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ABSTRACT

While machine-generated texts (MGTs) offer great convenience, they also pose
risks such as disinformation and phishing, highlighting the need for reliable de-
tection. Metric-based methods, which extract statistically distinguishable fea-
tures of MGTs, are often more practical than complex model-based methods that
are prone to overfitting. Given their diverse designs, we first place representa-
tive metric-based methods within a unified framework, enabling a clear assess-
ment of their advantages and limitations. Our analysis identifies a core challenge
across these methods: the token-level detection score is easily biased by the in-
herent randomness of the MGTs generation process. To address this, we theo-
retically and empirically reveal two relationships of context detection scores that
may aid calibration: Neighbor Similarity and Initial Instability. We then pro-
pose a Markov-informed score calibration strategy that models these relation-
ships using Markov random fields, and implements it as a lightweight compo-
nent via a mean-field approximation, allowing our method to be seamlessly in-
tegrated into existing detectors. Extensive experiments in various real-world sce-
narios, such as cross-LLM and paraphrasing attacks, demonstrate significant gains
over baselines with negligible computational overhead. The code is available at
https://anonymous.4open.science/r/MRF-Enhancel

1 INTRODUCTION

In recent years, generative Al, represented by large language models (LLMs) (Achiam et al.| 2023;
Radford et al.,|2019), has advanced rapidly, and the machine-generated texts (MGTs) they produce
often match human writing in fluency, coherence, and diversity. While this technological break-
through offers immense opportunities, it has also triggered widespread societal concerns, such as
the spread of disinformation (Vykopal et al.,|2024), the violation of intellectual property rights (Yu
et al.,|2023b), and phishing attacks (Hong| |2012). Therefore, the research and development of MGT
detection technologies hold significant theoretical and practical value in uncovering the distinct pat-
terns of generated text and ensuring a trustworthy Al environment.

An effective detection method is to identify LLM’s watermarks (Hou et al.| [2024), but this requires
injecting watermarks into the LLM, which is often impractical due to high access permissions.
Therefore, passive detection methods, including model-based and metric-based methods, have gar-
nered significant attention. Model-based methods, which use a set of human- and machine-generated
texts to train a binary classifier, such as OpenAl detector (Solaiman et al., 2019), ChatGPT detector
(Guo et al.;2023), SeqXGPT (Wang et al.,|2023), and CoCo (Liu et al., 2022). However, such mod-
els are often too complex, leading to overfitting to the training data. Instead, metric-based methods
exploit the inherent statistical biases of LLM to discriminate MGTs, which is model-agnostic and
has better generalization properties. These methods use metrics such as log-likelihood, log-rank,
and entropy. Furthermore, methods such as DetectGPT (Mitchell et al. 2023), DNA-GPT (Yang
et al., 2024), and SimLLM (Nguyen-Son et al., 2024) detect MGTs by comparing the differences
between a given text and a perturbed, regenerated, or continued text from an alternative model.

Obviously, metric-based methods exhibit diverse designs. Therefore, this paper first systematically
examines several representative approaches, including Log-Likelihood (Solaiman et al.,|[2019), Log-
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Rank (Mitchell et al., 2023)), Entropy (Gehrmann et al., 2019), DetectGPT (Mitchell et al., [2023),
Fast-DetectGPT (Bao et al., 2024), and DNA-GPT (Yang et al., 2024), and situates them within
a unified framework (Section [2). Our analysis reveals that they share a threshold-based detection
criterion, with only minor differences, such as the inclusion of auxiliary data (e.g., perturbed texts).
This offers a theoretical basis for understanding their core mechanisms, strengths, and limitations.

Based on the unified framework, we summarize the core challenge of metric-based methods (Section
[): the imprecision of token-level detection scores. Specifically, since these methods make decisions
based on a threshold, their effectiveness is directly tied to score precision. However, randomness
introduced by the LLM sampling mechanism can violate their underlying assumptions, leading to
biased scores with low discrimination, as shown in ”w/o refine” in Fig. E] (more results can be found
in Appendix [E.I). Moreover, they tend to derive an overall detection score by naively aggregating
token-level scores, failing to correct the underlying imprecision. Therefore, calibrating the token-
level detection score is essential for improving overall detection performance.

Given that detection scores are tied to _
tokens and the LLM generation pro- (] Machine — ) fuman

cess induces dependencies among to- "' — e ——
kens (Achiam et al.l 2023), context chatotn| | charaum —
tokens’ detection scores may have Coude| e | Cauge |,
relationships that are easy to over- stabletm| T | stapletm . T ——tn
look. Revealing and modeling these opTam| L LM Gpramn| I IH
relationships may help calibrate these w/o calib. w calib.

scores.  Accordingly, we theoreti-  Fjgyre 1: Distribution of token scores obtained by the De-
cally and empirically reveal two rela-  (¢ctGPT method without and with score calibration in the
tionships among detection scores of Eggay dataset. The proposed calibration method enhances

context tokens (Section [3): Neigh- (ne discriminative nature of the token scores.
bor Similarity, where adjacent to-

kens exhibit similar detection scores, and Initial Instability, where the detection scores of initial
tokens are unstable.

Finally, building on these two relationships, we propose a Markov-informed score calibration
method to enhance MGT detection (Section ). Our method models the identified relationships
through Markov random fields and, via a mean-field approximation, implements it as a lightweight
iterative neural network. As shown by the more discriminative detection scores in the ”w refine”
method in Fig. [T} the proposed method boosts the discriminative nature of the scores. Notably, our
method can be seamlessly stacked on top of existing detectors without architectural changes, pro-
viding flexibility. Compared with complex model-based approaches, our method introduces only a
negligible 2x2 parameterization, making its computational delay negligible and less prone to over-
fitting. Extensive experiments demonstrate our method’s enhanced effectiveness. Our contributions
can be summarized as follows:

* We view existing metric-based detection methods through a unified lens, which facilitates precise
comparison and enables potential improvements.

* We theoretically and empirically demonstrate that token-level detection scores exhibit neighbor
similarity and initial instability, offering avenues for improved detection.

* We propose a Markov-informed score calibration method and, via a mean-field approximation,
implement it as a lightweight component that can be seamlessly integrated into existing detectors
to further unlock their potential.

* We conduct extensive experiments across three datasets to demonstrate superior performance in
diverse scenarios, including cross-LLLM, cross-domain, mixed-text, and paraphrase attacks.

2 A UNIFIED PERSPECTIVE ON METRIC-BASED DETECTION

Although model-based methods have shown competitive potential in specific domains, they are often
too complex, leading to a tendency to overfit their training data. This limitation requires them to re-
train or fine-tune for newly released LLMs, which hinders their generalizability. In contrast, metric-
based methods extract discriminative features from MGT, and their model-agnostic nature provides
superior generalization potential. Given the diverse implementations of representative metric-based
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Table 1: Comparing existing metric-based methods from a unified view. Here, s is the text to be
detected containing N tokens, s’ is the perturbed text generated by DetectGPT, 5 and § are the
regenerated texts of Fast-DetectGPT and DNA-GPT, respectively. Function p(-) and o(-) represent
the mean and standard deviation of the given set, respectively.

Method |  Perturb | Sample | Score | Detection
Log-likelihood / s T le log p(s¢|s<t) score > €
Log-Rank / s et Zf\’:z rank(p(s¢|s<¢)) score > €
Entropy / s - ngzz D vev P(v]s<t)log p(vs<i) score > €

DetectGPT {5/1Y 8/2, é/n} s 1 D plsels<)—n({ v Z,;V:z p(silsic)}i)

score > €

o OIS EEerGl I ok)
Fast-DetectGPT / (5,51, 00,5} ey Zr:2:((ilt‘:]«,)£;(::(;1!‘zjrg‘zzj:(;}, o|5.8i<0)}i) score > ¢
R . N R S ey o
DNA-GPT / {8,581, .., 8n ﬁ o log p(selsi:i—1) — %E;L:l ﬁ Yoitologp(8ie|inu—1) | score > e

methods such as Log-Likelihood (Solaiman et al., [2019), Log-Rank (Mitchell et al., [2023)), Entropy
(Gehrmann et al., 2019), DetectGPT (Mitchell et al.| |2023)), Fast-DetectGPT (Bao et al., 2024}, and
DNA-GPT (Yang et al, [2024), we first provide a systematic examination of them from a unified
perspective. This facilitates a deeper understanding of their mechanisms and allows for a fair com-
parison of their strengths and weaknesses. As illustrated in Table [, we compare these methods
across data, score calculation, and detection dimensions.

» Data. Log-likelihood, Log-Rank, and Entropy are computationally efficient as they rely solely
on the original input text s. However, the detection error based on a single text may be large,
because the randomness inherent in the LLM sampling mechanism may cause the MGT to deviate
from these methods’ underlying assumptions, e.g., Log-Rank assumes that the generated tokens
have high rankings. In contrast, DetectGPT, Fast-DetectGPT, and DNA-GPT incorporate multiple
perturbed (i.e., s’) or regenerated (i.e., 5§ and §) samples, which mitigates the errors caused by
randomness. However, this comes at the cost of a significant increase in computational overhead.

* Score Calculation. Although these methods appear to calculate scores differently, they all tend
to directly aggregate token scores to obtain the final text score, typically through summation.
As discussed, the randomness introduced by the LLM generation process may cause token-level
scores to be biased. Therefore, the direct aggregation of these potentially imprecise token scores
may result in an inaccurate final detection score.

* Detection. These methods all employ threshold-based detection mechanisms, whose effectiveness
relies heavily on the accuracy of their calculated scores. As previously discussed, two factors
compromise this accuracy: (1) the inherent randomness of LLM-generated text introduces bias
into score calculation, and (2) direct score aggregation fails to mitigate this bias. As a result, their
detection performance is often unsatisfactory.

In summary, to enhance detection, existing methods incorporate more textual information (e.g., re-
generated texts in DetectGPT and Fast-DetectGPT) and use different score calculation strategies
(e.g., the Likelihood difference between the detected and regenerated text in DNAGPT). However,
as we discussed, they fail to address the underlying token-level errors caused by inherent random-
ness, limiting their detection potential. Considering that detection scores are tied to tokens and the
LLMs’ generative mechanism induces dependencies among tokens, revealing and modeling the re-
lationships between tokens may help correct score errors and thus improve detection effectiveness.

3 RELATION BETWEEN CONTEXTUAL TOKEN-LEVEL DETECTION SCORES

To understand the relationship between context tokens’ detection scores, following existing work
(Liu et al.| [2023), we consider the token generation process of a simplified model: a single-layer
transformer model with single-head attention:

41 = F (ar), where a; = softmax (1/t . thQW;Xll) X AWy Wo. (1)

e € R4 ig the embedding of token s;, and d denotes the embedding dimension. The ma-
trix X;_1 € R=1)xd s stacked by the embeddings x1,...,x;_1, where the j-th row is ;.
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Figure 2: The detection score distances of neigh-
bors at different hops in the Essay dataset. Log-
likelihood and Log-Rank score are used here.
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Figure 3: The score distances of 1-hop neighbors
at different positions in the Essay dataset. Log-
likelihood and Log-Rank score are used here.

Wo, Wk, Wy € R¥4 and Wo € R?*? are the attention weights. Following the attention block,
an MLP block, denoted as F : R1*¢ — R1*4 js applied, and it is a two-layer network with skip
connections:
F(z) =z + Warelu (Wiz).

As shown in Table m the detection score of token s; is usually the function of s; (i.e., x;), and z;
is related to the attention scores a1 = softmax (1 Jt-x:Wo VV[—(r X ) in Eq. lli The following
theorem will reveal the relationship between attention scores, which in turn help us understand the
relationship between detection scores of context tokens.

Theorem 1. Let A, \q, Av, Ao be the largest singular values of parameters Wi, Wo, Wy, Wo,
respectively, and let W = WVWOWQWI—(F. For the transformer defined in Eq. , assuming
normalized inputs (||z|, = 1 for all t) and constants c,e > 0, consider a;x > (1 — 6) ||a¢||,

2
with § < (m) . If xy satisfies ngxeT > cand zWaxy > et max;e (], ¢ achxeT, then

exp (C) - oy + 1)

41,1 < 3
" exp (Cr o +n)+22,,exp (C oy — 1)
. exp (C1 04— 1)
T exp (G =) + Y exp (C - any + 1)
where
z;Wal (1+V2)ex;WaT
Cj=———,andn =
tlal, (t+1)fad,

The proof can be found in Appendix [C] This theorem establishes the upper and lower bounds for
the attention score at step ¢ + 1, which are determined by the attention scores at step ¢. This finding
creates a positive feedback loop analogous to simulated annealing (Kirkpatrick et al., |1983), where
high attention scores at the current step lead to high scores at the next, and vice versa. Meanwhile,
it ensures that the attention score remains stable over time throughout the generation process.

As the detection scores of tokens are the function of their attention values, this theorem reflects two
relationships between detection scores of context tokens: (1) Neighbor Similarity. Compared with
other tokens, detection scores of neighbor tokens tend to be more similar. (2) Initial Instability.
Compared with the subsequent tokens, the detection scores of initial tokens are unstable (i.e., fluctu-
ate greatly). In addition to theoretical results, we further verify these two relationships empirically.

First, to empirically validate the neighbor similarity property, we evaluated the detection score dif-
ference between the token s; and its k-hop neighbors (i.e., tokens s;_j and s,y if existing). As
illustrated in Fig. 2] (more results can be found in Appendix [E.2)), there is a clear positive correlation
between the detection score distance and the hop, and adjacent tokens have the highest detection
score similarity; thereby providing empirical evidence for our theoretical finding.

