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Abstract

Traditional CNN models are trained and tested on relatively low resolution images1

(< 300 px), and cannot be directly used on large-scale images due to compute and2

memory constraints. We propose Patch Gradient Descent (PatchGD), an effective3

learning strategy that allows to train the existing CNN architectures on large-scale4

images in an end-to-end manner. PatchGD is based on the hypothesis that instead of5

performing gradient-based updates on an entire image at once, it should be possible6

to achieve a good solution by performing model updates on only small parts of7

the image at a time, ensuring that the majority of it is covered over the course of8

iterations. PatchGD thus extensively enjoys better memory and compute efficiency9

when training models on large scale images. PatchGD is thoroughly evaluated on10

two datasets - PANDA and UltraMNIST with ResNet50 and MobileNetV2 models11

under different memory constraints. Our initial evaluation reveals that PatchGD12

is much more stable and efficient than the standard gradient-descent method in13

handling large images, and especially when the compute memory is limited.14

1 Introduction15

In the realm of computer vision, Convolutional Neural Networks (CNNs) have established themselves16

as the cornerstone of advanced feature extraction, far surpassing traditional algorithms. Recent17

reviews by [1, 2, 3] encapsulate their evolution and dominance.18

However, with the influx of high-dimensional data from sectors like microscopy [4, 5], medical19

imaging [6], and earth sciences [7, 8], the computational challenges for CNNs have surged. For exam-20

ple, high-content nanoscopy often necessitates the assimilation of multiscale data with information21

content relevant to the science present at scales ranging from a pixel to artifacts whose length-scales22

approach the image dimension − leading to issues in effective CNN application.23

Most prevailing CNN models, fine-tuned on datasets such as ILSVRC and PASCAL VOC, which24

mainly comprise of low-resolution (< 300 pixels) images, encounter difficulties when extended to25

high-resolution images due to dramatic increase in intermediate activations. Common mitigative26

strategies—like downsampling or tiling—either compromise the feature fidelity or disrupt contextual27

continuity. Attention mechanisms, while providing semantic continuity, are often computationally28

prohibitive for high-res data due to their quadratic dependence on input token lengths.29

Addressing this, we propose a robust CNN training paradigm tailored for high-dimensional data.30

The term "large" in our context is fluid, contingent on the computational memory overhead. For31

illustration, a 10, 000 × 10, 000 image might overextend a 48 GB GPU, but a 512 × 512 one is32

manageable on 12 GB—though the latter becomes challenging at a leaner 4 GB constraint. An33

example experimental demonstration on UltraMNIST digits [9] is presented in Figure 1. Herein34
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Figure 1: Performance comparison of standard
CNN and PatchGD (ours) for the task of classi-
fication of UltraMNIST digits of size 512 × 512
pixels using ResNet50 model. Two different com-
putational memory budgets of 16 GB and 4GB are
used, and it is demonstrated that PatchGD is rel-
atively stable for the chosen image size, even for
very low memory compute.

lies the significance of our Patch Gradient Descent (PatchGD), demonstrating resilience across two35

different budget constraints.36

Contributions. To summarize, the contributions of this paper can be listed as follows.37

• We present Patch Gradient Descent (PatchGD), a novel strategy to train neural networks on38

very large images in an end-to-end manner. PatchGD is an adaptation of the conventional39

feedforward-backpropagation optimization framework.40

• Due to its inherent ability to work with small fractions of a given image, PatchGD is scalable41

on small GPUs, where training the original full-scale images may not even be possible.42

• PatchGD reinvents the existing CNN training pipeline in a very simplified manner and this43

makes it compatible with any existing CNN architecture or any conventional gradient-based44

optimization method used in deep learning. Moreover, its simple design allows it to benefit45

from the pre-training of the standard CNNs on low-resolution data.46

2 Approach47

2.1 General description48

Patch Gradient Descent (PatchGD) is a novel CNN training strategy that can train networks with49

high-resolution images. An adaptation of the standard feedforward-backpropagation method, it is50

based on the hypothesis that, rather than performing gradient-based updates on an entire image at51

once, it is possible to achieve a good solution by performing model updates on only small parts of the52

image at a time, ensuring that the majority of it is covered over the course of iterations. However,53

even if only a portion of the image is used, the model is still trainable end-to-end with PatchGD.54

