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Abstract

Forest ecosystems play a critical role in the Earth system as major carbon sinks
that are essential for carbon neutralization and climate change mitigation. How-
ever, the Earth has undergone significant deforestation and forest degradation,
and the remaining forested areas are also facing increasing pressures from socioe-
conomic factors and climate change, potentially pushing them towards tipping
points. Responding to the grand challenge, a theory-based Ecosystem Demog-
raphy (ED) model has been continuously developed over the past two decades
and serves as a key component in major initiatives, including the Global Car-
bon Budget, NASA Carbon Monitoring System, and US Greenhouse Gas Cen-
ter. Despite its growing importance in combating climate change and shaping
carbon policies, ED’s expensive computation significantly limits its ability to esti-
mate carbon dynamics at the global scale with high spatial resolution. Recently,
machine learning (ML) models have shown promising potential in approximat-
ing theory-based models with interesting success in various domains including
weather forecasting, thanks to the open-source benchmark datasets made available.
However, there are currently no publicly available ML-ready datasets for global
carbon dynamics forecasting in forest ecosystems. The limited data availability
hinders the development of corresponding ML emulators. Furthermore, the in-
puts needed for running ED are highly complex with over a hundred variables
from various remote sensing products. To bridge the gap, we develop a new
ML-ready benchmark dataset, CarbonGlobe, for carbon dynamics forecasting,
featuring that: (1) the data has a global-scale coverage at 0.5◦ resolution; (2) the
temporal range spans 40 years; (3) the inputs integrate extensive multi-source
data from different sensing products, with calibrated outputs from ED; (4) the
data is formatted in ML-ready forms and split into different evaluation scenarios
based on climate conditions, etc.; (5) a set of problem-driven metrics is designed
to develop benchmarks using various ML models to best align with the needs of
downstream applications. Our dataset and code are publicly available on Kaggle
and GitHub: https://www.kaggle.com/datasets/zhihaow/carbonglobe
and https://github.com/zhwang0/carbon-globe.

1 Introduction

Forest ecosystems play critical roles in the Earth system by offering a wide array of essential
ecosystem services such as carbon storage and climate change mitigation [45, 37]. Studies have
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shown that terrestrial ecosystems, including forests, sequestered about one-third of global fossil
fuel emissions in the past decades [15]. However, the Earth has undergone significant deforestation
and forest degradation as a result of human activities and climate change [7, 60]. The remaining
forested areas are also facing increasing pressures from socioeconomic factors and climate change,
and could be pushed to tipping points [24, 20]. Thus, there is a growing interest in maintaining
forest carbon sequestration through afforestation and reforestation initiatives from local to global
scales [12]. Climate mitigation policies now also include significant international commitments to
afforestation, reforestation, and improved management practices, including the "one trillion trees"
project [3], which are necessary to achieve the net zero emission goal. These developments have led
to a strong demand for advancing the understanding of forest carbon dynamics and its capacity to
mitigate future climate change.

The Ecosystem Demography (ED) v3.0 model is a pioneering model based on ecological and carbon
cycle theories, and it has been continually developed over the past decades to improve terrestrial
carbon dynamic modeling [25, 14, 38]. ED uniquely takes in observations from remote sensing
satellites and in-situ sensors (e.g., meteorological conditions, initial tree heights, soil properties)
to forecast essential carbon-related variables such as carbon stocks, carbon fluxes, and carbon
sequestration potential. ED has been extensively calibrated and evaluated against global and regional
real observations, including vegetation structure, carbon fluxes, LiDAR data, and forest inventories
[22, 39, 38, 16]. Due to its high quality, ED has been used to support NASA’s Carbon Monitoring
System and included in the official Global Carbon Budget [16, 17]. ED results are also operationally
adopted by the State of Maryland, US, for annual forest carbon inventory updates [2, 1, 23].

Despite its growing importance in combating climate change and shaping carbon policies, ED’s
expensive computation has become a bottleneck constraining its capability to estimate and forecast
carbon dynamics globally at high spatial resolutions. This capability, however, is important as
policy-making and management practices often require fine-grained outputs, which are unavailable
from coarse resolution maps due to spatial heterogeneity [22, 40]. This is a missed opportunity
as a unique characteristic of ED is its ability to model complex plant-scale carbon dynamics and
integrate them into large-scale climate submodules such as the carbon cycle. Recently, machine
learning (ML) models (e.g., FourCastNet [31], GraphCast [33]) have shown promising potential in
approximating theory-based models with interesting success in various domains including weather
forecasting, thanks to the open-source benchmark datasets made available, such as the ERA5 dataset
from WeatherBench 2 [47]. However, there are yet any publicly available ML-ready datasets for the
critical application of carbon dynamics forecasting in forest ecosystems, where we consider a “ML-
ready dataset” as one that has gone through preprocessing by domain and AI experts and converted
into a ready-to-use input-output format for ML models. In addition, the architectures of deep learning
emulators for theory-based models often need targeted designs to capture the characteristics of the
physical processes (e.g., Fourier neural operators for long-distance convolution [31]). The limited
availability of ML-ready data also hinders the development of corresponding network architectures.
Furthermore, while ED and its inputs are publicly available, it is a highly complex task to collect,
process, and integrate all 100+ input variables at large scales and over long periods from different
sources and types of data products, including meteorological conditions, 3D height profiles, etc.

This paper introduces CarbonGlobe, the first global-scale ML-ready dataset for carbon dynamics
estimation and forecasting in forest ecosystems. CarbonGlobe integrates a comprehensive set of
variables covering different aspects of the physiological and ecological processes involved, including
meteorological variables from NASA Daymet and MERRA2, soil properties from the POLARIS
dataset, CO2 concentration from NOAA CarbonTracker, and many more (details in Sec. A.3). These
diverse inputs are used to generate and calibrate the outputs of ED in high-performance-computing
(HPC) environments. The complete CarbonGlobe spans an extensive period of 40 years under diverse
initial forest conditions. The ML-ready dataset is prepared together by carbon and ML experts to make
it easily accessible to ML researchers, while ensuring the data quality aligned with domain science
and applications. We also design problem-driven metrics and implement a suite of ML forecasting
models to develop extensive benchmarks with different scenarios for evaluation and comparison. The
open-source project serves as a foundation for future model developments. The dataset and code
are publicly available on Kaggle https://www.kaggle.com/datasets/zhihaow/carbonglobe
and GitHub https://github.com/zhwang0/carbon-globe. Our contributions are summarized
as follows:
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• We introduce the first global-scale ML-ready dataset CarbonGlobe for forest carbon dynamics
monitoring and forecasting at 0.5◦ resolution, and the temporal range spans over 40 years.

