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ABSTRACT

While machine-generated texts (MGTs) offer great convenience, they also pose
risks such as disinformation and phishing, highlighting the need for reliable de-
tection. Metric-based methods, which extract statistically distinguishable fea-
tures of MGTs, are often more practical than complex model-based methods that
are prone to overfitting. Given their diverse designs, we first place representa-
tive metric-based methods within a unified framework, enabling a clear assess-
ment of their advantages and limitations. Our analysis identifies a core challenge
across these methods: the token-level detection score is easily biased by the in-
herent randomness of the MGTs generation process. To address this, we theo-
retically and empirically reveal two relationships of context detection scores that
may aid calibration: Neighbor Similarity and Initial Instability. We then pro-
pose a Markov-informed score calibration strategy that models these relation-
ships using Markov random fields, and implements it as a lightweight compo-
nent via a mean-field approximation, allowing our method to be seamlessly in-
tegrated into existing detectors. Extensive experiments in various real-world sce-
narios, such as cross-LLM and paraphrasing attacks, demonstrate significant gains
over baselines with negligible computational overhead. The code is available at
https://anonymous.4open.science/r/MRF-Enhance.

1 INTRODUCTION

In recent years, generative AI, represented by large language models (LLMs) (Achiam et al., 2023;
Radford et al., 2019), has advanced rapidly, and the machine-generated texts (MGTs) they produce
often match human writing in fluency, coherence, and diversity. While this technological break-
through offers immense opportunities, it has also triggered widespread societal concerns, such as
the spread of disinformation (Vykopal et al., 2024), the violation of intellectual property rights (Yu
et al., 2023b), and phishing attacks (Hong, 2012). Therefore, the research and development of MGT
detection technologies hold significant theoretical and practical value in uncovering the distinct pat-
terns of generated text and ensuring a trustworthy AI environment.

An effective detection method is to identify LLM’s watermarks (Hou et al., 2024), but this requires
injecting watermarks into the LLM, which is often impractical due to high access permissions.
Therefore, passive detection methods, including model-based and metric-based methods, have gar-
nered significant attention. Model-based methods, which use a set of human- and machine-generated
texts to train a binary classifier, such as OpenAI detector (Solaiman et al., 2019), ChatGPT detector
(Guo et al., 2023), SeqXGPT (Wang et al., 2023), and CoCo (Liu et al., 2022). However, such mod-
els are often too complex, leading to overfitting to the training data. Instead, metric-based methods
exploit the inherent statistical biases of LLM to discriminate MGTs, which is model-agnostic and
has better generalization properties. These methods use metrics such as log-likelihood, log-rank,
and entropy. Furthermore, methods such as DetectGPT (Mitchell et al., 2023), DNA-GPT (Yang
et al., 2024), and SimLLM (Nguyen-Son et al., 2024) detect MGTs by comparing the differences
between a given text and a perturbed, regenerated, or continued text from an alternative model.

Obviously, metric-based methods exhibit diverse designs. Therefore, this paper first systematically
examines several representative approaches, including Log-Likelihood (Solaiman et al., 2019), Log-
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Rank (Mitchell et al., 2023), Entropy (Gehrmann et al., 2019), DetectGPT (Mitchell et al., 2023),
Fast-DetectGPT (Bao et al., 2024), and DNA-GPT (Yang et al., 2024), and situates them within
a unified framework (Section 2). Our analysis reveals that they share a threshold-based detection
criterion, with only minor differences, such as the inclusion of auxiliary data (e.g., perturbed texts).
This offers a theoretical basis for understanding their core mechanisms, strengths, and limitations.

Based on the unified framework, we summarize the core challenge of metric-based methods (Section
2): the imprecision of token-level detection scores. Specifically, since these methods make decisions
based on a threshold, their effectiveness is directly tied to score precision. However, randomness
introduced by the LLM sampling mechanism can violate their underlying assumptions, leading to
biased scores with low discrimination, as shown in ”w/o refine” in Fig. 1 (more results can be found
in Appendix E.1). Moreover, they tend to derive an overall detection score by naively aggregating
token-level scores, failing to correct the underlying imprecision. Therefore, calibrating the token-
level detection score is essential for improving overall detection performance.

w/o calib.

ChatGPT

GPT-turbo

ChatGLM

Claude

StableLM

GPT4All
w calib.

ChatGPT

GPT-turbo

ChatGLM

Claude

StableLM

GPT4All

Machine Human

Figure 1: Distribution of token scores obtained by the De-
tectGPT method without and with score calibration in the
Essay dataset. The proposed calibration method enhances
the discriminative nature of the token scores.

Given that detection scores are tied to
tokens and the LLM generation pro-
cess induces dependencies among to-
kens (Achiam et al., 2023), context
tokens’ detection scores may have
relationships that are easy to over-
look. Revealing and modeling these
relationships may help calibrate these
scores. Accordingly, we theoreti-
cally and empirically reveal two rela-
tionships among detection scores of
context tokens (Section 3): Neigh-
bor Similarity, where adjacent to-
kens exhibit similar detection scores, and Initial Instability, where the detection scores of initial
tokens are unstable.

Finally, building on these two relationships, we propose a Markov-informed score calibration
method to enhance MGT detection (Section 4). Our method models the identified relationships
through Markov random fields and, via a mean-field approximation, implements it as a lightweight
iterative neural network. As shown by the more discriminative detection scores in the ”w refine”
method in Fig. 1, the proposed method boosts the discriminative nature of the scores. Notably, our
method can be seamlessly stacked on top of existing detectors without architectural changes, pro-
viding flexibility. Compared with complex model-based approaches, our method introduces only a
negligible 2×2 parameterization, making its computational delay negligible and less prone to over-
fitting. Extensive experiments demonstrate our method’s enhanced effectiveness. Our contributions
can be summarized as follows:

• We view existing metric-based detection methods through a unified lens, which facilitates precise
comparison and enables potential improvements.

• We theoretically and empirically demonstrate that token-level detection scores exhibit neighbor
similarity and initial instability, offering avenues for improved detection.

• We propose a Markov-informed score calibration method and, via a mean-field approximation,
implement it as a lightweight component that can be seamlessly integrated into existing detectors
to further unlock their potential.

• We conduct extensive experiments across three datasets to demonstrate superior performance in
diverse scenarios, including cross-LLM, cross-domain, mixed-text, and paraphrase attacks.

2 A UNIFIED PERSPECTIVE ON METRIC-BASED DETECTION

Although model-based methods have shown competitive potential in specific domains, they are often
too complex, leading to a tendency to overfit their training data. This limitation requires them to re-
train or fine-tune for newly released LLMs, which hinders their generalizability. In contrast, metric-
based methods extract discriminative features from MGT, and their model-agnostic nature provides
superior generalization potential. Given the diverse implementations of representative metric-based
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Table 1: Comparing existing metric-based methods from a unified view. Here, s is the text to be
detected containing N tokens, s′ is the perturbed text generated by DetectGPT, s̃ and ŝ are the
regenerated texts of Fast-DetectGPT and DNA-GPT, respectively. Function µ(·) and σ(·) represent
the mean and standard deviation of the given set, respectively.

Method Perturb Sample Score Detection

Log-likelihood / s 1
N−1

∑N
t=2 log p(st|s<t) score > ϵ

Log-Rank / s 1
N−1

∑N
t=2 rank(p(st|s<t)) score > ϵ

Entropy / s − 1
N−1

∑N
t=2

∑
v∈V p(v|s<t) log p(v|s<t) score > ϵ

DetectGPT {s′1, s′2, ..., s′n} s
1

N−1

∑N
t=2 p(st|s<t)−µ({ 1

N−1

∑N
t=2 p(s′i,t|s

′
i,<t)}i)

σ({ 1
N−1

∑N
t=2 p(s′i,t|s′i,<t)}i)

score > ϵ

Fast-DetectGPT / {s, s̃1, ..., s̃n}
1

N−1

∑N
t=2 p(st|s<t)−µ({ 1

N−1

∑N
t=2 p(s̃i,t|s,s̃i,<t)}i)

σ({ 1
N−1

∑N
t=2 p(s̃i,t|s,s̃i,<t)}i)

score > ϵ

DNA-GPT / {s, ŝ1, ..., ŝn} 1
N−1

∑N
t=2 log p(st|s1:t−1)− 1

n

∑n
i=1

1
Nt−1

∑Nt

t=2 log p(ŝi,t|ŝi,1:t−1) score > ϵ

methods such as Log-Likelihood (Solaiman et al., 2019), Log-Rank (Mitchell et al., 2023), Entropy
(Gehrmann et al., 2019), DetectGPT (Mitchell et al., 2023), Fast-DetectGPT (Bao et al., 2024), and
DNA-GPT (Yang et al., 2024), we first provide a systematic examination of them from a unified
perspective. This facilitates a deeper understanding of their mechanisms and allows for a fair com-
parison of their strengths and weaknesses. As illustrated in Table 1, we compare these methods
across data, score calculation, and detection dimensions.

• Data. Log-likelihood, Log-Rank, and Entropy are computationally efficient as they rely solely
on the original input text s. However, the detection error based on a single text may be large,
because the randomness inherent in the LLM sampling mechanism may cause the MGT to deviate
from these methods’ underlying assumptions, e.g., Log-Rank assumes that the generated tokens
have high rankings. In contrast, DetectGPT, Fast-DetectGPT, and DNA-GPT incorporate multiple
perturbed (i.e., s′) or regenerated (i.e., s̃ and ŝ) samples, which mitigates the errors caused by
randomness. However, this comes at the cost of a significant increase in computational overhead.

• Score Calculation. Although these methods appear to calculate scores differently, they all tend
to directly aggregate token scores to obtain the final text score, typically through summation.
As discussed, the randomness introduced by the LLM generation process may cause token-level
scores to be biased. Therefore, the direct aggregation of these potentially imprecise token scores
may result in an inaccurate final detection score.

• Detection. These methods all employ threshold-based detection mechanisms, whose effectiveness
relies heavily on the accuracy of their calculated scores. As previously discussed, two factors
compromise this accuracy: (1) the inherent randomness of LLM-generated text introduces bias
into score calculation, and (2) direct score aggregation fails to mitigate this bias. As a result, their
detection performance is often unsatisfactory.

In summary, to enhance detection, existing methods incorporate more textual information (e.g., re-
generated texts in DetectGPT and Fast-DetectGPT) and use different score calculation strategies
(e.g., the Likelihood difference between the detected and regenerated text in DNAGPT). However,
as we discussed, they fail to address the underlying token-level errors caused by inherent random-
ness, limiting their detection potential. Considering that detection scores are tied to tokens and the
LLMs’ generative mechanism induces dependencies among tokens, revealing and modeling the re-
lationships between tokens may help correct score errors and thus improve detection effectiveness.

3 RELATION BETWEEN CONTEXTUAL TOKEN-LEVEL DETECTION SCORES

To understand the relationship between context tokens’ detection scores, following existing work
(Liu et al., 2023), we consider the token generation process of a simplified model: a single-layer
transformer model with single-head attention:

xt+1 = F (at) , where at = softmax
(
1/t · xtWQW

⊤
KX⊤

t−1

)
Xt−1WV WO. (1)

xt ∈ R1×d is the embedding of token st, and d denotes the embedding dimension. The ma-
trix Xt−1 ∈ R(t−1)×d is stacked by the embeddings x1, . . . , xt−1, where the j-th row is xj .

3
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Figure 2: The detection score distances of neigh-
bors at different hops in the Essay dataset. Log-
likelihood and Log-Rank score are used here.
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Figure 3: The score distances of 1-hop neighbors
at different positions in the Essay dataset. Log-
likelihood and Log-Rank score are used here.

WQ,WK ,WV ∈ Rd×d and WO ∈ Rd×d are the attention weights. Following the attention block,
an MLP block, denoted as F : R1×d → R1×d, is applied, and it is a two-layer network with skip
connections:

F(x) = x+W2 relu (W1x) .

As shown in Table 1, the detection score of token st is usually the function of st (i.e., xi), and xi

is related to the attention scores αt−1 = softmax
(
1/t · xtWQW

⊤
KX⊤

t−1

)
in Eq. (1). The following

theorem will reveal the relationship between attention scores, which in turn help us understand the
relationship between detection scores of context tokens.
Theorem 1. Let λK , λQ, λV , λO be the largest singular values of parameters WK ,WQ,WV ,WO,
respectively, and let W = WV WOWQW

⊤
K . For the transformer defined in Eq. (1), assuming

normalized inputs (∥xt∥2 = 1 for all t) and constants c, ϵ > 0, consider atx
⊤
t+1 ≥ (1 − δ) ∥at∥2

with δ ≤
(

cϵ
λQλKλV λO

)2

. If xℓ satisfies xℓWx⊤
ℓ ≥ c and xℓWxℓ ≥ ϵ−1 maxj∈[ℓ],j ̸=ℓ xjWx⊤

ℓ , then

αt+1,l ≤
exp (Cl · αt,l + η)

exp (Cl · αt,l + η) +
∑

j ̸=l exp (Cj · αt,j − η)
,

αt+1,l ≥
exp (Cl · αt,l − η)

exp (Cl · αt,l − η) +
∑

j ̸=l exp (Cj · αt,j + η)
,

where

Cj =
xjWxT

j

t |at|2
, and η =

(1 +
√
2)ϵxjWxT

j

(t+ 1) |at|2
.

The proof can be found in Appendix C. This theorem establishes the upper and lower bounds for
the attention score at step t+ 1, which are determined by the attention scores at step t. This finding
creates a positive feedback loop analogous to simulated annealing (Kirkpatrick et al., 1983), where
high attention scores at the current step lead to high scores at the next, and vice versa. Meanwhile,
it ensures that the attention score remains stable over time throughout the generation process.

As the detection scores of tokens are the function of their attention values, this theorem reflects two
relationships between detection scores of context tokens: (1) Neighbor Similarity. Compared with
other tokens, detection scores of neighbor tokens tend to be more similar. (2) Initial Instability.
Compared with the subsequent tokens, the detection scores of initial tokens are unstable (i.e., fluctu-
ate greatly). In addition to theoretical results, we further verify these two relationships empirically.

First, to empirically validate the neighbor similarity property, we evaluated the detection score dif-
ference between the token st and its k-hop neighbors (i.e., tokens st−k and st+k if existing). As
illustrated in Fig. 2 (more results can be found in Appendix E.2), there is a clear positive correlation
between the detection score distance and the hop, and adjacent tokens have the highest detection
score similarity; thereby providing empirical evidence for our theoretical finding.