Second, to validate the initial instability property, we analyzed the detection score difference be-
tween adjacent tokens at different percentage positions. Fig. [3]illustrates that the score difference
is substantially larger for tokens at the beginning of the text and progressively decreases, eventually
stabilizing. More results can be found in Appendix [E.2] Considering our established finding on
neighbor similarity (i.e., adjacent scores should be highly similar), a high detection score difference
at the sequence beginning indicates a significant instability in detection scores of initial tokens.
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4 MARKOV-INFORMED DETECTION SCORE CALIBRATION

Based on the revealed relationships, this section uses an MRF to capture them (Section 4.1)) and
adopts the mean field approximation to model the MRF model as a lightweight component stacked
on existing detectors to calibrate detection scores (Section[4.2)), thereby enhancing detection.

4.1 MARKOV RANDOM FIELD FOR MGT DETECTION

We capture these two types of relationships by modeling the joint probability distribution of text’s
token detection scores through pairwise Markov Random Fields (pMRF). Specifically, for each to-
ken s; in text s, we assign a binary random variable y,,, where y;, = 0 and y,, = 1 indicate a
human- or machine-generated token respectively, as measured by the detection score of the token.
Let y5 denote the label set for all tokens in text s, the pMRF over these tokens can be formalized as
a Gibbs distribution: P(ys) = & exp(—E(s,ys)), where Z is a normalizing constant and E(s, ;)
is the energy function. Our objective is to maximize the posterior probability of the token labels y,
by minimizing the global energy function E(s,ys). The energy function typically consists of two
components: the unary potential W; and the pairwise potential ¥ p:

N N
E(Svys) = Zt:l \IJU (St, yst) + Zt:l ZSJGN(St) \I/P (ystaysj') I
where A/ (s;) denotes the adjacent tokens of token s;, i.e., N'(st) = {st—1, st+1} (if existing).

Unary potential Uy (s, ys,) quantifies the cost of assigning label y,, to token s;. We let
Uy (st,ys,) = —logp(st), where p(s¢) is the output probability from the original detector. For
detectors without probability output, it is measured by the 0-1 normalized score of token s;.

Pairwise potential ¥ p (yst , ys].) models the similarity in detection scores between adjacent tokens.
A penalty is applied if two adjacent tokens are assigned different labels; otherwise, a reward is given.
This enforces label smoothness and captures the neighbor similarity property:

Vp (ystaij):w'(Q'I(yst #ysj)_l)v 2

where I(-) is the indicator function, and the reward and penalty factor w > 0. This implies an
energy penalty of w when adjacent tokens have different labels; otherwise, the reward is —w.

To model the initial instability property, we introduce a positional weighting function 3(¢) in the
binary potential. This function assigns lower weights to binary potentials at earlier positions, thereby
mitigating the amplification of energy errors caused by unstable initial neighbor tokens. In this paper,
we define the positional weighting function 3(¢) as a Sigmoid function to ensure a smooth transition
of weights, and the revised binary potential is then given by:

1

Vp (yswysj-) :6(.7)1”(2[(?%@ 7é st') - 1)7 with ﬁ(t) = 1+exp(—(t—t0))7 3)

where t( is the weighted center, effectively suppressing the pairwise potential of tokens before .

4.2 MEAN FIELD APPROXIMATE IN MGT DETECTION

Given the MRF model, this subsection details how to model it as a lightweight component stacked
on the original detector through mean field approximation theory, thereby enhancing detection.

In the MRF posterior probability P(y;) = + exp(—E(s,ys)), the partition function Z =
>y, €xp(—E(s,ys)), which is obtained by adding over all possible combinations of ys. For a

text with N tokens, there are 2 combinations, making exact computation of P(y,|s) infeasible.
Inspired by existing work (Deng et al., [2022)), we employ mean-field theory for approximate infer-
ence. Its core idea is to use a simpler, factorized distribution @ (y,) = Hivzl Qs, (ys,) to approx-
imate the true joint distribution P(ys), achieved by minimizing the KL divergence between these
two distributions:

D(Q|IP) =E,.~q [108 Q (1)) ~ Ey .~ llog P (3.)]
=3 Epnqn, 108Qu, (0] + Eyunq [ (5,9.)] + log Z

"Note that token labels are not absolute but depend on the context in which they appear. For example, "the”
can be a human token or a machine token depending on the text.

4)
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The first equation is the definition of KL divergence, and the second is obtained by subsituting P (ys)
and Q(ys). Then, we define a Lagrangian composed of all terms involving Qs, (ys,) in D(Q||P):

LSt (Q) = Qst (yst) IOg QSt (yst) + EySNQ [E (s7y5)] + )‘(Zys QSt (yst) - 1) (5)

Here, the term involving Lagrange multiplier A assures that ()5, is a proper probability distribution.
Now we take derivatives of Eq. with respect to @, (vs, ) and set the corresponding derivative to
0, then we get the optimal Q, (ys, ):

1
Qst (yst) = 7emp(\IJU(st’ ySt) - Zsj EN(se) Eysj NQsj [\IIP(ySt ) ij )} ) (6)

z

We can express the single token calculation in Eq. (€) as a matrix form of multiple token calcula-
tions, which involves three steps:

* Unary potential calculation. Corresponding to the unary potential Wy, (s, ys, ) of token s; being
—log p(s;), we can express the unary potential of text s in matrix form — log H, where the i-th
row of H corresponds to token s;’s prior probability and the two columns correspond to identity
labels (HGT and MGT), that is, H = [1 — p(s), p(s)], where p(s) = [p(s1), ...,p(sn)] .

* Pairwise potential calculation. For the revised pairwise potential (i.e., Eq. (3)), we can define the
weighted adjacency matrix as A", where A{y; = B(t + 1) forallt = 0,..., N — 2, A7, =
B(t—1)forallt =1,...,N — 1, and O otherwise. Then the matrix form of the weighted pairwise

ol i corr —w w
potential is A" Q) o —w
the same reward or penalty. However, the influence of MGT neighbors and HGT neighbors is
intuitively different, so this kind of reward and punishment mechanism with the same weight will
limit the expressive ability of MRF. To this end, we relax the weights for different relationships

-1 —11 }), where W5 € R32.

} . This update strategy enforces that all relationships receive

and get the pairwise potential as A" QW5 © [ 1

* Normalization. The operator %exp() in Eq. @) can be naturally modeled as Softmax function.

In summary, we get the following update rule for tokens’ detection scores:
() = softmax (logH — A" Q (erf ® [ _11 _11 ])) . @)

Notably, Eq. shows that the computation of @ relies on () itself; hence, iterative computation is
required. Initializing the initial () to H, we can get the iterative version as follows:

Q! = softmax <log QI — Acorr@t—t (erf ©) [ _11 _11 ])) , where Q° =H. (8)

In addition to using position weight . -
function 3(t) in pairwise potential to Algorithm 1 Markov-informed Enhancement Framework
reduce the impact of initial unstable 1: Inmput: Text s to be detected, the original detector f; o
scores, we also use this position weight J2, iteration steps 7', MRF weights .
function on the final calibrated scores  2: Construct A°°"" based on s.
QT of T iterations to reduce their im- Get each token s;’s detection score from the detection
pact on detection: score calculation module f;, and set QO =H.
fort=0toT — 1do

innal = [ﬁ(l)a ) 5(N)] © QT- (9) Update Q according to Eq '
end for
Calculate @ finq1 according to Eq. @I)
Return detection score f2(Q inar) Of text s.

by

The MRF-informed calibration compo-
nent is then directly stacked on the orig-
inal detector to calibrate the token de-
tection scores. Specifically, if the de-
tector is formalized as a combination of the detection score calculation module f; and the de-
tection module f,, i.e., f(s) = f1 o fa(s), the MRF-informed component of Eq. @) is de-
fined as fp,,r, then the enhanced detector is fenn (S) = fi © fmrs © f2(s). The complete in-
ference process is shown in Alg. To learn weights W, we use supervised training: £ =

- ZseDtm”L (Yslog fenn.(s) + (1 = Ys) log(1 — fenn.(5)))-

A A
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Table 2: Performance concerning AUROC (%) on Essay (left) and DetectRL (right).

‘ Essay (Training Text: GPT4All) ‘ DetectRL (Training Text: Llama-2-70b)

Method

| GPT4All  ChaiGPT Dolly ChatGLM Claude  ChatGPT-trbo | Avg. | Llama-2-70b ~ ChatGPT ~ Google-PaLM | Avg.

Likelihood 96.16+0.30 98.79+0.19 90.90+1.33 99.29+0.25 92.7640.23 99.1310.19 |96.17 | 78.5810.41 66.6140.99 T71.4240.49 |72.20
Likelihood-M | 98.58.10.14 994710.11 94591006 99.5410.18 94.8210.36 99.7240.13 | 9779 | 87.614+0.48 73.7040.58 81214121 | 80.84
Log-Rank 96.55+0.31 98.9540.13 90.08471.28 99.3640.13 92.0140.20 99.2440.15 |96.03 | 79.67+0.46 65.8540.94 70.6640.40 |72.06
Log-Rank-M | 98571006 99414000 93824001 99551008 92911030 99.641010 |97.32] 90201044 75321001 84341061 |83.29
Entropy 74.1941.62 89.4940.34 73.2641.48 84.1140.77 86.58+0.66 95941035 |83.93|66.2110.88 63.09+1.05 60.7310.01 |63.34
Entropy-M | 83521075 93284015 8L1ligor 91444035 87961045 96751017 |89.01| 69.9710.00 65264135 65821006 |67.02
DetectGPT | 50.8140.558 46.4040.77 57.4840.84 50.41+1.70 41.5410.60 17.9041.25 |44.09 | 52.3710.50 50.2240.60 43.19+71.41 | 48.60
DetectGPT-M | 953712 42 96.204245 85391702 959712935 802911045 98491075 |[91.95| 788113568 64151445 75901453 |72.95
FastGPT 64.63+1.53 67.68+1.70 47.17+1.53 71.0841.51 75.3140.90 88.6210.67 |69.08 | 67.7241. 02 58504122 56.68+1.21 |60.97
FastGPT-M | 87220340 91.564533 82611708 95361048 59.2911 80 63.48418.13 |79.92 | 66.5543.36 55.19135026 63301437 | 61.68
DNA-GPT | 98.0840.23 96.5610.28 92.78+10.68 98.0010.13 89.9240.20 96.2240.27 |9526|71.9140.01 64.1410.01 67.3240.04 | 67.79
DNA-GPT-M | 99.68:0.07 98881006 97.041040 99261005 94731025 98851000 |98.07| 743911 02 64361105 705041 03 | 69.75
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Figure 4: The performance improvement of the proposed method on Likelihood and Log-Rank.
Values greater than 0 indicate an enhanced effect.

Computational Complexity. The MRF layer can be computed using sparse-dense matrix multipli-
cation. For a text containing /N tokens, the number of iterations is T, resulting in a computational
complexity of O(NT), which is negligible for calculating the detection score. We will also empiri-
cally verify the efficiency of our method in Appendix[E.8]

5 EXPERIMENTS

Dataset. We conducted experiments on three widely used public datasets: Essay
[2024), Reuters (Verma et all 2024), and DetectRL [2024). The Essay and Reuters
datasets collect machine text generated by GPT4All, ChatGPT, ChatGPT-turbo, ChatGLM, Dolly,
and Claude. The DetectRL dataset not only includes pure machine-generated text by Google-PalLM,
ChatGPT, and Llama-2-70b, but its unique mixed, paraphrased, and cross-domain texts also allow
us to more comprehensively evaluate the model’s performance in complex real-world scenarios. For
a complete description of the datasets, please refer to Appendix [D.1]

Baselines. We select the following metric-based methods for comparison and enhancement:
Log-Likelihood (Likelihood) (Solaiman et all} 2019), Log-Rank (Mitchell et al [2023), Entropy
[2019), DetectGPT (Mitchell et al., 2023)), Fast-DetectGPT (FastGPT) (Bao et al.}

2024), and DNA-GPT (Yang et al. |2024). The versions equipped with the proposed method are
defined with M’ suffix, e.g., Likelihood-M and Log-Rank-M. Furthermore, although we focus on

metric-based methods, we also compare with model-based methods ChatGPT-D 2023)
and MPU (Tian et al | [2024). Their details can be found in Appendix[D.2}

Metrics. First, as a binary classification problem, we use the area under the receiver operating
characteristic curve (AUROC). Second, following (Tufts et al.} 2024} [Fraser et al.} 2025}, [Hans et al.}
[2024), we recognize the negative impact of misclassifying human text as machine-generated text.
Therefore, another important evaluation metric is the true positive rate (TPR) at a low false positive
rate (FPR). Specifically, we measure the TPR at an FPR of 1%, denoting this as TPR @FPR-1%.

5.1 PERFORMANCE COMPARISON

In this section, we evaluate the enhancement effectiveness of the proposed method in various real-
world scenarios, including cross-LLM, cross-domain, detecting mixed machine text, and resisting
paraphrase attacks. Details of these scenarios are provided in Appendix [D.3]
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Figure 5: Detection performance concerning AUROC under different LLM mixed texts. All detec-
tors are trained on Llama-2-70b texts.
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Figure 6: Detection performance concerning AUROC under different paraphrasing texts (Dipper
and Polish). All detectors are trained on Llama-2-70b texts.

