
Learning Complete Protein Representation by Deep
Coupling of Sequence and Structure

Anonymous Author(s)
Affiliation
Address
email

Abstract

Learning effective representations is crucial for understanding proteins and their1

biological functions. Recent advancements in language models and graph neural2

networks have enabled protein models to leverage primary or tertiary structure3

information to learn representations. However, the lack of practical methods to4

deeply co-model the relationships between protein sequences and structures has5

led to suboptimal embeddings. In this work, we propose CoupleNet, a network that6

couples protein sequence and structure to obtain informative protein representations.7

CoupleNet incorporates multiple levels of features in proteins, including the residue8

identities and positions for sequences, as well as geometric representations for9

tertiary structures. We construct two types of graphs to model the extracted10

sequential features and structural geometries, achieving completeness on these11

graphs, respectively, and perform convolution on nodes and edges simultaneously12

to obtain superior embeddings. Experimental results on a range of tasks, such as13

protein fold classification and function prediction, demonstrate that our proposed14

model outperforms the state-of-the-art methods by large margins.15

1 Introduction16

Proteins are the fundamental building blocks of life and play essential roles in a diversity of ap-17

plications, from therapeutics to materials. They are composed of 20 different basic amino acids,18

which are lined by peptide bonds and form a sequence. The one-dimensional (1D) sequence of a19

protein determines its structure, which in turn determines its biochemical function [40]. Due to recent20

progress in protein sequencing [34], massive numbers of protein sequences are now available. For21

example, the UniProt [3] database contains over 200 million protein sequences with annotations,22

e.g., gene ontology (GO) terms, similar proteins, family and domains. Notably, the development of23

large-scale language models (LMs) in natural language processing has substantially benefited protein24

research owing to similarities between human language and protein sequences [16, 27]. For instance,25

models like ProtTrans [14] and ESM-series [39, 33] in learning protein representations have proven26

successful utility of pre-training protein LMs with self-supervision to process protein sequences.27

Thanks to the recent significant progress made by AlphaFold2 [30] in three-dimensional (3D) structure28

prediction, a large number of protein structures from their sequence data are now made available. The29

latest release of AlphaFold protein structure database [43] provides broad coverage of UniProt [3].30

Recently proposed structure-based protein encoders become to utilize geometric features [25, 24,31

53], e.g., ProNet [47] learns representations of proteins with 3D structures at different levels, like the32

amino acid, backbone or all-atom levels. There also exists a group of methods that build graph neural33

networks and LMs (LSTMs or attention models) to process sequence and structure [53, 50, 19], for34

example, GearNet [53] encodes sequential and spatial features by alternating node and edge message35

passing on protein residue graphs.36
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Figure 1: Illustration of the protein sequence and structure. 1) The primary structure comprises n
amino acids. 2) The tertiary structure with atom arrangement in Euclidean space is presented, where
each atom has a specific 3D coordinate. Amino acids have fixed backbone atoms (Cα,C,N,O)
and side-chain atoms that vary depending on the residue types. GLU: Glutamic acid. Complete
geometries can be obtained based on these coordinates. The sequence and structure provide different
information types and data categories.

The 1D sequence and 3D structure of a protein provide different types of information, in detail, as37

shown in Figure 1, compared with the 1D sequential order and amino acids in peptide chains, the38

tertiary structure provides 3D coordinates of each atom in protein residues, which allow them to39

perform precise functions. Although a protein’s sequence determines its structure, various works40

have demonstrated the effectiveness of learning from either sequence or structure [33, 25]. However,41

rich constraints between the sequence and structure of a protein, which may be critical for protein42

tasks [4], have yet to be fully explored. Most protein sequence-structure modeling methods cannot43

deeply integrate the information behind sequence and structure for the reason that they tend to fuse44

representations together, extracted from sequence and structure encoders, respectively, by message45

passing mechanism [8] or by simple concatenation operations.46

In this work, we aim to learn protein representations by deeply coupling the protein sequences and47

structures. Considering the relative positions of residues in the sequence and the spatial arrangement48

of atoms in the Euclidean space, the proposed CoupleNet constructs two categories of graphs for49

them, respectively. The complete representations are obtained at the amino acid and backbone50

levels on the two graphs, which are used as node and edge features to learn the final graph-level51

representations. Rather than concatenating sequence and structure representations, we take advantage52

of graph convolutions, performing node and edge convolutions simultaneously. The contributions of53

this paper are threefold:54

• We propose a novel two-graph-based approach for representing the sequence and the 3D55

geometric structure of a protein, which is an effective way to guarantee completeness.56

