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Abstract

Token classification is a fundamental subject
matter in computational linguistics. Token
classification models, like other modern deep
neural network models, are usually trained on
the entire training set in each epoch, while
research has found all of the training data
may not be needed in late epochs of training.
Inspired by human pedagogy, we propose a
teacher-aware structure to accelerate the train-
ing of token classification models. After each
epoch of training, the teacher samples data that
it is uncertain to and data it predicts differently
from the student, which are passed into the
structure for training in the next epoch. As
a proof of concept, we use a Bayesian lin-
ear classifier as the teacher, and use two com-
monly used backbone models as the student.
Experiments show that our method reduces the
number of training iterations, speeding up the
training without affecting the model’s perfor-
mance.

1 Introduction

Token classification tasks, such as Named Entity
Recognition (NER) and Part-Of-Speech Tagging
(POS tagging), are essential to the study of lin-
guistics and natural language processing. With the
advent of intricate neural networks and blooming
amount of data that are available, the training of a
neural network may consume huge computational
resources. In most works, token classification mod-
els are trained on the entire training set, i.e. the
entire training set is fed forward and backward
through the network in each epoch. This proce-
dure implies that all data are equal, while studies
have shown otherwise, that some data are properly
handled in early phases of training and induce less
shift in weights in late epochs (Loshchilov and Hut-
ter, 2015; Katharopoulos and Fleuret, 2018). In
addition to the issue of cost, it is shown that con-
stant training on data that have a minute training
loss may penalize a model (Fan et al., 2017; Li

et al., 2021). It is thus favorable to design a strat-
egy capable of reducing training iterations with no
impact on model’s performance, or, alternatively,
to improve the model’s performance.

In this work, we propose a teacher-aware struc-
ture to facilitate efficient training in token classi-
fication. In human pedagogy, teachers and stu-
dents interact with each other: teachers adjust their
teaching for different students and students provide
feedback for their teachers. This dynamic coopera-
tive process can also lead to a half-the-effort-twice-
the-result outcome in machine learning (Matiisen
et al., 2017; Yuan et al., 2021). In our structure, the
teacher interacts with the student via uncertainty
sampling: after each training epoch, the teacher
goes through the ENTIRE training set and selects
data that it is uncertain to' and data that the student
predicts differently from it, which are passed into
the structure for training in the next epoch. Our
approach reduces the number of training iterations,
and features a dynamic data sampling process, i.e.
the teacher selects more data to train on when it
is not certain to them or there is a discrepancy be-
tween the prediction of the teacher and student, and
as the teacher is certain to more data and there is
more agreement between the prediction of the two
parties, the teacher tends to select less data to train
on.

The key contribution of this work is an efficient
training strategy for token classification. As a proof
of concept, we use a Bayesian linear classifier as
the teacher. We use two backbone models that are
widely used in token classification as the students,
and experiment on NER and POS tagging. Exper-
iments show that our structure is able to reduce
the amount of training iterations while having no
impact on model’s performance.

"Unless otherwise specified, uncertainty refers to predic-
tive uncertainty henceforth



2 Related Works

State-of-the-art token classification models (Ya-
mada et al., 2020; Schweter and Akbik, 2021;
Wang et al., 2021) are trained on the entire training
set in each epoch. Researches, on the other way,
have shown that some data are less informative,
which should be considered less frequently during
training (Loshchilov and Hutter, 2015; Katharopou-
los and Fleuret, 2018; Sinha et al., 2020). More-
over, continuing training on less informative data
may affect the model’s performance (Li et al.,
2021). A straight forward strategy to address this
problem is to aggregate the largest k training loss
(Fan et al., 2017). In such method, & is a fixed
value that does not change when training proceeds,
while, intuitively, k should be dynamic, since the
extend data is handled by the model varies in dif-
ferent phases of training. Thus, we believe that a
dynamic efficient training strategy is vital for token
classification and related learning tasks.

We facilitate efficient training in a teacher-aware
fashion, taking advantage of dynamic interactions
between the teacher and student model. The bene-
fits of teacher-aware learning are revealed in recent
studies. Matiisen et al. (2017) find that a teacher-
student curriculum learning framework leads to
faster learning in sampling sub-tasks from a com-
plex task. Yuan et al. (2021) propose a teacher-
aware learner based on gradient optimization that
is capable of bringing global and local improve-
ments.

In the structure we proposed, the teacher uses un-
certainty sampling to sample data from the training
set. Uncertainty sampling is an effective approach
to acquire informative data in active learning (Set-
tles, 2009; Yang et al., 2015), based on which we
implement a slightly different strategy, where the
consistency between the output of the teacher and
student is also considered.

In our work, we are in favor of a teacher model
that is as simple as possible. Inference through a
Bayesian neural networks is the principled way to
obtain uncertainty, and attempts are made to tackle
the intractable nature of Bayesian neural networks.
Blundell et al. (2015) introduce Bayes by Back-
prop, which learns a Bayesian nerual network by
minimizing the Kullback-Leibler (KL) divergence
between a diagonal Gaussian distribution and the
true posterior. We train a Bayesian linear classifier
which takes the output of the penultimate layer of
the student model as the input, which is inspired by

the implementation of Last Layer Laplace Approx-
imation, that a Gaussian approximation to the last
layer of a ReLU network is sufficient for yielding
calibrated uncertainty estimations (Kristiadi et al.,
2020).