In Figure 2, the PatchGD approach is presented schematically. The central idea behind PatchGD is to55

construct the Z block, which is a deep latent representation of the entire input image. Although only56

a subset of the input is used to perform model updates, Z captures information about the entire image57

by combining information from different parts of the image acquired from the previous update steps.58

Figure 2a illustrates the use of the Z block, which is an encoding of an input image X using a model59

parameterized by weights θ1. The input image is divided into patches of size m× n, and each patch60

is processed independently using θ1. The size of Z is always enforced to be m× n× s, such that61

each patch in the input space corresponds to the respective 1× 1× s segment in the Z block.62

The filling of Z is carried out in multiple steps, with each step involving the sampling of k patches63

along with their positions from X and feeding them to the model as a batch for processing. The output64

from the model along with the corresponding positions are then used to fill the respective parts of Z.65

After sampling all m× n patches of X, the completely filled Z is obtained. This concept of Z-filling66

is utilized by PatchGD during both training and inference stages. To create an end-to-end CNN model,67

we incorporate a small subnetwork that consists of convolutional and fully-connected layers. This68

subnetwork processes the information contained in Z and converts it into a c-dimensional probability69

vector, which is essential for the classification task. It is worth noting that the computational cost70

of adding this small subnetwork is minimal. The Figure 2b illustrates the pipelines for both model71

training and inference stages. During training, the model components θ1 and θ2 are updated. We72

compute the respective encodings based on a fraction of the patches sampled from the input image,73

using the latest state of θ1, and update the corresponding entries in the already filled Z using the74
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(a) Pipeline for the filling of Z block, also referred as Z-filling.
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Figure 2: Schematic representations of the pipelines demonstrating working of different components
of the PatchGD process.

model output. Subsequently, we use the partially updated Z to calculate the loss function value75

and update the model parameters using backpropagation. For more details, see the mathematical76

formulation presented in Appendix B.77

3 Experiments78

We showcase the effectiveness of PatchGD through numerical experiments on two benchmark datasets79

with large images and multiple scales, and additional experiments on generative modelling.80

3.1 Results81

Table 1: Performance scores obtained using Resnet50 on PANDA dataset for Gradient Descent (GD)
and Patch Gradient Descent (PatchGD).

Method Resolution Patch Size Batch Size Mem. (GB) Throughput (imgs/sec) Accuracy % QWK

Baseline 512 - 27 16 618.05 44.4 0.558
PatchGD 512 128 86 16 521.42 44.9 0.576
PatchGD 512 64 200 16 341.87 52.1 0.616
Baseline 2048 - 1 16 39.04 34.8 0.452
PatchGD 2048 128 14 16 32.52 53.9 0.627
Baseline 2048 - 6 48 39.04 49.4 0.625
PatchGD 2048 128 56 48 32.52 56.2 0.667
Baseline 4096 - 1 48 9.23 50.0 0.611
PatchGD 4096 256 26 48 9.62 59.7 0.730

UltraMNIST classification. The performance of PatchGD for UltraMNIST has already been shown82

in Figure 1. PatchGD improves over the standard gradient descent method (abbreviated as GD) by83

large margins. The performance difference is even higher when we have a low memory constraint.84
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At 4 GB, while GD seems unstable with a performance dip of more than 11% compared to the 16 GB85

case, our PatchGD approach seems to be significantly more stable. The underlying reason for this86

gain can partly be attributed to the fact that since PatchGD facilitates operating with partial images,87

the activations are small and more images per batch are permitted.88

Prostate Cancer Classification (PANDA). Table 1 presents the results obtained on PANDA dataset89

for three different image resolutions. For all experiments, we maximize the number of images used90

per batch while also ensuring that the memory constraint is not violated. For images of 512× 512,91

we see that PatchGD, with patches of size 128× 128, delivers approximately the same performance92

score as GD (for both accuracy as well as QWK) at 16 GB memory limit. However reducing the93

patch size and thus increasing the batch size, we observe a very sharp gain in the scores of PatchGD.94