Performance across Different LLMs. Table 2] reports AUROC for detectors trained on GPT4All
(Essay) and Llama-2-70b (DetectRL) and evaluated on texts from various LLMs. TPR@FPR-1%
results are provided in Table[3]in the Appendix. Besides, results of detectors trained on other LLM
texts and on the Reuters dataset appear in Tables[#HI3]of the Appendix. The proposed method yields
significant gains for nearly all baselines. For example, on Essay, it raises Likelihood from 52.4%
to 77.86% (+25.46%). Encouragingly, our method also benefits weak detectors: DetectGPT signif-
icantly improves from 0.15% to 37.18% (+37.03%), suggesting that the assumptions underlying its
scoring are reasonable and that underperformance mainly stemmed from score estimation error. Fi-
nally, detection performance on texts from the same LLM is not always superior to cross-LLM. For
example, on Essay, performance on ChatGLM is particularly strong and even exceeds the intra-LLM
case of GPT4All, possibly because ChatGLM texts are more discriminative.

Performance across Different Domains. We evaluate cross-domain performance in four high-risk
domains: arXiv, Writing Prompts, XSum, and Yelp Reviews. Results are summarized in Fig. 4} ad-
ditional enhanced results for more detectors under cross-domain settings are provided in Fig. ﬁamd
Fig. 20| of the Appendix. In most settings, detectors equipped with our strategy show substantially
stronger cross-domain generalization. We attribute this to calibrating the detection score with only
a few carefully designed parameters (a 2x2 reward—penalty coefficient matrix), which helps prevent
overfitting and thereby improves out-of-domain detection.

Performance against Mixed Texts. In practice, human—AlI collaboration is pervasive, leading to
widespread mixed human—machine text. We therefore evaluate the proposed strategy for mixed-text
detection. Two training strategies are considered: training on the original text and training on the
mixed text. Results concerning AUROC are shown in Fig. 5] with TPR@FPR-1% shown in Fig. 2]
of the Appendix. In most settings, the proposed strategy enhances the detector’s ability to recognize
mixed-text. Moreover, comparing training on original versus mixed text shows that simply training
on mixed text does not improve the detection ability of mixed text, highlighting the focus of mixed
text detection research.

Performance against Paraphrasing Attacks. Prior work (Sadasivan et al.|[2023) shows that MGT
detection is typically vulnerable to paraphrasing attacks, where an adversary rewrites a passage
without altering its semantics to evade detection. We therefore assess the robustness gains of our
framework on the Dipper and Polish paraphrase attacks provided by DetectRL. The results in Fig.
and Fig. [22] clearly indicate that, even in adversarial settings, our strategy yields encouraging
improvements in robustness against paraphrasing attacks.
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Figure 7: Ablation results on the Essay dataset. The y-axis represents the LLM text on which the
detector was trained, and the x-axis represents the average performance across LLMs.
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Figure 8: Comparison with NN-based calibration methods. The detector used is Likelihood.

5.2 ABLATION STUDY

We introduce an MRF layer and a positional weighting function to model neighbor similarity and
initial instability, respectively. In this section, we verify their effectiveness through ablation studies,
denoted as "w/o MRF” and ”w/o Pos”. Results on the Essay dataset are shown in Fig. [/ with addi-
tional results in Fig. 23]and Fig. [24] of the Appendix. We can find that removing either component
significantly drops performance, while retaining only one still outperforms the baseline detector, un-
derscoring their designs’ rationality. Besides, the contribution of each component varies by detector
type. For single-text detectors like Likelihood and Log-Rank, the positional weighting function pro-
vides the most improvement by addressing instability in initial scores. However, for methods that
aggregate multiple text scores, such as DetectGPT and FastGPT, this instability is already partially
mitigated, making the MRF-based score calibration the primary source of gains.

5.3 MRF vS. NEURAL NETWORK

This paper proposes a Markov-informed calibration method to model the relationship of detection
scores of context tokens. To highlight the rationale of this design, we compare it with methods
that directly use neural networks to calibrate scores. A simple three-layer neural network is used
here, defined with the “nn” suffix. The comparison results on Likelihood are shown in Fig. [8] and
more results can be found in Fig. and Fig. of the Appendix. Although NN-based methods
exhibit competitive performance in some settings for intra-LLMs, their generalization ability on
cross-LLMs drops significantly. This suggests that it does not truly learn the general ability to correct
scores, but rather overfits the training data. In contrast, our strategy shows good generalization.

6 CONCLUSION

This paper has systematically examined representative metric-based detectors within a unified
framework, revealing a core challenge: the inherent randomness of the LLM generation process
leads to inaccurate detection scores, and naive aggregation of existing methods fails to fix this.
Therefore, we have theoretically and empirically established two key properties of these scores:
neighbor similarity and initial instability. Building on these insights, we have proposed a Markov-
informed score calibration method that captures token relationships and corrects the biased scores
produced by base detectors. Extensive experiments show substantial and consistent performance
gains of the proposed method. Admittedly, our strategy is only applicable to metric-based methods
that utilize token-level features. We will try to improve model-based methods in future work.
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ETHICS STATEMENT

This paper proposes a Markov-informed calibration strategy to enhance machine-generated text de-
tection and mitigate the potential risks posed by machine-generated text, including disinformation
and phishing. Our work does not involve ethical issues such as dataset releases, potentially harm-
ful insights, potential conflicts of interest and sponsorship, discrimination/bias/fairness concerns,
privacy and security issues, legal compliance, and research integrity issues.

REPRODUCIBILITY STATEMENT

Our code is available at https://anonymous.4open.science/r/MRF-Enhance, and all
datasets used in our experiments (Essay, Reuters, and DetectRL) are publicly available for download.
In addition, we provide detailed implementation details in the Appendix, including data partitioning,
the fixed seeds, the learning rate, the training batch size, and the two parameters ¢y and 7" introduced
by the proposed strategy, to ensure reproducibility of our work.
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A MORE DISCUSSION OF THE PROPOSED METHOD

A.1 CONTRIBUTION
The contributions of this paper are multifaceted.

* We provide a unified perspective for understanding metric-based detection methods. The
diversity of these methods (e.g., using metrics based on log-likelihood or log-rank, and introduc-
ing perturbed or regenerated text) makes comparison difficult. To this end, we re-examine these
methods from three perspectives: data, score calculation, and detection. This analysis provides
a precise definition for each method, facilitating comparison and potential improvements. Our
analysis shows that these methods employ more reasonable evaluation metrics and incorporate
additional contextual information to enhance detection. However, they all fail to address the un-
derlying token-level errors caused by inherent randomness, which limits their detection potential.
Therefore, our unified analysis encourages a more nuanced characterization of token-level detec-
tion scores, which will provide guidance for future improvements.

* We reveal the relationships between contextual token detection scores. While the generative
mechanisms of LLMs introduce dependencies between tokens, these relationships remain unclear.
To this end, we theoretically reveal two relationships between contextual token scores: neighbor-
ing similarity and initial instability, which are further validated through empirical experiments.
Constraining these relationships during detection has the potential to mitigate the imprecision in
score calculation caused by the inherent randomness of MGTs, which is crucial for the field of
MGT detection.

* We propose a Markov-informed score calibration method to enhance MGT detection. This
involves using Markov random fields to capture the revealed relationships and, through mean-
field approximation, modeling the MRF model as a lightweight component that can be stacked on
existing detectors to further unlock detection potential. It is worth noting that our main technical
contribution and innovation lies not only in the specific implementation but also in the conceptual
token-level score calibration. While the current implementation is based on Markov random fields,
this is only one possible approach; alternatives include using sequence models or graph neural
networks. This conceptual insight can inspire improving MGT detection.

» Extensive experiments consistently demonstrate the enhanced effectiveness of the proposed
strategy. We empirically verify that it not only excels on a single task but also demonstrates strong
capabilities in multiple complex and challenging real-world scenarios, including generalization
across LLMs and domains, and robustness to mixed text and paraphrased text. Furthermore,
the proposed enhancement component incurs negligible computational overhead compared to the
original detector. This combination of effectiveness and efficiency provides a solid foundation for
developing practically deployable enhancement solutions for Al-generated text detection.

A.2 LIMITATION

The core of the proposed method relies on modeling the relationships between context tokens to cali-
brate detection scores. Consequently, our method is not directly applicable to detection methods that
do not provide this fine-grained, token-level output. For example, model-based methods typically
generate a single document-level score, while some rely on features such as emotional expression
or writing style. Future research could explore developing calibration models for different levels of
feature granularity.

B RELATED WORK

Existing detection methods can be categorized into active watermark-based methods and passive
model-based and metric-based methods.

B.1 WATERMARK-BASED DETECTION

Watermarking is a proactive defense technique that embeds verifiable information during the text
generation stage, thereby enabling simple and reliable detection. RedList (Kirchenbauer et al.,[2023))
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is a model-agnostic watermarking method that dynamically partitions the vocabulary into a “green-
list” and “redlist” based on preceding context, slightly increasing the probability of sampling tokens
from the greenlist. Subsequent works have made various improvements to this approach. For in-
stance, SemStamp (Hou et al.| |2024) introduces a sentence-level semantic hashing watermark to
enhance robustness against paraphrasing attacks; DiPmark (Wu et al., 2023b)) designs an unbiased
watermark that does not alter the original output distribution. REMARK-LLM (Zhang et al., [2024)
is a training-based watermarking method that employs a message encoding module to generate an
encrypted token distribution for watermark embedding prior to inference. Beyond manually de-
signed watermarks, directly leveraging language models to learn to generate watermarked text is
also promising, including training student models (Gu et al.| 2023)) and semantically invariant wa-
termarking models (Liu & Bu). In addition to the standard binary (0/1 bit) detection of Al-generated
content, researchers have also explored multi-bit watermarks (Yoo et al.,2024) for embedding more
information.

B.2 MODEL-BASED DETECTION

Model-based methods represent a classical paradigm in detection, training a binary classifier on a
dataset containing both human- and machine-generated texts. A series of works, such as OpenAl
Detector (Solaiman et al.,[2019), ChatGPT Detector (Guo et al.,[2023)), GPTZero (GPTZerol 2023)),
and G3 Detector (Zhan et al., 2023), collect texts generated by various LLMs to train a unified clas-
sifier. GPT-Pat (Yu et al., |2023a)) finds that detectors trained solely on a single decoding strategy
generalize poorly and enhances performance by utilizing mixed decoding strategies. In addition to
original data, GLTR (Gehrmann et al., |2019) trains a simple logistic regression classifier by ana-
lyzing the predicted ranking of each word within its context. SeqXGPT (Wang et al., [2023) treats
the sequence of logits as waveform signals for detection, while Sniffer (Li et al.l 2023)) uses the
difference in logits from different models on the same text as features for detection and attribution.
Beyond the data level, recent works have explored more advanced training strategies. For example,
CoCo (Liu et al., 2022) introduces graph structures and contrastive learning; LLMDet (Wu et al.,
2023a)) leverages the perplexity of surrogate models as additional features; MPU (Tian et al., [2024)
adopts a positive-unlabeled learning paradigm; and RADAR (Hu et al.|, 2023)) incorporates adversar-
ial training to enhance model robustness. The above methods generally assume a known text source,
but when it is unknown, Ghostbuster (Verma et al.,[2024) proposes training classifiers directly using
texts generated from known surrogate models.

B.3 METRIC-BASED DETECTION

Metric-based methods do not require training on specific datasets; instead, they directly leverage
the inherent statistical biases or intrinsic properties of language model-generated text for distinc-
tion. The main advantage of such methods lies in their stronger generalization to new models
and domains. Classic approaches in this category include the use of Log-Likelihood (Solaiman
et al., 2019), Log-Rank (Mitchell et al., 2023)), and Entropy (Gehrmann et al., 2019). DetectGPT
(Mitchell et all 2023) finds that Al-generated text typically lies in regions of negative curvature
with respect to the model’s log-probability function. By perturbing the text and observing changes
in log-probability, it can effectively distinguish Al-generated text. Inspired by DetectGPT, Fast-
DetectGPT (Bao et al.| 2024)) replaces log-probability with conditional probability curvature, signif-
icantly improving detection efficiency while maintaining performance. DetectLLM-LRR (Su et al.)
proposes using the ratio of log-likelihood to log-rank for detection. Some works, such as DNA-GPT
(Yang et al., [2024) and DetectGPT4Code (Yang et al., 2023), detect Al-generated text by compar-
ing discrepancies between the original text and continuations generated by a surrogate model. PHD
(Tulchinskii et al.| [2024])) observes that genuine human-written text possesses higher intrinsic dimen-
sionality after encoder mapping. SimLLM (Nguyen-Son et al.l [2024) is based on the observation
that the similarity between the original text and its generated continuation is significantly higher than
that between generated text and its re-generated version; thus, it estimates the similarity between an
input sentence and its generated counterpart for detection. Given that existing methods struggle
with out-of-distribution data, token coherence (Ma & Wang, 2024) has been shown to be a reliable
metric since LLM-generated text usually exhibits higher token coherence than human-written text.
Yu et al. (Yu et al.| 2024)) capture the intrinsic features of text by identifying layers with the greatest
distributional differences when projecting into the vocabulary space, and using intrinsic rather than
semantic features for detection has been demonstrated to yield better results.
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C PROOF OF THEOREM[

Theorem. Let AK, AQ, AV, Ao be the largest singular values of parameters Wy, Wo, Wy, Wo,
respectively, and let W = WVWOWQW;. For the transformer defined in Eq. (I|), assuming
normalized inputs (||z;|, = 1 for all t) and constants c,e > 0, consider a;x > (1 — 6) ||at|,

2
with § < (m) . If zy satisfies J;gWxZ > cand xyWxp > et max;e (], j£¢ ijxZ, then

exp (Cr- oy +1

i1 < ) )
exp (Cr - gy +n) + 32, exp (Cj - agj — 1)
o > exp (Cj - Qg —1)
1,0 =
" exp (Cp - agg —n) + 32, exp (Cj - agj + 1)
where
a:ij]T (1+ \/i)eijij
C; = ,andn =
tlal, (t+1) |acl,

Proof. Our proof follows the proof of existing work (Liu et al., [2023). First, we introduce two
necessary lemmas to help our proof.

