linear span. For a matrix A ∈ Rd×d, we use ‖A‖2 for its spectral norm and tr(A) for its trace. For
A,B ∈ Rd×d we use A � B for the Loewner order, indicating that A−B is positive semidefinite
(PSD). We denote by Id the d× d identity matrix and by IV the identity matrix on subspace V .

We use E[X] for the expectation of X and Pr[E ] for the probability of event E . For a finite set
S, we will use x ∼u S to denote that x is drawn uniformly at random from S.

2 Algorithmic Forster Decomposition: Proof of Theorem 1.4

Given a distribution X on Rd, our goal is to transform X so that the transformed distribution has
good anti-concentration properties. Specifically, we would like it to be the case that for any direction
v, there is a non-trivial probability that |v ·X|2 is at least a constant multiple of E[|v ·X|2]. It is easy
to see that this condition can be achieved as long as no particular value in the support ofX contributes
too much to E[|v ·X|2]. In particular, it suffices that there exists some constant B > 0 such that
|v · x|2 < BE[|v ·X|2] for all vectors v and all x in the support of X . If this holds, it is easy to see
that with at least Ω(1/B) probability a randomly chosen x ∼ X satisfies |v · x|2 ≥ E[|v ·X|2]/2.

Unfortunately, a given distribution X may not have this desired property. However, it seems
in principle possible that one can modify X so that it satisfies this property. In particular, for any
given weighting function c : Rd → R+, we can replace the distribution x ∼ X with the distribution
c(x)x without affecting our linear classifier. Intuitively, by scaling down the outliers, we might hope
that this kind of scaling would have the desired properties. This naturally leads us to a number of
questions to be addressed:

1. How do we know that such a weighting function c exists?
2. If such a function exists, (how) can we efficiently compute a function c, even for a discrete

distribution X?
3. If X has continuous support, how can we find a function c that works for X , given access to a

small set of i.i.d. samples?

To address these questions, it will be useful to understand the second moment (autocorrelation) matrix
of the transformed random variable c(X)X , i.e., Σ = E[(c(X)X)(c(X)X)T ]. Observe that our
desired condition boils down to |v · c(x)x|2 ≤ Bv · Σv, or equivalently

c(x) ≤ B inf
v 6=0

√
(vTΣv)/|v · x|2 , (1)

for all points x in the support of X . We note that this setup forces us to strike a balance between c(x)
being large and c(x) being small. On the one hand, if c(x) is too large, it will violate Equation (1). On
the other hand, if c(x) is too small, the expectation of c(X)2XXT will fail to add up to Σ. However,
it is easy to see that making Σ larger is never to our detriment; that is, given Σ, we might as well take
c(x) so that equality holds in Equation (1).

An additional technical difficulty here is related to the infimum term in Equation (1). This issue
is somewhat simplified by making a change of variables so that the transformed autocorrelation
matrix becomes equal to the identity, i.e., Σ = I . In this case, Equation (1) reduces to the condition
c(x) ≤ B/‖x‖2, for x in the support of X . Changing variables back, we can see that the original
equation is equivalent to c(x) ≤ B/‖Σ−1/2x‖2; however, making the change of variables explicitly
will make it easier to relate this problem to existing work on Forster’s theorem [For02].

If we find a linear transformation A such that the matrix ΣA := E[fA(X)fA(X)T ] satisfies
ΣA � (1/B) I , then since each value of fA(X) is a unit vector, the distribution fA(X) will satisfy
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our anti-concentration condition. Also observe that since tr(ΣA) = 1, we cannot expect the parameter
B > 0 to be smaller than dim(V ). Moreover, even this may not be possible in general. In particular,
if a large fraction of the points in the support of X lie on some proper subspace W , most of the mass
of fA(X) will lie in the subspace AW . Therefore, the trace of ΣA along this subspace will be more
than dim(W )/ dim(V ), forcing some of the other eigenvalues to be smaller than 1/dim(V ).

Interestingly, Forster [For02] showed that unless many points of X have these kinds of linear
dependencies, then a linear transformation A with the desired properties always exists. This condition
was refined in a recent work [HKLM20] who proved the following existence theorem.
Theorem 2.1 (Generalized Forster Transform). Let X be a distribution with finite support on
an inner product space V . Then, unless there is a proper subspace W of V so that Pr[X ∈
W ] ≥ dim(W )/ dim(V ), there exists an invertible linear transformation A : V → V such that
ΣV = (1/ dim(V )) I .