• We propose CoupleNet, a model that performs convolutions on nodes and edges of graphs57

to effectively integrate protein sequence and structure. This can better model the node-edge58

relationships and utilize the intrinsic associations between sequences and structures.59

• Practically, the proposed model is verified by obtaining new state-of-the-art experimental60

results compared with current mainstream protein representation learning methods on a61

range of tasks, including protein fold classification, enzyme reaction classification, GO term62

prediction, domain prediction, and enzyme commission number prediction.63

2 Related Work64

Protein Representation Learning Protein representation learning has become an active and promis-65

ing direction in biology, which is essential to various downstream tasks in protein science. Because66

of the different levels of protein structures, existing methods mainly fall into three categories: protein67

LMs for sequences, structure models for geometry, and hybrid methods for both of them. As proteins68

are sequences of amino acids, considering their similarities with human languages, UniRep [1],69

UDSMProt [42] and SeqVec [23] use LSTM or its variants to learn sequence representations and70

long-range dependencies. TAPE [37] benchmarks a group of protein models, e.g., 1D CNN, LSTM,71

and Transformer by various tasks. Elnaggar et al. [14] have trained six successful transformer variants72
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on billions of amino acid sequences, like ProtBert, and ProtT5. Similarly, ESM-series [39, 38, 33]73

employs a transformer architecture and a masked language modeling strategy to train robust represen-74

tations based on large-scale databases. Besides the protein sequence, as we have stated before, the75

3D geometric structure is vital to enhance protein representations. Most methods commonly seek to76

encode the spatial information of protein structures by convolutional neural networks (CNNs) [11],77

or graph neural networks [19, 2, 29]. For instance, SPROF [7] employs distance maps to predict78

protein sequence profiles, and IEConv [25] introduces a convolution operator to capture all relevant79

structural levels of a protein. GVP-GNN [29] designs the geometric vector perceptrons (GVP) for80

learning both scalar and vector features in an equivariant and invariant manner, Guo et al. [21]81

adopt SE(3)-invariant features as the model inputs and reconstruct gradients over 3D coordinates to82

avoid the usage of complicated SE(3)-equivariant models. ProNet [47] learns hierarchical protein83

representations at multiple tertiary structure levels of granularity. Moreover, CDConv [15] proposes84

continuous-discrete convolution using irregular and regular approaches to model the geometry and85

sequence structures. Some protein learning methods model the multi-level of structures at the same86

time [53, 6, 15], except for the primary structure and the tertiary structure, the second refers to the87

3D form of local segments of proteins (e.g., α-helix, β-strand), the quaternary is a protein multimer88

comprising multiple polypeptides, for example, PromtProtein [48] adopts a prompt-guided multi-task89

learning strategy for different protein structures with specific pre-training tasks. While previous90

works have attempted to combine protein sequence and structure, we focus on profoundly integrat-91

ing them by specifically designing two types of graphs respectively and conducting convolutions92

simultaneously to learn protein representations.93

Complete Message Passing Mechanism ComENet [46] proposes rotation angles and spherical94

coordinates to fulfil the global completeness of 3D information on molecular graphs. By incorporating95

these designed geometric representations into the message passing scheme [18], the complete96

representation for a whole 3D graph is eventually yielded [47]. Unlike these methods, we couple97

sequence and structure via corresponding graphs and different geometric representations to obtain98

completeness representations.99

3 Method100

3.1 Preliminaries101

Notations We represent a 3D graph as G = (V, E ,P), where V = {vi}i=1,...,n and E =102

{εij}i,j=1,...,n denote the vertex and edge sets with n nodes in total, respectively, and P =103