Lemma 2 ((Liu et al.,[2023)). Let 1, x5 € RY™ satisfies |21, = ||22ll, = 1 and z12] >1 -6
for some & € (0,1). Then for all y € R**™ we have

|1y " — a2y | < V20| lyll2

Lemma 3 ((Liu et al., [2023)). Let ¢ € [t] be given. Suppose that xoAx) > e ! |xjAa:Z| for all
j # L. Then we have

(S(t)e —€) ) axy < 2] WiWoar < (S(t)e + €) x/ axy

Based on these two lemmas, we can formally prove the theorem. Let 1 =

at£t+1
llall

> 1 — 4, using the conclusion of Lemma we have

\F

0 < o1 WeWkai |,

7t WoWwEeT
’<t+1>|at||2 QIR

leWQWKmZ

1
t+1
Since A\g, Ax are the maximum singular values, respectively. Then we have HWQ Wi/ ||2 <
XAk ||zelly = AgAk. This leads to:

‘MWQWK —tilmeQWKw <;C5AQAK (10)
Since
t—1 t—1
oy = || [ S anes | WoWo| < or [ S anm]| < 2oa S as ol = Aorv.
Jj=1 J=1 9 J=1

2
and the theorem assumes § < (#> , substituting these into Eq. ll we can obtain:

NONK AV RO
V26 2 2 2

YN0k < v2ce < v2ce < V2e zeazT (11
t+1 (t+ DAvio (t+1) ||all, (t+1) ||a,

The last inequality is obtained from xgaazeT > c. Then combining Formula and Formula (11)),
we have

<V
(t+1) [Jall,

ag

7W WEpT _
(t+1) flac, 7%

T T T
T 1 WoWiea, Teaxy

t+1
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From Lemma 3} we have:

atWQW;xz— aM:UgWxZ € T
5 — 5| < 5Ty ALy

E+Dflad™  (E+1) fladll (t+1)[la

By the triangle inequality, we can combine the upper bounds:

xt+1WQW§x? CLtWQW};x?

t+1 (1) [l
atWQW§x€T at7gnga?eT
(t+ 1) llaclly, @+ 1) lacll,

1 2
< L\[)zwzax

(t+1) llacll

Then, we rearrange the inequality, and we can obtain:

ngxZ ng:ceT
(t+1) lacll, 1+v2 WoWir) < ——ortr (e + (1+ V2
(t+1) ||a, (Qt,z ( 2) ) — w1 Wq KIe < (t 1) il (at,e ( e)

Now we give the lower and upper bounds of a1, = softmax(1/(t + 1) - z, 1 WoWE X, ).

Upper bound. Let vy, = 1/(t + 1) - xt+1WQW]—<rxz. For the softmax function
exp(Ye+1,e)
eXP(’YtJrl,Z)J"Ek#e exp(yi+1,k)°
make the numerator as big as possible, which means 7,1, should take its maximum value
rc[WrZ
(E+Dllatll,

all other values ;11 (when k # ) should be minimized W (o1 — (14 v/2)e). There-
tll2
fore,

T,.T T
xt+1WQWKxg Oétjmger

t+1 (4 1) [latl,

(12)

1
t+1

Qg1 to get the maximum value of i1, we need to (1)

(at c+ (14 \/i)e), (2) make the denominator as small as possible, which means that

xeWax
7(“’1)“%“2 (oo + (1 + V2)e)
oWz Tp W:v
(t+£1)\|at|\ (are+ (1 +v2)e) + 3,4 T Dlal, (arn — (1+v2)e)

10 <

Lower bound. Similarly, for the lower bound, we should (1) make the numerator as small as
W

possible, which means 7,1, should take its minimum value W (ozmz -1+ \@)e), 2)
make the denominator as large as possible, which means that all other values ~y,y;  (when k # /)

should be maximized m (atk + (14 \@)e) Therefore,

xoWax
<t+[1>||atu2 (at.e = (1+ V2)e)
zWa]

xeWa,
wrnnats (@ne— 1+ V2)e) + X mrmmar; (ke + 1+ v2)e)

The proof is completed. O

Qyy1, 2>

D EXPERIMENTAL DETAILS

D.1 DATASETS
The details of the dataset used in the paper are as follows:

* Essay (Verma et al. [2024). Each source of this dataset (human-written texts, various LLM-
generated texts) contains 1,000 samples. The HGT portion comprises original IvyPanda es-
says that cover a wide array of subjects and academic levels, from high school through uni-
versity. For the MGT portion, a tailored prompt was first crafted for each source essay using
ChatGPT-turbo, and that prompt was then submitted to several LLMs, including GPT4All, Chat-
GPT, ChatGPT-turbo, ChatGLM, Dolly, and Claude, to generate machine-written essays. This
workflow produced a diverse set of model-generated texts that remained aligned with the topics of
their corresponding source documents.
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Reuters (Verma et all [2024). Built on the Reuters 50-50 authorship benchmark, this dataset
contains 1,000 articles from 50 writers, with each author contributing 20 pieces. Replicating the
pipeline used for the essay corpus, the team first asked ChatGPT-turbo to invent a headline for
every article. Those auto-generated headlines were then embedded into prompts and submitted
to multiple LLMs, including ChatGPT, GPT-4, ChatGPT-turbo, ChatGLM, Dolly, and Claude, to
create the machine-generated texts.

DetectRL (Wu et all [2024). In this dataset, the human-authored portion is drawn from four
sources: arXiv abstracts dated 2002-2017, XSum news reports, Writing Prompts stories, and Yelp
reviews. These types were chosen because they are especially vulnerable to producing convincing
but misleading content when LLMs are misapplied. From each source, 2,800 human texts are
selected as HGTs. The machine-generated texts are created using four widely used LLMs—GPT-
3.5-turbo (ChatGPT), PaLM-2-bison (Google-PalLM), and Llama-2-70b. The dataset further mod-
els practical adversarial settings: (1) a paraphrasing attack that rewrites MGTs with the Dipper
paraphraser (Krishna et al.| [2023)) and Polish paraphraser, and (2) a mixed-text condition where
1/4 of machine-generated sentences is randomly replaced with human-written content while the
label remains “machine-generated.”

D.2 BASELINES

A detailed description of the baselines used is shown below:

Likelihood (Solaiman et al.| 2019)). It uses an LLM to calculate the log probability of each token
in a text. The average of these probabilities gives a detection score. A higher score indicates a
greater chance that the text was generated by LLMs.

Log-Rank (Mitchell et al.,|2023)). Its detection score is created by first using an LLM to rank each
token in a text based on its predicted order within a given context. The logarithm of each word’s
predicted rank is then calculated. The final score is an average of these values, and a lower score
is a strong indicator of machine-generated text.

Entropy (Gehrmann et al.l 2019). Similar to Log-Rank, it calculates a score for a text by taking
the average of each token’s conditional entropy within its given context. A lower score suggests a
higher likelihood that the text was generated by LLMs.

DetectGPT (Mitchell et al.l 2023). It determines if a text is machine-generated by measuring
how small changes affect its log probability. The underlying idea is that text created by LLMs is
already a high-probability output. So, when it is slightly altered, the new version is likely to have
a lower log probability. In contrast, making similar small changes to human-written text does not
consistently lower the log probability; it can just as easily stay the same or increase.

Fast-DetectGPT (FastGPT) (Bao et al.|[2024). To overcome the major computational expense of
DetectGPT, this approach replaces DetectGPT’s resource-intensive perturbation step with a more
efficient sampling process. It identifies differences in token selection between humans and LLMs
using a conditional probability curvature metric.

DNA-GPT (Yang et al., [2024). This method involves a two-step process. First, it cuts a text in
half and uses the first part to prompt an LLM to generate a new continuation. Next, it examines
the differences between the newly created segment and the original one. This comparison, done
via N-gram analysis for black-box models or probability divergence for white-box models, reveals
a clear distinction between how humans and machines generate text.

D.3 EXPERIMENTAL SCENARIO

To extensively evaluate the effectiveness of the proposed enhancement model, we conduct experi-
ments in the following real-world scenarios:

Cross-LLM. To assess how well the proposed model works across different LLMs, we trained
detectors on a single LLM’s text and then tested it on a variety of LLMS’ texts. The main body
of the paper presents the results from training detectors on the GPT4All texts (Essay dataset)
and Llama-2-70b texts (DetectRL), and then testing them on various LLMs, as shown in Table@
Complete results for every training and testing combination can be found in Appendix [E.3](Tables

BHLS).
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Figure 9: Distribution of token scores obtained by the Log-Likelihood method without and with
enhancement. It can be observed that the proposed method enhances the discriminative nature of the
token scores.

¢ Cross-Domain. The DetectRL dataset includes texts from four distinct domains: arXiv academic
abstracts, XSum news articles, Writing Prompts stories, and Yelp Reviews. We utilized this dataset
to evaluate the model’s performance across various domains. To achieve this, we trained the
detector on one domain and then tested it on the other domains. For this evaluation, all machine-
generated texts were created using the default PALM model. The heatmaps in Figs. and 20]
illustrate the performance improvement achieved by our enhancement model compared to various
baseline detection models.

* Paraphrasing Attack. Studies have shown that MGT detection is vulnerable to paraphrase at-
tacks. Therefore, this scenario is used to evaluate the robustness of the MGT detection method.
Using the DetectRL dataset, which includes data from the Polish and Dipper paraphraser, we
trained our detector on clean, original texts and then evaluated its robustness on these paraphrased
texts. Specifically, we trained the detector using clean texts from Llama-2-70b and then tested it
on paraphrased texts from several different LLMs. The results can be found in Fig. [§and

* Mixed Text. Because a blend of human and machine-generated text is common in the real world,
we use the mixed texts provided by DetectRL for evaluation. It involved randomly swapping out
25% of the sentences in an LLM-generated text with human-written ones. We conducted two
separate experiments on this dataset: (1) The detector was trained on pure, non-mixed text and
then tested for its ability to detect the mixed texts. (2) The detector was both trained and tested on
the mixed texts themselves. The performance of the detector in these mixed settings is shown in
Figs. [5]and [21] In each sub-figure, the detectors trained on original text are shown on the left, and
those trained on mixed text are shown on the right.

D.4 PARAMETER SETTINGS

We conducted five independent experiments to ensure the consistency of our results, using five fixed
random seeds (1-5). For all datasets, we used 10% of the data for training, while the remaining 90%
was split evenly between validation and testing. To ensure a fair comparison, the enhanced models
shared the same hyperparameters as their base models. In our enhancement model, there are two
hyperparameters: the transition center ¢, in the positional weighting function 3(¢) and the number
of iterations 7" in the MRF layer. By default, we set ty = 30 and 7" = 10 for the enhanced versions
of all detectors across the three datasets, highlighting the flexibility of our approach. For training
the MRF layer, we use a learning rate of 0.05 and train for 10 epochs. Hyperparameter sensitivity
analyses are provided in Appendix [E.5

E MORE EXPERIMENTAL RESULS

E.1 MORE RESULTS OF TOKEN SCORE DISTRIBUTION BEFORE AND AFTER ENHANCEMENT

In addition to the partial results on DetectGPT presented in the main text, we also present the com-
plete results about token-level detection score distributions for Log-Likelihood, Log-Rank, Entropy,
and DetectGPT in Figs. [0 and[T2] The results are similar to those in the main text: the orig-
inal detector’s scores show substantial overlap between human- and machine-generated text. How-
ever, after calibration using our proposed augmentation strategy, the scores achieve significantly
improved discriminability.
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Figure 10: Distribution of token scores obtained by the Log-Rank method without and with en-
hancement. It can be observed that the proposed method enhances the discriminative nature of the
token scores.
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Figure 11: Distribution of token scores obtained by the Entropy method without and with enhance-
ment. It can be observed that the proposed method enhances the discriminative nature of the token
scores.

E.2 MORE RESULTS OF CONTEXT TOKEN RELATIONSHIPS

In the main text, we demonstrated the existence of neighbor similarity (Fig. [2) and initial instability
(Fig. [2) in token-level detection scores through experiments on the Essay dataset. Here, we provide
additional supplementary results to further validate these relationships.

To verify neighbor similarity, we provide additional results using Entropy and DetectGPT detection
scores on the Essay dataset (Fig. [I3)), as well as results on the Reuters and DetectRL datasets (Figs.
[T4and[I3). These supplementary experiments consistently show that the closer the tokens are, the
more similar their detection scores are.

Similarly, to verify initial instability, we provide additional results on the Essay dataset (Fig. [I6), as
well as results on the Reuters and DetectRL datasets (Figs. [[7)and [I8). These results again demon-
strate that token scores at the beginning of a text fluctuate significantly before gradually stabilizing.

E.3 MORE PERFORMANCE COMPARISON

Performance across Different LLMs. In the main text, we evaluated the cross-LLM performance
of detectors trained on GPT4All (Essay) and Llama-2-70b (DetectRL) on various LLM texts in
terms of AUROC, as shown in Table[2] This section aims to provide more comprehensive supple-
mentary experimental results, including: (1) cross-LLM performance performance under the same
experimental settings in terms of TPR@FPR-1% (Table [3), and (2) cross-LLM performance com-
parisons of detectors trained on other LLMs on the Essay, DetectRL, and Reuters datasets (Tables
M to[13). These extensive experimental results are consistent with the conclusions of the main pa-
per. Among the 888 cross-LLM evaluation settings, our proposed enhanced model achieved better
performance than the original detector in 91.4% of the cases, highlighting the generalization ability
and application value of this method on different models and datasets.