Second, to validate the initial instability property, we analyzed the detection score difference be-
tween adjacent tokens at different percentage positions. Fig. 3 illustrates that the score difference
is substantially larger for tokens at the beginning of the text and progressively decreases, eventually
stabilizing. More results can be found in Appendix E.2. Considering our established finding on
neighbor similarity (i.e., adjacent scores should be highly similar), a high detection score difference
at the sequence beginning indicates a significant instability in detection scores of initial tokens.
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4 MARKOV-INFORMED DETECTION SCORE CALIBRATION

Based on the revealed relationships, this section uses an MRF to capture them (Section 4.1) and
adopts the mean field approximation to model the MRF model as a lightweight component stacked
on existing detectors to calibrate detection scores (Section 4.2), thereby enhancing detection.

4.1 MARKOV RANDOM FIELD FOR MGT DETECTION

We capture these two types of relationships by modeling the joint probability distribution of text’s
token detection scores through pairwise Markov Random Fields (pMRF). Specifically, for each to-
ken st in text s, we assign a binary random variable yst , where yst = 0 and yst = 1 indicate a
human- or machine-generated token 1, respectively, as measured by the detection score of the token.
Let ys denote the label set for all tokens in text s, the pMRF over these tokens can be formalized as
a Gibbs distribution: P (ys) =

1
Z exp(−E(s, ys)), where Z is a normalizing constant and E(s, ys)

is the energy function. Our objective is to maximize the posterior probability of the token labels ys
by minimizing the global energy function E(s, ys). The energy function typically consists of two
components: the unary potential ΨU and the pairwise potential ΨP :

E(s, ys) =
∑N

t=1
ΨU (st, yst) +

∑N

t=1

∑
sj∈N (st)

ΨP

(
yst , ysj

)
,

where N (st) denotes the adjacent tokens of token st, i.e., N (st) = {st−1, st+1} (if existing).

Unary potential ΨU (st, yst) quantifies the cost of assigning label yst to token st. We let
ΨU (st, yst) = − log p(st), where p(st) is the output probability from the original detector. For
detectors without probability output, it is measured by the 0-1 normalized score of token st.

Pairwise potential ΨP

(
yst , ysj

)
models the similarity in detection scores between adjacent tokens.

A penalty is applied if two adjacent tokens are assigned different labels; otherwise, a reward is given.
This enforces label smoothness and captures the neighbor similarity property:

ΨP

(
yst , ysj

)
= w · (2 · I(yst ̸= ysj )− 1), (2)

where I(·) is the indicator function, and the reward and penalty factor w ≥ 0. This implies an
energy penalty of w when adjacent tokens have different labels; otherwise, the reward is −w.

To model the initial instability property, we introduce a positional weighting function β(t) in the
binary potential. This function assigns lower weights to binary potentials at earlier positions, thereby
mitigating the amplification of energy errors caused by unstable initial neighbor tokens. In this paper,
we define the positional weighting function β(t) as a Sigmoid function to ensure a smooth transition
of weights, and the revised binary potential is then given by:

ΨP

(
ysi , ysj

)
= β(j) · w · (2 · I(ysi ̸= ysj )− 1), with β(t) =

1

1 + exp(−(t− t0))
, (3)

where t0 is the weighted center, effectively suppressing the pairwise potential of tokens before t0.

4.2 MEAN FIELD APPROXIMATE IN MGT DETECTION

Given the MRF model, this subsection details how to model it as a lightweight component stacked
on the original detector through mean field approximation theory, thereby enhancing detection.

In the MRF posterior probability P (ys) = 1
Z exp(−E(s, ys)), the partition function Z =∑

ys
exp(−E(s, ys)), which is obtained by adding over all possible combinations of ys. For a

text with N tokens, there are 2N combinations, making exact computation of P (ys|s) infeasible.
Inspired by existing work (Deng et al., 2022), we employ mean-field theory for approximate infer-
ence. Its core idea is to use a simpler, factorized distribution Q (ys) =

∏N
t=1 Qst (yst) to approx-

imate the true joint distribution P (ys), achieved by minimizing the KL divergence between these
two distributions:

D(Q∥P ) =Eys∼Q [logQ (ys)]− Eys∼Q [logP (ys)]

=
∑N

t=1
Eyst∼Qst

[logQst (yst)] + Eys∼Q [E (s, ys)] + logZ.
(4)

1Note that token labels are not absolute but depend on the context in which they appear. For example, ”the”
can be a human token or a machine token depending on the text.
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The first equation is the definition of KL divergence, and the second is obtained by subsituting P (ys)
and Q(ys). Then, we define a Lagrangian composed of all terms involving Qst (yst) in D(Q∥P ):

Lst(Q) = Qst (yst) logQst (yst) + Eys∼Q [E (s, ys)] + λ(
∑

yst

Qst (yst)− 1). (5)

Here, the term involving Lagrange multiplier λ assures that Qsi is a proper probability distribution.
Now we take derivatives of Eq. (5) with respect to Qst(yst) and set the corresponding derivative to
0, then we get the optimal Qst(yst):

Qst(yst) =
1

z
exp(ΨU (st, yst)−

∑
sj∈N (st)

Eysj
∼Qsj

[
ΨP (yst , ysj )

]
). (6)

We can express the single token calculation in Eq. (6) as a matrix form of multiple token calcula-
tions, which involves three steps:

• Unary potential calculation. Corresponding to the unary potential ΨU (st, yst) of token st being
− log p(si), we can express the unary potential of text s in matrix form − logH , where the i-th
row of H corresponds to token si’s prior probability and the two columns correspond to identity
labels (HGT and MGT), that is, H = [1− p(s), p(s)], where p(s) = [p(s1), ..., p(sN )]⊤.

• Pairwise potential calculation. For the revised pairwise potential (i.e., Eq. (3)), we can define the
weighted adjacency matrix as Acorr, where Acorr

t,t+1 = β(t+ 1) for all t = 0, ..., N − 2, Acorr
t−1,t =

β(t− 1) for all t = 1, ..., N − 1, and 0 otherwise. Then the matrix form of the weighted pairwise

potential is AcorrQ

[
−w w
w −w

]
. This update strategy enforces that all relationships receive

the same reward or penalty. However, the influence of MGT neighbors and HGT neighbors is
intuitively different, so this kind of reward and punishment mechanism with the same weight will
limit the expressive ability of MRF. To this end, we relax the weights for different relationships

and get the pairwise potential as AcorrQ(Wmrf ⊙
[

−1 1
1 −1

]
), where Wmrf ∈ R2×2

+ .

• Normalization. The operator 1
z exp(·) in Eq. (6) can be naturally modeled as Softmax function.

In summary, we get the following update rule for tokens’ detection scores:

Q = softmax
(
logH −AcorrQ

(
Wmrf ⊙

[
−1 1
1 −1

]))
. (7)

Notably, Eq. (7) shows that the computation of Q relies on Q itself; hence, iterative computation is
required. Initializing the initial Q to H , we can get the iterative version as follows:

Qt = softmax
(
logQt−1 −AcorrQt−1

(
Wmrf ⊙

[
−1 1
1 −1

]))
, where Q0 = H. (8)

Algorithm 1 Markov-informed Enhancement Framework
1: Input: Text s to be detected, the original detector f1◦

f2, iteration steps T , MRF weights W .
2: Construct Acorr based on s.
3: Get each token si’s detection score from the detection

score calculation module f1, and set Q0 = H .
4: for t = 0 to T − 1 do
5: Update Q according to Eq. (8).
6: end for
7: Calculate Qfinal according to Eq. (9).
8: Return detection score f2(Qfinal) of text s.

In addition to using position weight
function β(t) in pairwise potential to
reduce the impact of initial unstable
scores, we also use this position weight
function on the final calibrated scores
QT of T iterations to reduce their im-
pact on detection:

Qfinal = [β(1), ..., β(N)]⊙QT . (9)

The MRF-informed calibration compo-
nent is then directly stacked on the orig-
inal detector to calibrate the token de-
tection scores. Specifically, if the de-
tector is formalized as a combination of the detection score calculation module f1 and the de-
tection module f2, i.e., f(s) = f1 ◦ f2(s), the MRF-informed component of Eq. (9) is de-
fined as fmrf , then the enhanced detector is fenh.(s) = f1 ◦ fmrf ◦ f2(s). The complete in-
ference process is shown in Alg. 1. To learn weights W , we use supervised training: L =
−
∑

s∈Dtrain
(Ys log fenh.(s) + (1− Ys) log(1− fenh.(s))).

6
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Table 2: Performance concerning AUROC (%) on Essay (left) and DetectRL (right).
Method

Essay (Training Text: GPT4All) DetectRL (Training Text: Llama-2-70b)

GPT4All ChatGPT Dolly ChatGLM Claude ChatGPT-turbo Avg. Llama-2-70b ChatGPT Google-PaLM Avg.

Likelihood 96.16±0.30 98.79±0.19 90.90±1.33 99.29±0.25 92.76±0.23 99.13±0.19 96.17 78.58±0.41 66.61±0.99 71.42±0.49 72.20
Likelihood-M 98.58±0.14 99.47±0.11 94.59±0.96 99.54±0.18 94.82±0.36 99.72±0.13 97.79 87.61±0.48 73.70±0.58 81.21±1.21 80.84

Log-Rank 96.55±0.31 98.95±0.13 90.08±1.28 99.36±0.13 92.01±0.20 99.24±0.15 96.03 79.67±0.46 65.85±0.94 70.66±0.40 72.06
Log-Rank-M 98.57±0.06 99.41±0.09 93.82±0.91 99.55±0.08 92.91±0.30 99.64±0.10 97.32 90.20±0.44 75.32±0.91 84.34±0.61 83.29

Entropy 74.19±1.62 89.49±0.34 73.26±1.48 84.11±0.77 86.58±0.66 95.94±0.35 83.93 66.21±0.88 63.09±1.05 60.73±0.91 63.34
Entropy-M 83.52±0.73 93.28±0.15 81.11±0.91 91.44±0.35 87.96±0.48 96.75±0.17 89.01 69.97±0.90 65.26±1.36 65.82±0.96 67.02
DetectGPT 50.81±0.58 46.40±0.77 57.48±0.84 50.41±1.70 41.54±0.60 17.90±1.25 44.09 52.37±0.59 50.22±0.60 43.19±1.41 48.60

DetectGPT-M 95.37±2.42 96.20±2.48 85.39±7.02 95.97±2.93 80.29±10.43 98.49±0.78 91.95 78.81±3.68 64.15±4.48 75.90±4.53 72.95
FastGPT 64.63±1.53 67.68±1.70 47.17±1.53 71.08±1.51 75.31±0.90 88.62±0.67 69.08 67.72±1.02 58.50±1.22 56.68±1.21 60.97

FastGPT-M 87.22±3.40 91.56±3.33 82.61±17.98 95.36±0.48 59.29±1.89 63.48±18.13 79.92 66.55±3.36 55.19±3.26 63.30±4.37 61.68
DNA-GPT 98.08±0.23 96.56±0.28 92.78±0.68 98.00±0.13 89.92±0.29 96.22±0.27 95.26 71.91±0.91 64.14±0.91 67.32±0.94 67.79

DNA-GPT-M 99.68±0.07 98.88±0.06 97.04±0.49 99.26±0.05 94.73±0.28 98.85±0.09 98.07 74.39±1.02 64.36±1.08 70.50±1.03 69.75
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Figure 4: The performance improvement of the proposed method on Likelihood and Log-Rank.
Values greater than 0 indicate an enhanced effect.

Computational Complexity. The MRF layer can be computed using sparse-dense matrix multipli-
cation. For a text containing N tokens, the number of iterations is T, resulting in a computational
complexity of O(NT ), which is negligible for calculating the detection score. We will also empiri-
cally verify the efficiency of our method in Appendix E.8.

5 EXPERIMENTS

Dataset. We conducted experiments on three widely used public datasets: Essay (Verma et al.,
2024), Reuters (Verma et al., 2024), and DetectRL (Wu et al., 2024). The Essay and Reuters
datasets collect machine text generated by GPT4All, ChatGPT, ChatGPT-turbo, ChatGLM, Dolly,
and Claude. The DetectRL dataset not only includes pure machine-generated text by Google-PaLM,
ChatGPT, and Llama-2-70b, but its unique mixed, paraphrased, and cross-domain texts also allow
us to more comprehensively evaluate the model’s performance in complex real-world scenarios. For
a complete description of the datasets, please refer to Appendix D.1.

Baselines. We select the following metric-based methods for comparison and enhancement:
Log-Likelihood (Likelihood) (Solaiman et al., 2019), Log-Rank (Mitchell et al., 2023), Entropy
(Gehrmann et al., 2019), DetectGPT (Mitchell et al., 2023), Fast-DetectGPT (FastGPT) (Bao et al.,
2024), and DNA-GPT (Yang et al., 2024). The versions equipped with the proposed method are
defined with ’M’ suffix, e.g., Likelihood-M and Log-Rank-M. Furthermore, although we focus on
metric-based methods, we also compare with model-based methods ChatGPT-D (Guo et al., 2023)
and MPU (Tian et al., 2024). Their details can be found in Appendix D.2.

Metrics. First, as a binary classification problem, we use the area under the receiver operating
characteristic curve (AUROC). Second, following (Tufts et al., 2024; Fraser et al., 2025; Hans et al.,
2024), we recognize the negative impact of misclassifying human text as machine-generated text.
Therefore, another important evaluation metric is the true positive rate (TPR) at a low false positive
rate (FPR). Specifically, we measure the TPR at an FPR of 1%, denoting this as TPR@FPR-1%.

5.1 PERFORMANCE COMPARISON

In this section, we evaluate the enhancement effectiveness of the proposed method in various real-
world scenarios, including cross-LLM, cross-domain, detecting mixed machine text, and resisting
paraphrase attacks. Details of these scenarios are provided in Appendix D.3.
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Figure 5: Detection performance concerning AUROC under different LLM mixed texts. All detec-
tors are trained on Llama-2-70b texts.
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Figure 6: Detection performance concerning AUROC under different paraphrasing texts (Dipper
and Polish). All detectors are trained on Llama-2-70b texts.