• CarbonGlobe covers a comprehensive set of 100+ variables integrated from heterogeneous sources,
and includes different scenarios for training and testing to resemble diverse application conditions.

• The dataset helps evaluate ML models’ ability and build benchmarks for long-term forecasting
under different initial conditions and cross-domain generalization (e.g., climate zones).

• We carry out benchmark experiments with a suite of ML forecasting models, using both standard
and new metrics designed for the carbon forecasting problem (e.g., delta and cumulative errors).

2 Related Work

Deep learning emulators for theory-based models. There have been increasing efforts to develop
deep learning emulators for approximating theory-based models in various domains [31, 62]. For
weather forecasting, deep emulators have been created to significantly accelerate traditional numerical
models that are computationally expensive, allowing global-scale short-term forecasting at much
higher resolutions [33, 6]. Similarly, multi-scale climate simulations which deploy smaller-scale
and high-resolution simulators nested within host grid columns, have also been emulated using deep
learning models for faster approximation [66, 48, 42, 58]. Moreover, physics simulations, which
involve solving complex partial differential equations, have been extensively studied using deep
learning approximators [44, 51, 29]. Although there have been many well-established deep learning
emulators, they are specifically designed only for target problems (e.g., global convolution) and are
not suitable for approximating carbon dynamics in forest ecosystems [61]. One recent work [61]
proposes the first deep learning emulator for forecasting forest carbon dynamics, but it only focuses
on the Northeastern US and does not publish any datasets.

Time-series forecasting. Deep learning models have shown promising performance in time-series
forecasting. Variations of recurrent networks and their integration with convolutional networks have
been developed to model spatio-temporal dependency [61, 9, 65, 32]. More recently, transformer-
based models have been widely used for long-term time-series forecasting due to their ability to
model long-range dependency [56, 10, 11]. Many variants were also developed to enhance the
forecasting ability, such as the more efficient ProbSparse self-attention in Informer [69], auto-
correlation decomposition in Autoformer [63], cross-feature and cross-time dependency modeling in
Crossformer [68], etc. DLinear also revisited the potentials of multi-layer perceptrons and showed
comparable performance to Transformer-based models on many occasions [67]. A limitation of these
models is that they tend to rely on past sequences as inputs in order to make future forecasts, and the
performance reduces if only initial conditions are available. In addition, knowledge-guided learning
models, which integrate domain knowledge to enhance generalizability, have shown improvements
for various problems, such as forest carbon forecasting [61], lake temperature monitoring [27, 26],
solar forecasting [34, 36, 35], etc. These models are specifically designed for target domain problems.

ML-ready datasets for Earth Science. There has been increasing attention on creating and sharing
high-quality, large-scale, ML-ready datasets for solving Earth science challenges. For example,
weather forecasting now benefits from various choices of ML-ready datasets, such as weather
conditions in WeatherBench 2 [47], satellite data in EarthNet2021 [49], as well as theory-based
climate simulations in ClimSim [66], ClimateSet [28] and ClimART [8]. Similarly, there have been a
large number of ML-ready datasets for various tasks in land surface monitoring, including image
classification and retrieval in BigEarthNet-MM [54], wildfire detection in Mesogeos [30], crop type
identification in CropHarvest [55], building and road detection in SpaceNet [52], etc. Despite the
availability of various datasets, no publicly available ML-ready datasets currently exist for global-
scale carbon forecasting in forest ecosystems, hindering the development and adoption of ML models
for this critical task of carbon neutralization and climate mitigation.
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3 CarbonGlobe: Dataset Construction

3.1 Background: The Ecosystem Demography (ED) model for carbon forecasting

ED is a global demographic, process-based ecosystem model that mechanistically tracks plant
dynamics, including growth, mortality, and reproduction, and integrates it with other larger-scale
submodules on the carbon cycle, hydrology, and soil biogeochemistry [25, 43, 38]. The carbon cycle
tracked includes uptake by photosynthesis, carbon allocation to the growth of biomass (e.g., in leaves,
roots, and stems); redistribution of carbon from plants to soil due to dead plants by mortality or
disturbance; carbon decomposition, and carbon combustion from fire. ED explicitly considers a
variety of drivers including meteorological properties, soil physical properties, and CO2 concentration.
The sophisticated processes at individual plant scales are scaled up through a set of partial differential
equations governing demographic dynamics. ED outputs a range of ecological variables including
carbon stocks (e.g., vegetation carbon, soil carbon), carbon fluxes (e.g., gross primary productivity),
water fluxes (e.g., evapotranspiration), and vegetation structure (e.g., canopy height).

Validation and applications. ED has been extensively calibrated and validated with real observa-
tions using multi-source data from vegetation distribution, vegetation vertical structure, carbon fluxes,
airborne and spaceborne LiDAR observations, ground measurements of forest inventory, as well as
atmospheric inversions of land net carbon fluxes at both global and regional scales [22, 39, 38, 16].
These evaluations have demonstrated strong alignments between ED outputs and observations from
field measurements and satellite observations. More validation information is available in the Ap-
pendix. Fig. 1 shows an example where ED outputs showed similar seasonal trends with monthly
GPP measurements from in-situ ground monitoring stations in the ABCflux database [57]. Given the
high quality of the ED model, its results have been used to support important reports and programs,
including the Global Carbon Budget [16, 17], NASA Carbon Monitoring System, and the Department
of the Environment in Maryland, US [2, 1, 23].
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Figure 1: GPP comparisons between the calibrated ED model and in-situ measurements.

3.2 Stage 1: Integrating inputs from heterogeneous sources

The first key step is to process and integrate all the inputs needed for the ED model in order to
generate the carbon forecasting outputs. As ED considers a diverse range of plant-level and larger-
scale processes (e.g., carbon cycle), we follow the established workflow in [38] to prepare three types
of information from heterogeneous data sources as detailed in the following: (1) Meteorological
forcing: The data is collected from NASA’s Modern-Era Retrospective analysis for Research and
Applications, version 2 (MERRA-2) [18], including surface air temperature, specific humidity,
wind speed, precipitation, incident shortwave radiation, and multilayer soil temperature. (2) CO2

concentration: The surface CO2 information is collected from the NOAA CarbonTracker Database
[46]. CO2 concentration has major impacts on plant physiology such as photosynthesis, water use
efficiency, etc. (3) Soil properties: Soil data is collected from ROSETTA [41], and the variables
include depth, hydraulic conductivity, as well as residual and saturated volumetric water content.
Detailed descriptions of the datasets and processing steps are provided in the supplementary document.