{Pi}i=1,...,n is the set of position matrices, where Pi ∈ Rki×3 represents the position matrix104

for node vi. We treat each amino acid as a graph node for a protein, then ki depends on the number105

of atoms in the i-th amino acid. The node feature matrix is X = [xi]i=1,...,n, where xi ∈ Rdv is106

the feature vector of node vi. The edge feature matrix is E = [eij ]i,j=1,...,n, where eij ∈ Rdε is the107

feature vector of edge εij . dv and dε denote the dimensions of feature vectors xi and eij .108

Invariance and Equivariance We consider affine transformations that preserve the distance109

between any two points, i.e., the isometric group SE(3) in the Euclidean space. This is called110

the symmetry group, and it turns out that SE(3) is the special Euclidean group that includes 3D111

translations and the 3D rotation group SO(3) [17, 12]. The matrix form of SE(3) is provided in112

Appendix A.1.113

Given the function f : Rm → Rm′
, assuming the given symmetry group G acts on Rm and Rm′

,114

then f is G-equivariant if,115

f(Tgx) = Sgf(x), ∀x ∈ Rm, g ∈ G (1)

where Tg and Sg are the transformations. For the SE(3) group, when m
′
= 1, the output of f is a116

scalar, we have117

f(Tgx) = f(x), ∀x ∈ Rm, g ∈ G (2)

thus f is SE(3)-invariant.118
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Complete Geometric Representations A geometric transformation F(·) is complete if two 3D119

graphs G1 = (V, E ,P1) and G2 = (V, E ,P2), there exists Tg ∈ SE(3) such that the representations120

F(G1) = F(G2)⇐⇒ P 1
i = Tg(P

2
i ), for i = 1, . . . n (3)

The operation Tg would not change the 3D conformation of a 3D graph [46]. Positions can generate121

geometric representations, which can also be recovered from them.122

Message Passing Paradigm Message passing mechanism is mainly applied in graph convolutional123

networks (GCNs) [32], which follows an iterative scheme of updating node representations based on124

the feature aggregation from nearby nodes.125

h
(0)
i = BN(FC (xi)) ,

u
(l)
i = f

(l)
Agg(h

(l−1)
j |vj ∈ N (vi)),

h
(l)
i = f

(l)
Update(h

(l−1)
j ,u

(l)
i )

(4)

where FC(·) and BN(·) mean the linear transformation and batch normalization respectively. N (vi)126

denotes the neighbours of node vi. f
(l)
Agg and f

(l)
Update are aggregation and transformation functions at127

the l-th layer, which are permutation invariant and equivariant of node representations.128

3.2 Sequence-Structure Graph Construction129

Figure 2: The local coordinate system.

Specifically, we represent each amino acid as a node,130

considering the residue types and their positions i =131

1, 2, · · · , n (See Figure 1) in the sequence, we de-132

fine the sequential graph primarily on the sequence,133

if ∥i− j∥ < l, the edge εij exists, where l is a hyper-134

parameter. Besides the sequential graph, we predefine a135

radius r, and build the radius graph, and there exists an136

edge between node vi and vj if ∥Pi,Cα − Pj,Cα∥ < r,137

where Pi,Cα denotes the 3D position of Cα in the i-th138

residue.139

Firstly, we design a base approach called CoupleNetaa140

that only uses the Cα positions of the structures. In-141

spired by Ingraham et al. [28], we construct a local142

coordinate system (LCS) for each residue, as shown in143

Figure 2.144

Qi = [bi ni bi × ni] (5)

where ui =
Pi,Cα−Pi−1,Cα

∥Pi,Cα−Pi−1,Cα∥ , bi = ui−ui+1

∥ui−ui+1∥ ,ni =
ui×ui+1

∥ui×ui+1∥ . Then we can get the geometric145

representations at the amino acid level of a protein 3D graph,146

F(G)ij,aa = (∥Pi,Cα − Pj,Cα∥ ,QT
i ·

Pi,Cα − Pj,Cα

∥Pi,Cα − Pj,Cα∥
,QT

i ·Qj) (6)

where · is the matrix multiplication, this implementation is SE(3)-equivariant and obtains complete147

representations at the amino acid level; as if we have Qi, the LCS Qj can be easily obtained by148