Performance across Different LLMs. Table 2 reports AUROC for detectors trained on GPT4All
(Essay) and Llama-2-70b (DetectRL) and evaluated on texts from various LLMs. TPR@FPR-1%
results are provided in Table 3 in the Appendix. Besides, results of detectors trained on other LLM
texts and on the Reuters dataset appear in Tables 4–15 of the Appendix. The proposed method yields
significant gains for nearly all baselines. For example, on Essay, it raises Likelihood from 52.4%
to 77.86% (+25.46%). Encouragingly, our method also benefits weak detectors: DetectGPT signif-
icantly improves from 0.15% to 37.18% (+37.03%), suggesting that the assumptions underlying its
scoring are reasonable and that underperformance mainly stemmed from score estimation error. Fi-
nally, detection performance on texts from the same LLM is not always superior to cross-LLM. For
example, on Essay, performance on ChatGLM is particularly strong and even exceeds the intra-LLM
case of GPT4All, possibly because ChatGLM texts are more discriminative.

Performance across Different Domains. We evaluate cross-domain performance in four high-risk
domains: arXiv, Writing Prompts, XSum, and Yelp Reviews. Results are summarized in Fig. 4; ad-
ditional enhanced results for more detectors under cross-domain settings are provided in Fig. 19 and
Fig. 20 of the Appendix. In most settings, detectors equipped with our strategy show substantially
stronger cross-domain generalization. We attribute this to calibrating the detection score with only
a few carefully designed parameters (a 2x2 reward–penalty coefficient matrix), which helps prevent
overfitting and thereby improves out-of-domain detection.

Performance against Mixed Texts. In practice, human–AI collaboration is pervasive, leading to
widespread mixed human–machine text. We therefore evaluate the proposed strategy for mixed-text
detection. Two training strategies are considered: training on the original text and training on the
mixed text. Results concerning AUROC are shown in Fig. 5, with TPR@FPR-1% shown in Fig. 21
of the Appendix. In most settings, the proposed strategy enhances the detector’s ability to recognize
mixed-text. Moreover, comparing training on original versus mixed text shows that simply training
on mixed text does not improve the detection ability of mixed text, highlighting the focus of mixed
text detection research.

Performance against Paraphrasing Attacks. Prior work (Sadasivan et al., 2023) shows that MGT
detection is typically vulnerable to paraphrasing attacks, where an adversary rewrites a passage
without altering its semantics to evade detection. We therefore assess the robustness gains of our
framework on the Dipper and Polish paraphrase attacks provided by DetectRL. The results in Fig.
6 and Fig. 22 clearly indicate that, even in adversarial settings, our strategy yields encouraging
improvements in robustness against paraphrasing attacks.
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detector was trained, and the x-axis represents the average performance across LLMs.
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Figure 8: Comparison with NN-based calibration methods. The detector used is Likelihood.

5.2 ABLATION STUDY

We introduce an MRF layer and a positional weighting function to model neighbor similarity and
initial instability, respectively. In this section, we verify their effectiveness through ablation studies,
denoted as ”w/o MRF” and ”w/o Pos”. Results on the Essay dataset are shown in Fig. 7, with addi-
tional results in Fig. 23 and Fig. 24 of the Appendix. We can find that removing either component
significantly drops performance, while retaining only one still outperforms the baseline detector, un-
derscoring their designs’ rationality. Besides, the contribution of each component varies by detector
type. For single-text detectors like Likelihood and Log-Rank, the positional weighting function pro-
vides the most improvement by addressing instability in initial scores. However, for methods that
aggregate multiple text scores, such as DetectGPT and FastGPT, this instability is already partially
mitigated, making the MRF-based score calibration the primary source of gains.

5.3 MRF VS. NEURAL NETWORK

This paper proposes a Markov-informed calibration method to model the relationship of detection
scores of context tokens. To highlight the rationale of this design, we compare it with methods
that directly use neural networks to calibrate scores. A simple three-layer neural network is used
here, defined with the ”nn” suffix. The comparison results on Likelihood are shown in Fig. 8, and
more results can be found in Fig. 29 and Fig. 30 of the Appendix. Although NN-based methods
exhibit competitive performance in some settings for intra-LLMs, their generalization ability on
cross-LLMs drops significantly. This suggests that it does not truly learn the general ability to correct
scores, but rather overfits the training data. In contrast, our strategy shows good generalization.

6 CONCLUSION

This paper has systematically examined representative metric-based detectors within a unified
framework, revealing a core challenge: the inherent randomness of the LLM generation process
leads to inaccurate detection scores, and naive aggregation of existing methods fails to fix this.
Therefore, we have theoretically and empirically established two key properties of these scores:
neighbor similarity and initial instability. Building on these insights, we have proposed a Markov-
informed score calibration method that captures token relationships and corrects the biased scores
produced by base detectors. Extensive experiments show substantial and consistent performance
gains of the proposed method. Admittedly, our strategy is only applicable to metric-based methods
that utilize token-level features. We will try to improve model-based methods in future work.
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ETHICS STATEMENT

This paper proposes a Markov-informed calibration strategy to enhance machine-generated text de-
tection and mitigate the potential risks posed by machine-generated text, including disinformation
and phishing. Our work does not involve ethical issues such as dataset releases, potentially harm-
ful insights, potential conflicts of interest and sponsorship, discrimination/bias/fairness concerns,
privacy and security issues, legal compliance, and research integrity issues.

REPRODUCIBILITY STATEMENT

Our code is available at https://anonymous.4open.science/r/MRF-Enhance, and all
datasets used in our experiments (Essay, Reuters, and DetectRL) are publicly available for download.
In addition, we provide detailed implementation details in the Appendix, including data partitioning,
the fixed seeds, the learning rate, the training batch size, and the two parameters t0 and T introduced
by the proposed strategy, to ensure reproducibility of our work.
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A MORE DISCUSSION OF THE PROPOSED METHOD

A.1 CONTRIBUTION

The contributions of this paper are multifaceted.

• We provide a unified perspective for understanding metric-based detection methods. The
diversity of these methods (e.g., using metrics based on log-likelihood or log-rank, and introduc-
ing perturbed or regenerated text) makes comparison difficult. To this end, we re-examine these
methods from three perspectives: data, score calculation, and detection. This analysis provides
a precise definition for each method, facilitating comparison and potential improvements. Our
analysis shows that these methods employ more reasonable evaluation metrics and incorporate
additional contextual information to enhance detection. However, they all fail to address the un-
derlying token-level errors caused by inherent randomness, which limits their detection potential.
Therefore, our unified analysis encourages a more nuanced characterization of token-level detec-
tion scores, which will provide guidance for future improvements.

• We reveal the relationships between contextual token detection scores. While the generative
mechanisms of LLMs introduce dependencies between tokens, these relationships remain unclear.
To this end, we theoretically reveal two relationships between contextual token scores: neighbor-
ing similarity and initial instability, which are further validated through empirical experiments.
Constraining these relationships during detection has the potential to mitigate the imprecision in
score calculation caused by the inherent randomness of MGTs, which is crucial for the field of
MGT detection.

• We propose a Markov-informed score calibration method to enhance MGT detection. This
involves using Markov random fields to capture the revealed relationships and, through mean-
field approximation, modeling the MRF model as a lightweight component that can be stacked on
existing detectors to further unlock detection potential. It is worth noting that our main technical
contribution and innovation lies not only in the specific implementation but also in the conceptual
token-level score calibration. While the current implementation is based on Markov random fields,
this is only one possible approach; alternatives include using sequence models or graph neural
networks. This conceptual insight can inspire improving MGT detection.

• Extensive experiments consistently demonstrate the enhanced effectiveness of the proposed
strategy. We empirically verify that it not only excels on a single task but also demonstrates strong
capabilities in multiple complex and challenging real-world scenarios, including generalization
across LLMs and domains, and robustness to mixed text and paraphrased text. Furthermore,
the proposed enhancement component incurs negligible computational overhead compared to the
original detector. This combination of effectiveness and efficiency provides a solid foundation for
developing practically deployable enhancement solutions for AI-generated text detection.

A.2 LIMITATION

The core of the proposed method relies on modeling the relationships between context tokens to cali-
brate detection scores. Consequently, our method is not directly applicable to detection methods that
do not provide this fine-grained, token-level output. For example, model-based methods typically
generate a single document-level score, while some rely on features such as emotional expression
or writing style. Future research could explore developing calibration models for different levels of
feature granularity.

B RELATED WORK

Existing detection methods can be categorized into active watermark-based methods and passive
model-based and metric-based methods.

B.1 WATERMARK-BASED DETECTION

Watermarking is a proactive defense technique that embeds verifiable information during the text
generation stage, thereby enabling simple and reliable detection. RedList (Kirchenbauer et al., 2023)
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is a model-agnostic watermarking method that dynamically partitions the vocabulary into a “green-
list” and “redlist” based on preceding context, slightly increasing the probability of sampling tokens
from the greenlist. Subsequent works have made various improvements to this approach. For in-
stance, SemStamp (Hou et al., 2024) introduces a sentence-level semantic hashing watermark to
enhance robustness against paraphrasing attacks; DiPmark (Wu et al., 2023b) designs an unbiased
watermark that does not alter the original output distribution. REMARK-LLM (Zhang et al., 2024)
is a training-based watermarking method that employs a message encoding module to generate an
encrypted token distribution for watermark embedding prior to inference. Beyond manually de-
signed watermarks, directly leveraging language models to learn to generate watermarked text is
also promising, including training student models (Gu et al., 2023) and semantically invariant wa-
termarking models (Liu & Bu). In addition to the standard binary (0/1 bit) detection of AI-generated
content, researchers have also explored multi-bit watermarks (Yoo et al., 2024) for embedding more
information.

B.2 MODEL-BASED DETECTION

Model-based methods represent a classical paradigm in detection, training a binary classifier on a
dataset containing both human- and machine-generated texts. A series of works, such as OpenAI
Detector (Solaiman et al., 2019), ChatGPT Detector (Guo et al., 2023), GPTZero (GPTZero, 2023),
and G3 Detector (Zhan et al., 2023), collect texts generated by various LLMs to train a unified clas-
sifier. GPT-Pat (Yu et al., 2023a) finds that detectors trained solely on a single decoding strategy
generalize poorly and enhances performance by utilizing mixed decoding strategies. In addition to
original data, GLTR (Gehrmann et al., 2019) trains a simple logistic regression classifier by ana-
lyzing the predicted ranking of each word within its context. SeqXGPT (Wang et al., 2023) treats
the sequence of logits as waveform signals for detection, while Sniffer (Li et al., 2023) uses the
difference in logits from different models on the same text as features for detection and attribution.
Beyond the data level, recent works have explored more advanced training strategies. For example,
CoCo (Liu et al., 2022) introduces graph structures and contrastive learning; LLMDet (Wu et al.,
2023a) leverages the perplexity of surrogate models as additional features; MPU (Tian et al., 2024)
adopts a positive-unlabeled learning paradigm; and RADAR (Hu et al., 2023) incorporates adversar-
ial training to enhance model robustness. The above methods generally assume a known text source,
but when it is unknown, Ghostbuster (Verma et al., 2024) proposes training classifiers directly using
texts generated from known surrogate models.

B.3 METRIC-BASED DETECTION

Metric-based methods do not require training on specific datasets; instead, they directly leverage
the inherent statistical biases or intrinsic properties of language model-generated text for distinc-
tion. The main advantage of such methods lies in their stronger generalization to new models
and domains. Classic approaches in this category include the use of Log-Likelihood (Solaiman
et al., 2019), Log-Rank (Mitchell et al., 2023), and Entropy (Gehrmann et al., 2019). DetectGPT
(Mitchell et al., 2023) finds that AI-generated text typically lies in regions of negative curvature
with respect to the model’s log-probability function. By perturbing the text and observing changes
in log-probability, it can effectively distinguish AI-generated text. Inspired by DetectGPT, Fast-
DetectGPT (Bao et al., 2024) replaces log-probability with conditional probability curvature, signif-
icantly improving detection efficiency while maintaining performance. DetectLLM-LRR (Su et al.)
proposes using the ratio of log-likelihood to log-rank for detection. Some works, such as DNA-GPT
(Yang et al., 2024) and DetectGPT4Code (Yang et al., 2023), detect AI-generated text by compar-
ing discrepancies between the original text and continuations generated by a surrogate model. PHD
(Tulchinskii et al., 2024) observes that genuine human-written text possesses higher intrinsic dimen-
sionality after encoder mapping. SimLLM (Nguyen-Son et al., 2024) is based on the observation
that the similarity between the original text and its generated continuation is significantly higher than
that between generated text and its re-generated version; thus, it estimates the similarity between an
input sentence and its generated counterpart for detection. Given that existing methods struggle
with out-of-distribution data, token coherence (Ma & Wang, 2024) has been shown to be a reliable
metric since LLM-generated text usually exhibits higher token coherence than human-written text.
Yu et al. (Yu et al., 2024) capture the intrinsic features of text by identifying layers with the greatest
distributional differences when projecting into the vocabulary space, and using intrinsic rather than
semantic features for detection has been demonstrated to yield better results.
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C PROOF OF THEOREM 1

Theorem. 1 Let λK , λQ, λV , λO be the largest singular values of parameters WK ,WQ,WV ,WO,
respectively, and let W = WV WOWQW

⊤
K . For the transformer defined in Eq. (1), assuming

normalized inputs (∥xt∥2 = 1 for all t) and constants c, ϵ > 0, consider atx
⊤
t+1 ≥ (1 − δ) ∥at∥2

with δ ≤
(

cϵ
λQλKλV λO

)2

. If xℓ satisfies xℓWx⊤
ℓ ≥ c and xℓWxℓ ≥ ϵ−1 maxj∈[ℓ],j ̸=ℓ xjWx⊤

ℓ , then

αt+1,l ≤
exp (Cl · αt,l + η)

exp (Cl · αt,l + η) +
∑

j ̸=l exp (Cj · αt,j − η)
,

αt+1,l ≥
exp (Cl · αt,l − η)

exp (Cl · αt,l − η) +
∑

j ̸=l exp (Cj · αt,j + η)
,

where

Cj =
xjWxT

j

t |at|2
, and η =

(1 +
√
2)ϵxjWxT

j

(t+ 1) |at|2
.

Proof. Our proof follows the proof of existing work (Liu et al., 2023). First, we introduce two
necessary lemmas to help our proof.