Spatial and temporal coverage. The inputs are collected at the global scale with a 0.5◦ spatial
resolution, excluding Antarctica. The choice of 0.5◦ spatial resolution follows established standards
in Earth system modeling, where datasets at 0.5◦-2◦ are widely used to advance understanding of
the global terrestrial carbon cycle [4, 21, 13]. The resolution also aligns with major international
frameworks such as the Global Carbon Budget [16, 17], where ED has been included since 2023.
From the AI model development perspective, 0.5◦ or coarser resolution makes it easier for training
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Figure 2: Overview of CarbonGlobe. (A) CarbonGlobe collects global input data at 0.5◦ spatial
resolution over a 40-year period from heterogeneous sources, including climate forcings, CO2

concentrations, and soil properties. (B) A pioneering theory-based ecosystem model (ED), calibrated
with ground network measurements and satellite LiDAR data, takes these inputs to forecast carbon
dynamics. Once trained on CarbonGlobe inputs and outputs, machine learning emulators replicate
this process with significantly reduced computational cost, enabling applications at higher spatial
or temporal resolutions. (C) Model outputs include key ecosystem carbon variables at the same
resolutions. (D) CarbonGlobe defines standardized pipelines for better reflecting downstream domain
applications through three evaluation scenarios and two problem-driven evaluation metrics.

and evaluation without an overwhelmingly large data size for general users, which is a common
consideration for related datasets such as WeatherBench [47]. For the temporal range, we select a
40-year period (1981-2021) to construct the dataset. The reason that we select this range instead of a
future range is to best ensure the quality of the ED outputs in Stage 2, where model calibration can
be effectively conducted using available observations. This does not alter the forms of the inputs or
outputs for the forecasting task from the ML perspective, as the ML models will start from the initial
year in the range and forecast till the end of the sequence, regardless of the time period selected.
The next two sections will discuss the output generation using ED and the details of the ML-ready
input-output formats for the data.

3.3 Stage 2: Generating ED outputs

Given the prepared input data from Stage 1, ED is then executed to forecast carbon dynamics. For the
outputs, our carbon experts select the following 7 variables as forecasting targets: vegetation height,
aboveground biomass (AGB), soil carbon (SC), leaf area index (LAI), gross primary production
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(GPP), net primary production (NPP), and heterotrophic respiration (Rh). These output data have
been extensively evaluated against reference datasets and compared between ecosystem models
[22, 38, 40].

To generate this dataset, we ran the ED model in our HPC cluster equipped with AMD EPYC
Processors for a total of ~812 CPU days. This high computational cost presents a major bottleneck
for scaling up to higher spatial resolutions (e.g. will take 25x longer to produce data at 0.1°) or
extending the dataset over longer temporal horizons. To address these limitations, we structure the
dataset in a ML-ready format in the following section to support the development of deep learning
emulators, with the goal of accelerating large-scale, long-term ecosystem carbon forecasting.

3.4 Stage 3: Developing ML-ready data formats, scenarios, and problem-specific metrics

The objective of this stage is to complete the generation of the ML-ready dataset CarbonGlobe,
enabling researchers to efficiently train deep learning emulators for the computationally expensive
ED model. To better represent diverse application needs, we also construct three evaluation scenarios
for benchmarking and model comparison. Finally, we develop two problem-driven evaluation metrics
to better reflect the needs in the downstream applications. The overall dataset is illustrated in Fig. 2.

ML-ready data formats. Given the inputs and outputs described in the previous two stages,
CarbonGlobe presents a global dataset at 0.5◦ spatial resolution (54,152 land site locations in total)
for a time span of 40 years. In addition, ED uses tree age as a seed condition during its theory-based
propagation. To make our dataset more comprehensive, we generated the sequences of outputs at
each location using 15 different seed tree ages in ED. For clarity, here we formally define the formats
of inputs and outputs for the ML forecasting task. The input X ∈ RN×T×M×D covers the time-series
of variables that are necessary for predicting the output targets, where N = n · a is the number of site
locations n multiplies the number of seed tree ages a (i.e., one time-series sequence per location and
tree age); T is the number of years in each sequence; M is the number of time steps per year used
to chronologically order inputs within a year (here we have one month as one step); and D is the
number of variables at each time step. M can also be merged with D (i.e., D ·M ) if the chronological
order is ignored within a year. In total we have N = 54, 152× 15 = 812, 280 time-series sequences
for the forecasting task, and each sequence covers 40 consecutive years. For each year, there are
M = 12 monthly sub-steps to provide a chronological order as needed, and at each step, there are
D = 136 variables from Stage 1 including both dynamic and static variables, where static variables
are duplicated for each time step. Note that in ED the sequences are independent of each other, so we
do not organize nearby site locations using an image format to keep consistency with the original
model. The output Y ∈ RN×T×D′

has the same N sequences of length T years, and D′ output
variables for each year. As introduced in Stage 2, there are D′ = 7 output target variables. Finally,
there is also a vector of initial target variables v ∈ RN×D′

that is needed at the very beginning step of
the forecasting, and different initial v lead to different sequences. Finally, the ML task is defined as:
Given time-series input X and the initial v, forecast the output Y sequentially for all the T steps. As
the sequences can be extensively long, it is a common practice during training to split the sequences
into smaller segments to reduce memory consumption [50, 31, 61]. In this case, v for each segment
can be extracted from Y using target variable values from the last time step before the segment.

Scenarios for evaluation. As CarbonGlobe has large geographic and temporal coverage, there exist
heterogeneous patterns of carbon dynamics affected by climate types and forest maturity represented
by age. To better understand the performance of ML models under different scenarios, the dataset
includes three evaluation scenarios: (1) Overall evaluation: This is the standard ML evaluation
where all test data are used together to assess model performance. To better align with application
needs, we use only 1/16 of the data for training and the rest for testing. The reason is that an important
goal of the ML emulators is to reduce the forecasting time and enable capabilities such as forecasting
at higher spatial resolution. In practice training samples can be generated using a coarse grid, and then
a well-trained emulator can be used to predict all results at a finer grid. In this case, it is equivalent
to uniformly sampling a subset of site locations over space for training, where the 1/16 sampling
ratio we used is approximately the same as using a 4x-coarser grid for training. (2) Climate-based
evaluation: Carbon dynamics are significantly affected by climate properties such as precipitation
and temperature. We collect the Köppen-Geiger climate classification map from [5] and process it
into the same spatial reference system of the carbon data. Next, we separate test data points based on
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the major climate zones, including tropical, arid, temperate, cold, and polar zones. The performance
statistics can then be computed separately for each climate zone. (3) Forest-age-based evaluation:
Forest age influences carbon dynamics in various ways. For example, forests have more rapid carbon
sequestration with faster growth at younger ages, which gradually slow down as they mature. Thus,
we include this forest-age-based scenario where evaluations are separated by tree ages to understand
the corresponding performance variability of ML models.