Performance across Different Domains. In addition to the cross-domain performance improve-
ments for Log-Likelihood and Log-Rank demonstrated in the main text, this section provides addi-
tional results for other detectors. Specifically, it includes improvements to the cross-domain perfor-
mance of Entropy and DetectGPT (Fig. [I9), as well as improvements to FastGPT and DNA-GPT
(Fig. 20). Combining all experimental results, we reach the same conclusion as in the main text:
in most experimental settings, detectors applied with our strategy significantly improve their cross-
domain generalization capabilities.

Performance against Mixed Texts. In addition to the AUROC performance comparison for
mixed texts presented in the main text, this section provides additional performance comparisons
at TPR@FPR-1%, as shown in Fig. @ We reach consistent conclusions with those in the main
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Figure 12: Distribution of token scores obtained by the DetectGPT method without and with en-
hancement. It can be observed that the proposed method enhances the discriminative nature of the
token scores.
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Figure 13: The detection score distances of neighbors at different hops in the Essay dataset. Entropy
and DetectGPT score are used here.

text: in most experimental settings, the detector equipped with the proposed strategy significantly
improves its ability to detect mixed text.

Performance against Paraphrasing Attacks. In addition to the AUROC performance comparison
for paraphrasing texts presented in the main text, this section also presents a performance compar-
ison under the TPR@FPR-1% metric, as shown in Fig. 22} We find that in most experimental
settings, the detector applying our proposed strategy significantly improves its robustness against
paraphrasing attacks, which is consistent with the conclusions drawn in the main text.

E.4 MORE RESULTS OF ABLATION STUDY

In addition to the ablation experiments on the position weight function and MRF layer presented in
the main text for the Essay dataset, we also provide ablation results for the Reuters and DetectRL
datasets, as shown in Figs. 23|and[24] These experimental results are consistent with the conclusions
of the main text: removing either component leads to a significant performance drop; even retaining
only one of them outperforms the baseline detector, strongly demonstrating the effectiveness of both
components.

E.5 SENSITIVITY ANALYSIS

Sensitivity w.r.t. transition center ¢y. In our experiments, we set the default transition center ¢
of the position weighting function to 30. This section examines the effect of varying ¢y values on
detection performance. The AUROC and TPR@FPR-1% results are shown in Figs. [25] and [26]
respectively. The experimental results show that detection performance steadily improves with in-
creasing to values, which is consistent with the conclusions of the ablation experiments and demon-
strates the effectiveness of the position weighting function. However, performance improvement is
not infinite. When ¢ values are too large, performance gradually saturates or even declines. This is
likely because excessively large ¢ filters out useful token scores. Therefore, a trade-off is necessary.
Through sensitivity analysis, we recommend setting ¢( values between 20 and 30.

Sensitivity w.r.t. iterations 7" in MRF layer. We compute the posterior probability of the Markov
random field using a multi-step iterative approach. To this end, we evaluate the impact of varying the
number of iterations on detection performance, as shown in Figs. 27/ and 28] The experimental re-
sults demonstrate that multi-step iterative computation significantly enhances detection performance
compared to single-step computation, underscoring its importance in score calibration. However,
performance may degrade with increasing the number of iterations, possibly due to oversmoothing
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Figure 14: The detection score distances of neighbors at different hops in the Reuters dataset. Log-
Likelihood, Log-Rank, Entropy, and DetectGPT score are used here.
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Figure 15: The detection score distances of neighbors at different hops in the DetectRL dataset.
Log-Likelihood, Log-Rank, Entropy, and DetectGPT score are used here.

of the detection scores. Based on our sensitivity analysis, we recommend setting the number of
iterations to 10.

E.6 MORE RESULTS COMPARING WITH NEURAL NETWORK CALIBRATION

In the main text, we demonstrated, through experimental results using the Log-Likelihood score,
that while neural network-based detection score correction performs well on the intra-LLM, its per-
formance drops sharply on the cross-LLM. This section further presents comparative results using
other detection scores, as shown in Figs. 29 and[30} Similar experimental findings further demon-
strate that this method does not truly learn universal score correction capabilities, but rather overfits
the training data. This strongly emphasizes the superiority and rationality of our proposed Markov-
informed score calibration method.

E.7 COMPARISON WITH MODEL-BASED DETECTORS

As shown in Fig. [31] we compare the enhanced versions of metric-based methods with model-based
detection methods, including ChatGPT-D and MPU. Experimental results show that while model-
based methods demonstrate superior performance on the DetectRL dataset, they underperform state-
of-the-art metric-based methods, such as DNA-GPT, on the Essay and Reuters datasets. Notably,
the significant performance gap between model-based methods in intra-LLM and cross-LLM further
confirms their increased risk of overfitting to the training data. This observation is consistent with
our intention of focusing on metric-based detection methods.

E.8 RUNNING TIME

Table [T6] shows the training and inference runtimes on different datasets. As discussed in the main
text, our proposed Markov-based score refinement module can be implemented in constant time
via sparse-dense matrix multiplication. Therefore, the additional time overhead introduced by this
module is negligible compared to the time-consuming score calculation, highlighting the flexibility
and practicality of our approach in practical applications.
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Figure 16: The score distances of 1-hop neighbors at different positions in the Essay dataset. Entropy
and DetectGPT score are used here.
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Figure 17: The score distances of 1-hop neighbors at different positions in the Reuters dataset. Log-
Likelihood, Log-Rank, Entropy, and DetectGPT score are used here.

F THE USE OF LARGE LANGUAGE MODELS

In our paper, we used LLMs to polish the language and correct grammatical errors. LLMs were
not used to generate novel research ideas, design experiments, analyze results, or write substantive
technical content. We ensure that the use of large language models is responsible and adheres to
academic and ethical standards.
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Figure 18: The score distances of 1-hop neighbors at different positions in the DetectRL dataset.
Log-Likelihood, Log-Rank, Entropy, and DetectGPT score are used here.

Table 3: Performance concerning TPR@FPR-1% (%) on Essay (left) and DetectRL (right).

Method ‘

Essay (Training Text: GPT4All)

DetectRL (Training Text: Llama-2-70b)

| GPT4All ChatGPT Dolly ChatGLM Claude  ChatGPT-turbo | Avg. | Llama-2-70b  ChatGPT ~ Google-PaLM | Avg.

Likelihood | 46.33416.40 68.62413.32 20.67410.70 92.8614.81 12311620 73.60114.63 | 524 | 38.3710.02 10.2141.40 25.6612.41 | 2475
Likelihood-M | 874715 40 90361203 55474503 97091111 40404757 962711 o7 |77.86| 460311 70 10511300 36371231 3097
LogRank | 62.69413.36 79.0747.80 25.11ig.35 95.7112.05 19.201526 80.89+10.73 |60.44 [ 42.0510.84 12.4441.71 22.8411.28 |25.78
Log-Rank-M | 87.38.5 50 88.89.1 2. 584 52124418 98.0410.43 31.6944 15 942245 46 | 7539 505641 44 13944536 41514269 35.34
Entropy 2.73+0.69 7164317 2.2941.36 6.8843.05 3.9142.24 13.2417.60 | 6.04 | 2.0340.73 0.2510.16 6.954+0.78 ‘ 3.07
Entropy-M | 15.63:0.57 41241005 1695.151, 40.85.437 23204770 4991150, |3130| 2691030 0.67:010 9171110 418
DetectGPT 0.00+0.00 0.00+0.00 0.00+0.00 0.0040.00 0.89+0.24 0.00+0.00 0.15 | 4.1540.40 2.9440.62 1.7140.47 ‘ 2.93
DetectGPT-M | 41.23129 55 46.9812536 18.38120.21 41.83144.80 8.8019564 65.87 12166 |37.18| 32411958 7.59+4.05 25144453 21.71
FastGPT 1.5940.32 1.6440.67 0.2940.10 2.7240.68 347+1.83 16.89+6.66 443 | 11.3542.01 3.78+1.20 5.0240.85 ‘ 6.72
FastGPT-M | 239241000 30001020 328911652 55541750 0.67+0.56 1644431 78 |2658 | 15231503 628+1.72 13521563 1168
DNA-GPT | 57.6813.3s 63.241651 22.204385 84.821414 16.671347 56.2T+6.a5 |50.15|36.5611.56 19701052 30.3812.75 |28.88
DNA-GPT-M | 93.85.¢.97 88441400 564211082 96831041 33331790 862241652 | 7585 | 42524126 19.1142.04 34814154 3215

Table 4: Performance on Essay dataset. The

detection models are

trained on text generated by

ChatGPT.

Metric |  Method | GPT4All ChatGPT Dolly ChatGLM Claude ChatGPT-turbo | avg
Likelihood | 46.24116.60 68.62413.32 20.67110.79 92.81i482 12.3116.20 73.604114.63 | 52.38
Likelihood-M 89.38i4‘05 92.00i2.g4 59-19i5.98 97-10i0,69 42-22i6432 96.80;&1,23 79.45
Log-Rank 62.694+13.36 79.07+7.89 25.114g835 95.714205 19.1648.22 80.89410.73 | 60.44
Log-Rank-M 87.15:{:2.62 88.803:2,81 52.12:{:4,32 98.04:{:0.43 31.33j:4410 94-22j:2.46 75.28

Entropy 2‘73i0.69 7‘16:&3.17 2.29i1(36 6‘88:&3‘05 3.91i2.24 13‘24:&7,60 6.04
TPR@FPR-1% Entropy-M 12.76 12 15 34845 15 14.27 1 5 63 36.9642. 51 19.78 13 76 43.2046.33 26.97
DetectGPT 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00 0.84+0.51 2.364+2 52 0.53
DetectGPT-M 41~09i30,67 42.04i25_95 9.55:{9‘01 39'02i38.26 10~13ill)‘28 68.49;&23, 15 35.05
FastGPT 1.5940.32 1.6410.67 0.29+0.10 2.7240.68 34711 .83 16.89+6.66 4.43
FastGPT-M | 1973111 16 261811242 248210023 4576121.65 3.3845314 2604130 55 |24.32
DNA-GPT 40.774+8.33 73.6943.78 19.9547.42 82.59411.71 18.0443.53 63.8246.62 |49.81
DNA-GPT-M | 89.0214 14 95071133 65971457 99241036 39561401 94621145 |80.58
Likelihood | 96.1640.30 98.79410.10 90.9041.33 99.2940.25 92.76410.23 99.1340.10 |96.17
Likelihood-M 98.77i0 .10 99.58;&0, 14 94.80i0 .87 99.56i0 .19 94.69i0< 42 99.77;&0, 14 97.86
Log-Rank 96.554+0.31 98.9540.13 90.084+1.28 99.3640.13 92.0140.20 99.241¢.15 |96.03
Log-Rank-M 98.56:{:0 .06 99.403:0 .09 93.81:{:0 .92 99.56i0 .08 92.88j:04 29 99.643:0_ 10 97.31
Entropy 74.19i1(62 89‘49:&0‘33 73~26i1A48 84‘11:{0‘77 86.58;&0,66 95‘94:&0‘35 83.93

AUROC Entropy-M 83.3310.66 93241015 81174104 91381037 88.28.10.49 96.8610.21 | 89.04
DetectGPT 50.1540.99 50.53+3 .65 48.04 17 27 49.25411 58 51.2145.39 55.34431.67 | 50.75
DetectGPT-M | 94.98_ 3 26 96.3512 60 85.82.6.13 94.201 4 48 84.0646.47 98.58 11 .204 92.33
FastGPT | 64.6341.53 67.6811.70 A47.17T4153 71.080151 75311090  88.6210¢7 |69.08
FastGPT-M | 86.68.15.28 90821386 722312301 93531386 65.24 1236 71.87121.80 | 80.06
DNA-GPT 96.2840.32 98.874+0.21 92.854+0.83 99.3240.27 91.6540.72 98.5140.31 |96.25
DNA-GPT-M | 99321015 9979:i007 974210.56 99901005 95651051 99761007 |98.64
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Figure 19: The performance improvement of the proposed method on Entropy and DetectGPT.
Values greater than 0 indicate an enhanced effect.
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Table 5: Performance on Essay dataset. The detection models are trained on text generated by
ChatGPT-turbo.
Metric | Method | GPT4All ChatGPT Dolly ChatGLM Claude  ChatGPT-turbo

Likelihood 46.29416.55 68.62413.32 20.67+10.79 92.8644.84 12.3146.29 73.604+14.63 | 52.39
Likelihood-M 87.61i3‘74 88.31i3‘64 61.29:&7‘12 94.20i2‘40 41.11:&7‘93 95.38;&2,27 77.98
Log-Rank 62.69:&13,36 79'0717,89 25'1118,35 95.71i2.05 19.16ig,22 80.89:&10,73 60.44
Log-Rank-M | 86701050 87471517 54611405 93.7515.55 35911005 94131165 |7543
Entropy 2.73+0.69 7.1643.17 2.2941.36 6.8843.05 3.9142 24 13.2447 60 6.04
Entropy-M 11.62i0‘5g 30~67i6,02 13.56:&1‘59 32'54i2,63 17.33:&5‘32 39.91;&& 11 24.27

avg

TPR@FPR-1% | ' DeteciGPT | 0.0040.00  0.00:0.00  0.0020.00  0.0010.00 0.5310.5s  3.0741.96 | 0.60
DetectGPT-M | 14.031 15,70 17.0745.79 3051254 6431580 51liz08 447111170 | 1507

FastGPT 1-59:{:0_32 1.64:(:0_67 0.29:(:0_10 2-72j:0.68 3-47:(:1.83 16-89:(:6.66 443