For a similar memory constraint, when images of size 2048× 2048 pixels are used, the performance95

of GD drops by approximately 10% while our PatchGD shows a boost of 9% in accuracy.96

Two factors contribute to the performance gap between GD and PatchGD. Firstly, GD faces a97

bottleneck with batch size due to increased activation size in higher-resolution images, allowing only98

1 image per batch. Gradient accumulation across batches and hierarchical training were explored but99

did not improve performance significantly. Increasing the memory limit helped mitigate the issue of100

using only 1 image per batch. Secondly, the optimized receptive field of ResNet50 is not well-suited101

for higher-resolution images, resulting in suboptimal performance. PatchGD demonstrates superior102

accuracy and QWK compared to GD on the PANDA dataset when handling large images end-to-end.103

In terms of inference latency, PatchGD performs comparably to GD. The smaller activations in104

PatchGD offset the slowness caused by patchwise image processing. PatchGD shows potential for105

real-time inference in applications requiring large image handling.106

Comparison with existing methods. We further present a comparison of PatchGD with the existing107

methods designed for handling large images, and the results are presented in Table 2 of the appendices.108

Note that almost all works that exist on handling large images are not designed to work with memory109

constraints, and if put in such applications, these lead to unstable performance scores. For example,110

although the vision transformer backbones of HIPT are pretrained on large medical datasets, the111

performance of the model in the memory-constrained setting is lowest among the 4 methods presented112

in the table. For HIPT, all the layers of the vision transformer backbones are trainable and a batch113

size of only 5 fits in the memory. The original HIPT model is trained with large batch sizes over a set114

of GPUs, however, in our memory-constrained set up, it is not possible. The performance of ABNN115

and C2C is relatively better, however, they are still significantly lower than the PatchGD training of116

a simple architecture. C2C employs attention modules in the head of the network, and we believe117

with such additions, the performance of PatchGD could be boosted even further. Nevertheless, we118

see from the presented results that for memory-constrained settings, PatchGD performs significantly119

better than any other existing method when it comes to handling large images.120

For HIPT, We conducted an additional experiment with gradient accumulation over 12 steps, referred121

as HIPT-L in Table 2. This led to an equivalent batch size of 60. Although the convergence was122

slow, the performance of the model boosted from 34.8 to 49.3. This clearly demonstrates that123

transformers with gradient accumulation could work well even at low batch sizes. Nevertheless, we124

still see a significant performance gap of more than 10% between HIPT and our approach. Moreover,125

transformers are known to be data hungry and one important thing to note here is that the pre-trained126

HIPT model we are using in this paper is already heavily trained on a very large medical dataset127

comprising training images from a variety of medical datasets. On the contrary, our model is only128

pre-trained on standard ImageNet and no additional pre-training is done. This clearly makes our129

approach stand out when compared to HIPT in the sense that it is applicable for low memory as well130

as relatively low training data regimes as well.131

4 Conclusions132

In this paper, we introduced Patch Gradient Descent (PatchGD), a novel CNN training strategy that133

effectively handles large images even with limited GPU memory. PatchGD updates the model using134

partial image fractions, ensuring comprehensive context coverage over multiple steps. Through135

various experiments, we demonstrated the superior performance of PatchGD compared to standard136

gradient descent, both in handling large images and operating under low memory conditions. The137

presented method and experimental evidence highlight the significance of PatchGD in enabling138

existing CNN models to effectively process large images without compute memory limitations.139
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A Additional results180

We presented in Table 2 a comparison with existing works.181

Generative modelling and other tasks. PatchGD can be used for generating large-scale images182

with a broad semantic context, which can be beneficial for data augmentation in fields such as deep183

learning for medical imaging. Early results using StyleGAN-2 on the CIFAR-10 dataset showed184

that our method generated patches of 16 × 16 which were stitched together and analyzed by the185

discriminator, leading to a comparable FID score of 6.3 to the standard GD’s FID score of 6.1. We186
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Table 2: Comparison with existing methods at 4096 image size and 48GB memory constraint.
Method Accuracy % QWK