Problem-driven evaluation metrics. Traditional ML time-series metrics (e.g., RMSE, MAE) tend
to average errors over all time steps, which may not best reflect error accumulations in long-term
forecasting tasks. To address this, we introduce two additional problem-driven evaluation metrics
that better reflect ecological and temporal dynamics: cumulative error and delta error. These
metrics were developed in consultation with domain experts in carbon and ecosystem modeling and
align more closely with practical monitoring needs. Specifically, cumulative error measures the
overall error at the very last step (i.e., T th step) of each sequence of length T : EC = ||YT − ŶT ||22,
where T denotes the very last step of each sequence and Ŷ is the prediction by the ML model. Delta
error represents the error on the changes between two consecutive time steps, and the year-over-year
changes are important for monitoring differences caused by variations in environment conditions :
E∆ =

∑T
t=2 ||(Yt − Yt−1)− (Ŷt − Ŷt−1)||22/(T − 1).

4 Experiments

4.1 Candidate methods

We evaluate the performance of a set of ML methods on CarbonGlobe that are broadly used for
time-series forecasting, including LSTM variants, transformer-based models, as well as a recent deep
emulator designed for ED. In addition, for long-term emulation, training only on original (true) data
often leads to faster error accumulation [50]. For example, during training, initial target variables
v (Sec. 3.4) in shorter segments are based on the true Y. However, during testing, the model has
to forecast the entire sequence relying on the initial Y0, which means v in the middle steps will be
purely based on the predicted Ŷ, resulting in higher error accumulation. To mitigate this, we integrate
the strategy by [50, 31, 53] to insert perturbations to initial target variables v by adding random-walk
noise N = (0, σ) with a small standard deviation (e.g., σ = 1e−4). This strategy shared by emulators
is largely problem-agnostic and significantly reduces error accumulation for all candidate methods.
Thus, we apply it by default to all the following methods (results without this strategy and details of
model training parameters and architecture are included in the supplementary document):

• LSTM: A standard LSTM taking time-series ED inputs and outputting targets [19].
• LSTNet: A time-series model extracting short-term dependencies using convolution along time-

feature dimension and long-term temporal patterns using RNN [32].
• DeepED: An LSTM-based deep learning emulator for ED with specialized designs on error

accumulation reduction and knowledge-guided learning [61].
• Transformer (TF): A vanilla transformer model with a self-attention mechanism to capture

dependencies across all time steps during the forecasting [56].
• Informer (IF): A transformer variant with a ProbSparse attention for reduced complexity [69].
• DLinear (DL): A linear decomposition model to separate data into trend and seasonality, showing

comparable performance among transformer-based models while maintaining efficiency [67].
• Crossformer (CF): A transformer variant with a two-stage attention mechanism for modeling both

cross-time and cross-feature dependencies [68].
• TimeXer (TX): A transformer variant with a separated modeling strategy to capture both inter-

target relationships and input-target dependencies [59].

4.2 Results

Overall evaluation. Table 1 shows the overall forecasting performance on target variables using
4 evaluation metrics. The ED emulator, DeepED, outperforms other models on target variables
height, AGB, SC and LAI, while Transformer (TF) and Informer (IF) have the best or the second-
best performance on NPP, GPP, and Rh. The interesting separations of the best models reflect the
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Table 1: Overall performance of ML methods in RMSE, MAE, delta (∆), and cumulative error (CE).

Model Height AGB SC LAI GPP NPP Rh
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

LSTM 3.352 1.890 1.363 0.869 1.942 1.354 0.708 0.460 0.281 0.137 0.139 0.068 0.161 0.088
LSTNet 2.887 1.608 1.228 0.798 1.284 0.833 0.661 0.427 0.270 0.129 0.135 0.064 0.149 0.081
DeepED 1.900 0.891 0.491 0.248 0.660 0.354 0.416 0.210 0.258 0.128 0.127 0.059 0.148 0.084
TF 2.888 1.750 1.154 0.626 1.710 1.083 0.449 0.247 0.217 0.088 0.107 0.043 0.121 0.059
IF 2.915 1.773 1.266 0.654 1.803 1.196 0.461 0.250 0.234 0.094 0.116 0.045 0.124 0.063
DL 5.731 4.124 3.191 2.284 4.371 3.383 1.119 0.814 0.578 0.389 0.289 0.193 0.268 0.186
CF 2.910 1.563 1.218 0.614 1.144 0.637 0.506 0.298 0.235 0.114 0.117 0.056 0.131 0.065
TX 3.879 2.301 1.583 1.046 1.770 1.317 1.127 0.701 0.972 0.477 0.581 0.237 0.512 0.284

∆ CE ∆ CE ∆ CE ∆ CE ∆ CE ∆ CE ∆ CE

LSTM 0.433 4.794 0.183 1.660 0.188 2.455 0.413 0.838 0.289 0.325 0.145 0.160 0.179 0.177
LSTNet 0.421 4.003 0.189 1.454 0.150 1.881 0.404 0.776 0.280 0.309 0.142 0.154 0.166 0.165
DeepED 0.398 2.424 0.114 0.604 0.120 0.955 0.377 0.475 0.244 0.299 0.123 0.143 0.151 0.187
TF 0.419 3.925 0.131 1.592 0.148 2.525 0.287 0.552 0.169 0.253 0.085 0.125 0.113 0.148
IF 0.420 3.966 0.135 1.749 0.150 2.693 0.284 0.570 0.168 0.271 0.085 0.134 0.111 0.153
DL 0.867 5.905 0.284 3.457 0.348 4.404 0.428 1.270 0.334 0.675 0.168 0.336 0.188 0.309
CF 0.413 3.904 0.144 1.616 0.139 1.770 0.299 0.640 0.183 0.285 0.093 0.142 0.129 0.159
TX 0.423 5.634 0.155 2.328 0.146 2.713 0.423 1.898 0.344 2.009 0.180 1.430 0.192 0.920

*Bold = best model, Underline = runner-up.
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Figure 3: Global distribution of the difference between the results of emulators and ED in Year 40.