Lemma 2 ((Liu et al., 2023)). Let x1, x2 ∈ R1×m satisfies ∥x1∥2 = ∥x2∥2 = 1 and x1x
⊤
2 ≥ 1− δ

for some δ ∈ (0, 1). Then for all y ∈ R1×m we have∣∣x1y
⊤ − x2y

⊤∣∣ ≤ √
2δ∥y∥2

Lemma 3 ((Liu et al., 2023)). Let ℓ ∈ [t] be given. Suppose that xℓAx⊤
ℓ > ϵ−1

∣∣xjAx⊤
ℓ

∣∣ for all
j ̸= ℓ. Then we have

(S(t)ℓ − ϵ)x⊤
ℓ axℓ ≤ x⊤

ℓ W
⊤
KWQat ≤ (S(t)ℓ + ϵ)x⊤

ℓ axℓ

Based on these two lemmas, we can formally prove the theorem. Let x1 = at

∥at∥ , and x2 = xt+1. If
atx

⊤
t+1

∥at∥ ≥ 1− δ, using the conclusion of Lemma 2, we have∣∣∣∣ at
(t+ 1) ∥at∥2

WQW
T
KxT

ℓ − 1

t+ 1
xt+1WQW

T
KxT

ℓ

∣∣∣∣ ≤
√
2δ

t+ 1

∥∥WQW
T
KxT

ℓ

∥∥
2

Since λQ, λK are the maximum singular values, respectively. Then we have
∥∥WQW

⊤
Kx⊤

ℓ

∥∥
2
≤

λQλK ∥xℓ∥2 = λQλK . This leads to:∣∣∣∣ at
(t+ 1) ∥at∥2

WQW
T
KxT

ℓ − 1

t+ 1
xt+1WQW

T
KxT

ℓ

∣∣∣∣ ≤
√
2δ

t+ 1
λQλK (10)

Since

∥at∥2 =

∥∥∥∥∥∥
t−1∑

j=1

αt,jxj

WV WO

∥∥∥∥∥∥ ≤ λOλV

∥∥∥∥∥∥
t−1∑
j=1

αt,jxj

∥∥∥∥∥∥
2

≤ λOλV

t−1∑
j=1

αt,j ∥xj∥2 = λOλV ,

and the theorem assumes δ ≤
(

cϵ
λQλKλV λO

)2

, substituting these into Eq. (10), we can obtain:

√
2δ

t+ 1
λQλK ≤

√
2cϵ

(t+ 1)λV λO
≤

√
2cϵ

(t+ 1) ∥at∥2
≤

√
2ϵ

(t+ 1) ∥at∥2
xℓax

T
ℓ (11)

The last inequality is obtained from xℓax
T
ℓ ≥ c. Then combining Formula (10) and Formula (11),

we have ∣∣∣∣ at
(t+ 1) ∥at∥2

WQW
T
KxT

ℓ − 1

t+ 1
xt+1WQW

T
KxT

ℓ

∣∣∣∣ ≤ √
2ϵ

(t+ 1) ∥at∥2
xℓax

T
ℓ
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From Lemma 3, we have:∣∣∣∣∣atWQW
⊤
Kx⊤

ℓ

(t+ 1) ∥at∥2
− αt,ℓxℓWx⊤

ℓ

(t+ 1) ∥at∥2

∣∣∣∣∣ ≤ ϵ

(t+ 1) ∥at∥2
x⊤
ℓ axℓ

By the triangle inequality, we can combine the upper bounds:∣∣∣∣xt+1WQW
T
KxT

ℓ

t+ 1
− αt,ℓxℓWxT

ℓ

(t+ 1) ∥at∥2

∣∣∣∣ ≤ ∣∣∣∣xt+1WQW
T
KxT

ℓ

t+ 1
− atWQW

T
KxT

ℓ

(t+ 1) ∥at∥2

∣∣∣∣
+

∣∣∣∣atWQW
T
KxT

ℓ

(t+ 1) ∥at∥2
− αt,ℓxℓWxT

ℓ

(t+ 1) ∥at∥2

∣∣∣∣
≤ (1 +

√
2)ϵ

(t+ 1) ∥at∥2
x⊤
ℓ axℓ

(12)

Then, we rearrange the inequality, and we can obtain:

xℓWx⊤
ℓ

(t+ 1) ∥at∥2

(
αt,ℓ − (1 +

√
2)ϵ

)
≤ 1

t+ 1
xt+1WQW

⊤
Kx⊤

ℓ ≤ xℓWx⊤
ℓ

(t+ 1) ∥at∥2

(
αt,ℓ + (1 +

√
2ϵ
)

Now we give the lower and upper bounds of αt+1,ℓ = softmax(1/(t + 1) · xt+1WQW
⊤
KX⊤

t )l.
Upper bound. Let γt+1,ℓ = 1/(t + 1) · xt+1WQW

⊤
Kx⊤

ℓ . For the softmax function
αt+1,l =

exp(γt+1,ℓ)
exp(γt+1,ℓ)+

∑
k ̸=ℓ exp(γt+1,k)

, to get the maximum value of αt+1,ℓ, we need to (1)
make the numerator as big as possible, which means γt+1,ℓ should take its maximum value

xℓWx⊤
ℓ

(t+1)∥at∥2

(
αt,ℓ + (1 +

√
2)ϵ

)
, (2) make the denominator as small as possible, which means that

all other values γt+1,k (when k ̸= ℓ) should be minimized xkWx⊤
k

(t+1)∥at∥2

(
αt,k − (1 +

√
2)ϵ

)
. There-

fore,

αt+1,l ≤
xℓWx⊤

ℓ

(t+1)∥at∥2

(
αt,ℓ + (1 +

√
2)ϵ

)
xℓWx⊤

ℓ

(t+1)∥at∥2

(
αt,ℓ + (1 +

√
2)ϵ

)
+

∑
k ̸=ℓ

xkWx⊤
k

(t+1)∥at∥2

(
αt,k − (1 +

√
2)ϵ

)
Lower bound. Similarly, for the lower bound, we should (1) make the numerator as small as
possible, which means γt+1,ℓ should take its minimum value xℓWx⊤

ℓ

(t+1)∥at∥2

(
αt,ℓ − (1 +

√
2)ϵ

)
, (2)

make the denominator as large as possible, which means that all other values γt+1,k (when k ̸= ℓ)

should be maximized xkWx⊤
k

(t+1)∥at∥2

(
αt,k + (1 +

√
2)ϵ

)
. Therefore,

αt+1,l ≥
xℓWx⊤

ℓ

(t+1)∥at∥2

(
αt,ℓ − (1 +

√
2)ϵ

)
xℓWx⊤

ℓ

(t+1)∥at∥2

(
αt,ℓ − (1 +

√
2)ϵ

)
+

∑
k ̸=ℓ

xkWx⊤
k

(t+1)∥at∥2

(
αt,k + (1 +

√
2)ϵ

)
The proof is completed.

D EXPERIMENTAL DETAILS

D.1 DATASETS

The details of the dataset used in the paper are as follows:

• Essay (Verma et al., 2024). Each source of this dataset (human-written texts, various LLM-
generated texts) contains 1,000 samples. The HGT portion comprises original IvyPanda es-
says that cover a wide array of subjects and academic levels, from high school through uni-
versity. For the MGT portion, a tailored prompt was first crafted for each source essay using
ChatGPT-turbo, and that prompt was then submitted to several LLMs, including GPT4All, Chat-
GPT, ChatGPT-turbo, ChatGLM, Dolly, and Claude, to generate machine-written essays. This
workflow produced a diverse set of model-generated texts that remained aligned with the topics of
their corresponding source documents.
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• Reuters (Verma et al., 2024). Built on the Reuters 50–50 authorship benchmark, this dataset
contains 1,000 articles from 50 writers, with each author contributing 20 pieces. Replicating the
pipeline used for the essay corpus, the team first asked ChatGPT-turbo to invent a headline for
every article. Those auto-generated headlines were then embedded into prompts and submitted
to multiple LLMs, including ChatGPT, GPT-4, ChatGPT-turbo, ChatGLM, Dolly, and Claude, to
create the machine-generated texts.

• DetectRL (Wu et al., 2024). In this dataset, the human-authored portion is drawn from four
sources: arXiv abstracts dated 2002–2017, XSum news reports, Writing Prompts stories, and Yelp
reviews. These types were chosen because they are especially vulnerable to producing convincing
but misleading content when LLMs are misapplied. From each source, 2,800 human texts are
selected as HGTs. The machine-generated texts are created using four widely used LLMs—GPT-
3.5-turbo (ChatGPT), PaLM-2-bison (Google-PaLM), and Llama-2-70b. The dataset further mod-
els practical adversarial settings: (1) a paraphrasing attack that rewrites MGTs with the Dipper
paraphraser (Krishna et al., 2023) and Polish paraphraser, and (2) a mixed-text condition where
1/4 of machine-generated sentences is randomly replaced with human-written content while the
label remains “machine-generated.”

D.2 BASELINES

A detailed description of the baselines used is shown below:

• Likelihood (Solaiman et al., 2019). It uses an LLM to calculate the log probability of each token
in a text. The average of these probabilities gives a detection score. A higher score indicates a
greater chance that the text was generated by LLMs.

• Log-Rank (Mitchell et al., 2023). Its detection score is created by first using an LLM to rank each
token in a text based on its predicted order within a given context. The logarithm of each word’s
predicted rank is then calculated. The final score is an average of these values, and a lower score
is a strong indicator of machine-generated text.

• Entropy (Gehrmann et al., 2019). Similar to Log-Rank, it calculates a score for a text by taking
the average of each token’s conditional entropy within its given context. A lower score suggests a
higher likelihood that the text was generated by LLMs.

• DetectGPT (Mitchell et al., 2023). It determines if a text is machine-generated by measuring
how small changes affect its log probability. The underlying idea is that text created by LLMs is
already a high-probability output. So, when it is slightly altered, the new version is likely to have
a lower log probability. In contrast, making similar small changes to human-written text does not
consistently lower the log probability; it can just as easily stay the same or increase.

• Fast-DetectGPT (FastGPT) (Bao et al., 2024). To overcome the major computational expense of
DetectGPT, this approach replaces DetectGPT’s resource-intensive perturbation step with a more
efficient sampling process. It identifies differences in token selection between humans and LLMs
using a conditional probability curvature metric.

• DNA-GPT (Yang et al., 2024). This method involves a two-step process. First, it cuts a text in
half and uses the first part to prompt an LLM to generate a new continuation. Next, it examines
the differences between the newly created segment and the original one. This comparison, done
via N-gram analysis for black-box models or probability divergence for white-box models, reveals
a clear distinction between how humans and machines generate text.

D.3 EXPERIMENTAL SCENARIO

To extensively evaluate the effectiveness of the proposed enhancement model, we conduct experi-
ments in the following real-world scenarios:

• Cross-LLM. To assess how well the proposed model works across different LLMs, we trained
detectors on a single LLM’s text and then tested it on a variety of LLMS’ texts. The main body
of the paper presents the results from training detectors on the GPT4All texts (Essay dataset)
and Llama-2-70b texts (DetectRL), and then testing them on various LLMs, as shown in Table 2.
Complete results for every training and testing combination can be found in Appendix E.3 (Tables
3-15).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

w/o calib.

ChatGPT
GPT-turbo
ChatGLM

Claude
StableLM

GPT4All
w calib.

ChatGPT
GPT-turbo
ChatGLM

Claude
StableLM

GPT4All
w/o calib.

ChatGPT
GPT-turbo
ChatGLM

Claude
StableLM

GPT4All
w calib.

ChatGPT
GPT-turbo
ChatGLM

Claude
StableLM

GPT4All
w/o calib.

ChatGPT

Claude

PaLM

Llama-2
w calib.

ChatGPT

Claude

PaLM

Llama-2

(a) Essay Dataset (b) Reuters Dataset (c) DetectRL Dataset

Machine Human

Figure 9: Distribution of token scores obtained by the Log-Likelihood method without and with
enhancement. It can be observed that the proposed method enhances the discriminative nature of the
token scores.

• Cross-Domain. The DetectRL dataset includes texts from four distinct domains: arXiv academic
abstracts, XSum news articles, Writing Prompts stories, and Yelp Reviews. We utilized this dataset
to evaluate the model’s performance across various domains. To achieve this, we trained the
detector on one domain and then tested it on the other domains. For this evaluation, all machine-
generated texts were created using the default PaLM model. The heatmaps in Figs. 4, 19, and 20
illustrate the performance improvement achieved by our enhancement model compared to various
baseline detection models.

• Paraphrasing Attack. Studies have shown that MGT detection is vulnerable to paraphrase at-
tacks. Therefore, this scenario is used to evaluate the robustness of the MGT detection method.
Using the DetectRL dataset, which includes data from the Polish and Dipper paraphraser, we
trained our detector on clean, original texts and then evaluated its robustness on these paraphrased
texts. Specifically, we trained the detector using clean texts from Llama-2-70b and then tested it
on paraphrased texts from several different LLMs. The results can be found in Fig. 6 and 22.

• Mixed Text. Because a blend of human and machine-generated text is common in the real world,
we use the mixed texts provided by DetectRL for evaluation. It involved randomly swapping out
25% of the sentences in an LLM-generated text with human-written ones. We conducted two
separate experiments on this dataset: (1) The detector was trained on pure, non-mixed text and
then tested for its ability to detect the mixed texts. (2) The detector was both trained and tested on
the mixed texts themselves. The performance of the detector in these mixed settings is shown in
Figs. 5 and 21. In each sub-figure, the detectors trained on original text are shown on the left, and
those trained on mixed text are shown on the right.

D.4 PARAMETER SETTINGS

We conducted five independent experiments to ensure the consistency of our results, using five fixed
random seeds (1-5). For all datasets, we used 10% of the data for training, while the remaining 90%
was split evenly between validation and testing. To ensure a fair comparison, the enhanced models
shared the same hyperparameters as their base models. In our enhancement model, there are two
hyperparameters: the transition center t0 in the positional weighting function β(t) and the number
of iterations T in the MRF layer. By default, we set t0 = 30 and T = 10 for the enhanced versions
of all detectors across the three datasets, highlighting the flexibility of our approach. For training
the MRF layer, we use a learning rate of 0.05 and train for 10 epochs. Hyperparameter sensitivity
analyses are provided in Appendix E.5.

E MORE EXPERIMENTAL RESULS

E.1 MORE RESULTS OF TOKEN SCORE DISTRIBUTION BEFORE AND AFTER ENHANCEMENT

In addition to the partial results on DetectGPT presented in the main text, we also present the com-
plete results about token-level detection score distributions for Log-Likelihood, Log-Rank, Entropy,
and DetectGPT in Figs. 9, 10, 11, and 12. The results are similar to those in the main text: the orig-
inal detector’s scores show substantial overlap between human- and machine-generated text. How-
ever, after calibration using our proposed augmentation strategy, the scores achieve significantly
improved discriminability.
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Figure 10: Distribution of token scores obtained by the Log-Rank method without and with en-
hancement. It can be observed that the proposed method enhances the discriminative nature of the
token scores.
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Figure 11: Distribution of token scores obtained by the Entropy method without and with enhance-
ment. It can be observed that the proposed method enhances the discriminative nature of the token
scores.