3 Method

We train a Bayesian linear classifier teacher as
a proof of concept. Given a sequence =z =
[1,...,zy] and its tags y = [y1, ..., yn| Where n
is the sequence length, it goes through the student
model and weights w is updated by gradient de-
scent (GD). The Bayesian classifier takes the out-
put of the penultimate layer of the student model as
the input, and it is trained via Bayes by Backprop.
After each epoch, we use uncertainty sampling to
sample data from the ENTIRE training set, and the
selected data are passed into the structure for train-
ing in the next epoch.

3.1 Bayes by Backprop

BAYES BY BACKPROP learns a probability distri-
bution on the weights of a neural network (Blun-
dell et al., 2015). In our work, it finds the pa-
rameter § = (u, p), defined by a mean p and a
standard deviation parameter p, that minimizes the
Kullback-Leibler (KL) divergence between a di-
agonal Gaussian distribution ¢(w.|#) and the true
Bayesian posterior of the weights given the training
data P(w.|D), where w, denotes the weights of a
linear classifier:

F(D,0) = KL[g(we|0)||[P(we[D)]. (1)

The cost in Eq.1 is approximated using Monte
Carlo sampling:

F(D.0) = KL[g(w{|0)[|P(W|D)] ()
where w((f) is the i Monte Carlo sample drawn
from g(w,|#). The approximation in Eq.2 is mini-
mized by optimizing the function as follows:

f(we, 0) = log q(we|0)—log P(we) P(D|we).

To update 6, a noise factor ¢ is sampled from
N(0,1), and let w, = p + log(1 + exp(p)) o e,
where o is point-wise multiplication. The parame-
ters of  is updated by back-propagation. We follow
Blundell et al. (2015), using a scale mixture of two
Gaussians as the prior:

P(we) = [[ 7N (w]0,0?)

+ (1= mAN (w0, %)



where o2 and (? are the variances of the compo-
nent distributions and 7 is a probability.

3.2 Uncertainty sampling

UNCERTAINTY SAMPLING samples data using pre-
dictive uncertainty translated from the uncertainty
in weights:

P(ylz*, D) = Ep(w.|p) [P(Flz", We)]

where x* is the output of the penultimate layer of
a student model given z, and ¥ is a predicted tag.
After each epoch of training, we select uncertain
data and data for which the teacher and student
model predict differently from the ENTIRE train-
ing set, and feed them into the teacher and student
model for training in the next epoch. Specifically,
given a student model M(-), a Bayesian classi-
fier teacher 5(-), a training set D (with length m),
sample times n, and a frequency threshold ¢, we
perform uncertainty sampling as follows:

Algorithm 1 Uncertainty Sampling
1: inputs M(-), B(:),D,n,t

2: fori=1,2,...,mdo

3: x < Dli], z* + M*(x),r + ]

4 for j =1,2,...,ndo

5 e ~N(0,1)

6: We < p+log(l +exp(p))oe
7 rlj] = B, (z%)

8 end for

9: T < the frequency of the mode in r
10: if B, (z*) # M(z) or T < t then
11: yield z

12: end if

13: end for

M*(-) denotes the first to penultimate layers of the
student model. We sample w, for n times, which
gives us n predictions of the teacher (stored in r).
We find the frequency of the mode of the predic-
tions 7 and use it as the uncertainty estimation. If
the prediction of the teacher when w, = p does
not equal to the prediction of the student model or
T is less than a threshold ¢ (a low 7 indicates high
uncertainty), « will be used for training in the next
epoch.

4 Experiments

4.1 Experiment settings

We use BERT and BiLSTM as the student model
and experiment on CoNLL2003 (Tjong Kim Sang,

2002; Sang and De Meulder, 2003) and Penn Tree-
bank (Marcus et al., 1993). We use the same con-
figuration for the Bayesian linear classifier teacher
in all experiments. We consider a strict uncertainty
sampling strategy, where we set the threshold ¢ to
1, i.e. the teacher must be absolutely certain to an
input before it is passed for training in the next
epoch.

We compare our approach to standard training,
i.e. train the student model on the entire training
set in each epoch. We experiment on Top-k Loss
(Fan et al., 2017) to inspect our method’s capability
of reducing the punishment caused by continuing
training on properly handled data. We use a mini-
batch variant of Top-k Loss, where £* indicates
the proportion of samples picked from a batch of
data. For instance, £* = 0.8 means we sample 80%
data with the highest loss from a batch, which are
used for update. In our experiments, we pick up
k* values such that the total number of data whose
loss is used for update is close to the number of
iterations in teacher-aware training.
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Figure 1: The training curve, testing loss, and num-
ber of training data in each epoch, trained with BERT
on CoNLL2003 (EN) under different training methods.
Results are averaged across 3 runs.