heterogeneous patterns of different target variables. In particular, height, AGB, SC and LAI tend
to have an increasing trend over time, where current status has stronger effects on the forecasting
of the next time step. In contrast, NPP, GPP, and Rh have stronger seasonality, where variations of
climate and soil conditions have a potentially higher influence on forecasting. Transformer-based
architectures are able to capture complex patterns through the attention mechanism, which potentially
contributes to their better performance on these variables. Crossformer also receives many second-
best performances but does not show advantages over Transformer and Informer on this problem.
Other models, such as DLinear, TimeXer, and LSTM, have large errors for long-term forecasting
without targeted designs based on the ED model. Two proposed evaluation metrics, delta error
and cumulative error (Sec. 3.4), also reflect the new insights. For example, the relative differences
between the methods are reduced – sometimes with the ranking changed – when moving from RMSE
and MAE to the delta errors. In addition, variables such as height, AGB, SC, and LAI exhibit larger
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Figure 5: Error distributions among different climate zones and forest ages.

changes in error patterns, while GPP, NPP, and Rh show relatively minor differences. This also
reflects the impact of variable characteristics (e.g., monotonic, periodical) on error patterns.

Patterns over space and time. Fig. 3 and Fig. 4 highlight the spatial and temporal variations of
prediction quality. Fig. 3 shows the error distribution (prediction minus label) over the globe at the
final forecasting step. We use the three best-performing models and three representative variables
as examples, and more results are included in the supplementary document. Through the maps, we
can see clear patterns of spatial clusters. DeepED tends to slightly overestimate height, AGB, and
SC in regions with sparse forest coverage or colder climates, while Transformer and Informer show
overestimation of these variables in densely forested areas such as the Eastern US, Central Africa,
as well as the Amazon region. Both Transformer and Informer exhibit an interesting pattern: they
underestimate height but overestimate AGB in the western Siberia region. While these variables are
typically correlated, this discrepancy suggests a region-specific divergence in their relationship within
Siberia. For temporal patterns in Fig. 4, DeepED shows the best performance in predicting height,
AGB and SC with the smallest errors over 40 years. In comparison, Transformer has the best overall
performance in predicting GPP. While the separation between the methods is less significant for GPP,
LSTM-based methods overall have higher errors for this variable.

Scenarios in climate zones and forest ages. Fig. 5 shows the results under different climate zones
and forest ages to better understand the model performances in different scenarios. Interestingly, we
do observe significant variations caused by both climate and forest ages, as well as their interplay.
First, climate-induced differences have stronger expressions in certain variables such as AGB and
GPP. For example, AGB errors are higher in tropical regions than in colder climates, likely due to
differences in forest structure. In terms of forest age, DeepED in general outperforms Transformer
at smaller seed forest ages. This pattern also holds for height, AGB and soil carbon at larger seed
ages, while Transformer starts to outperform on GPP, NPP and Rh. These findings provide insights
for future model development that incorporates more heterogeneity-awareness or knowledge-guided
methods [64] to better capture region- and condition-specific dynamics.
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Figure 6: Inference time of ML models.

Execution time. Fig. 6 shows the inference time of the ML-based emulators for forecasting global
carbon dynamics over 40 years using a single RTX A4500 GPU. For context, the same computation
took ED about 40.6 days of wall time using 20 CPU cores in parallel, equivalent to roughly 812 CPU
days in total. In comparison, the ML models are able to reduce the forecasting time by orders of
magnitude (e.g., about 1-1.5 hours for most models). DeepED has a slightly longer inference time due
to multi-scale architecture designed to reduce error accumulation and handle heterogeneous variables.
DLinear has the shortest computation time, but its prediction quality is less accurate compared to the
other candidate methods in the evaluation.

5 Conclusion, Limitations and Future Work

This paper presents a new global-scale benchmark dataset CarbonGlobe for carbon forecasting at
0.5◦ spatial resolution spanning 40 years. The dataset integrates 100+ variables from heterogeneous
sources and is constructed in a ML-ready format. For performance benchmarking we also developed
a suite of time-series forecasting methods and evaluated them using both standard and problem-driven
metrics under various scenarios such as different climate zones and forest conditions. CarbonGlobe
will facilitate the development of ML models for scalable and long-term carbon forecasting.

Limitations, opportunities, and future work. While CarbonGlobe is the first global-scale ML-ready
dataset for forest carbon dynamics, we would like to acknowledge several limitations of it. First, while
the ED model itself is open-sourced, running ED still requires significant domain expertise, making
it difficult for non-experts to generate additional data under new conditions (e.g., higher-resolution,
local-scale forecasting). Moreover, the current dataset has not incorporated simulations for future
(e.g., from 2025 to 2100 using conditions from CMIP-6). We plan to add future simulation runs to
the dataset as additional test cases for the emulators. Second, the current task setup does not cover
emerging ML paradigms such as active learning and knowledge-guided learning, or models not based
on deep learning. We plan to extend the dataset with new task formulations to support these directions.
Third, intermediate variables and submodule outputs from ED (e.g., hydrology, fire, or sub-annual
carbon fluxes) are not included due to storage constraints, but future versions may incorporate them
to support more physically-consistent model development. Finally, we plan to expand the integration
of alternative forecasting strategies, such as non-autoregressive formulations, which can potentially
help further reduce error accumulation and improve model performance.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims in the abstract are detailed in the paper with evidence.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We explicitly discuss the limitations in Sec. 5.
Guidelines:
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This dataset and evaluation does not cover theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We share the dataset and codes, and all experiment settings are included into
the code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code is open-sourced on GitHub and dataset is shared with sufficient
details.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The splits and evaluation scenarios are explicitly discussed with reasons
explained.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The models take significant resource to run leading to substantial extra energy
consumption. The queuing in our computing system also discourages repetitive job submis-
sions for such tasks (longer waiting time). We instead did the multiple runs with smaller
data subsets and the ranking is stable.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Computing resource information is included with execution time compared in
Fig 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, we follow the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Yes, when discussing future work to mitigate spatial bias using heterogeneity-
aware learning.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our carbon forecasting dataset is calibrated by real-world observations and do
not have risk information for misuse.
Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite all products and models used in this paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new asset is well documented in the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not have research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Same as above.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We only used ChatGPT for editing and proofreading our manuscript.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Dataset: Access and Additional Details

A.1 Dataset Access

The datasets are available for download at the following link for review purposes. All datasets have
been uploaded to Kaggle and will be made publicly accessible upon acceptance of the paper. The
dataset can be assessed from https://www.kaggle.com/datasets/zhihaow/carbonglobe.