E.2 MORE RESULTS OF CONTEXT TOKEN RELATIONSHIPS

In the main text, we demonstrated the existence of neighbor similarity (Fig. 2) and initial instability
(Fig. 2) in token-level detection scores through experiments on the Essay dataset. Here, we provide
additional supplementary results to further validate these relationships.

To verify neighbor similarity, we provide additional results using Entropy and DetectGPT detection
scores on the Essay dataset (Fig. 13), as well as results on the Reuters and DetectRL datasets (Figs.
14 and 15). These supplementary experiments consistently show that the closer the tokens are, the
more similar their detection scores are.

Similarly, to verify initial instability, we provide additional results on the Essay dataset (Fig. 16), as
well as results on the Reuters and DetectRL datasets (Figs. 17 and 18). These results again demon-
strate that token scores at the beginning of a text fluctuate significantly before gradually stabilizing.

E.3 MORE PERFORMANCE COMPARISON

Performance across Different LLMs. In the main text, we evaluated the cross-LLM performance
of detectors trained on GPT4All (Essay) and Llama-2-70b (DetectRL) on various LLM texts in
terms of AUROC, as shown in Table 2. This section aims to provide more comprehensive supple-
mentary experimental results, including: (1) cross-LLM performance performance under the same
experimental settings in terms of TPR@FPR-1% (Table 3), and (2) cross-LLM performance com-
parisons of detectors trained on other LLMs on the Essay, DetectRL, and Reuters datasets (Tables
4 to 15). These extensive experimental results are consistent with the conclusions of the main pa-
per. Among the 888 cross-LLM evaluation settings, our proposed enhanced model achieved better
performance than the original detector in 91.4% of the cases, highlighting the generalization ability
and application value of this method on different models and datasets.

Performance across Different Domains. In addition to the cross-domain performance improve-
ments for Log-Likelihood and Log-Rank demonstrated in the main text, this section provides addi-
tional results for other detectors. Specifically, it includes improvements to the cross-domain perfor-
mance of Entropy and DetectGPT (Fig. 19), as well as improvements to FastGPT and DNA-GPT
(Fig. 20). Combining all experimental results, we reach the same conclusion as in the main text:
in most experimental settings, detectors applied with our strategy significantly improve their cross-
domain generalization capabilities.

Performance against Mixed Texts. In addition to the AUROC performance comparison for
mixed texts presented in the main text, this section provides additional performance comparisons
at TPR@FPR-1%, as shown in Fig. 21. We reach consistent conclusions with those in the main
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Figure 12: Distribution of token scores obtained by the DetectGPT method without and with en-
hancement. It can be observed that the proposed method enhances the discriminative nature of the
token scores.

2 4 6 8 10
hop

0.88

0.90

0.92

0.94

0.96

Di
st

an
ce

Entropy Score

2 4 6 8 10
hop

1.20
1.25
1.30
1.35
1.40

DetectGPT Score

ChatGPT GPT-turbo ChatGLM Claude Dolly GPT4All

Figure 13: The detection score distances of neighbors at different hops in the Essay dataset. Entropy
and DetectGPT score are used here.

text: in most experimental settings, the detector equipped with the proposed strategy significantly
improves its ability to detect mixed text.

Performance against Paraphrasing Attacks. In addition to the AUROC performance comparison
for paraphrasing texts presented in the main text, this section also presents a performance compar-
ison under the TPR@FPR-1% metric, as shown in Fig. 22. We find that in most experimental
settings, the detector applying our proposed strategy significantly improves its robustness against
paraphrasing attacks, which is consistent with the conclusions drawn in the main text.

E.4 MORE RESULTS OF ABLATION STUDY

In addition to the ablation experiments on the position weight function and MRF layer presented in
the main text for the Essay dataset, we also provide ablation results for the Reuters and DetectRL
datasets, as shown in Figs. 23 and 24. These experimental results are consistent with the conclusions
of the main text: removing either component leads to a significant performance drop; even retaining
only one of them outperforms the baseline detector, strongly demonstrating the effectiveness of both
components.

E.5 SENSITIVITY ANALYSIS

Sensitivity w.r.t. transition center t0. In our experiments, we set the default transition center t0
of the position weighting function to 30. This section examines the effect of varying t0 values on
detection performance. The AUROC and TPR@FPR-1% results are shown in Figs. 25 and 26,
respectively. The experimental results show that detection performance steadily improves with in-
creasing t0 values, which is consistent with the conclusions of the ablation experiments and demon-
strates the effectiveness of the position weighting function. However, performance improvement is
not infinite. When t0 values are too large, performance gradually saturates or even declines. This is
likely because excessively large t0 filters out useful token scores. Therefore, a trade-off is necessary.
Through sensitivity analysis, we recommend setting t0 values between 20 and 30.

Sensitivity w.r.t. iterations T in MRF layer. We compute the posterior probability of the Markov
random field using a multi-step iterative approach. To this end, we evaluate the impact of varying the
number of iterations on detection performance, as shown in Figs. 27 and 28. The experimental re-
sults demonstrate that multi-step iterative computation significantly enhances detection performance
compared to single-step computation, underscoring its importance in score calibration. However,
performance may degrade with increasing the number of iterations, possibly due to oversmoothing
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Figure 14: The detection score distances of neighbors at different hops in the Reuters dataset. Log-
Likelihood, Log-Rank, Entropy, and DetectGPT score are used here.
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Figure 15: The detection score distances of neighbors at different hops in the DetectRL dataset.
Log-Likelihood, Log-Rank, Entropy, and DetectGPT score are used here.

of the detection scores. Based on our sensitivity analysis, we recommend setting the number of
iterations to 10.

E.6 MORE RESULTS COMPARING WITH NEURAL NETWORK CALIBRATION

In the main text, we demonstrated, through experimental results using the Log-Likelihood score,
that while neural network-based detection score correction performs well on the intra-LLM, its per-
formance drops sharply on the cross-LLM. This section further presents comparative results using
other detection scores, as shown in Figs. 29 and 30. Similar experimental findings further demon-
strate that this method does not truly learn universal score correction capabilities, but rather overfits
the training data. This strongly emphasizes the superiority and rationality of our proposed Markov-
informed score calibration method.

E.7 COMPARISON WITH MODEL-BASED DETECTORS

As shown in Fig. 31, we compare the enhanced versions of metric-based methods with model-based
detection methods, including ChatGPT-D and MPU. Experimental results show that while model-
based methods demonstrate superior performance on the DetectRL dataset, they underperform state-
of-the-art metric-based methods, such as DNA-GPT, on the Essay and Reuters datasets. Notably,
the significant performance gap between model-based methods in intra-LLM and cross-LLM further
confirms their increased risk of overfitting to the training data. This observation is consistent with
our intention of focusing on metric-based detection methods.

E.8 RUNNING TIME

Table 16 shows the training and inference runtimes on different datasets. As discussed in the main
text, our proposed Markov-based score refinement module can be implemented in constant time
via sparse-dense matrix multiplication. Therefore, the additional time overhead introduced by this
module is negligible compared to the time-consuming score calculation, highlighting the flexibility
and practicality of our approach in practical applications.
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Figure 16: The score distances of 1-hop neighbors at different positions in the Essay dataset. Entropy
and DetectGPT score are used here.
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Figure 17: The score distances of 1-hop neighbors at different positions in the Reuters dataset. Log-
Likelihood, Log-Rank, Entropy, and DetectGPT score are used here.

F THE USE OF LARGE LANGUAGE MODELS

In our paper, we used LLMs to polish the language and correct grammatical errors. LLMs were
not used to generate novel research ideas, design experiments, analyze results, or write substantive
technical content. We ensure that the use of large language models is responsible and adheres to
academic and ethical standards.
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Figure 18: The score distances of 1-hop neighbors at different positions in the DetectRL dataset.
Log-Likelihood, Log-Rank, Entropy, and DetectGPT score are used here.

Table 3: Performance concerning TPR@FPR-1% (%) on Essay (left) and DetectRL (right).
Method

Essay (Training Text: GPT4All) DetectRL (Training Text: Llama-2-70b)

GPT4All ChatGPT Dolly ChatGLM Claude ChatGPT-turbo Avg. Llama-2-70b ChatGPT Google-PaLM Avg.

Likelihood 46.33±16.49 68.62±13.32 20.67±10.79 92.86±4.84 12.31±6.29 73.60±14.63 52.4 38.37±0.92 10.21±1.40 25.66±2.41 24.75
Likelihood-M 87.47±3.42 90.36±2.93 55.47±5.03 97.19±1.11 40.40±7.87 96.27±1.27 77.86 46.03±1.70 10.51±3.92 36.37±2.31 30.97

Log-Rank 62.69±13.36 79.07±7.89 25.11±8.35 95.71±2.05 19.20±8.26 80.89±10.73 60.44 42.05±0.84 12.44±1.71 22.84±1.28 25.78
Log-Rank-M 87.38±2.50 88.89±2.84 52.12±4.18 98.04±0.43 31.69±4.15 94.22±2.46 75.39 50.56±1.44 13.94±2.36 41.51±2.69 35.34

Entropy 2.73±0.69 7.16±3.17 2.29±1.36 6.88±3.05 3.91±2.24 13.24±7.60 6.04 2.03±0.73 0.25±0.16 6.95±0.78 3.07
Entropy-M 15.63±0.87 41.24±2.25 16.95±3.12 40.85±4.37 23.20±1.70 49.91±5.02 31.30 2.69±0.39 0.67±0.10 9.17±1.10 4.18
DetectGPT 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.89±0.24 0.00±0.00 0.15 4.15±0.40 2.94±0.62 1.71±0.47 2.93

DetectGPT-M 41.23±29.53 46.98±25.36 18.38±20.21 41.83±44.80 8.80±9.64 65.87±21.66 37.18 32.41±9.58 7.59±4.05 25.14±4.53 21.71
FastGPT 1.59±0.32 1.64±0.67 0.29±0.10 2.72±0.68 3.47±1.83 16.89±6.66 4.43 11.35±2.01 3.78±1.20 5.02±0.85 6.72

FastGPT-M 23.92±10.29 30.00±9.20 32.89±16.52 55.54±7.80 0.67±0.56 16.44±31.78 26.58 15.23±3.23 6.28±1.72 13.52±5.63 11.68
DNA-GPT 57.68±3.34 63.24±6.54 22.20±3.85 84.82±4.14 16.67±3.47 56.27±6.45 50.15 36.56±1.56 19.70±0.52 30.38±2.75 28.88

DNA-GPT-M 93.85±0.97 88.44±4.22 56.42±10.82 96.83±0.41 33.33±7.90 86.22±6.52 75.85 42.52±1.26 19.11±2.04 34.81±1.54 32.15

Table 4: Performance on Essay dataset. The detection models are trained on text generated by
ChatGPT.

Metric Method GPT4All ChatGPT Dolly ChatGLM Claude ChatGPT-turbo avg

TPR@FPR-1%

Likelihood 46.24±16.60 68.62±13.32 20.67±10.79 92.81±4.82 12.31±6.29 73.60±14.63 52.38
Likelihood-M 89.38±4.05 92.00±2.84 59.19±5.98 97.10±0.69 42.22±6.32 96.80±1.23 79.45

Log-Rank 62.69±13.36 79.07±7.89 25.11±8.35 95.71±2.05 19.16±8.22 80.89±10.73 60.44
Log-Rank-M 87.15±2.62 88.80±2.81 52.12±4.32 98.04±0.43 31.33±4.10 94.22±2.46 75.28

Entropy 2.73±0.69 7.16±3.17 2.29±1.36 6.88±3.05 3.91±2.24 13.24±7.60 6.04
Entropy-M 12.76±2.18 34.84±5.15 14.27±2.63 36.96±2.81 19.78±3.76 43.20±6.33 26.97
DetectGPT 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.84±0.51 2.36±2.52 0.53

DetectGPT-M 41.09±30.67 42.04±25.95 9.55±9.01 39.02±38.26 10.13±10.28 68.49±23.15 35.05
FastGPT 1.59±0.32 1.64±0.67 0.29±0.10 2.72±0.68 3.47±1.83 16.89±6.66 4.43

FastGPT-M 19.73±11.16 26.18±12.42 24.82±20.23 45.76±21.65 3.38±5.34 26.04±32.58 24.32
DNA-GPT 40.77±8.33 73.69±3.78 19.95±7.42 82.59±11.71 18.04±3.53 63.82±6.62 49.81

DNA-GPT-M 89.02±4.14 95.07±1.33 65.97±4.57 99.24±0.36 39.56±4.01 94.62±1.43 80.58

AUROC

Likelihood 96.16±0.30 98.79±0.19 90.90±1.33 99.29±0.25 92.76±0.23 99.13±0.19 96.17
Likelihood-M 98.77±0.10 99.58±0.14 94.80±0.87 99.56±0.19 94.69±0.42 99.77±0.14 97.86

Log-Rank 96.55±0.31 98.95±0.13 90.08±1.28 99.36±0.13 92.01±0.20 99.24±0.15 96.03
Log-Rank-M 98.56±0.06 99.40±0.09 93.81±0.92 99.56±0.08 92.88±0.29 99.64±0.10 97.31

Entropy 74.19±1.62 89.49±0.33 73.26±1.48 84.11±0.77 86.58±0.66 95.94±0.35 83.93
Entropy-M 83.33±0.66 93.24±0.15 81.17±1.04 91.38±0.37 88.28±0.49 96.86±0.21 89.04
DetectGPT 50.15±0.99 50.53±3.65 48.04±7.27 49.25±1.58 51.21±8.39 55.34±31.67 50.75

DetectGPT-M 94.98±3.26 96.35±2.60 85.82±6.13 94.20±4.48 84.06±6.47 98.58±1.24 92.33
FastGPT 64.63±1.53 67.68±1.70 47.17±1.53 71.08±1.51 75.31±0.90 88.62±0.67 69.08

FastGPT-M 86.68±3.28 90.82±3.86 72.23±23.91 93.53±3.86 65.24±12.36 71.87±21.80 80.06
DNA-GPT 96.28±0.32 98.87±0.21 92.85±0.83 99.32±0.27 91.65±0.72 98.51±0.31 96.25

DNA-GPT-M 99.32±0.13 99.79±0.07 97.42±0.56 99.90±0.06 95.65±0.51 99.76±0.07 98.64
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Figure 19: The performance improvement of the proposed method on Entropy and DetectGPT.
Values greater than 0 indicate an enhanced effect.
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Table 5: Performance on Essay dataset. The detection models are trained on text generated by
ChatGPT-turbo.