FastGPT-M | 8971452 153311565 0721060 200911501 7.51i6.835 49.82100.0s | 17.07

DNA-GPT | 0.7310.35 0.7610.30  2.6310.81 0.1310.11 21.6413.45 0.0040.00 | 4.31

DNA-GPT-M | 3941065 38.624031 39471211 38044040 39381186 38671210 | 3893

Likelihood 96.1640.30 98.7940.19 90.904+1.33 99294025 92.7640.23 99.1340.19 | 96.17

Likelihood-M | 98.6510.21  99.39:10.20 9395:1.15 99.1310.43 94.6610.30 99.77+0.12 |97.59

Log-Rank 96.55:&0431 98.95:&0413 90.08:&1428 99.36i0.13 92.01;&0,20 99.24:&0.15 96.03

Log-Rank-M | 98371001 99171020 92961151 99.1710.37 929610.435 99.6210.11 |97.04

Entropy 74.194+1.62 89.4940.34 73.2641.48 84.1140.77 86.584+0.66 95.9440.35 | 83.93

AUROC Entropy-M 82.88:&0‘85 93.08:&0‘29 80.90:&0‘89 91.18i0'37 88.57:&0‘54 96.90;&0,24 88.92

DetectGPT 49'1910,58 53.60:&0477 42'5210,84 49.59:&1,70 58.46i0.60 82.10:&1.25 5591
DetectGPT-M | 91.6515 25 93.38.1 2 .31 77.58+5 63 90.541 574 79.8219 52 97.61+0.92 88.43
FastGPT 64.6311.53 67.6841.70 47.1741.53 71.0841.51 75.3110.90 88.6210.67 | 69.08
FastGPT-M | 85.05:5635 86411005 49.85+1150 89.08.16 67 7584117.10 96801060 |80.51
DNA-GPT | 53.2811.23 43.654076 61.901030 40.4611.26 67.5310.55 43.3140.04 | 51.69
DNA-GPT-M 83.94:(:1_09 84.02:(: 1.06 83.93j: 1.20 83-89:{:1 .10 84-23:(: 1.07 84.07:{: 1.06 84.01

Table 6: Performance on Essay dataset. The detection models are trained on text generated by
ChatGLM.
Metric | Method | GPT4All ChatGPT Dolly ChatGLM Claude ChatGPT-turbo | avg

Likelihood 46.29:&1654 68.62i13‘32 20‘67:&10‘79 92~81i4.82 12~31i6.29 73~60i14.63 52.38
Likelihood-M 78.82i5,30 87.87;&3,22 46.73i10.15 98.71i 1.11 31.64i 10.61 93.78:&3441 72.92
Log-Rank 62.69413.36 79.07+7.89 25.114g835 95.7142.05 19.2048.26 80.89410.73 | 60.44
Log-Rank-M | 81.3217 05 86.76 3 63 47351502 98.621026 252417 46 90.621 5 2> | 71.65
Entropy 2.73+10.69 7.16+3.17 2.2941.36 6.8843.05 3.91i224 13.241760 | 6.04
Entropy-M 12.76:&1‘21 32~09i4.82 13.99i3‘01 35.62:&4‘65 18.40:&4‘ 10 41-42i6A98 25.71
DetectGPT 0.0040.00 0.00+0.00 0.004+0.00 0.00+0.00 0.8940.24 0.00+0.00 0.15
DetectGPT-M 18.36:(:0,94 17.87:{:5,87 20.67:(:3.31 60.98:{;6442 4.89:(:2,75 6.36:(:2.01 21.52
FastGPT 1.5940.32 1.64+0.67 0.2940.10 2.7240.68 347414 83 16.8916.66 4.43
FastGPT-M | 238711038 29871003 3289116.52 55491787 0.6710.56 16.22151.34 | 26.50
DNA-GPT | 57.541415 69.9149.92 39.19:4 03 97.3210.76 31.244575 65.16110.11 | 60.06
DNA-GPT-M | 93581120 92531344 66541055 995510020 44361010 91471441 |81.34

TPR@FPR-1%

Likelihood 96.16:&0430 98.79i0.19 90.90;&1433 99.29;&0,25 92.76;&0,23 99.13;&0,19 96.17
Likelihood-M | 98.0310 5 99221020 93.1011.45 99.6510.07 93471114 99541016 |97.17
Log-Rank 96.5540.31 98.9540.13 90.0841.28 99.36+0.13 92011020 99.2410.15 |96.03
Log-Rank-M | 98.14:050 99201025 92865166 99541010 91.39i10s 99.5310.16 |96.78
Ent.ropy 7419:&1‘62 89.49i0'33 73.26:&1‘48 84.11;&0,77 86.58i0.66 95.94;&0,35 83.93
Entropy-M 82.99i1.01 93.13;&0,23 81.03i1.11 91-1510,28 88.45:&0444 96.88:&0418 88.94
DetectGPT 50.8140.58 46.4040.77 57.484+0.84 50.4141.70 41.54+0.60 17.904+1.25 |44.09
DetectGPT-M | 80.391, 33 80.53 10 .58 80.67 +1 .08 94.02+0.56 62.6311 24 67.2541 24 77.58
FastGPT 64.63:&1‘53 67.68i1‘70 47.17:&1‘53 71.08i1_51 75.31i0_90 88.62:&0‘67 69.08
FastGPT-M | 87.19:5 46 91.55:153> 825811504 95354040 59.28:11.00 63.48115.12 |79.91
DNA-GPT | 96.9710.20 98.0940.47 94.1140.47 99.8710.04 92.8440.71 97.8510.37 |96.62
DNA-GPT-M | 99371005 99581:010 97681020 999210.02 96241047 99541000 |98.72
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Figure 20: The performance improvement of the proposed method on FastGPT and DNA-GPT.
Values greater than 0 indicate an enhanced effect.
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Table 7: Performance on Essay dataset. The detection models are trained on text generated by Dolly.
Metric |  Method | GPT4All ChatGPT Dolly ChatGLM Claude ChatGPT-turbo | avg

Likelihood 46.29416.54 68.621+13.32 20.67+10.79 92.8644.84 12.3146.29 73.60+14.63 | 52.39
Likelihood-M 89.02i 1.68 88.09:&4‘50 57.14:&5‘55 97.59i1‘09 34.36i 13.54 94'36i3.67 76.76
Log-Rank 62.69:&13,36 79~07i7.89 25.11:&&35 95.71:&2,05 19.16;&&22 80.89:&10,73 60.44
Log-Rank-M | 87704260 89.0242.13 51.6543.99 98124054 31.691332 94364193 | 7542
Entropy 2-73:(:0.69 7.16:(:3_17 2-29:(:1.36 6.88:{;3_05 3-91:{:2_24 13-24:(:7.60 6.04
Entropy-M 11'94i1,85 32.09:&4‘77 13.22:&4‘31 34'78i8.04 18.49:&3‘20 40.62i5‘34 25.19
DetectGPT 0.0040.00 0.00+0.00 0.00+0.00 0.0040.00 0.8940.24 0.004+0.00 0.15
DetectGPT-M | 32.89 20 57 460911075 24441905 688410145 6041400 48.09105 00 |37.73
FastGPT 0.8240.31 0.00+0.00 0.3840.42 0.0940.11 0.00+0.00 0.0040.00 0.22
FastGPT-M | 272440 77 28041740 39431350 55891530 0981065 0841071 |2541
DNA-GPT | 58.9514.76 64.00406.45 48641404 842913564 29.241340 59.0245.00 |57.36
DNA-GPT-M | 88701, 7s 87.8211.27 72601417 925910135 44711467 86931015 |78.89

TPR@FPR-1%

Likelihood 96.1640.30 98.79+0.19 90.90+1.33 99.2940.25 92.76+0.24 99.1340.19 | 96.17
Likelihood-M 98.63i0‘29 99.48:&0‘16 94.44:&0‘71 99.62i0‘(]g 94.49:&0‘73 99.70i0‘ 15 97.73
Log-Rank 96.55:&0,31 98.95:&0413 90.08:&1428 99.36:&0,13 92.01;&0,20 99.24:&0,15 96.03
Log-Rank-M | 9855:0 08 99401000 93781093 99561000 928li0.3s 99.6510.10 |97.29
Entropy 74.194+1.62 89.494+0.33 73.2641.48 84.1140.77 86.58+0.66 95.9440.35 83.93
AUROC Entropy-M 83.09i0‘g4 93.15:&0‘17 81.05i 1.14 91.26i0‘24 88.42:&0‘52 96.88;&0,20 88.97
DetectGPT 50.81:&0458 46.40:&0477 57.48:&0484 50.41:&1,70 41~54i0.60 17.90:&1,25 44.09
DetectGPT-M | 93.62.5 70 93.95 16 .36 90011369 97821198 81421959 922041134 |91.50
FastGPT 35.3711.53 32.3241.70 52.83+1.53 28.921151 24.69410.00 11.3840.67 |30.92
FastGPT-M | 88.35.0.30 89.6711.11 91555008 95271038 59.65:1.54 54611030 |79.85
DNA-GPT | 94.5010.07 93.9540.10 95911040 95.041015 89.3510.30 93.8140.020 |93.76
DNA-GPT-M | 98230021 97.6710.16 980110.35 98.00L0.14a 94631040 97641017 |97.37

Table 8: Performance on Essay dataset. The detection models are trained on text generated by
Claude.
Metric | Method | GPT4All ChatGPT Dolly ChatGLM Claude ChatGPT-turbo | avg

Likelihood | 46.20416.47 68.58113.08 20.67410.70 92.864484 12.31i6.00 73.60114.63 | 52.37
Likelihood-M | 86.7413. 37  90.0942380 50.0719.80 98.0810.27 34004666 95781140 |75.79
Log-Rank 62.69413.36 79.07+7.890 25.114835 95714205 19.2048.26 80.89+10.73 | 60.44

Log-Rank-M 89.20:&2‘33 88.18i2_58 54.42i3‘95 95.00:&3‘56 37.82:&2‘23 94.80:&1‘37 76.57
Entropy 2.7310.69 7.1643.17 2.291136 6.8843.05 3.9112024 13.241760 | 6.04

TPR@FPR.1% | EMTOPYM | 12164055 2907455 10745415 30941565 16804575 39691400 | 2323
DetectGPT | 0.0040.00  0.0010.00  0.0040.00 0.0040.00 0.8410.51  2.3612.52 | 0.53

DetectGPT-M 34~62j:17.61 38.71:{:23_27 24'73j:8.38 74.06i17_99 3.91i2,05 29.11i24_44 34.19
FastGPT 1‘59:&0,32 1~64i0.67 0‘29i0‘10 2‘72:&0.68 3'47i1,83 16.89:&6‘65 443

FastGPT-M | 27471500 28.0d1740 39571376 564716135 0.9840.65 0.841071 |25.56
DNA-GPT | 0.5010.17 0.31i0.11  0.67:10.55 0.0010.00 0.131011  0.5310.16 | 0.36
DNA-GPT-M 12.76 12 00 131642 36 140315 12 121411 73  13.69+2 59 13.331 2 38 13.19

Likelihood 96.1610.30 98.7940.19 90.90471.33 99.291025 92.761023 99.1310.19 |96.17
Likelihood-M 98.52i024 99.45:“)_09 94.32i0,g5 99.63i0A09 94.35i()‘42 99.66:&0‘16 97.66
Log»Rank 96.55:&0‘31 98.95i0‘13 90.08:&1‘28 99.36:&0,13 92.01i0_20 99.24;&0,15 96.03
Log-Rank-M 98.47:&0,29 99.28;&0,22 93.15i1.37 99.25:&0432 92.93:&0,43 99.66:&0410 97.13
Entropy 74.1941.62 89.4940.33 73.2641.48 84.1140.77 86.584+0.66 95.9440.35 | 83.93
AUROC Entropy-M 82.36:(: 1.15 92-9010.26 80.64:(:1 .12 90-88:{:0_52 88-62:(:0_43 96.91;{:0.23 88.72
DetectGPT 50.1540.99 50.53+3.65 48.0447 27 49.254158 51.2148.39 55.344+31.67 | 50.75
DetectGPT-M 86.96:&7,59 87-54i7.67 85.22:&5‘50 96.46:&2,24 71.40:&9,73 80.33i 14.18 84.65
FastGPT 64.6341.55 67.6811.70 A47.1711.53 T71.0811.51 75311000 88.6210.67 | 69.08
FastGPT-M | 884510058 89731105 91.6li0.36 95351047 59.7711.62 54.76410.30 |79.95
DNA-GPT 45.8542.15 39.6141 .52 53.9341.47 36.1941.75 53.01+1.67 40.65+1.60 44.87
DNA-GPT-M | 762611 36 76251120 76.38411.33 75984130 76744126 76304120 | 7632
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Figure 21: Detection performance concerning TPR @FPR-1% under different LLM mixed texts. All
detectors are trained on Llama-2-70b texts.
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Table 9: Performance on DetectRL. The detection models are trained on text generated by ChatGPT
and Google-PaLM.