F(G)ij,aa.149

For a node vi, the node features xi,aa in the baseline approach is the concatenation of the one-hot150

embeddings of the amino acid types and the physicochemical properties of each residue, namely, a151

steric parameter, hydrophobicity, volume, polarizability, isoelectric point, helix probability and sheet152

probability [51, 22], which provide quantitative insights into the biochemical nature of each amino153

acid. And F(G)ij,aa is set as edge features for CoupleNetaa.154

Secondly, we consider all backbone atoms Cα,C,N,O in CoupleNet. In detail, the peptide bond155

exhibits partial double-bond character due to resonance [20], indicating that the three non-hydrogen156

atoms comprising the bond (the carbonyl oxygen, carbonyl carbon, and amide nitrogen) are coplanar,157
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Figure 3: The polypeptide chain depicting the characteristic backbone bond lengths, angles, and
torsion angles (Ψi,Φi,Ωi). The planar peptide groups are denoted as shaded gray regions, indicating
that the peptide plane differs from the geometric plane calculated based on the 3D positions.

as shown in Figure 3. There is some rotation about the connection. The Ni − Cαi and Cαi − Ci158

bonds, are the two bonds in the basic repeating unit of the polypeptide backbone. These single bonds159

allow unrestricted rotation until sterically restricted by side chains [35, 45]. Since the coordinates of160

Cα can be obtained as we have the complete representations at the amino acid level, the coordinates161

of other backbone atoms based on these rigid bond lengths and angles are able to be determined with162

the remaining degree of the backbone torsion angles Φi,Ψi,Ωi. The omega torsion angle around163

the C − N peptide bond is typically restricted to nearly 180◦ (trans) but can approach 0◦ (cis) in164

rare instances. Other than the bond lengths and angles presented in Figure 3, all the H bond lengths165

measure approximately 1 Å.166

For the sequential graph, we compute the sine and cosine values of Φi,Ψi,Ωi for each amino acid i,167

and use them as another part of nodes features for node vi.168

xi = xi,aa∥((sin∧ cos)(Φi,Ψi,Ωi)) (7)

where ∥ denotes concatenation. There is no isolated node for the designed graph, which means169

the backbone atoms can be determined one by one along the polypeptide chain based on the po-170

sitions of Cα and these three backbone dihedral angles. Therefore, the existing presentations171

[F(G)ij,aa]i,j=1,...,n and [xi]i=1,...,n are complete at the backbone level for the sequential graph.172

residue 

residue 

Figure 4: Interresidue geometries in-
cluding angles and distances.

173

For the radius graph, we want to get the positions of back-174

bone atoms in any two amino acids i and j. Inspired by175

trRosetta [52], the relative rotation and distance are com-176

puted including the distance (dij,Cβ
), three dihedral angles177

(ωij , θij , θji) and two planar angles (φij , φji), as shown in178

Figure 4, where dij,Cβ
= dji,Cβ

, ωij = ωji, but θ and φ179

values depend on the order of residues. These interresidue180

geometries define the relative locations of the backbone181

atoms of two residues in all their details [52], because the182

torsion angles of Ni − Cαi and Cαi − Ci do not influ-183

ence their positions. Therefore, these six geometries are184

complete for amino acids at the backbone level for the185

radius graph. The graph edges contain the relative spa-186

tial information between any two neighboring amino acids187

eij = F(G)ij,aa∥F(G)ij,bb, where188

F(G)ij,bb = (dij,Cβ
, (sin∧ cos)(ωij , θij , φij)) (8)

The designed node and edge features, xi and eij , for the sequential and radius graphs, provide a189

new perspective to represent protein sequences and structures. Such integration can bring better190

performance for the following graph-based learning tasks.191
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Figure 5: An illustration of CoupleNet.