Theorem 1.4 is an algorithmic version of the above theorem. The proof has two main ingredients.
We start by handling the case of rescaling points rather than finding a linear transformation. It turns
out that handling this case is quite simple, as shown in the following result.
Proposition 2.2. There is an algorithm that, given a set S of n points in Zd each of bit complexity
at most b, lying in a subspace V ⊆ Rd, and a parameter δ > 0, runs in poly(n, d, b, log(1/δ)) time
and, unless there is a proper subspace W ⊂ V containing at least a dim(W )/ dim(V )-fraction of
the points in S, returns a weight function c : S → R+ such that for every x ∈ S we have that

c2(x)xxT � dim(V )+δ

n

∑
y∈S

c2(y)yyT . (2)

Moreover, the function c2 takes integral values of bit complexity poly(n, d, b, log(1/δ)).

Proof. We start by showing that such a weight function c exists. By Theorem 2.1, under the given
condition on subspaces, there must exist an invertible linear transformation A : V → V such that
(1/n)

∑
y∈S fA(y)fA(y)T = (1/ dim(V )) IV . This means that for any w ∈ V and x ∈ S, we have

that |w · (Ax/‖Ax‖2)|2 ≤ (dim(V )/n)
∑
y∈S |w · (Ay/‖Ay‖2)|2. Rearranging, this implies that

|ATw · (x/‖Ax‖2)|2 ≤ (dim(V )/n)
∑
y∈S
|ATw · (y/‖Ay‖2)|2 .

Thus, letting c(x) = 1/‖Ax‖2 causes our desired Equation (2) to hold for all vectors ATw. Since A
is invertible, this covers all vectors in V . Moreover, since all points in S lie in V , that is sufficient to
check in order to ensure that we satisfy Equation (2) in general.

We will show that we can efficiently compute values c(x) > 0 for each x ∈ S, such that
Equation (2) holds. We note that this is just a semidefinite program (SDP) in the variables c2(x).
The constraints can be written as: c2(x)xxT � (dim(V )/n)

∑
y∈S c

2(y)yyT , for all x ∈ S, and the
positivity constraint can be written as c(x)2 ≥ 1 for all x ∈ S. It remains to argue that the above
SDP can be solved efficiently in time poly(n, d, b, log(1/δ)), after relaxing the constraints by δ as
in the theorem statement, via the Ellipsoid algorithm. This argument is somewhat technical and is
deferred to the supplementary material.

It remains to handle the case when a proper subspace W exists. We show that one can identify
such a subspace efficiently.
Proposition 2.3. There is a polynomial-time algorithm that, given a set S of n points in Zd of bit
complexity b all lying in a subspace V⊆ Rd, determines whether or not there exists a proper subspace
W ⊂ V containing at least a dim(W )/ dim(V )-fraction of the points in S, and if so returns such a
subspace.

Proof. Let S = {x(i)}ni=1 ⊂ Rd, V = span(S), and k = dim(V ). We will first show that if n is a
multiple of k, we can efficiently find a “heavy” subspace W of dimension κ = dim(W ), i.e., one
with at least nkκ+ 1 points, if one exists. To achieve this, we set up the following feasibility linear
program (LP), with a variable vi ∈ [0, 1] for every point x(i). We require that for any subset S′ ⊆ S
of k linearly independent vectors the following linear inequality is satisfied

n∑
i=1

vi ≥
n

k

∑
xi∈S′

vi + 1 . (3)
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Efficient Computation We note that even though there are exponentially many constraints, the
above LP can be solved efficiently via the Ellipsoid algorithm. To show this, we provide a separation
oracle that given any guess v∈ [0, 1]n efficiently identifies a violating constraint. In more detail,
given any vector v, the linear independent basis B that maximizes the RHS of (3) can be efficiently
computed by a greedy algorithm. Starting from the empty set, we repeatedly add one point at a
time, at each step choosing a point x(i) of maximum vi, among the elements whose addition would
preserve the independence of the augmented set. The greedy algorithm correctly identifies a basis of
maximum weight, as the family of linearly independent subsets of points forms a matroid.

Feasibility We now show that the above LP will be feasible if and only if there exists a heavy
subspace W . We start with the forward direction, i.e., assume the existence of a heavy subspace W .
In this case, setting vi = 1 if x(i) ∈W and vi = 0 otherwise, we can see that all constraints of the
LP are satisfied:

• The LHS of (3) is always at least nkκ+ 1, since there at least these many points on the subspace
W .

• The RHS of (3) is at most nkκ+ 1, as one can pick at most κ points x(i) with corresponding values
1.