4.2 Results

Table 2 displays the results of the experiments. We
only report the number of training iterations in stu-
dent model, since the training of the student model
costs much more computational power than that
of the teacher model. We also report an additional
F1-per-iteration index (9), which is calculated as:

F1%

0= 100.
Fiter. %




DATASET STUDENT METHOD #ITER. F1% 0
teacher-aware 9134666  89.05+0.06 0.97
BERT standard training 18740 88.84+0.05 0.47
Top-k Loss (k* = 0.50) 18740 88.374+0.08 0.47
CoNLL2003 (EN) teacher-aware 24924252  76.70£1.20 3.08
BiLSTM  standard training 6600 76.77+£0.92 1.16
Top-k Loss (k* = 0.40) 6600 73.59+1.33 1.12
teacher-aware 7648181 88.38+0.11 1.16
BERT standard training 10400 88.28+0.09 0.85
Top-k Loss (k* = 0.75) 10400 88.53+0.64 0.85
CONLL2003 (ES) teacher-aware 26014+186  75.90+£2.74 2.92
BiLSTM  standard training 3900 73.224£5.14 1.88
Top-k Loss (k* = 0.68) 3900 73.264+2.66 1.88
teacher-aware 103554329 87.73+0.49 0.85
BERT standard training 19760 85.26£1.11 0.43
Top-k Loss (k* = 0.50) 19760 86.30+£1.18 0.44
CoNLL2003 (NL) teacher-aware 25334674  67.1510.40 2.65
BiLSTM  standard training 7410 66.13+0.35 0.89
Top-k Loss (k* = 0.35) 7410 63.874+2.84 0.86
teacher-aware 36929+1003 93.27+0.39 0.25
BERT standard training 49790 92.56+1.35 0.19
Top-k Loss (k* = 0.75) 49790 93.034+0.23 0.19
Penn Treebank teacher-aware 817672 88.26:1.46 0.49
BiLSTM  standard training 18690 87.63+£1.04 047
Top-k Loss (k* = 0.99) 18690 87.724+1.89 0.47

Table 1: Number of training iterations in student model, test results (F1%), and FI-per-iteration (§) on CoONLL2003
and Penn Treebank under different student models and training methods. Results are averaged across 3 runs.

Our approach reduces the number of training itera-
tions in all runs. In some runs, our method reduces
more than 60% training iterations. Models trained
using our approach outperform those using stan-
dard training in 7 out of 8 sets. We also observe a
better performance in models trained using our ap-
proach than those using Top-k Loss. Our approach
sees the highest § in all sets, indicating that a single
iteration contributes more to model’s performance
in our method.

Figure 1 shows that the model trained using our
method has a slightly faster convergence rate and
a lower testing loss compared to other methods.
The teacher samples more data in early epochs
than late epochs, which suggests that there is more
discrepancy between the teacher and student, or
the teacher is uncertain to most of the data when
training begins; when training proceeds, the teacher
and student become more equivocal and the teacher
is certain to more data, resulting in less data being
selected out for training. Our structure features a
dynamic sampling process, distinct from methods

such as Top-k Loss which selects a fixed number
of data each time.

5 Conclusion

We propose a teacher-aware structure that utilizes
uncertainty to facilitate efficient training in token
classification. As a proof of concept, we use two
backbone models that are widely used in state-of-
the-art token classification models as the student,
and use a Bayesian linear classifier as the teacher.
Our structure reduces the number of training itera-
tions, with no cost in model’s performance.
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A Implementation details

For experiments with BERT, we use bert-base-
cased (Devlin et al., 2018) on CoNLL2003 (EN)
and Penn Treebank, dccuchile/bert-base-spanish-
wwm-cased (Caiete et al., 2020) on CoNLL2003
(ES), and GroNLP/bert-base-dutch-cased (de Vries
et al., 2019) on CoNLL2003 (NL) as the encoder.
The implementation is based on Hugging-face
Transformers (Wolf et al., 2020). The model is
optimized using Adam with a learning rate of 4e-
5. We set batch size to 8 and train the model 10
epochs. The model contains 108M parameters.

For experiments with BiLSTM, we produce de-
fault word-level embeddings with size 768 and use
2 BiLSTM layers with hidden size 768. We add a
dropout layer before the last BILSTM layer and the
linear classifier, with a rate of 0.2. The model is
optimized using Adam with a learning rate of 4e-3,
and we train the model 30 epochs with a batch size
of 64. The model contains 28M parameters.

We do not alter the configuration of the Bayesian
linear classifier teacher in one and another experi-
ment. It is optimized using Adam with a learning
rate of 4e-5. The Bayesian linear classifier contains
14K parameters. For each piece of training data, it
samples 2 times to update . We use a strict uncer-
tainty sampling strategy, where we set the threshold
tto 1.

B More results
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Figure 2: The training curve, testing loss, and number of training data on different data sets under different student
models and training methods. Results are averaged across 3 runs.