Metric Method GPT4All ChatGPT Dolly ChatGLM Claude ChatGPT-turbo avg

TPR@FPR-1%

Likelihood 46.29±16.55 68.62±13.32 20.67±10.79 92.86±4.84 12.31±6.29 73.60±14.63 52.39
Likelihood-M 87.61±3.74 88.31±3.64 61.29±7.12 94.20±2.40 41.11±7.93 95.38±2.27 77.98

Log-Rank 62.69±13.36 79.07±7.89 25.11±8.35 95.71±2.05 19.16±8.22 80.89±10.73 60.44
Log-Rank-M 86.70±0.59 87.47±3.17 54.61±4.05 93.75±3.55 35.91±2.65 94.13±1.68 75.43

Entropy 2.73±0.69 7.16±3.17 2.29±1.36 6.88±3.05 3.91±2.24 13.24±7.60 6.04
Entropy-M 11.62±0.59 30.67±6.02 13.56±1.59 32.54±2.63 17.33±5.32 39.91±8.11 24.27
DetectGPT 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.53±0.52 3.07±1.96 0.60

DetectGPT-M 14.03±13.72 17.07±8.79 3.05±2.54 6.43±3.80 5.11±3.98 44.71±11.72 15.07
FastGPT 1.59±0.32 1.64±0.67 0.29±0.10 2.72±0.68 3.47±1.83 16.89±6.66 4.43

FastGPT-M 8.97±4.52 15.33±15.63 0.72±0.60 20.09±18.21 7.51±6.83 49.82±22.08 17.07
DNA-GPT 0.73±0.33 0.76±0.30 2.63±0.81 0.13±0.11 21.64±3.45 0.00±0.00 4.31

DNA-GPT-M 39.41±2.68 38.62±2.34 39.47±2.11 38.04±2.49 39.38±1.86 38.67±2.19 38.93

AUROC

Likelihood 96.16±0.30 98.79±0.19 90.90±1.33 99.29±0.25 92.76±0.23 99.13±0.19 96.17
Likelihood-M 98.65±0.21 99.39±0.20 93.95±1.15 99.13±0.43 94.66±0.39 99.77±0.12 97.59

Log-Rank 96.55±0.31 98.95±0.13 90.08±1.28 99.36±0.13 92.01±0.20 99.24±0.15 96.03
Log-Rank-M 98.37±0.21 99.17±0.29 92.96±1.51 99.17±0.37 92.96±0.43 99.62±0.11 97.04

Entropy 74.19±1.62 89.49±0.34 73.26±1.48 84.11±0.77 86.58±0.66 95.94±0.35 83.93
Entropy-M 82.88±0.85 93.08±0.29 80.90±0.89 91.18±0.37 88.57±0.54 96.90±0.24 88.92
DetectGPT 49.19±0.58 53.60±0.77 42.52±0.84 49.59±1.70 58.46±0.60 82.10±1.25 55.91

DetectGPT-M 91.65±2.28 93.38±2.31 77.58±5.63 90.54±2.74 79.82±9.52 97.61±0.92 88.43
FastGPT 64.63±1.53 67.68±1.70 47.17±1.53 71.08±1.51 75.31±0.90 88.62±0.67 69.08

FastGPT-M 85.05±3.63 86.41±10.08 49.85±11.80 89.08±6.67 75.84±17.10 96.80±2.60 80.51
DNA-GPT 53.28±1.23 43.65±0.76 61.90±0.39 40.46±1.26 67.53±0.55 43.31±0.94 51.69

DNA-GPT-M 83.94±1.09 84.02±1.06 83.93±1.20 83.89±1.10 84.23±1.07 84.07±1.06 84.01

Table 6: Performance on Essay dataset. The detection models are trained on text generated by
ChatGLM.

Metric Method GPT4All ChatGPT Dolly ChatGLM Claude ChatGPT-turbo avg

TPR@FPR-1%

Likelihood 46.29±16.54 68.62±13.32 20.67±10.79 92.81±4.82 12.31±6.29 73.60±14.63 52.38
Likelihood-M 78.82±5.30 87.87±3.22 46.73±10.16 98.71±1.11 31.64±10.61 93.78±3.41 72.92

Log-Rank 62.69±13.36 79.07±7.89 25.11±8.35 95.71±2.05 19.20±8.26 80.89±10.73 60.44
Log-Rank-M 81.32±7.05 86.76±3.68 47.35±8.02 98.62±0.26 25.24±7.46 90.62±5.22 71.65

Entropy 2.73±0.69 7.16±3.17 2.29±1.36 6.88±3.05 3.91±2.24 13.24±7.60 6.04
Entropy-M 12.76±1.21 32.09±4.82 13.99±3.01 35.62±4.65 18.40±4.10 41.42±6.98 25.71
DetectGPT 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.89±0.24 0.00±0.00 0.15

DetectGPT-M 18.36±0.94 17.87±5.87 20.67±3.81 60.98±6.42 4.89±2.75 6.36±2.01 21.52
FastGPT 1.59±0.32 1.64±0.67 0.29±0.10 2.72±0.68 3.47±1.83 16.89±6.66 4.43

FastGPT-M 23.87±10.38 29.87±9.03 32.89±16.52 55.49±7.87 0.67±0.56 16.22±31.34 26.50
DNA-GPT 57.54±4.18 69.91±9.92 39.19±4.23 97.32±0.76 31.24±5.75 65.16±10.11 60.06

DNA-GPT-M 93.58±1.29 92.53±3.44 66.54±9.55 99.55±0.20 44.36±9.19 91.47±4.41 81.34

AUROC

Likelihood 96.16±0.30 98.79±0.19 90.90±1.33 99.29±0.25 92.76±0.23 99.13±0.19 96.17
Likelihood-M 98.03±0.26 99.22±0.20 93.10±1.43 99.65±0.07 93.47±1.14 99.54±0.16 97.17

Log-Rank 96.55±0.31 98.95±0.13 90.08±1.28 99.36±0.13 92.01±0.20 99.24±0.15 96.03
Log-Rank-M 98.14±0.30 99.20±0.22 92.86±1.66 99.54±0.10 91.39±1.08 99.53±0.16 96.78

Entropy 74.19±1.62 89.49±0.33 73.26±1.48 84.11±0.77 86.58±0.66 95.94±0.35 83.93
Entropy-M 82.99±1.01 93.13±0.23 81.03±1.11 91.15±0.28 88.45±0.44 96.88±0.18 88.94
DetectGPT 50.81±0.58 46.40±0.77 57.48±0.84 50.41±1.70 41.54±0.60 17.90±1.25 44.09

DetectGPT-M 80.39±1.33 80.53±0.58 80.67±1.98 94.02±0.56 62.63±1.24 67.25±1.24 77.58
FastGPT 64.63±1.53 67.68±1.70 47.17±1.53 71.08±1.51 75.31±0.90 88.62±0.67 69.08

FastGPT-M 87.19±3.46 91.55±3.32 82.58±18.04 95.35±0.49 59.28±1.90 63.48±18.12 79.91
DNA-GPT 96.97±0.20 98.09±0.47 94.11±0.47 99.87±0.04 92.84±0.71 97.85±0.37 96.62

DNA-GPT-M 99.37±0.05 99.58±0.10 97.68±0.29 99.92±0.02 96.24±0.47 99.54±0.09 98.72
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Figure 20: The performance improvement of the proposed method on FastGPT and DNA-GPT.
Values greater than 0 indicate an enhanced effect.
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Table 7: Performance on Essay dataset. The detection models are trained on text generated by Dolly.
Metric Method GPT4All ChatGPT Dolly ChatGLM Claude ChatGPT-turbo avg

TPR@FPR-1%

Likelihood 46.29±16.54 68.62±13.32 20.67±10.79 92.86±4.84 12.31±6.29 73.60±14.63 52.39
Likelihood-M 89.02±1.68 88.09±4.50 57.14±5.55 97.59±1.09 34.36±13.54 94.36±3.67 76.76

Log-Rank 62.69±13.36 79.07±7.89 25.11±8.35 95.71±2.05 19.16±8.22 80.89±10.73 60.44
Log-Rank-M 87.70±2.60 89.02±2.13 51.65±3.99 98.12±0.54 31.69±3.32 94.36±1.93 75.42

Entropy 2.73±0.69 7.16±3.17 2.29±1.36 6.88±3.05 3.91±2.24 13.24±7.60 6.04
Entropy-M 11.94±1.85 32.09±4.77 13.22±4.31 34.78±8.04 18.49±3.20 40.62±6.34 25.19
DetectGPT 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.89±0.24 0.00±0.00 0.15

DetectGPT-M 32.89±22.87 46.09±19.75 24.44±9.98 68.84±21.48 6.04±4.69 48.09±25.20 37.73
FastGPT 0.82±0.31 0.00±0.00 0.38±0.42 0.09±0.11 0.00±0.00 0.00±0.00 0.22

FastGPT-M 27.24±2.77 28.04±7.40 39.43±3.59 55.89±5.30 0.98±0.65 0.84±0.71 25.41
DNA-GPT 58.95±4.76 64.00±6.45 48.64±4.04 84.29±3.64 29.24±3.40 59.02±8.29 57.36

DNA-GPT-M 88.70±1.78 87.82±1.27 72.60±4.17 92.59±0.38 44.71±4.67 86.93±2.13 78.89

AUROC

Likelihood 96.16±0.30 98.79±0.19 90.90±1.33 99.29±0.25 92.76±0.24 99.13±0.19 96.17
Likelihood-M 98.63±0.29 99.48±0.16 94.44±0.71 99.62±0.08 94.49±0.73 99.70±0.15 97.73

Log-Rank 96.55±0.31 98.95±0.13 90.08±1.28 99.36±0.13 92.01±0.20 99.24±0.15 96.03
Log-Rank-M 98.55±0.08 99.40±0.09 93.78±0.93 99.56±0.09 92.81±0.38 99.65±0.10 97.29

Entropy 74.19±1.62 89.49±0.33 73.26±1.48 84.11±0.77 86.58±0.66 95.94±0.35 83.93
Entropy-M 83.09±0.84 93.15±0.17 81.05±1.14 91.26±0.24 88.42±0.52 96.88±0.20 88.97
DetectGPT 50.81±0.58 46.40±0.77 57.48±0.84 50.41±1.70 41.54±0.60 17.90±1.25 44.09

DetectGPT-M 93.62±5.70 93.95±6.36 90.01±3.69 97.82±1.98 81.42±9.59 92.20±11.34 91.50
FastGPT 35.37±1.53 32.32±1.70 52.83±1.53 28.92±1.51 24.69±0.90 11.38±0.67 30.92

FastGPT-M 88.35±0.89 89.67±1.11 91.55±0.28 95.27±0.38 59.65±1.54 54.61±2.30 79.85
DNA-GPT 94.50±0.07 93.95±0.19 95.91±0.49 95.04±0.15 89.35±0.39 93.81±0.20 93.76

DNA-GPT-M 98.23±0.21 97.67±0.16 98.01±0.33 98.00±0.14 94.63±0.40 97.64±0.17 97.37

Table 8: Performance on Essay dataset. The detection models are trained on text generated by
Claude.

Metric Method GPT4All ChatGPT Dolly ChatGLM Claude ChatGPT-turbo avg

TPR@FPR-1%

Likelihood 46.20±16.47 68.58±13.28 20.67±10.79 92.86±4.84 12.31±6.29 73.60±14.63 52.37
Likelihood-M 86.74±3.37 90.09±2.80 50.07±9.80 98.08±0.27 34.00±6.66 95.78±1.40 75.79

Log-Rank 62.69±13.36 79.07±7.89 25.11±8.35 95.71±2.05 19.20±8.26 80.89±10.73 60.44
Log-Rank-M 89.20±2.33 88.18±2.58 54.42±3.96 95.00±3.56 37.82±2.28 94.80±1.37 76.57

Entropy 2.73±0.69 7.16±3.17 2.29±1.36 6.88±3.05 3.91±2.24 13.24±7.60 6.04
Entropy-M 12.16±0.86 29.07±3.22 10.74±4.12 30.94±5.62 16.80±2.73 39.69±4.99 23.23
DetectGPT 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.84±0.51 2.36±2.52 0.53

DetectGPT-M 34.62±17.61 38.71±23.27 24.73±8.38 74.06±17.99 3.91±2.05 29.11±24.44 34.19
FastGPT 1.59±0.32 1.64±0.67 0.29±0.10 2.72±0.68 3.47±1.83 16.89±6.66 4.43

FastGPT-M 27.47±2.92 28.04±7.49 39.57±3.76 56.47±6.13 0.98±0.65 0.84±0.71 25.56
DNA-GPT 0.50±0.17 0.31±0.11 0.67±0.55 0.00±0.00 0.13±0.11 0.53±0.36 0.36

DNA-GPT-M 12.76±2.00 13.16±2.36 14.03±3.12 12.14±1.73 13.69±2.59 13.33±2.38 13.19

AUROC

Likelihood 96.16±0.30 98.79±0.19 90.90±1.33 99.29±0.25 92.76±0.23 99.13±0.19 96.17
Likelihood-M 98.52±0.24 99.45±0.09 94.32±0.95 99.63±0.09 94.35±0.42 99.66±0.16 97.66

Log-Rank 96.55±0.31 98.95±0.13 90.08±1.28 99.36±0.13 92.01±0.20 99.24±0.15 96.03
Log-Rank-M 98.47±0.29 99.28±0.22 93.15±1.37 99.25±0.32 92.93±0.43 99.66±0.10 97.13

Entropy 74.19±1.62 89.49±0.33 73.26±1.48 84.11±0.77 86.58±0.66 95.94±0.35 83.93
Entropy-M 82.36±1.15 92.90±0.26 80.64±1.12 90.88±0.52 88.62±0.48 96.91±0.23 88.72
DetectGPT 50.15±0.99 50.53±3.65 48.04±7.27 49.25±1.58 51.21±8.39 55.34±31.67 50.75

DetectGPT-M 86.96±7.59 87.54±7.67 85.22±5.50 96.46±2.24 71.40±9.73 80.33±14.18 84.65
FastGPT 64.63±1.53 67.68±1.70 47.17±1.53 71.08±1.51 75.31±0.90 88.62±0.67 69.08

FastGPT-M 88.45±0.98 89.73±1.25 91.61±0.36 95.35±0.47 59.77±1.62 54.76±2.39 79.95
DNA-GPT 45.85±2.15 39.61±1.52 53.93±1.47 36.19±1.75 53.01±1.67 40.65±1.60 44.87

DNA-GPT-M 76.26±1.36 76.25±1.29 76.38±1.33 75.98±1.39 76.74±1.26 76.30±1.29 76.32
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Figure 21: Detection performance concerning TPR@FPR-1% under different LLM mixed texts. All
detectors are trained on Llama-2-70b texts.
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Table 9: Performance on DetectRL. The detection models are trained on text generated by ChatGPT
and Google-PaLM.