3.3 Secqunce-Structure Graph Convolution192

Inspired by the message passing paradigm and continuous-discrete convolution [15], sequences193

and structures are encoded successfully together by convolutions. To deeply couple sequences and194

structures of proteins and encode them jointly, we employ convolution to embed them simultaneously,195

exploring their relationships to generate comprehensive and effective embeddings. Different from196

previous works, we innovatively construct two categories of graphs for sequence and structure and197

design various sequential and structural representations to achieve completeness on them at the amino198

acid and backbone levels. We then convolve node and edge features with the help of the message199

passing mechanism.200

In order to implement convolution on nodes and edges simultaneously between sequence and structure,201

we set εij to exist if the following conditions are satisfied202

∥i− j∥ < l and ∥Pi,Cα − Pj,Cα∥ < r (9)

The existing node and edge feature matrices (X,E) are complete representations of a protein 3D203

graph to reconstruct its backbone atom positions. Compared with the equation Eq. 4, the proposed204

CoupleNet first apply a FC(·) layer and a BN(·) layer to the node features to obtain the initial205

encoded representation. Then the f
(l)
Agg is applied to gather neighboring features of nodes and206

edges by convolution, where σ(·) is the activation function. We use the dropout and add a residual207

connection from the previous layer as f (l)
Update. For the consideration that the spatial arrangement and208

tight positioning of specific amino acids, which may be spaced widely apart on the linear polypeptide,209

are necessary for proteins to operate as intended [10], l is set to be a relatively large number, see210

Appendix A.2 for details.211

h
(0)
i = BN(FC (xi)) ,

u
(l)
i = σ(BN(

∑
vj∈N (vi)

Weijh
(l−1)
j ),

h
(l)
i = h

(l)
i +Dropout(u

(l)
i )

(10)

3.4 Model Architecture212

Building upon the sequence-structure graph convolution, we build the CoupleNet, as shown in213

Figure 5. The inputs to the graph are the calculated sequential and structural representations (X,E).214

Following the existing protein graph models [15, 25, 47], our CoupleNet employs graph pooling215

layers to obtain deeply encoded, graph-level representations. After pooling, due to the decrease216

in nodes, we increase the predefined radius r to include more neighbors. The message passing217

mechanism only executes on nodes for the consideration of reducing model complexity. Another218

reason is that representations of sequences and structures have already been coupled by equation219

Eq. 4. A detailed description of the model architecture is provided in Appendix A.2.220
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Table 1: Accuracy (%) on fold classification and enzyme reaction classification. [∗] means the results
are taken from [15]. The best and suboptimal results are shown in bold and underline.

Input Method Fold Classification Enzyme

Fold SuperFamily Family Reaction

Sequence

CNN [41]∗ 11.3 13.4 53.4 51.7
ResNet [37]∗ 10.1 7.21 23.5 24.1
LSTM [37]∗ 6.41 4.33 18.1 11.0
Transformer [37]∗ 9.22 8.81 40.4 26.6

Structure

GCN [32]∗ 16.8 21.3 82.8 67.3
GAT [44]∗ 12.4 16.5 72.7 55.6
3DCNN_MQA [11]∗ 31.6 45.4 92.5 72.2
IEConv (atom level) [25]∗ 45.0 69.7 98.9 87.2

Sequence-Structure

GraphQA [2]∗ 23.7 32.5 84.4 60.8
GVP [29]∗ 16.0 22.5 83.8 65.5
ProNet-Amino Acid [47] 51.5 69.9 99.0 86.0
ProNet-Backbone [47] 52.7 70.3 99.3 86.4
ProNet-All-Atom [47] 52.1 69.0 99.0 85.6
IEConv (residue level) [25]∗ 47.6 70.2 99.2 87.2
GearNet [53] 28.4 42.6 95.3 79.4
GearNet-IEConv [53] 42.3 64.1 99.1 83.7
GearNet-Edge [53] 44.0 66.7 99.1 86.6
GearNet-Edge-IEConv [53] 48.3 70.3 99.5 85.3
CDConv [15] 56.7 77.7 99.6 88.5

CoupleNet (Proposed) 60.6 82.1 99.7 89.0

4 Experiments221

4.1 Datasets and Settings222

The models are trained with the Adam optimizer [31] using the PyTorch and PyTorch Geometric223

libraries. Detailed descriptions of the datasets and experimental settings are provided in Appendix A.3.224