A.2 Dataset Variables and Statistics

In the inputs, CarbonGlobe covers a comprehensive set of variables integrated from heterogeneous
sources, including meteorological properties, soil physical properties, and CO2 concentration. In
the outputs, CarbonGlobe provides a range of ecological variables including carbon stocks (e.g.,
vegetation carbon, soil carbon), carbon fluxes (e.g., gross primary productivity), and vegetation
structure (e.g., canopy height). Table 2 lists all input and output variables followed by summarized
data descriptions.

In Fig. 7, we present statistical information on output variables along forest growth to provide a
comprehensive understanding of the central tendency and variability of the output variables across
different stages of forest development. We also provide detailed distributions for all input variables in
our dataset. All data statistics are calculated across the globe over 40 years and visualized based on
the age of the forest. This provides insights into the trend of each variable. For example, height has a
steady increase during early ages and then becomes more stable whereas the above-ground biomass
(AGB) continues to increase as the tree crown grows larger in volume and higher in density.

Age Age Age

Age Age Age Age

Height

GPP

AGB

NPP

SC

Rh

LAI

Figure 7: Statistical information on the mean (solid line) and standard deviation (shaded areas) of
output variables in different forest ages.

A.3 Data Collection and Preprocessing

This section presents detailed information about data collection, access licences, and preprocessing
steps.

• Meteorological data: The data from NASA’s Modern-Era Retrospective analysis for Research and
Applications, version 2 (MERRA-2) [18] was collected from https://gmao.gsfc.nasa.gov/
reanalysis/MERRA-2/ using official data download website MDISC, managed by the NASA
Goddard Earth Sciences Data and Information Services Center. There are no restrictions on the use
of data except for referencing the original paper https://gmao.gsfc.nasa.gov/reanalysis/
MERRA-2/citing_MERRA-2/. After the download, all variables were aggregated to the monthly
average for each year.
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Table 2: Overview of input and output variables (first and second columns) of CarbonGlobe dataset.
The subsequent columns detail the variable name, feature dimension, units, and brief descriptions.
More details about the theory-based model can be found in [38].

In Out Variable Count† Unit Description‡

✓ ta_m 1 K Monthly averaged air temperature
✓ pr 1 mm Total monthly precipitation
✓ tsl1 1 K Monthly averaged soil temp. at 0.0988m
✓ tsl2 1 K Monthly averaged soil temp. at 0.1952m
✓ tsl3 1 K Monthly averaged soil temp. at 0.3859m
✓ tsl4 1 K Monthly averaged soil temp. at 0.7626m
✓ tsl5 1 K Monthly averaged soil temp. at 1.5071m
✓ tsl6 1 K Monthly averaged soil temp. at 10m
✓ co2 24 ppm Monthly average of hourly CO2 ambient
✓ dst 1 1 Disturbance rate
✓ hus 24 1 Monthly average of hourly air specific humidity
✓ ta_h 24 K Monthly average of hourly air temperature
✓ rsds 24 W m−2 Monthly average of hourly DSR
✓ sfcWind 24 m s−1 Monthly average of hourly wind speed
✓ k_sat 1 mm yr−1 Saturated hydraulic conductivity
✓ s_theta 1 m3 m−3 Saturated water content in MVG
✓ r_theta 1 m3 m−3 Residual water content in MVG
✓ L 1 1 Parameter L in MVG
✓ n 1 1 Parameter n in MVG
✓ m 1 1 Parameter m in MVG
✓ sd 1 mm Soil depth to bedrock
✓∗ ✓ height 1 m Vegetation canopy height
✓∗ ✓ agb 1 kgC m−2 Aboveground biomass
✓∗ ✓ sc 1 kgC m−2 Soil carbon
✓∗ ✓ lai 1 1 Leaf area index
✓∗ ✓ gpp 1 kgC m−2 Annual gross primary production
✓∗ ✓ npp 1 kgC m−2 Annual net primary product
✓∗ ✓ rh 1 kgC m−2 Annual heterotrophic respiration
∗It is part of the input only at the beginning of the step, which is the same for the ED model.

During forecasting, the output from the previous step is used as the input for the next step.
†The number of sub-variables. 24 means the values are averaged for each hour of the day.
‡Abbreviations: Mualem–van Genuchten equations (MVG), which are used to quantify the

hydraulic properties of unsaturated soils; downward solar radiation (DSR); temperature (temp.).

• CO2 Data: The surface CO2 information from the NOAA CarbonTracker Database [46] was
collected from https://gml.noaa.gov/ccgg/carbontracker/ using the data archive system
provided on the website directly. There are no restrictions on the use of data except for referenc-
ing the publications https://gml.noaa.gov/ccgg/carbontracker/CT2007/citation.php.
The CO2 data was first linearly interpolated from 3◦× 2◦ to 0.5◦× 0.5◦ at the spatial scale and
from 3h to hourly at the temporal scale.

• Soil properties: Soil data from ROSETTA [41] was collected from https://doi.pangaea.de/
10.1594/PANGAEA.870605 under the Creative Commons Attribution 3.0 License. The soil data
was originally delivered for latitudes from 60◦S to 90◦N, excluding Antarctica. We aggregated the
data from 0.25◦× 0.25◦ to 0.5◦× 0.5◦.

• Climate Classification Data: We collected the Köppen-Geiger climate classifica-
tion map [5] from https://figshare.com/articles/dataset/Present_and_future_K_
ppen-Geiger_climate_classification_maps_at_1-km_resolution/6396959/2 under
the Creative Commons Attribution 4.0 International License. We aggregated 30 climate clas-
sification subtypes into 5 major types, based on which we separated our test data points to evaluate
the model performance for each climate type. Fig. 8 visualizes the 5 primary climate zones and the
corresponding percentage of test data points under each climate condition.
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Figure 8: A visualization of the present Köppen-Geiger climate classification map with five major
climate zones and the corresponding test sample sizes.

A.4 Author Statement

The authors of this paper bear full responsibility for any potential violations of rights arising from the
data collection included in this research.

B Models: Access and Additional Details

B.1 Code Access

We have uploaded the benchmark model code to GitHub, along with detailed documentation on
how to run the code and references to the original model papers.. The code can be accessed at:
https://github.com/zhwang0/carbon-globe.

B.2 Model Implementation Details

LSTM. A standard Long Short-Term Memory (LSTM) model, which is a type of recurrent neural
network designed to better handle long-term dependencies [19]. LSTM captures and retains temporal
patterns using gating mechanisms, including input, output, and forget gates. In experiments, we used
a single LSTM layer with 256 neurons, followed by a linear output layer for targets.