For the reverse direction, if the LP is feasible and we can find a feasible vector v, we can efficiently
identify a heavy subspaceW . To do this we proceed as follows: Assume w.l.o.g. that v1 ≥ v2 ≥ . . . ≥
vn. Run the greedy algorithm described above to find the basis B with points x(i1), x(i2), . . . , x(id),
where 1 = i1 < i2 < . . . < ik, that maximizes the RHS of (3) . Then, we find some κ such that
iκ+1 >

n
kκ+ 1. As we will soon show, such a κ must always exist. Having such a κ means that the

first nkκ+ 1 points lie in a κ-dimensional subspace W , since otherwise the greedy algorithm would
have picked the (κ+ 1)-th point in the basis earlier in the sequence.

We now argue by contradiction that some κ ∈ [0, k − 1] such that iκ+1 >
n
kκ+ 1 must always

exist. Indeed, suppose that for all κ, iκ+1 ≤ n
kκ+ 1. Then, we have that

viκ+1 ≥ vnk κ+1 ≥
∑n/k
j=1 vnk κ+j

n/k
.

Summing the above, over all κ ∈ [0, k − 1], we get that∑
xi∈B

vi ≥
k

n

n∑
i=1

vi ,

which leads to the desired contradiction contradiction, as this implies that v is infeasible.

In summary, we have shown that when n is a multiple of k, we can find a “heavy” subspace
W of dimension κ = dim(W ) with at least nkκ+ 1 points. This is off-by-one by the guarantee we
were hoping for, which was to find a subspace with at least nkκ points. We can address this issue
by running our algorithm on a modified point-set after replacing one point outside the subspace of
interest with one inside to increase the number of inliers by 1. Even though we do not know which
pair of points to change, we can run the algorithm for all pairs of points until a solution is found. We
can also handle the general case where n is not a multiple of k, by making k copies of every point
and running the algorithm above.

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. The algorithm begins by iteratively applying the algorithm from Proposition
2.3 until it finds a subspace V containing at least a k/d-fraction of the points in S, such that no proper
subspace W ⊂ V contains at least a dim(W )/ dim(V )-fraction of the points in S ∩ V .

We then apply the scaling algorithm of Proposition 2.2 to find a weight function c : S∩V → R+,
and consider the matrix

A =

[
1

|S ∩ V |
∑

x∈S∩V
c(x)2xxT

]−1/2
.
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We note that Equation (2) now reduces to the following

c2(x)|w · x|2 ≤ (dim(V ) + δ)‖A−1w‖22 ,
for all vectors w. Setting w = A2x, we obtain

c2(x)‖Ax‖42 ≤ (dim(V ) + δ)‖Ax‖22 ,
which gives

c2(x) ≤ dim(V ) + δ

‖Ax‖22
.

On the other hand, we have that

IV =
1

|S ∩ V |
∑

x∈S∩V
c(x)2(Ax)(Ax)T � dim(V ) + δ

|S ∩ V |
∑

x∈S∩V
fA(x)fA(x)T .

By the above inequality, it follows that all eigenvalues λ1, . . . , λdim(V ) of the matrix
1

|S∩V |
∑
x∈S∩V fA(x)fA(x)T are at least 1

dim(V )+δ . However, since 1
|S∩V |

∑
x∈S∩V fA(x)fA(x)T

has trace 1, we also have that
∑dim(V )
i=1 λi = 1. This means that the maximum eigenvalue of this ma-

trix is at most 1+δ
dim(V )+δ . Therefore, 1

|S∩V |
∑
x∈S∩V fA(x)fA(x)T is withinO(δ) of (1/ dim(V )) IV

in spectral norm. This completes the proof of Theorem 1.4.

The final ingredient that will be important for us is showing that if we can find a subspace V and
linear transformation A (as specified in the statement of Theorem 1.4) that works for a sufficiently
large set of i.i.d. samples from the distribution X , then the same transform will work nearly as well
for X . This is established in the following proposition.
Proposition 2.4. Let X be any distribution on Rd \ {0} and S be a multiset of n & d2/ε2 i.i.d.
samples from X . Then with high probability over the choice of S the following holds: For every
subspace V of Rd, every invertible linear transformation A : V → V , and any unit vector w ∈ V ,
we have that:

1. |S ∩ V |/|S| = Pr[X ∈ V ] +O(ε).

2. (1/|S|)
∑
x∈S∩V |w · fA(x)|2 = E[1V (X)|w · fA(X)|2] +O(ε).