Metric Method DetectRL (Training Text: ChatGPT) DetectRL (Training Text: Google-PaLM)

Llama-2-70b ChatGPT Google-PaLM Avg. Llama-2-70b ChatGPT Google-PaLM Avg.

TPR@FPR-1%

Likelihood 38.37±0.92 10.21±1.40 25.66±2.41 24.75 38.32±0.88 10.19±1.38 25.66±2.41 24.72
Likelihood-M 45.61±3.57 12.14±2.66 33.18±2.46 30.31 42.94±4.14 9.91±3.87 35.48±2.70 29.44

Log-Rank 42.05±0.84 12.44±1.71 22.84±1.28 25.78 42.05±0.84 12.41±1.72 22.84±1.28 25.77
Log-Rank-M 50.66±1.43 12.73±1.65 41.41±2.56 34.93 50.58±1.35 13.00±2.43 41.09±4.07 34.89

Entropy 2.03±0.73 0.25±0.16 6.95±0.78 3.07 2.03±0.73 0.25±0.16 6.95±0.78 3.07
Entropy-M 2.13±0.30 0.27±0.20 9.27±0.87 3.89 2.22±0.37 0.27±0.20 9.37±0.93 3.96
DetectGPT 3.29±0.97 5.36±2.20 2.79±1.32 3.82 2.87±0.56 6.77±1.50 3.86±1.44 4.50

DetectGPT-M 25.29±10.05 7.66±4.17 14.17±11.10 15.71 22.00±4.30 4.57±0.37 24.94±2.68 17.17
FastGPT 11.35±2.01 3.78±1.20 5.02±0.85 6.72 11.35±2.01 3.78±1.20 5.02±0.85 6.72

FastGPT-M 27.71±15.63 13.42±8.91 17.68±11.92 19.60 12.41±0.89 6.18±0.83 20.10±1.78 12.90
DNA-GPT 31.03±1.59 11.05±1.69 26.40±2.08 22.83 41.71±1.32 29.49±0.84 38.84±1.58 36.68

DNA-GPT-M 41.16±1.63 12.53±2.06 33.57±2.15 29.09 47.10±0.93 22.72±1.50 40.54±1.98 36.79

AUROC

Likelihood 78.58±0.41 66.61±0.99 71.42±0.49 72.2 78.57±0.41 66.61±0.99 71.42±0.49 72.20
Likelihood-M 78.15±4.58 67.06±4.19 73.40±4.38 72.87 87.44±0.70 73.70±0.57 81.58±0.93 80.91

Log-Rank 79.67±0.46 65.85±0.94 70.66±0.40 72.06 79.67±0.46 65.85±0.94 70.66±0.40 72.06
Log-Rank-M 90.23±0.45 75.40±0.97 84.44±0.52 83.35 90.14±0.53 75.61±0.83 84.63±0.59 83.46

Entropy 66.21±0.88 63.09±1.05 60.73±0.91 63.34 66.21±0.88 63.09±1.05 60.73±0.91 63.34
Entropy-M 68.61±0.94 66.83±0.95 67.93±1.08 67.79 68.91±0.83 66.86±0.95 67.94±1.04 67.90
DetectGPT 49.21±2.31 49.64±0.53 50.72±6.91 49.85 47.63±0.59 49.78±0.60 56.81±1.41 51.40

DetectGPT-M 73.50±9.13 62.93±4.59 61.30±15.58 65.91 77.77±4.05 60.34±3.37 76.40±1.66 71.50
FastGPT 67.72±1.02 58.50±1.22 56.68±1.21 60.97 67.72±1.02 58.50±1.22 56.68±1.21 60.97

FastGPT-M 71.60±6.86 61.26±5.62 66.05±9.70 66.30 62.35±0.49 51.87±1.38 68.88±1.00 61.03
DNA-GPT 72.53±1.19 66.07±1.38 68.35±0.98 68.98 79.00±0.86 72.27±0.81 77.96±0.94 76.41

DNA-GPT-M 75.37±1.13 66.19±1.40 71.77±0.79 71.11 80.09±1.26 71.09±1.12 77.15±1.02 76.11

Table 10: Performance on Reuters dataset. The detection models are trained on text generated by
GPT4All.

Metric Method GPT4All ChatGPT Dolly ChatGLM Claude ChatGPT-turbo Avg.

TPR@FPR-1%

Likelihood 19.47±2.45 80.89±2.17 12.44±1.38 94.36±1.15 18.89±3.41 90.22±1.23 52.71
Likelihood-M 61.42±5.74 88.44±2.19 35.56±2.86 95.24±1.16 32.36±5.93 92.76±0.71 67.63

Log-Rank 29.91±3.27 86.22±1.87 15.20±1.70 97.33±0.64 24.58±3.35 93.16±1.07 57.73
Log-Rank-M 73.82±3.32 89.56±1.79 38.31±2.26 96.71±1.62 35.47±4.63 94.49±0.62 71.39

Entropy 6.18±1.40 0.04±0.09 13.07±1.76 0.22±0.20 0.00±0.00 0.22±0.00 3.29
Entropy-M 17.42±2.84 0.36±0.30 12.36±2.86 0.98±0.87 0.00±0.00 0.40±0.38 5.25
DetectGPT 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.44±0.40 0.04±0.09 0.08

DetectGPT-M 40.89±6.07 15.33±8.81 46.40±2.46 40.00±8.10 2.40±0.38 6.40±2.50 25.24
FastGPT 3.56±3.08 0.04±0.09 12.18±6.70 0.09±0.11 0.09±0.11 0.04±0.09 2.67

FastGPT-M 61.69±7.18 21.78±6.77 65.24±5.12 31.78±9.97 1.38±0.84 1.51±0.55 30.56
DNA-GPT 85.20±6.79 92.58±3.94 68.49±4.37 96.93±3.14 79.24±4.93 95.29±3.53 86.29

DNA-GPT-M 97.51±1.31 98.40±0.88 81.29±3.75 99.87±0.11 89.07±3.57 99.24±0.30 94.23

AUROC

Likelihood 75.19±1.39 97.55±0.33 58.77±1.76 99.62±0.11 86.45±0.70 98.42±0.25 86.00
Likelihood-M 93.74±1.23 98.42±0.26 77.05±0.53 99.61±0.11 90.68±0.56 98.78±0.33 93.05

Log-Rank 78.39±1.23 97.77±0.32 58.22±2.03 99.61±0.19 85.68±0.67 98.67±0.24 86.39
Log-Rank-M 95.50±0.81 98.60±0.23 76.60±1.33 99.64±0.29 90.45±0.69 98.99±0.31 93.30

Entropy 72.48±1.24 35.35±1.65 61.92±1.32 50.96±1.57 23.76±1.05 17.55±0.92 43.67
Entropy-M 70.31±1.98 34.84±2.95 50.09±1.57 46.62±1.12 27.55±2.60 29.08±4.18 43.08
DetectGPT 75.62±1.20 57.18±1.91 77.25±0.66 61.97±0.90 58.01±1.75 20.42±1.07 58.41

DetectGPT-M 87.58±0.93 78.19±2.33 86.29±1.18 89.73±0.97 58.40±1.54 65.72±1.36 77.65
FastGPT 76.50±1.39 39.56±0.54 82.45±0.47 33.21±1.82 41.31±0.89 11.29±0.49 47.39

FastGPT-M 96.46±0.31 90.21±0.75 96.23±0.36 92.36±0.74 66.98±1.06 56.28±1.80 83.09
DNA-GPT 99.51±0.14 99.72±0.07 98.41±0.21 99.85±0.05 99.21±0.14 99.81±0.06 99.42

DNA-GPT-M 99.80±0.09 99.88±0.07 98.39±0.17 99.94±0.06 99.53±0.09 99.89±0.09 99.57
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Figure 22: Detection performance concerning TPR@FPR-1% under different paraphrasing texts
(Dipper and Polish). All detectors are trained on Llama-2-70b texts.
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Table 11: Performance on Reuters dataset. The detection models are trained on text generated by
ChatGPT.

Metric Method GPT4All ChatGPT Dolly ChatGLM Claude ChatGPT-turbo Avg.

TPR@FPR-1%

Likelihood 19.78±2.21 81.07±2.05 12.53±1.35 94.36±1.15 19.42±3.17 90.31±1.11 52.91
Likelihood-M 59.73±8.56 88.98±1.58 35.91±3.82 96.00±2.14 26.71±5.93 93.24±0.94 66.76

Log-Rank 29.96±3.29 86.22±1.87 15.20±1.70 97.33±0.64 24.58±3.35 93.20±1.13 57.75
Log-Rank-M 63.91±8.04 90.62±2.38 34.58±4.71 98.13±0.46 29.73±8.71 94.53±0.67 68.59

Entropy 0.09±0.11 2.49±1.25 2.04±0.57 1.69±0.54 4.36±1.81 9.56±2.90 3.37
Entropy-M 7.07±3.05 17.47±5.59 13.60±2.23 9.02±3.21 18.09±4.26 33.29±7.84 16.42
DetectGPT 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.44±0.40 0.04±0.09 0.08

DetectGPT-M 22.76±25.66 47.91±28.49 11.69±12.56 23.64±28.60 8.27±5.92 71.24±17.28 30.92
FastGPT 0.31±0.23 2.04±0.86 0.04±0.09 3.16±1.03 1.42±0.57 23.51±4.15 5.08

FastGPT-M 56.04±11.84 17.07±10.24 61.51±9.34 26.67±13.24 0.89±0.92 1.29±0.68 27.24
DNA-GPT 29.82±18.89 69.78±22.51 15.64±12.02 83.47±14.87 21.96±19.50 82.22±15.63 50.48

DNA-GPT-M 86.80±5.37 96.76±1.16 59.33±8.10 99.29±0.38 61.91±13.48 97.51±1.24 83.60

AUROC

Likelihood 75.19±1.39 97.55±0.33 58.77±1.76 99.62±0.11 86.46±0.70 98.42±0.25 86.00
Likelihood-M 93.97±1.27 98.68±0.41 79.54±1.12 99.70±0.24 90.39±1.08 98.94±0.23 93.54

Log-Rank 78.39±1.23 97.77±0.32 58.22±2.03 99.61±0.19 85.68±0.67 98.67±0.24 86.39
Log-Rank-M 93.41±1.37 98.69±0.25 76.76±1.45 99.75±0.20 89.55±1.04 99.03±0.27 92.86

Entropy 27.52±1.24 64.65±1.65 38.08±1.32 49.04±1.57 76.24±1.05 82.45±0.92 56.33
Entropy-M 55.30±2.65 80.07±1.89 56.54±2.20 69.75±2.62 83.33±1.09 90.46±1.17 72.58
DetectGPT 75.62±1.20 57.18±1.91 77.25±0.66 61.97±0.90 58.01±1.75 20.42±1.07 58.41

DetectGPT-M 84.60±11.69 92.37±5.63 69.47±12.90 80.47±13.77 75.78±9.49 97.20±1.23 83.32
FastGPT 23.50±1.39 60.44±0.54 17.55±0.47 66.79±1.82 58.69±0.89 88.71±0.49 52.61

FastGPT-M 96.25±0.33 89.97±0.74 96.04±0.33 92.12±0.76 66.72±1.11 56.04±1.73 82.86
DNA-GPT 97.34±0.54 99.17±0.30 95.82±0.62 99.45±0.23 97.21±0.52 99.38±0.26 98.06

DNA-GPT-M 99.42±0.15 99.78±0.09 97.31±0.24 99.89±0.10 98.78±0.24 99.82±0.12 99.16

Table 12: Performance on Reuters dataset. The detection models are trained on text generated by
ChatGPT-turbo.

Metric Method GPT4All ChatGPT Dolly ChatGLM Claude ChatGPT-turbo Avg.

TPR@FPR-1%

Likelihood 19.82±2.17 81.07±2.05 12.53±1.35 94.44±1.10 19.42±3.17 90.27±1.07 52.93
Likelihood-M 66.62±5.21 90.13±1.15 38.62±2.74 95.96±1.29 29.60±2.32 93.91±1.03 69.14

Log-Rank 29.96±3.29 86.22±1.87 15.20±1.70 97.33±0.64 24.58±3.35 93.20±1.13 57.75
Log-Rank-M 60.18±8.59 90.27±1.98 33.07±3.84 98.22±0.40 27.29±6.31 94.00±0.40 67.17

Entropy 0.09±0.11 2.49±1.25 2.04±0.57 1.69±0.54 4.36±1.81 9.60±2.94 3.38
Entropy-M 5.11±2.70 16.18±4.91 12.27±1.51 7.69±2.70 17.42±3.93 31.69±6.61 15.06
DetectGPT 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.62±0.53 9.24±2.65 1.64

DetectGPT-M 6.22±3.99 26.71±14.32 2.49±0.97 4.04±3.33 4.18±2.22 60.67±14.38 17.39
FastGPT 0.31±0.23 2.04±0.86 0.04±0.09 3.16±1.03 1.42±0.57 23.51±4.15 5.08

FastGPT-M 0.00±0.00 0.22±0.28 0.04±0.09 0.53±0.33 0.62±0.29 7.38±2.42 1.47
DNA-GPT 2.09±1.29 4.31±1.94 1.69±1.21 5.51±1.67 1.96±1.60 5.24±2.29 3.47

DNA-GPT-M 5.82±1.06 6.44±0.97 3.56±1.27 6.49±0.87 3.78±1.29 6.67±0.84 5.46

AUROC

Likelihood 75.20±1.39 97.55±0.33 58.77±1.77 99.62±0.11 86.46±0.70 98.42±0.25 86.00
Likelihood-M 94.79±0.60 98.72±0.40 79.93±1.44 99.72±0.16 90.83±0.53 98.96±0.26 93.82

Log-Rank 78.39±1.23 97.77±0.32 58.22±2.03 99.61±0.19 85.68±0.67 98.67±0.24 86.39
Log-Rank-M 92.21±2.45 98.63±0.23 76.27±1.24 99.73±0.21 89.02±0.89 98.99±0.27 92.48

Entropy 27.52±1.24 64.65±1.65 38.08±1.32 49.04±1.57 76.24±1.05 82.45±0.92 56.33
Entropy-M 54.11±3.57 79.38±1.96 55.94±1.82 68.88±2.66 83.14±1.07 89.91±0.91 71.89
DetectGPT 24.38±1.20 42.82±1.91 22.75±0.66 38.03±0.90 41.99±1.75 79.58±1.07 41.59

DetectGPT-M 79.17±7.47 89.36±4.32 59.50±5.37 71.41±7.62 73.92±8.27 96.53±1.14 78.32
FastGPT 23.50±1.39 60.44±0.54 17.55±0.47 66.79±1.82 58.69±0.89 88.71±0.49 52.61

FastGPT-M 12.73±1.55 35.93±2.31 9.43±0.56 36.46±3.11 50.18±2.00 76.28±1.01 36.83
DNA-GPT 45.62±1.73 63.85±1.00 35.96±1.28 71.24±1.14 43.56±1.49 70.63±1.33 55.14

DNA-GPT-M 79.05±1.13 87.32±0.51 64.13±1.27 91.42±0.64 67.14±1.48 89.37±0.79 79.74
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Figure 23: Ablation results on the DetectRL dataset. The y-axis represents the LLM text on which
the detector was trained, and the x-axis represents the average performance across LLMs.
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Table 13: Performance on Reuters dataset. The detection models are trained on text generated by
ChatGLM.