Metric | Method |
ama-2- at oogle- vg. ama-2- at oogle-Pal vg.
LI 2-70b  ChatGPT  Google-PaLM | A LI 2-70b  ChatGPT  Google-PaLM | A

Likelihood 38.37i0.92 10.21:&1.40 25.66i2_41 24.75 38'32i0.88 10'19i1.38 25.66i2.41 24.72
Likelihood-M | 45.6113.57 12141066 33184046 |3031| 42941414 9.911587 35481070 |29.44
Log-Rank | 42.0540.84 12.44431.71 22.844105 |25.78 | 42.0510.84 12.4141. 70 22.8441.05 |25.77
Log-Rank-M | 50.66+1 45 127311.65 41414056 | 3493 | 505851 55 13.0010.45 41095, 07 | 34.89
Entropy 2.03i0,73 0-25i0.16 6.95i0.7g 3.07 2~03i0473 025:&0.16 6~95i0.78 3.07
Entropy-M 2.13i0.30 0.27i0.20 9-2710,87 3.89 2.22i0.37 0.27:&0,20 9.37i0.93 3.96
DetectGPT 3.2940.97 5.3612.20 2.7941.32 382 | 2.8710.56 6.77+1.50 3.864+1.44 4.50
DetectGPT-M | 25.29410.05 7.66+4.17 1417411.10 1571 | 22.004+4.30 4.574+0.37 24944268 |17.17
FastGPT 11.3542.01 3.7841.20 5.0210.85 6.72 | 11.3542.01 3.7841.20 5.0210.85 6.72
FastGPT-M 27-71i15.63 13'42i8.91 17.68i11,92 19.60 12'41i0.89 6.18:&0,83 20'10i1.78 12.90
DNA-GPT | 31.0311.50 11.0541.60 26.4012.0s |22.83 |41.7121.32 29491054 38.84115s |36.68
DNA-GPT-M | 41.1611.65 125312.06 33.5712.15 |29.09 | 47101005 22.7211.50 40541108 |36.79

DetectRL (Training Text: ChatGPT) | DetectRL (Training Text: Google-PaLM)

TPR@FPR-1%

Likelihood 78.584+0.41 66.61l1+0.099 T71.4240.49 | 72.2 | 78.57+0.41 66.6140.99 71.4240.49 | 72.20
Likelihood-M | 78.1544.58 67.0644.19 73404438 |72.87 | 87441070 73.7010.57 81.58410.93 |80.91
Log-Rank | 79.67+0.46 65.8540.04 70.6640 40 |72.06|79.67+0.46 65.8540.04 70.66+0.40 | 72.06
Log-Rank-M 90'23i0.45 75.40i0.g7 84.44;&0,52 83.35 90'14i0.53 75.61:&0,83 84.63i0.59 83.46
Entropy 66.21i0.3g 63.09:&1.05 60.73i0_91 63.34 66.21i0.3g 63.09:&1405 60.73i0.91 63.34
Entropy-M | 68.61410.04 66831005 67.9311.08 |67.79 | 68911055 66861005 67.9411.04 | 67.90
DetectGPT | 49.2145.31 49.6410.55 50.7246.01 | 49.85 | 47.6310.50 49.7840.60 56.8141.41 | 51.40
DetectGPT-M | 73.5010.15 62931450 613041555 | 6591 | 77774405 60344537 764041 66 | 71.50
FastGPT | 67.7241. 02 58.5041.02 56.6841 01 | 60.97 | 677211 02 58.5011.20 56.6811.01 | 60.97
FastGPT-M 71-60i6.86 61.26i5.62 66.05;&9,70 66.30 62.35i0.49 51‘87:&1438 68.88i1.00 61.03
DNA-GPT | 72.5311.10 66.0741.38 68.3540.05 | 68.98 | 79.0010.86 72.2710.81 77961091 |76.41
DNA-GPT-M | 75374115 661941 40 71.7720.70 |7111| 80.0941 o 71.0941.12 77.1541.02 | 76.11

AUROC

Table 10: Performance on Reuters dataset. The detection models are trained on text generated by
GPT4AIllL.
Metric \ Method | GPT4All ChatGPT Dolly ChatGLM Claude ChatGPT-turbo | Avg.

Likelihood 19.4749.45 80.89492.17 12.44471.38 94.364+1.15 18.894341 90.2247 923 |52.71
Likelihood-M 61.42:{:5 .74 88.44j: 2.19 35.56:{:2 .86 95.24:{: 1.16 32.36i5 .93 92.76j:0 .71 67.63
Log—Rank 29.91:&3‘27 86.22:&1‘87 15.20i1'70 97.3310.54 24.5813.35 93.16:&1‘07 57.73
Log-Rank-M 73.8213,32 89.56:& 1.79 38.3112,26 96.71 +1.62 35-4714.63 94-4910.62 71.39
Entropy 6.18:{:1_40 0.04i0,09 13~07j:1.76 0.22:{:0_20 0‘00:(:0_00 0.22:{:0_00 3.29
Entropy-M 17-42i2484 0.36:&0‘30 12~36i2,86 0.98:&0‘87 0‘00:&0‘00 0-40i0438 5.25
DetectGPT 0.0010_00 0.00:&0,00 0.00:&0,00 0.00:&0_00 O.44:to,4o 0.04:&0_09 0.08
DetectGPT-M 40.89:{:6 .07 15.33j: 8.81 46.40:{:2 .46 40~00:t8. 10 2.40:{:0 .38 6.40i2 .50 25.24
FastGPT 3.56:&3‘08 0.04i0,09 12'18i6,70 0'0910.11 0‘09:&0,11 0.04i0,09 2.67
FastGPT-M | 61.6917.15 21.7816.77 65241512 31781997 1381084 1511055 |30.56
DNA-GPT | 85.2016.70 92.5843.04 68.494437 96.931314 79.2414035 95.291553 |86.29
DNA-GPT-M 97.51:&1‘31 98-40i0,88 81.29:&3‘75 99.s7i0,11 89.07:&3457 99.24i0'30 94.23

TPR@FPR-1%

Likelihood 75.19:(:1,39 97.55:{:0_33 58.77:(:1_76 99.62;(:0_11 86.45:{;0_70 98.42;{:0.25 86.00
Likelihood-M 93.74i 1.23 98.42:&0‘26 77.05:&0‘53 99.61 +0.11 90.68:&056 98.78i0‘33 93.05
Log—Rank 78.39i1,23 97.77i0,32 58.22i2,03 99461i0,19 85.68i0,67 98467i0,24 86.39
Log-Rank-M 95~50j:0.81 98.603:0,23 76.603: 1.33 99.64j:0.29 90'45i0.69 98.99j:0.31 93.30
EHII‘Opy 72.48i1_24 3535:&1,65 61.92:&1‘32 50.96:&1‘57 23.76i1‘05 17.55:&0‘92 43.67
Entl‘Opy-M 70-3111.98 34.8412,95 50.09:&1,57 4646211,12 27-5512,60 29.08:&4,18 43.08

AUROC DetectGPT | 75.6211.00 57.1841.91 77.2540.66 61.9710.090 58.0141.75 20.4241.07 |58.41
DetectGPT-M 87.58i0 .93 78.19:§: 2.33 86.29i 1.18 89.73i() .97 58.40i 1.54 65.72i 1.36 77.65
FastGPT 76.504+1.39 39.5640.54 82.4540.47 33.214+1.82 41.3140.89 11.2940.49 |47.39
FastGPT-M 96.46:{:0_31 90.21i0,75 96.23:{:0_36 92.363:0_74 66.98i1_06 56.283:1_80 83.09
DNA-GPT 99.5140.14 99.7240.07 98411021 99.85+0.05 99.21+0.14 99.8140.06 |99.42
DNA-GPT-M | 99.8010.00 99.8810.07 98.394017 99941006 99.53:0.00 99.8910.00 |99.57
Likelihood Log-Rank Entropy DetectGPT FastGPT DNA-GPT
mmm  Likelihood-M s Log-Rank-M mmm  Entropy-M mmm DetectGPT-M FastGPT-M mmm DNA-GPT-M
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Figure 22: Detection performance concerning TPR@FPR-1% under different paraphrasing texts
(Dipper and Polish). All detectors are trained on Llama-2-70b texts.
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Table 11: Performance on Reuters dataset. The detection models are trained on text generated by

ChatGPT.
Metric | Method | GPT4All ChatGPT Dolly ChatGLM Claude ChatGPT-turbo | Avg.

Likelihood 19.7842.21 81.0742.05 12.5341.35 94.36+1.15 19.424317 90.3147.11 |5291
Likelihood-M 59.73ig .56 88.98i 1.58 35.91 +3.82 96.00:&2. 14 26.71 +5.93 93.24i0 .94 66.76
Log—Rank 29.96i3(29 86.22:&1‘87 15.20i1_70 97-33i0,64 24.58i3_35 93.20;&1,13 57.75
Log-Rank-M | 63.91.15 04 90.621 2 35 34581471 98.1310.46 29.7318.71 94.5310.67 | 68.59
Entropy 0.0940.11 2.4941.25 2.0410.57 1.6940.54 4.3611.81 9.5612.90 3.37
Entropy-M 7.07i3_05 17.47i5_59 13.60i2_23 9-02i3_21 18-09i4.26 33.29i7_34 16.42
DetectGPT | 0.0010.00  0.0010.00  0.0010.00  0.0010.00 0.441040  0.0d40.00 | 0.08
DetectGPT-M 22-76i25.66 47.91;&2&49 11-69i12.56 23-64i28.60 8.27i5,92 71-24i17.28 30.92
FastGPT 0.3150.23 2.0430.86 0.0d410.00 3.1641.03 142105, 23513415 | 5.08
FastGPT-M | 56.04+11.84 17.07410.24 61514934 26.67+1324 0.8940.92 1.2940.68 |27.24
DNA-GPT | 29.82115.89 69.7810051 15.64112.02 83.47114.87 21.96119.50 82.22115.63 | 50.48
DNA-GPT-M | 86.80.5 37 96.76+1.16 59.33.15.10 99.29. 035 6191113 48 975141 .24 83.60

TPR@FPR-1%

Likelihood 75194139 97.5510.33 58.77+1.76 99.6210.11 86.4610.70 98.4240.25 |86.00
Likelihood-M 93.97i 1.27 98.68i0 .41 79.54i 1.12 99.70i0 .24 90.39i 1.08 98.94i0 .23 93.54
Log—Rank 78.39i1(23 97.77:&0‘32 58.22i2_03 99.61:&0‘19 85.68i0_67 98.67:&0‘24 86.39
Log-Rank-M | 934117 37  98.6910.25 76761145 9975:0.20 89.55:1.04  99.0310.07 |92.86

Entropy 27.52i1,24 64.65:&1.65 38.08:&1,32 49.04:&1,57 76.24;&1,05 82.45:&0.92 56.33
AUROC Entropy-M 55.30;&2,&5 80'07i1.89 56.54i2(20 6975:&2.62 83.33i1_09 90.46i1 17 72.58
DetectGPT | 75.6241.00 57.1841.01 77251066 61.9710.00 58.0141.75 20.4241 07 |58.41

DetectGPT-M 84.60:{11,69 9237:&5.63 69.47:&12,90 80.47i 13.77 75.78i9‘49 97.20;&1,23 83.32
FastGPT 23.504+1.39 60.4440.54 17.5540.47 66.7941.82 58.6940.89 88.7140.49 | 5261
FastGPT-M | 96251033 89971074 96041033 92121076 66721111 56.0411.75 |82.86
DNA-GPT | 97.3410.54 99.1710.30 95.8210.62 99.4510023 97.2140.52 99.3810.026 |98.06
DNA-GPT-M | 9942 15 99.78 1 0.09 97.3140.24 99.89.10.10 98.78 4+ 0.24 99.8210.12 |99.16

Table 12: Performance on Reuters dataset. The detection models are trained on text generated by

ChatGPT-turbo.
Metric |  Method | GPT4All ChatGPT Dolly ChatGLM Claude ChatGPT-turbo | Avg.

Likelihood 19.82:{:2_17 81.07i2_05 12-53i1.35 94.44j:1_10 19-42i3.17 90.273;1_07 52.93
Likelihood-M 66.62:&5,21 90.13i 1.15 38.62i2'74 95.96i 1.29 29.60i2.32 93.91:&1,03 69.14
Log—Rank 29»96:{:3_29 86.22:{:1_87 15.20;{:1_70 97-33:E0.64 24.58:{:3_35 93.20:{:1.13 57.75
Log-Rank-M 60.18:&8‘59 90.27i 1.98 331)7:&3,84 98.22:&0‘40 27.29:&5‘31 94.00i0‘40 67.17
Entropy 0.0940.11 2494125 2.041057 1.6940.54 4.36+1.81 9.6042 94 3.38
Entropy-M 5.11i2_70 16.18:(:4‘91 12.27:(:1,51 7.69:{:2_70 17.42:(:3,93 31.69;{:&61 15.06
DetectGPT | 0.0010.00 0.0010.00 0.0010.00 0.0040.00 0.6240.535 9.2410.¢5 | 1.64
DetectGPT-M | 6.2213 90 267111432 249:0.097 4041533 4181020  60.67114.55 | 17.39
FastGPT 0.31;&0,23 2'04i0.86 0.04:&0‘09 3.16i1 .03 1.42;&0,57 23.51:&4,15 5.08
FastGPT-M 0.00:&0_00 0-2210.28 0.04:&0,09 0.53:&0,33 0.6210,29 7.38:&2,42 1.47
DNA-GPT | 2.091120 4.3111.04 1.691121 5.5l11.67 1.9611.60 5.2d1009 | 347
DNA-GPT-M | 5821106 6441097 3561127 649.087 3781120 6671084 | 546

TPR@FPR-1%

Likelihood 75.203:1_39 97.55i0_33 58.77j:1_77 99.62j:0_11 86.46i0_70 98~42i0.25 86.00
Likelihood-M 94'79i0,60 98.72;&0,40 79.93i 1.44 99'72i0.16 90.83i0.53 98.96:&0,26 93.82
Log-Rank 78.3941.23 97.77410.32 58.2242.03 99.6140.19 85.68+10.67 98.674+0.24 |86.39
Log-Rank-M 92.21:&2‘45 98.63:&0‘23 76.27i 1.24 99.73:&0‘21 89.02:&0‘89 98.99:&0,27 92.48
Entropy 27.5241.94 64.65+1.65 38.0841.32 49.041+1.57 76.2441.05 82.4540.92 |56.33
Entropy-M 54.11;&3‘57 79.38:&1‘96 5594:&1,82 68.88:&2‘66 83.14:&1‘07 89.91i[)‘91 71.89

AUROC DetectGPT | 24.3841 20 42.8241.01 22.7540.06 38.0340.00 41.9941.75 79.5841.07 |41.59
DetectGPT-M 79.17j:7_47 89.36i4_32 59.50i5_37 71'41i7.62 73'92i8.27 96-53i1_14 78.32
FastGPT 23.50:&1,39 60.44:&0,54 17.55:{:0'47 66.79:{:1‘82 58.69:{:0,89 88.71:&0,49 52.61
FastGPT-M | 12.7341.55 35.9312.31 9.4340.56 36.4643.11 50.184500 76.284+71.01 |36.83
DNA-GPT 45.6241.73 63.8541.00 35.964+1.28 71.2447 14 43.564+1.49 70.634+1.33 |55.14
DNA-GPT-M | 79.05+1.13 87.3240.51 641341127 91424064 67.1411 48 89.371+0.79 79.74
Origin w/o MRF w/o Pos Ours
ChatGPT
0]
o
24 PaLM
>
<
Llama-2
70.0 72.5 75.0 77.5 80.0 72 75 78 81 84 64.5 66.0 67.5 48 54 60 66 72 60 62 64 66 67.5 70.0 72.5 75.0
Likelihood Log-Rank Entropy DetectGPT FastGPT DNA-GPT

Figure 23: Ablation results on the DetectRL dataset. The y-axis represents the LLM text on which
the detector was trained, and the x-axis represents the average performance across LLMs.
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Table 13: Performance on Reuters dataset. The detection models are trained on text generated by
ChatGLM.