Proof. The proof is by a simple application of the VC inequality (see, e.g., [DL01]), stated below.

Fact 2.5 (VC Inequality). Let F be a class of Boolean functions with finite VC dimension VC(F)
and let a probability distribution D over the domain of these functions. For a set S of n independent
samples from D, we have that

sup
f∈F
|PrX∼S [f(X)]−PrX∼D[f(X)]| .

√
VC(F)

n
+

√
log(1/τ)

n
,

with probability at least 1− τ .

Item 1 follows directly by noting that the set of vector subspaces of Rd has VC-dimension d.
Item 2 follows from the fact that the collection of sets

FV,A,w,t = {x ∈ V : |w · fA(x)|2 ≥ t}

has VC-dimension O(d2). This holds for the following reason: A set of this form is the intersection
of the subspace V (which comes from a class of VC-dimension at most d), with the set of points x
such that the quadratic polynomial (w · (Ax))2 − t‖Ax‖22 is non-negative. Recall that the space of
degree-2 threshold functions is a class of VC-dimensionO(d2). Therefore, by the VC inequality, with
high probability, for each such F we have that the fraction of S in F is within O(ε) of the probability
that a random element of X lies in F . The claim now follows by noting that for a distribution Y
(either X or the uniform distribution over S) we have that

E[1V (Y )|w · fA(Y )|2] =

∫ 1

t=0

Pr[Y ∈ FV,A,w,t]dt .

This completes the proof of Proposition 2.4.
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3 Application: Learning Halfspaces with Massart Noise

In this section, we show how to apply the machinery of Forster decompositions from Section 2 to
PAC learn halfspaces with Massart noise. Specifically, we will show how to adapt the algorithm of
[DGT19], by appropriately transforming the set of points it is run on, to obtain a new algorithm with
strongly polynomial sample complexity guarantees.

To that end, we will need the definition of an outlier and a partial classifier:
Definition 3.1. (Γ-Outlier) A point x in the support of a distribution X over a vector-space V is
called a Γ-outlier, Γ > 0, if there exists a vector v ∈ V such that |v · x| > Γ

√
E[|v ·X|2].

Definition 3.2. (Partial Classifier) A partial classifier is a function h : Rd → {−1, ∗, 1}. It can be
thought of as acting as a classifier that for some input values returns an output in {±1}, and for the
remaining values returns ∗, as a way of saying “I don’t know”.

A key step of the algorithm in [DGT19] for learning halfspaces with Massart noise, is computing
a partial classifier that returns an output on a non-trivial fraction of inputs for which its error rate is at
most η + ε. The sample complexity and running-time of this algorithm depends polynomially on
the size of the largest outlier in the distribution and the inverse of the accuracy parameter 1/ε. More
specifically, the following theorem is implicit in the work of [DGT19].
Theorem 3.3 ([DGT19]). Let V be a vector space and (X,Y ) a distribution over V × {±1}, where
X does not have any Γ-outliers in its support. Suppose that there is a vector w and η ∈ (0, 1/2)
such that for any given value x it holds Pr[Y = sign(w · x) | X = x] ≥ 1− η. In particular, Y is
given by a homogeneous halfspace with at most η Massart noise. Then there exists an algorithm that,
given η,Γ, and parameters ε′, δ′ > 0, draws poly(dim(V ),Γ, 1/ε′, log(1/δ′)) samples from (X,Y ),
runs in sample-polynomial time, and returns a partial classifier h on V such that with probability at
least 1− δ′ the following holds: (i) Pr[h(X) 6= ∗] > 1/poly(dim(V ),Γ, 1/ε′, log(1/δ′)), and (ii)
Pr[h(X) 6= Y | h(X) 6= ∗] < η + ε′.

The main idea behind obtaining an efficient algorithm with strongly polynomial sample complex-
ity is to repeatedly apply the Forster decomposition theorem from Section 2 to ensure that no large
outliers exist on a “heavy” subspace. Then, using Theorem 3.3, we can identify a partial classifier
that has small misclassification error on a non-trivial fraction of the probability mass for which it
outputs a {±1} prediction. By recursing on the remaining probability mass, we can ensure that we
accurately predict the label for nearly all the distribution of points. This yields a misclassification
error of at most η + ε in the entire space.