Following the tasks in IEconv [25], GearNet [53] and CDConv [15], here, we evaluate the CoupleNet225

on four protein tasks: protein fold classification, enzyme reaction classification, GO term prediction226

and enzyme commission (EC) number prediction.227

Fold Classification Protein fold is to predict the fold class label given a protein, which is crucial for228

understanding how protein structure and protein evolution interact [26]. In total, this dataset contains229

16, 712 proteins with 1, 195 fold classes. There are three test sets available, Fold: Training excludes230

proteins from the same superfamily. Superfamily: Training does not include proteins from the same231

family. Family: Proteins from the same family are included in the training.232

Enzyme Reaction Classification Reaction categorization aims to predict a protein’s class of233

enzyme-catalyzed reactions, according to all four levels of the EC number [49, 36]. Following the234

setting in [25], this dataset has 37, 248 proteins from 384 four-level EC numbers [5].235

GO Term Prediction The goal of GO term prediction is to foretell whether a protein is related236

to a certain GO term. Following [19], these proteins are organized into three ontologies: molecular237

function (MF), biological process (BP), and cellular component (CC), which are hierarchically238

connected, functional classes. MF describes activities that occur at the molecular level, BP represents239

the larger processes, and CC describes the parts of a cell or its extracellular environment [3].240

EC Number Prediction This task seeks to predict the 538 EC numbers from the third level and241

fourth levels of different proteins [19], which describe their catalysis of biochemical reactions.242
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Table 2: Fmax on GO term and EC number prediction. [∗] means the results are taken from [15]. The
best and suboptimal results are shown in bold and underline.

Category Method GO-BP GO-MF GO-CC EC

Sequence

CNN [41]∗ 0.244 0.354 0.287 0.545
ResNet [37]∗ 0.280 0.405 0.304 0.605
LSTM [37]∗ 0.225 0.321 0.283 0.425
Transformer [37]∗ 0.264 0.211 0.405 0.238

Structure
GCN [32]∗ 0.252 0.195 0.329 0.320
GAT [44]∗ 0.284 0.317 0.385 0.368
3DCNN_MQA [11]∗ 0.240 0.147 0.305 0.077

Sequence-Structure

GraphQA [2]∗ 0.308 0.329 0.413 0.509
GVP [29]∗ 0.326 0.426 0.420 0.489
IEConv (residue level) [25]∗ 0.421 0.624 0.431 -
GearNet [53] 0.356 0.503 0.414 0.730
GearNet-IEConv [53] 0.381 0.563 0.422 0.800
GearNet-Edge [53] 0.403 0.580 0.450 0.810
GearNet-Edge-IEConv [53] 0.400 0.581 0.430 0.810
CDConv [15] 0.453 0.654 0.479 0.820

CoupleNet (Proposed) 0.467 0.669 0.494 0.866

4.2 Baselines243

We compare our proposed method with existing protein representation learning methods, which are244

classified into three categories based on their inputs, which could be a sequence (amino acid sequence),245

3D structure or both sequence and structure. 1) Sequence-based encoders, including CNN [41],246

ResNet [37], LSTM [37] and Transformer [37]. 2) Structure-based methods (GCN [32], GAT [44],247

3DCNN_MQA [11], IEConv (atom level) [25]). 3) Sequence-structure based models, e.g., GVP [29],248

ProNet [47], GearNet [53], CDConv [15], etc. GearNet-IEConv and GearNetEdge-IEConv [53] add249

the IEConv layer based on GearNet, which is found important in fold classification.250

4.3 Resluts of Fold and Reaction Classification.251

Table 1 provides the comparisons on the fold and enzyme reaction classification. The results are252

reported in terms of accuracy (%) for these two tasks. From this table, we can see that the proposed253

model CoupleNet achieves the best performance across all four test sets on the fold and enzyme254

reaction classification compared with recent state-of-the-art methods. Especially on the Fold and255

SuperFamily test sets, CoupleNet improves the results by about 4%, showing that CoupleNet is256

proficient at learning the mapping between protein sequences, structures and functions. Moreover,257

CDConv [15] ranks second among these methods, both CDConv and our method are implemented258

by sequence-structure convolution. This phenomenon illustrates that deeply coupling sequences259

and structures of proteins is conducive to learning better protein embeddings. And our proposed260