LSTNet. Long- and Short-term Time-series network (LSTNet) combines both convolutional and
recurrent neural networks for multivariate time series forecasting [32]. Specifically, LSTNet uses
CNN to extract short-term patterns in the combined time and feature dimensions (i.e., T ×D-shape
inputs for the CNN layer where T is the number of time steps and D is the number of features) and
then uses RNN to capture longer-term temporal patterns for time-series trends. We implemented
LSTNet using a convolutional layer with 256 neurons and a kernel size of (6, 136), a LSTM layer
with 256 neurons, and a linear output layer.

DeepED. DeepED is a LSTM-based deep learning emulator for the theory-based Ecosystem
Demography model for carbon forecasting, with specialized designs on error accumulation reduction
and knowledge-guided learning [61]. DeepED has a multi-scale multi-branch structure and de-
sequencing loss to reduce error accumulation in long-term forecasting, and proposes a self-guided
strategy and significance-based network partitioning to handle heterogeneous temporal patterns
among target variables. During the implementation, we used 256 neurons for all LSTM layers in
both shared and branched architectures (i.e. all targets have one shared LSTM layer and 3 individual
LSTM layers). In the output block in each branch, we used 256, 64, and 1 neurons for three stacked
linear layers, respectively.

Informer. Informer is designed to address the challenges of long-term time-series forecasting by
improving the efficiency and effectiveness of the Transformer architecture [69]. Informer proposes
a ProbSparse self-attention mechanism, which only selects the top informative components of a
sequence, significantly reducing the computational complexity from O(L2) to O(L logL). We used
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the default setting of Informer to conduct experiments. Specifically, we used 2 encoder blocks and
1 decoder block, 512 as the dimension of feature embedding outputs, 2048 as the dimension of
feed-forward layers, as well as 8 as the number of heads in multi-head attentions. We used GELU as
the activation function and 0.05 as the dropout rate.

Transformer. Transformer is a popular neural network with a self-attention mechanism [56], which
allows the model to capture the relationships between all elements of a sequence and makes it capture
long-term dependencies more effectively than traditional recurrent neural networks. We implemented
Transformer by following the same parameter settings in Informer, except that the self-attention
mechanism was replaced with the regular full attention, instead of the ProbSparse attention.

DLinear. As more transformer-based models have been widely designed in time-series forecasting,
a linear decomposition model (DLinear) shows comparable performance among transformer-based
models while maintaining computational efficiency [67]. Specifically, DLinear uses a straightforward
linear decomposition strategy to separate the raw time-series data into trend and seasonal compo-
nents, and model each component using linear transformation to reduce complexity and enhance
interpretability. We set 12 months as the temporal steps for modelling trends and seasonality and 1 as
the end-of-year step for outputs, followed by a linear projection layer.

Crossformer. Crossformer is a transformer variant with a two-stage attention mechanism for
capturing both cross-time and cross-feature dependencies [68]. While traditional transformer-based
models primarily focus on temporal dependency, Crossformer further adopts the attention mechanism
in the feature dimension to better capture internal relationships. In addition, Crossformer also
introduces segmented temporal sequences and a hierarchical encoder-decoder structure to improve
model performance. Due to memory constraints, we keep all parameters the same as default except
for changing the model size (the dimension used for embedding output) from 256 to 128 and the
number of encoder blocks from 3 to 2.

TimeXer. TimeXer is a Transformer-based architecture designed to enhance time series forecasting
by explicitly integrating exogenous drivers (e.g. external climate forcings) that influence the target
variables (e.g. carbon changes) [59]. It employs a dual-attention mechanism: patch-wise self-attention
captures temporal dependencies within the endogenous (target) series, while variate-wise cross-
attention models interactions between exogenous and endogenous variables. A global endogenous
token serves as a bridge, facilitating the flow of information from exogenous inputs to the target
series. We adopt the default configuration used in TimeXer’s original long-term forecasting task (i.e.
ETTH1), but reduce model size by using 1 encoder layer and setting the model dimension to 1024,
due to its more complicated architecture and memory constraints.

B.3 Model Training Details

In the training stage, we uniformly sampled 1/16 of locations as training data, and the rest for testing.
Within training, we used 10% of random samples as the validation set. The rationale behind the
uniform sampling is that a key object of ML emulators is to reduce forecasting time and enable
capabilities such as forecasting at higher spatial resolution. In practice, this involves generating
training samples using a coarse grid, and then employing a well-trained emulator to predict results
at a finer grid. Given this context, it is equivalent to uniformly sampling a subset of site locations
across the spatial domain for training. The 1/16 sampling ratio we used is approximately the same
as using a 4x-coarser grid for training. Moreover, uniform sampling leads to a more representative
coverage of the geographic space, which reduces the risk of the model being spatially overfitted to a
sub-region. Practically, as users can choose where to generate the training samples with ED, uniform
sampling is also a feasible option. Based on the training samples, we randomly select 10% from them
as validation data.

All benchmarking models were trained using the Adam optimizer with an initial learning rate of 10−4

for up to 60 epochs and a batch size of 1,200 samples across all experiments. Early stopping with a
patience of 5 epochs was applied based on validation loss to prevent overfitting. The best-performing
model was selected as the one with the lowest validation loss. We observed that the relative ranking
of model performance is generally consistent across different hyperparameter settings. For example,
in the vegetation height forecasting task, the Transformer’s RMSE showed a 0.038 standard deviation
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Table 3: Overall performance of ML methods without noise perturbations, evaluated using RMSE,
MAE, delta (∆), and cumulative error (CE).

Model Height AGB SC LAI GPP NPP Rh
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

LSTM 3.376 1.906 1.511 1.007 1.691 1.049 0.709 0.459 0.272 0.133 0.139 0.067 0.160 0.090
LSTNet 2.852 1.560 1.062 0.637 1.205 0.751 0.652 0.414 0.266 0.126 0.133 0.063 0.151 0.081
DeepED 1.880 0.856 0.486 0.244 0.684 0.333 0.435 0.228 0.253 0.122 0.125 0.060 0.199 0.085
TF 2.888 1.750 1.214 0.660 1.756 1.132 0.470 0.250 0.235 0.090 0.117 0.044 0.124 0.061
IF 2.982 1.818 1.298 0.690 1.867 1.193 0.466 0.256 0.234 0.093 0.116 0.045 0.125 0.061
DL 5.835 4.230 3.323 2.383 4.537 3.514 1.161 0.843 0.599 0.401 0.297 0.197 0.276 0.190
CF 3.120 1.815 1.399 0.704 1.222 0.687 0.507 0.279 0.243 0.110 0.122 0.056 0.133 0.063
TX 3.949 2.367 1.579 1.056 1.805 1.350 1.194 0.686 1.122 0.462 0.549 0.225 0.488 0.229