The following theorem summarizes the main algorithmic learning result of this paper.
Theorem 3.4 (Main Learning Result). Let (X,Y ) a distribution over Rd × {±1}, where Y is
given by a homogeneous halfspace in X with at most η < 1/2 rate of Massart noise, and where
the elements in the support of X are all integers with bit complexity at most b. For parameters
ε, δ > 0, there exists an algorithm that draws poly(d, 1/ε, log(1/δ)) samples from (X,Y ), runs in
poly(d, b, 1/ε, log(1/δ)) time, and with probability at least 1− δ returns a classifier h : Rd → {±1}
with misclassification error at most η + ε.

Proof. In order to analyze Algorithm 1, we will say that an event happens with “high probability” if it
happens with probability at least 1− δ/poly(d log(1/δ)/ε) for a sufficiently high degree polynomial.
There are a number of events in each iteration of our while loop that we will want to show happen
with high probability, and we will later claim that if they do for each iteration of the loop, then our
algorithm will return an appropriate answer after poly(d log(1/δ)/ε) iterations of the while loop.
This will imply that with probability at least 1 − δ all high probability events occur and that our
algorithm will return an appropriate answer.

We start by noting that with high probability the sample set chosen in the check of the while
statement approximates the true probability that hi(X) = ∗ to additive error at most ε/6. This means
that, with high probability, (1) we will not break out of the while loop unless this probability is less
than ε/2, and that (2) while we are in the while loop, h(X) = ∗ with probability at least ε/6. This
latter statement implies that the expected number of samples from (X,Y ) needed in order to find one
with h(X) = ∗ is O(1/ε). Assuming this holds, the set S in the next line can be found with high
probability by taking a polynomial number of samples from the original distribution.
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Line 6 runs in deterministic poly(db log(1/δ)/ε) time and, by Proposition 2.4, with high proba-
bility finds a pair V,A such that:

1. Pr[X ∈ V : hi(X) = ∗] ≥ 1/(2d).

2. E[fA(X)fA(X)T : X ∈ V, hi(X) = ∗] > (1/(4 dim(V ))) IV .

If Condition 1 holds, then with high probability only polynomially many samples from (X,Y ) are
needed to run the algorithm in Line 7. If Condition 2 holds, then the conditional distribution has
no (4 dim(V ))-outliers. Since (fA(X), Y ) is a linear classifier with Massart noise η, with high
probability we have that Pr[g(fA(X)) 6= ∗ | X ∈ V, hi(X) 6= ∗] > 1/poly(d log(1/δ)/ε) and

Pr [g(fA(X)) 6= Y | hi(X) = ∗, X ∈ V, g(fA(X)) 6= ∗] < η + ε/2 .

The former statement implies along with Condition 1 that

Pr[hi+1 6= ∗ | hi(X) = ∗] > 1/poly(d log(1/δ)/ε) ,

and the latter implies that

Pr[hi+1(X) 6= Y | hi+1(X) 6= ∗] ≤ max(η + ε/2,Pr(hi(X) 6= Y |hi(X) 6= ∗)) .

If the above hold for every iteration of the while loop, then after T = poly(d log(1/δ)/ε) iterations,
we will have that Pr[hT (X) = ∗] < ε/6 (and thus with high probability we will break out of the
loop in the next iteration), and when we do break out, it holds that

Pr[hi(X) 6= Y ] ≤ Pr[hi(X) 6= Y | hi(X) 6= ∗] + Pr[hi(X) = ∗] ≤ (η + ε/2) + (ε/2) = η + ε .

This completes the proof of Theorem 3.4.

Algorithm 1 Learning Algorithm for Massart Halfspaces
1: Let C > 0 be a sufficiently large universal constant.
2: Let h0 : Rd → {−1, ∗, 1} always return ∗.
3: Let i = 0
4: while Ex∼uŜ [hi(x) = ∗] > ε/3 for a random sample Ŝ of C log(dε/δ)/ε2 points (X,Y ) do
5: Let S be a set of Cd4 log(1/δ) samples from X conditioned on hi(X) = ∗.
6: Run the algorithm from Theorem 1.4 on S to find a subspace V and linear transformation
A : V → V with Ex∼uS∩V [fA(x)fA(x)T ] > (1/(2 dim(V ))) IV .

7: Obtain a partial classifier g by running the algorithm from Theorem 3.3 with:

δ′ = δ/poly(d log(1/δ)/ε), ε′ = ε/2, and Γ = 4 dim(V )

on the distribution (fA(X), Y ) over all (X,Y ) conditioned on X ∈ V and hi(X) = ∗.
8: Define a new partial classifier

hi+1(x) =

{
g(fA(x)) if hi(x) = ∗ and x ∈ V
hi(x) otherwise

9: Set i← i+ 1.
10: Return the classifier hi.
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