Metric Method GPT4All ChatGPT Dolly ChatGLM Claude ChatGPT-turbo Avg.

TPR@FPR-1%

Likelihood 19.78±2.13 81.07±2.05 12.49±1.33 94.44±1.10 19.42±3.17 90.36±1.06 52.93
Likelihood-M 41.42±8.12 86.84±2.44 31.47±2.22 98.58±0.23 20.84±2.97 91.56±1.28 61.79

Log-Rank 29.96±3.29 86.22±1.87 15.20±1.70 97.33±0.64 24.58±3.35 93.20±1.13 57.75
Log-Rank-M 62.40±4.54 90.49±2.34 33.82±3.87 98.22±0.47 30.44±6.61 94.13±0.75 68.25

Entropy 4.89±2.71 0.36±0.71 10.49±4.75 0.44±0.37 0.58±1.16 1.38±2.31 3.02
Entropy-M 6.13±4.80 17.20±4.05 13.11±3.21 9.73±4.98 18.76±2.64 33.87±5.03 16.47
DetectGPT 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.44±0.40 0.04±0.09 0.08

DetectGPT-M 40.53±6.43 14.18±7.67 45.73±2.50 38.98±8.03 2.18±0.53 5.47±2.15 24.51
FastGPT 0.31±0.23 2.04±0.86 0.04±0.09 3.16±1.03 1.42±0.57 23.51±4.15 5.08

FastGPT-M 56.04±11.84 17.07±10.24 61.51±9.34 26.67±13.24 0.89±0.92 1.29±0.68 27.24
DNA-GPT 27.96±18.31 66.84±18.61 16.00±12.45 85.51±12.79 20.49±17.96 80.40±13.38 49.53

DNA-GPT-M 82.89±7.12 94.93±1.99 56.31±9.16 98.98±0.18 57.78±15.40 96.53±1.23 81.24

AUROC

Likelihood 75.19±1.39 97.55±0.33 58.77±1.77 99.62±0.11 86.46±0.70 98.42±0.25 86.00
Likelihood-M 87.15±3.71 98.44±0.43 77.92±1.74 99.95±0.00 87.99±1.16 98.69±0.26 91.69

Log-Rank 78.39±1.23 97.77±0.32 58.22±2.03 99.61±0.19 85.68±0.67 98.67±0.24 86.39
Log-Rank-M 93.39±0.75 98.68±0.24 76.11±1.61 99.75±0.19 89.70±0.41 98.99±0.25 92.77

Entropy 62.76±18.55 40.53±11.30 56.16±10.29 49.39±1.74 33.61±20.52 30.23±25.75 45.45
Entropy-M 54.30±3.63 79.38±1.33 55.89±1.46 69.08±2.00 83.03±0.44 89.77±1.24 71.91
DetectGPT 75.62±1.20 57.18±1.91 77.25±0.66 61.97±0.90 58.01±1.75 20.42±1.07 58.41

DetectGPT-M 87.17±0.76 77.46±1.85 86.14±1.14 89.36±1.25 57.83±1.55 64.40±1.89 77.06
FastGPT 23.50±1.39 60.44±0.54 17.55±0.47 66.79±1.82 58.69±0.89 88.71±0.49 52.61

FastGPT-M 96.27±0.33 89.98±0.74 96.07±0.33 92.13±0.76 66.74±1.10 56.05±1.74 82.87
DNA-GPT 97.10±0.48 98.94±0.26 95.56±0.57 99.29±0.17 96.95±0.46 99.22±0.22 97.85

DNA-GPT-M 99.33±0.15 99.72±0.09 97.15±0.21 99.82±0.10 98.68±0.24 99.77±0.12 99.08

Table 14: Performance on Reuters dataset. The detection models are trained on text generated by
Dolly.

Metric Method GPT4All ChatGPT Dolly ChatGLM Claude ChatGPT-turbo Avg.

TPR@FPR-1%

Likelihood 19.78±2.21 81.07±2.05 12.40±1.37 94.44±1.10 19.38±3.23 90.27±1.07 52.89
Likelihood-M 59.96±5.45 88.58±2.29 35.42±2.84 95.91±1.21 31.96±6.22 92.93±0.77 67.46

Log-Rank 6.62±11.36 17.24±34.49 10.49±2.42 19.42±38.62 4.93±9.87 18.58±37.16 12.88
Log-Rank-M 66.76±7.01 90.49±1.80 35.42±4.26 98.09±0.72 31.78±6.22 94.31±0.39 69.47

Entropy 6.18±1.40 0.04±0.09 13.07±1.76 0.22±0.20 0.00±0.00 0.22±0.00 3.29
Entropy-M 2.40±0.74 7.29±5.90 9.91±1.09 3.16±2.61 9.24±7.67 16.13±13.02 8.02
DetectGPT 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.44±0.40 0.04±0.09 0.08

DetectGPT-M 42.93±25.42 37.20±35.68 39.69±19.14 51.73±37.94 6.27±7.20 31.56±34.65 34.90
FastGPT 3.56±3.08 0.04±0.09 12.18±6.70 0.09±0.11 0.09±0.11 0.04±0.09 2.67

FastGPT-M 61.69±7.18 21.78±6.77 65.24±5.12 31.78±9.97 1.38±0.84 1.51±0.55 30.56
DNA-GPT 78.71±8.56 91.47±7.33 70.00±10.40 95.51±4.74 76.76±8.45 94.80±5.80 84.54

DNA-GPT-M 93.24±5.57 98.09±1.34 79.07±7.29 99.87±0.27 85.20±6.66 98.31±1.35 92.30

AUROC

Likelihood 75.19±1.39 97.55±0.33 58.77±1.76 99.62±0.10 86.45±0.70 98.42±0.25 86.00
Likelihood-M 93.42±0.91 98.45±0.29 77.41±1.04 99.67±0.16 90.57±0.61 98.78±0.33 93.05

Log-Rank 32.84±22.66 21.28±38.17 43.51±5.44 20.22±39.67 28.30±28.33 20.77±38.91 27.82
Log-Rank-M 94.18±0.71 98.71±0.19 76.52±1.64 99.73±0.23 89.98±0.70 99.02±0.31 93.02

Entropy 72.48±1.24 35.35±1.65 61.92±1.32 50.96±1.57 23.76±1.05 17.55±0.92 43.67
Entropy-M 49.80±2.95 56.16±26.44 52.47±1.86 53.09±16.63 56.78±31.30 58.33±37.31 54.44
DetectGPT 75.62±1.20 57.18±1.91 77.25±0.66 61.97±0.90 58.01±1.75 20.42±1.07 58.41

DetectGPT-M 80.34±21.91 73.22±28.90 81.89±11.41 91.04±8.24 57.53±18.26 66.30±30.95 75.05
FastGPT 76.50±1.39 39.56±0.54 82.45±0.47 33.21±1.82 41.31±0.89 11.29±0.49 47.39

FastGPT-M 96.47±0.30 90.23±0.73 96.24±0.37 92.37±0.72 67.04±1.07 56.34±1.90 83.12
DNA-GPT 99.19±0.21 99.74±0.09 98.90±0.24 99.83±0.07 99.21±0.16 99.80±0.08 99.45

DNA-GPT-M 99.66±0.19 99.84±0.13 98.81±0.22 99.91±0.10 99.47±0.20 99.86±0.14 99.59
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Figure 24: Ablation results on the Reuters dataset. The y-axis represents the LLM text on which the
detector was trained, and the x-axis represents the average performance across LLMs.
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Table 15: Performance on Reuters dataset. The detection models are trained on text generated by
Claude.

Metric Method GPT4All ChatGPT ChatGPT-turbo ChatGLM StableLM Claude Avg.

TPR@FPR-1%

Likelihood 19.82±2.17 81.07±2.05 12.53±1.35 94.44±1.10 19.42±3.17 90.36±1.06 52.94
Likelihood-M 60.18±5.26 84.84±2.91 32.13±2.78 91.78±1.51 34.58±4.58 91.47±1.34 65.83

Log-Rank 29.96±3.29 86.22±1.87 15.20±1.70 97.33±0.64 24.58±3.35 93.20±1.13 57.75
Log-Rank-M 71.33±4.00 89.82±2.47 37.60±1.64 97.07±1.44 34.84±5.56 94.36±0.87 70.84

Entropy 0.09±0.11 2.49±1.25 2.04±0.57 1.69±0.54 4.36±1.81 9.60±2.94 3.38
Entropy-M 5.51±2.56 17.42±5.92 13.24±2.62 7.91±2.58 18.00±4.28 34.09±8.23 16.03
DetectGPT 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.44±0.40 0.04±0.09 0.08

DetectGPT-M 39.91±20.48 51.60±22.14 28.80±20.74 57.47±35.18 6.00±3.22 78.53±8.07 43.72
FastGPT 0.31±0.23 2.04±0.86 0.04±0.09 3.16±1.03 1.42±0.57 23.51±4.15 5.08

FastGPT-M 59.96±10.36 33.11±28.98 56.09±16.45 42.44±27.14 8.62±15.04 19.64±36.52 36.64
DNA-GPT 3.64±1.52 6.58±1.66 2.18±1.15 7.78±0.95 2.44±2.03 7.20±1.15 4.97

DNA-GPT-M 6.67±2.96 7.16±3.18 4.22±2.00 7.51±3.26 5.38±2.87 7.16±3.17 6.35

AUROC

Likelihood 75.19±1.39 97.55±0.33 58.77±1.77 99.62±0.10 86.45±0.70 98.42±0.25 86.00
Likelihood-M 91.12±2.58 97.69±0.49 69.45±3.64 98.38±0.57 90.57±0.59 98.54±0.43 90.96

Log-Rank 78.40±1.23 97.77±0.32 58.22±2.03 99.61±0.19 85.68±0.67 98.67±0.24 86.39
Log-Rank-M 95.06±0.64 98.59±0.28 76.35±1.49 99.65±0.22 90.36±0.68 98.98±0.27 93.16

Entropy 27.52±1.24 64.65±1.65 38.08±1.32 49.04±1.57 76.24±1.05 82.45±0.92 56.33
Entropy-M 53.47±2.35 79.33±1.73 55.92±1.77 68.50±2.29 83.03±1.03 90.09±0.94 71.72
DetectGPT 75.62±1.20 57.18±1.91 77.25±0.66 61.97±0.90 58.01±1.75 20.42±1.07 58.41

DetectGPT-M 91.23±5.89 94.13±1.77 81.29±8.98 94.63±5.95 70.99±6.72 96.97±1.09 88.21
FastGPT 23.50±1.39 60.44±0.54 17.55±0.47 66.79±1.82 58.69±0.89 88.71±0.49 52.61

FastGPT-M 96.53±0.51 91.64±3.61 94.46±2.87 93.63±3.03 71.74±10.00 63.82±17.64 85.30
DNA-GPT 65.77±1.29 78.38±0.64 54.85±1.20 82.40±0.73 65.30±0.67 81.64±0.76 71.39

DNA-GPT-M 78.84±12.13 83.32±13.75 68.13±8.88 85.53±14.38 72.95±9.83 84.29±14.01 78.84
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Figure 25: Detection performance of AUROC under different transition center t0.
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Figure 26: Detection performance of TPR@FPR-1% under different transition center t0.
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Figure 27: Detection performance of AUROC at different numbers of MRF layer iterations.
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Figure 28: Detection performance of TPR@FPR-1% at different numbers of MRF layer iterations.
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Figure 29: Comparison with NN-based methods. The detector used is Log-Rank.
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Figure 30: Comparison with NN-based methods. The detector used is Entropy.
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Figure 31: Comparison with Model-based detectors. Detectors are trained on GPT4All (Essay and
Reuters) and Llama-2-70b (DetectRL).

Table 16: Running time (s) of training and inference phases.

Method Train Inference

Essay Reuters DetectRL Essay Reuters DetectRL

Likelihood 13.58 12.77 12.40 61.21 61.05 59.34
Likelihood-M 15.01 14.19 13.10 72.67 72.38 61.66

Log-Rank 15.98 14.38 14.61 75.60 72.99 66.20
Log-Rank-M 17.40 15.81 16.29 87.55 72.06 82.21

Entropy 13.26 12.93 13.79 64.49 63.69 63.19
Entropy-M 14.69 14.38 15.61 73.66 72.80 72.63
DetectGPT 204.32 216.36 370.44 924.63 982.55 1672.85

DetectGPT-M 206.44 218.73 373.48 929.46 984.70 1682.78
FastGPT 60.21 58.67 52.97 279.50 272.18 240.20

FastGPT-M 63.00 61.47 55.76 286.44 284.75 254.85
DNA-GPT 469.10 532.02 267.84 2113.65 2398.61 1207.18

DNA-GPT-M 471.42 534.47 271.11 2125.17 2405.37 1221.74
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