CoupleNet model utilizes complete geometric representations and the specially designed message261

passing mechanism, achieving new state-of-the-art results.262

4.4 Results of GO Term and EC Prediction263

We follow the split method in [19, 53] to guarantee that the test set only comprises PDB chains with264

sequence identity no higher than 95% to the training set for GO term and EC number prediction.265

Table 2 compares different protein modeling methods on GO term prediction and EC number266

prediction. The results are reported in terms of Fmax, which considers both precision and recall for267

evaluation, the equation of Fmax is provided in Appendix A.4. The proposed model, CoupleNet268

yields the highest Fmax across these four test sets of two tasks, outperforming other state-of-the-art269

models. This indicates CoupleNet can effectively predict the functions, locations, and enzymatic270

activities of proteins. These results once again illustrate the importance of deeply coupled sequences271
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Table 3: Ablation of our proposed method

Method Fold Classification Enzyme GO EC
Fold Superfamily Family Reaction BP MF CC

CoupleNet 60.6 82.1 99.7 89.0 0.467 0.669 0.494 0.866
CoupleNetaa 57.8 78.7 99.6 88.6 0.458 0.660 0.484 0.851
w/o Φ,Ψ,Ω 60.3 81.3 99.6 88.7 0.463 0.666 0.490 0.862
w/o d, ω, θ, φ 60.4 81.5 99.7 88.9 0.461 0.666 0.488 0.864

and structures. The improvements of CoupleNet over the suboptimal CDConv [15] model indicate272

the advanced modeling power of CoupleNet.273

Figure 6: Fmax on EC number prediction under
different cutoffs.

We employ different cutoff splits following [19,274

15], which means that the proteins in the test set275

are divided into groups that have, respectively,276

30%, 40%, 50%, 70%, and 95% similarity to277

the training set for GO term and EC number pre-278

diction, as shown in Figure 6 and Appendix A.5.279

From Figure 6, we can see that our proposed280

model CoupleNet achieves the highest Fmax281

scores across all cutoffs, especially when the282

cutoffs are at 30% to 50%. There is a larger mar-283

gin compared with GearNet, GearNet-Edge [53]284

and CDConv [15]. This demonstrates that Cou-285

pleNet, which utilizes complete geometric repre-286

sentations, is more robust, especially when there287

is a low similarity between the training and test288

sets.289

4.5 Ablation Study290

Table 3 presents an ablation study of the proposed CoupleNet model on the four protein tasks. We291

examined the impact of removing the backbone torsion angles (w/o Φ,Ψ,Ω) and removing the292

interresidue geometric structure representations (w/o d, ω, θ, φ). The former is designed for the293

sequential graph, and the latter is for the radius graph to achieve completeness at the protein backbone294

level. However, we combine the two types of graphs together to enhance the relationships between295

sequence and structure. From Table 3, we can also find that these complete geometries provide296

complementary information to amino acid position features, with one of their removals leading to297

minor performance drops for the reason that they both provide complete geometries from different298

perspectives. Removing Φ,Ψ,Ω causes larger performance degradation compared with removing299

d, ω, θ, φ. Such comparisons indicate that the backbone dihedral angles may have more effects300

on learning protein representations in these experimental settings. Compared with CoupleNetaa,301

CoupleNet achieves significant improvements on the four tasks, demonstrating the importance of302

complete structural representations at the backbone level in learning protein embeddings.303

5 Conclusions and Limitations304

In this work, we propose CoupleNet, a novel protein representation learning method that deeply fuses305

protein sequences and multi-level structures by conducting convolution on graph nodes and edges306

simultaneously. We design the sequential graph and the radius graph, achieving completeness on307

them at different protein structure levels. Our approach achieves new state-of-the-art results on the308

protein tasks, which demonstrates the superiority our the proposed method. A limitation is that the309

detailed inter-relationships between sequence and structures remain to be explored and uncovered.310

We leave such research for future work.311

While our model can enable advanced protein analyses and provide effective representations, there312

may exist broader impacts and harmful activities. The representations could potentially be misused,313

e.g., for designing harmful molecules or proteins.314
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