Metric | Method | GPT4All ChatGPT Dolly ChatGLM Claude ChatGPT-turbo | Avg.

Likelihood 19.78i2,13 81‘07:&2‘05 12.49i1_33 94.44:&1,10 19.42;&3,17 90‘36:&1‘06 52.93
Likelihood-M | 41423 12 868412 44 31474522 98.5810.25 20.8412 97 915611 28 | 61.79
Log-Rank | 29.9613 00 86.2241.87 15.2041.70 97.3310.64 24.5843.35 93.204113 |57.75
Log-Rank-M 62.40:&4‘54 90.49i2_34 33-82i3.87 98.22:&0‘47 30-44i6A61 94.13:&0‘75 68.25
Entropy 4.891271  0.3610.71 10494475 0.44:10.37 0.581116  1.3812.31 | 3.02
Entropy-M 6.13:&4.30 17.20;&4,05 13.11i3,21 9-73i4.98 18.76i2464 33.87;&5,03 16.47
DetectGPT 0.0040.00 0.00+0.00 0.0040.00 0.0040.00 0.444.0.40 0.0440.09 0.08
DetectGPT-M | 40.53.¢ 43 14187 67 45.73 42 50 38.98.8.03 2.1840.53 5474215 24.51
FastGPT 0.31:“),23 2-O4i0.86 0.04i0,09 3.16:&1,03 1.42i0,57 23.51;&4,15 5.08
FastGPT-M 560411 84 17.07110.24 61.5119 34 26.67+13.24 0.8940.92 1.2940.68 27.24
DNA-GPT | 27.96415.31 66.84118 61 16.00112.45 85.51i12.70 20.49117.06 80.40113.3s | 49.53
DNA-GPT-M | 82.89:-1o 9493190 56311016 98981018 577811540 965311025 |8124

TPR@FPR-1%

Likelihood 75.19i1,39 97‘55:&0‘33 58.77i1_77 99.62:&0,11 86.46;&0,70 98‘42:&0‘25 86.00
Likelihood-M | 87155371 98441045 77921174 99951000 87.99:116  98.69:i0.06 |91.69
Log-Rank | 78.3941 03 97.77+0.32 58224203 99.6110.10 85.6810.67 98.6710.24 |86.39
Log-Rank-M 93.39i0 .75 98.68i0 .24 76.11 +1.61 99.75:&0‘ 19 89.70i0( 41 98.99i0 .25 92.77
Entropy 627611555 40.53111.30 561651000 49.39:1 74 33.61120.52 30.23125.75 | 45.45
Entropy-M 54.30i3,53 79.38;&1,33 55'89i1,46 69.08:&2.00 83.03i0444 89.77;&1,24 71.91
DetectGPT 75.6241.20 57.1841.91 77.2540.66 61.9740.90 58.0111 .75 20.4241 07 58.41
DetectGPT-M | 87.17-+¢.76 77.464 1 .85 861441 14 89.364+1.25 57.8341.55 64.4041 .89 |77.06
FastGPT 23.50i1,39 60.44:&0.54 17.55:&0,47 66.79:&1,82 58.69i0.89 88.71;&0,49 52.61
FastGPT-M 96.27i0 .33 89.98i0 .74 96.07i 0.33 92.13i() .76 66.74i 1.10 56. 05i 1.74 82.87
DNA-GPT 97.104+0.48 98.9440.26 95.5640.57 99.2940.17 96.9540.46 99.221¢.22 |97.85
DNA-GPT-M | 99335015 99721000 97151001 99821010 986810024 997710.10 |99.08

AUROC

Table 14: Performance on Reuters dataset. The detection models are trained on text generated by
Dolly.

Metric

Method | GPT4All ChatGPT Dolly ChatGLM Claude ChatGPT-turbo | Avg.

Likelihood 19.78i2,21 81.07:&2.05 12.40;&1,37 94.44:&1,10 19.38;&3,23 90.27:&1.07 52.89
Likelihood-M 59.96i5,45 88.58i2_29 35~42i2.84 95.91i 1.21 31-96i6_22 92.93i0_77 67.46
Log-Rank 6.62+11.36 17.24434.49 10.494242 19.4243562 4.9319.87 18.584+37.16 | 12.88
Log-Rank-M 66.76:&7,01 90.49i 1.80 35-42i4.26 98.09;&0,72 31.78i5(22 94.31;&0,39 69.47
Entropy 6.18£1.40 0.0d10.09 13.0711.76  0.2210.20 0.00+0.00 0.2240.00 | 3.29
Entropy-M | 2401074 7291500 9.91i100 3161261 9241767 161311502 | 8.02
DetectGPT 0.004+0.00 0.00+0.00 0.00+0.00 0.004+0.00 0.4440.40 0.04+0.09 0.08
DetectGPT-M | 429355 40 37.2043568 39.69+1914 5173137 94 6.274+7.20 31.564+34.65 | 34.90
FastGPT 3.5613.0s8 0.0410.00 12184670 0.0940.11  0.0940.11  0.0440.00 | 2.67
FastGPT-M | 61.6917 15 21781677 65241512 31784007 1384084 1511055 |30.56
DNA-GPT | 78.714s.56 91.4717.43 70.00110.40 95.5144.74 76.7618.45 94.8015.50 | 84.54
DNA-GPT-M | 93245557 98091151 79071720 99871027 85201666  983Lli1.3s |92.30

TPR@FPR-1%

Likelihood 75.19i1,39 97.55:&0.33 58.77:&1,76 99.62:&0,10 86.45;&0,70 98.42:&0.25 86.00
Likelihood-M 93.42i() .91 98.4Si0 .29 77.41 +1.04 99.67i()_ 16 90.57i0 .61 98.78i() .33 93.05
Log-Rank | 32.8412566 21.28438.17 43.514544 20.22439.67 28.30428.33 20.7713s.91 |27.82
Log-Rank-M 94.18i0 et 98.71;&0, 19 76.52i 1.64 99.73i0 .23 89.98i0( 70 99.02i0 .31 93.02
Entropy 72481124 35354165 61921132 50.964157 23.7641.05 17.5510.02 |43.67
Entropy-M | 49.8042.95 56.16426.44 52.47+1.86 53.094+16.63 56.78131.30 58.334137.31 |54.44
DetectGPT 75.624+1 .20 57.1841 .01 77.2540.66 61.974+0.90 58.01+1 .75 20.4241 o7 58.41
DetectGPT-M | 80.34151.91 732212590 81.89111.41 91041524 57.53118.26 66.30130.95 |75.05
FastGPT | 76.5011 30 39.5640.50 82.454047 33.211182 41.311080 11.2910.40 |47.39
FastGPT-M | 96471030 90231075 962410437 92371072 67041107 56341100 |83.12
DNA-GPT 99.1940.21  99.7440.09 98.90+0.24 99.83+0.07 99.2140.16 99.80+0.08 |99.45
DNA-GPT-M | 99.66:0.10 99841013 98.8110.922 99911010 99471020 99.8610.14 |99.59

AUROC
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Figure 24: Ablation results on the Reuters dataset. The y-axis represents the LLM text on which the
detector was trained, and the x-axis represents the average performance across LLMs.
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Table 15: Performance on Reuters dataset. The detection models are trained on text generated by

Claude.
Metric |  Method | GPT4All ChatGPT ~ ChatGPT-turbo ~ ChatGLM StableLM Claude | Avg.
Likelihood 19.8242.17 81.07+2.05 12.53+1.35 944411 10 19.424317 90.3641.06 | 52.94
Likelihood-M 60.18:&5.26 84.84:&291 32-1312,78 9147811.51 34.5814458 91.47:&1434 65.83
Log—Rank 29.96:&3,29 86‘22:&1.87 15‘20i1'70 9733:&0,64 24.58;&3,35 93‘20i1.13 57.75
Log-Rank-M 71.33;&4,00 89.82:&2‘47 37.60:&1‘64 97.07:&1'44 34.8415,56 94.36:&0‘87 70.84
Enlropy 0.09:&0‘11 2~49i1.25 2.04io_57 1.69i0_54 4.36i1(gl 9.60:&2‘94 3.38
TPR@FPR-1% Entropy-M 5511256 174245 92 13.24 15 62 79142 58 18.00+4 28  34.091g.23 | 16.03
DetectGPT 0.0040.00 0.0040.00 0.0040.00 0.0040.00 0.44 1040 0.04+0.09 0.08
DetectGPT-M | 39.91 15048 51.60422.14 2880420.74 574743518 6.0043 22 78.5315.07 | 43.72
FastGPT 0431:&0_23 2-0410.86 0.04:&0_09 3.16:&1_03 1.42:&0_57 23.51:&4_15 5.08
FastGPT-M 59.96:&10.36 33-11128.98 56.09:&16.45 42.44:&27,14 8.62115.04 19.64136.52 36.64
DNA-GPT 3.6441 52 6.58+1.66 2.184+1.15 7.78+0.95 2.444 5 03 7.2041.15 4.97
DNA-GPT-M 6.67:&2‘96 7.16:&3,18 4.22:&2,00 7-51:&3426 5.38:&2,87 7.16:&3‘17 6.35
Likelihood 75.1941.39 97.5540.33 58.77+1.77 99.6210.10 86.454+0.70 98.424¢.25 | 86.00
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Figure 25: Detection performance of AUROC under different transition center .
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Figure 26: Detection performance of TPR @FPR-1% under different transition center .
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Figure 27: Detection performance of AUROC at different numbers of MRF layer iterations.
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Figure 28: Detection performance of TPR @FPR-1% at different numbers of MRF layer iterations.
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Figure 29: Comparison with NN-based methods. The detector used is Log-Rank.
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Figure 30: Comparison with NN-based methods. The detector used is Entropy.
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Figure 31: Comparison with Model-based detectors. Detectors are trained on GPT4All (Essay and
Reuters) and Llama-2-70b (DetectRL).

Table 16: Running time (s) of training and inference phases.

Method ‘ Train ‘ Inference

| Essay Reuters DetectRL | Essay  Reuters DetectRL

Likelihood 13.58 12.77 12.40 61.21 61.05 59.34
Likelihood-M | 15.01 14.19 13.10 72.67 72.38 61.66

Log-Rank 15.98 14.38 14.61 75.60 72.99 66.20
Log-Rank-M 17.40 15.81 16.29 87.55 72.06 82.21
Entropy 13.26 12.93 13.79 64.49 63.69 63.19
Entropy-M 14.69 14.38 15.61 73.66 72.80 72.63

DetectGPT 204.32  216.36 370.44 924.63 982.55 1672.85
DetectGPT-M | 206.44  218.73 373.48 929.46 984.70 1682.78
FastGPT 60.21 58.67 52.97 279.50 272.18 240.20
FastGPT-M 63.00 61.47 55.76 286.44 284.75 254.85
DNA-GPT 469.10  532.02 267.84 2113.65 2398.61 1207.18
DNA-GPT-M | 47142 53447 271.11 2125.17 2405.37  1221.74

31



	Introduction
	A Unified Perspective on Metric-Based Detection
	Relation between Contextual Token-Level Detection Scores
	Markov-Informed Detection Score Calibration
	Markov Random Field for MGT Detection
	Mean Field Approximate in MGT Detection

	Experiments
	Performance Comparison
	Ablation Study
	MRF vs. Neural Network

	Conclusion
	More Discussion of the Proposed Method
	Contribution
	Limitation

	Related Work
	Watermark-based Detection
	Model-based Detection
	Metric-based Detection

	Proof of Theorem 1
	Experimental Details
	Datasets
	Baselines
	Experimental Scenario
	Parameter settings

	More Experimental Resuls
	More Results of Token Score Distribution before and after Enhancement
	More Results of Context Token Relationships
	More Performance Comparison
	More Results of Ablation Study
	Sensitivity Analysis
	More Results Comparing with Neural Network Calibration
	Comparison with Model-based Detectors
	Running Time

	The Use of Large Language Models