HIPT [10] 34.8 0.388
HIPT-L 49.3 0.531
ABNN [11] 48.2 0.593
C2C [12] 50.9 0.668
PatchGD 59.7 0.730

believe this small performance gap can be eliminated with hyperparameter optimization. We consider187

that the potential of PatchGD in generative modeling can be maximized by generating large images188

with various semantic contexts, although this needs to be explored further.189

On using PatchGD with transformers. The current implementation of PatchGD has a limitation190

when it comes to using transformer architectures. From our investigation, we have observed that191

when using a DeiT backbone with PatchGD, the model performance is significantly inferior. This192

reveals that CNNs are a better choice of current PatchGD implementations. Our intuition is that the193

classification token in transformers strongly relies on seeing the full image from the start (through194

connection between patches), however, since this is not true when coupled with PatchGD, the195

performance of PatchGD with DeiT deteriorates. The current implementation of PatchGD assumes196

that the distant patches in the image are completely independent from each other, and the first197

connection of the patches happens at the L1-block; before that each patch is treated as an independent198

image. While it works for CNNs, this assumption does not hold for transformers. For transformers,199

information flow between patches happens right from the beginning, and mixing happens at every200

block. Clearly, the best way to build a PatchGD pipeline for transformers is to have something201

similar to L1 construction after every block. However, with such an approach, one needs to calculate202

gradients repeatedly for every block for only a fraction of the patches and approximate the rest of the203

history. We have considered this as part of the ongoing extension of this work so that PatchGD can204

be efficiently coupled with transformers.205

B Mathematical formulation206

In this section, we present a detailed mathematical formulation of the proposed PatchGD approach207

and describe its implementation for the model training and inference steps. For the sake of simplicity,208

we tailor the discussion towards the training of a CNN model for the task of classification.209

Let fθ : RM×N×C → Rc denote a CNN-based model parameterized by θ that takes an input image210

X of spatial size M ×N and C channels and computes the probability of it to belong to each of the211

c pre-defined classes. To train this model, the following optimization problem is solved.212

min
θ
L(f(θ;X),y), (1)

where X,y ∈ D represents the data samples used, and L(·) represents the loss function. The213

conventional approach in deep learning is to solve this problem using mini-batch gradient descent,214

where updates are made using a subset of the data samples at each step. Below, we provide the215

formulations for standard gradient descent and our PatchGD method.216

Gradient Descent (GD). Gradient descent in deep learning involves performing model updates217

using the gradients computed for the loss function over one or more image samples. With updates218

performed over one sample at a time, referred to as the stochastic gradient descent method, the model219

update at the ithstep can be mathematically stated as220

θ(i) = θ(i−1) − α
dL
dθ(i−1)

, (2)

where α denotes the learning rate. However, performing model updates over one sample at a time221

leads to very slow convergence, especially because of the noise induced by the continuously changing222

descent direction. This issue is alleviated in the mini-batch gradient descent method where at every223

step, the model weights are updated using the average of gradients computed over a batch of samples,224
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Algorithm 1 Model Training for 1 iteration

1: Input: Batch of input images X ∈ RB×M×N×C , Pre-trained feature extractor fθ1
, Classifier

head gθ2
, Patch size p, Inner iterations ζ, Patches per inner iteration k, Batch size B, Learning

rate α, Grad. Acc. steps ϵ
2: Initialize: Z← 0B×m×n×c,U1 ← 0,U2 ← 0
3: Z← Z-filling(X, fθ1

, p) forall X ∈ X
4: fθ1

← start_gradient(fθ1
)

5: for j : 1 to ζ do
6: for X in X do
7: {PX,j , v} ← patch_sampler(X, k),
8: PX,j ∈ Rp×p×C×k

9: z← fθ1(PX,j)
10: Z[v]← z // Update the positional embeddings
11: ypred ← gθ2

(Z)
12: L ← calculate_loss(y,ypred)
13: U1 ← U1 + dL/dθ1,U2 ← U2 + dL/dθ2

14: end for
15: if j%ϵ = 0 then
16: U1 ← U1/ϵ, U2 ← U2/ϵ
17: θ1 ← θ1 − αU1

18: θ2 ← θ2 − αU2

19: U1 ← 0,U2 ← 0
20: end if
21: end for=0

Algorithm 2 Filling of the Z block (referred as Z-filling)