∆ CE ∆ CE ∆ CE ∆ CE ∆ CE ∆ CE ∆ CE

LSTM 0.435 4.805 0.177 1.792 0.180 2.569 0.407 0.863 0.276 0.311 0.146 0.159 0.176 0.175
LSTNet 0.417 3.948 0.165 1.375 0.147 1.827 0.401 0.774 0.276 0.299 0.138 0.148 0.169 0.167
DeepED 0.399 2.411 0.113 0.595 0.119 1.011 0.374 0.513 0.238 0.290 0.119 0.140 0.148 0.329
TF 0.419 3.926 0.135 1.708 0.156 2.680 0.286 0.594 0.169 0.280 0.085 0.139 0.113 0.154
IF 0.422 4.112 0.135 1.806 0.155 2.785 0.284 0.565 0.167 0.267 0.084 0.131 0.111 0.152
DL 0.983 5.851 0.281 3.438 0.381 4.393 0.433 1.262 0.329 0.682 0.165 0.339 0.187 0.310
CF 0.419 4.265 0.147 1.966 0.141 1.923 0.317 0.634 0.190 0.295 0.097 0.148 0.126 0.162
TX 0.424 5.787 0.153 2.320 0.146 2.798 0.419 2.130 0.348 2.654 0.175 1.306 0.189 0.990

*Bold fonts for best models and underlines for runner-ups.

of RMSE across batch sizes of 400, 800, and 1200; and a 0.014 standard deviation of RMSE for
learning rates 0.0001 and 0.001. All models were trained using the standard L2 loss function in the
training and tested the model performance under 3 evaluation scenarios using 4 evaluation metrics.
The evaluation scenarios include overall evaluation, climate-based evaluation, and forest-age-based
evaluation. The evaluation metrics are RMSE, MAE, delta error, and cumulative error.

C Additional Results

Due to the page limit in the main paper, we provide additional results here to demonstrate the
comprehensive performance of ML models from different perspectives.

Overall performance without noise perturbation. Table 3 presents additional results of model
performance without noise perturbation. As we can observe, the table exhibits similar patterns as that
from the main paper, where DeepED, Transformer and Informer are the top 1 models for all target
variables. More importantly, over 76% of results for the cumulative error with noise-augmented
training are better than those without the noises in Table 3. This shows the importance of noise-
perturbation during training to reduce error accumulation, by better representing the scenario faced
in forecasting where only the initial conditions at the very beginning of the sequence are available.
Thus, we recommend using the data perturbation strategy.

Spatio-temporal patterns of remaining target variables. Fig. 9 and Fig. 10 illustrate the spatial
and temporal error patterns for the remaining four variables. The maps reveal similar patterns in
model performance. DeepED tends to underestimate LAI in some forest regions, while Transformer
and Informer show overestimations. This underestimation trend for DeepED is also observed in NPP
and Rh, with both Transformer and Informer more likely to overestimate these variables in tropical
regions. For temporal patterns shown in Fig. 10, while DeepED has the lowest prediction error in
LAI in the last 30 years, the overall performance of other ML models remains relatively similar,
except for LSTNet. In comparison, Transformer and Informer exhibit comparable top performance in
NPP and Rh predictions. Although the distinction between models is less significant for NPP and Rh,
LSTNet generally displays higher errors for these two variables.

Remaining scenarios in climate and forest ages. We further report results across 13 forest-age
groups to assess model robustness under varying ecological conditions in Fig 12 and 11. The overall
variations introduced by both climate and forest areas are consistent with the results in the main paper.
For forest ages, a more detailed trend can be observed: as forests grow from young to mature, the
errors for height, AGB, soil carbon, and LAI initially increase and then decrease. In contrast, the
errors for GPP and NPP decrease over time, while Rh shows a slight increase in errors according to
the distributions.
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Figure 9: Global distribution of the difference between the results of emulators and ED in Year 40.

Additional validation information. We have extensively evaluated ED results in our previous
works against observations, independent datasets, and atmospheric inversions. The validation proce-
dures and details can be found in [38, 40, 22]. The process-based model has pioneering ability in
integrating observations as initial conditions and inputs. Given its high quality, ED has been adopted
and used by major projects such as the NASA Global Carbon Monitoring System, the Global Carbon
Budget [16, 17], and the Department of the Environment in Maryland, US [2, 1, 23]. Here we also
used the ABoVE GPP in-situ observations to generate some examples. After filtering based on data
quality flags, we used the observations from 20 monitoring sites in the North America at year end to
align with our dataset’s time steps and make comparisons. In this example, both the ED model and
Transformer emulator showed an RMSE smaller than 0.2 compared with the observations. We note
that this example comparison only considered annual results. In addition, in order to align with our
benchmark dataset that has an annual time step, we used the December observations, which can be
relatively easier given the less variability in the colder climate surrounding ABoVE sites in the winter
season. In general, monthly dynamics at the global scale during all seasons will be more challenging
and will be part of the future work. Finally, when comparing with in-situ observations, there is the
common scale difference between the simulation data’s resolution and the site’s coverage, which may
lead to larger differences in regions with higher heterogeneity (the differences are not necessarily
model errors). For more validation information, please refer to [38, 40, 22].

Coarse-resolution ED baseline at 2◦×2◦ resolutions. To better understand the trade-off between
computational efficiency and quality, we constructed a coarse-resolution baseline by aggregating ED
outputs to 2◦×2◦ cells to represent the case where it takes roughly 1/16 of time to run the process-
based model. This helps evaluate if it is important to run faster emulators at higher resolution, or if
one can simply run process-based simulation at much coarser resolution without reducing the quality
by too much (i.e., limited heterogeneity in data). The errors as a result of the downsampling are then
calculated as the differences to the original 0.5◦×0.5◦ data. The results show that the coarse-resolution
ED baseline produced significantly higher errors across all target variables, such as 4.778 RMSE for
height and 2.030 RMSE for AGB, leading to 151.5% and 313.4% error increase compared with the
best-performing emulators. The degraded performance highlights the importance of emulators for
high-resolution modeling to capture spatial heterogeneity and fine-scale ecological dynamics, further
underscoring the advantages of emulators for computational cost reduction.
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Figure 10: Visualization along the temporal dimension: RMSE over 40 years.
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Figure 11: Error distributions among different climate zones and forest ages (Part 1).
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Figure 12: Error distributions among different climate zones and forest ages (Part 2).
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