Input: Input image X ∈ RM×N×C , Pre-trained feature extractor fθ1
, Patch size p, n ←

(N/p),m← (M/p)
Initialize: Z ∈ Rm×n×s,θ1 ← stop_graph(θ1)
repeat
xa,b ← patch_extractor(X, a, b)
xa,b ∈ Rp×p×C

za,b ← fθ1
(xa,b), zi ∈ R1×1×s

Z[a, b]← za,b
until all patches sampled
Return Z =0

denoted here as S. Based on this, the update can be expressed as225

θ(i) = θ(i−1) − α

N(S)
∑
X∈S

dL(X)

dθ(i−1)
(3)

and N(S) here denotes the size of the batch used. As can be seen in Eq. 3, if the size of image226

samples s ∈ S is very large, it will lead to large memory requirements for the respective activations,227

and under limited compute availability, only small values of N(S), sometimes even just 1 fits into the228

GPU memory. This should clearly demonstrate the limitation of the gradient descent method when229

handling large images. This issue is alleviated by our PatchGD approach and we describe it next.230

PatchGD. As described in Section 2.1, PatchGD avoids model updates on an entire image sample in231

one go, rather it computes gradients using only part of the image and updates the model parameters.232

In this regard, the model update step of PatchGD can be stated as233

θ(i,j) = θ(i,j−1) − α

k ·N(Si)

∑
X∈Si

∑
p∈PX,j

dL(X,p)

dθ(i,j−1)
. (4)
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Here, i here refers to a mini-batch iteration within a certain epoch. Further, j denotes the inner234

iterations, where at every inner iteration, k patches are sampled from the input image X (denoted as235

PX,j) and the gradient-based updates are performed as stated in Eq. 4. Note that for any iteration i,236

multiple inner iterations are run ensuring that the majority of samples from the full set of patches that237

are obtained from the tiling of X are explored.238

In Eq. 4, θ(i,0) denotes the initial model for the inner iterations on Si and is equal to θ(i−1,ζ), the239

final model state after ζ inner iterations of patch-level updates using Si−1. For a more detailed240

understanding of the step-by-step model update process, please see Algorithm 1. As described earlier,241

PatchGD uses an additional sub-network that looks at the full latent encoding Z for any input image242

X. Thus the parameter set θ is extended as θ = [θ1,θ2]
⊺, where the base CNN model and the243

additional sub-network are fθ1
and gθ2

, respectively.244

Algorithm 1 describes model training over one batch of B images, denoted as X ∈ RB×M×N×C .245

As the first step of the model training process, Z corresponding to each X ∈ X is initialized. The246

process of filling of Z is described in Algorithm 2. For patch xab, the respective Z[a, b, :] is updated247

using the output obtained from fθ1 . Note here that θ1 is loaded from the last state obtained during248

the model update on the previous batch of images. During the filling of Z, no gradients are stored for249

backpropagation.250

Next, the model update process is performed over a series of ζ inner-iterations, where at every251

step j ∈ {1, 2, . . . , ζ}, k patches are sampled per image X ∈ X and the respective parts of Z are252

updated. Next, the partly updated Z is processed with the additional sub-network θ2 to compute253

the class probabilities and the corresponding loss value. Based on the computed loss, gradients254

are backpropagated to perform updates of θ1 and θ2. Note that we control here the frequency of255

model updates in the inner iterations through an additional term ϵ. Similar to how a batch size of256

1 in mini-batch gradient descent introduces noise and adversely affects the convergence process,257

we have observed that gradient update per inner iteration leads to sometimes poor convergence.258

Thus, we introduce gradient accumulation over ϵ steps and update the model accordingly. Note259

that gradients are allowed to backpropagate only through those parts of Z that are active at the jth260

inner-iteration. During inference phase, Z is filled using the optimized fθ∗
1

as described in Algorithm261

2 in supplementary material, and then the filled version of Z is used to compute the class probabilities262

for input X using gθ∗
2
.263
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