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Figure 1: TOKEN is a novel Multi-Modal Large Language Model (MM-LLM) that tokenizes the
world into object-level knowledge, enabling better utilization of LLM’s reasoning capabilities to
enhance autonomous vehicle planning in long-tail scenarios.

Abstract: The autonomous driving industry is increasingly adopting end-to-end
learning from sensory inputs to minimize human biases in system design. Tradi-
tional end-to-end driving models, however, suffer from long-tail events due to rare
or unseen inputs within their training distributions. To address this, we propose
TOKEN, a novel Multi-Modal Large Language Model (MM-LLM) that tokenizes
the world into object-level knowledge, enabling better utilization of LLM’s rea-
soning capabilities to enhance autonomous vehicle planning in long-tail scenarios.
TOKEN effectively alleviates data scarcity and inefficient tokenization by lever-
aging a traditional end-to-end driving model to produce condensed and semanti-
cally enriched representations of the scene, which are optimized for LLM planning
compatibility through deliberate representation and reasoning alignment training
stages. Our results demonstrate that TOKEN excels in grounding, reasoning, and
planning capabilities, outperforming existing frameworks with a 27% reduction
in trajectory L2 error and a 39% decrease in collision rates in long-tail scenar-
ios. Additionally, our work highlights the importance of representation alignment
and structured reasoning in sparking the common-sense reasoning capabilities of
MM-LLMs for effective planning. More details at the project website.
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1 Introduction
The autonomous driving industry is increasingly pursuing end-to-end learning from sensory inputs
to reduce human inductive bias in system design [1, 2]. Despite the remarkable progress, end-to-end
models inherently suffer from severe performance degradation in long-tail scenarios. For example,
state-of-the-art end-to-end autonomous driving planners often fail to navigate temporary construc-
tion sites and react too aggressively to jaywalkers; even simple rule-based planners can significantly
outperform high-capacity end-to-end models in these long-tail scenarios [3]. This motivates recent
efforts to fine-tune Large Language Models (LLMs) into autonomous vehicle planners [4, 5, 6], aim-
ing to leverage the benefits of both high-capacity models and the common-sense reasoning abilities
that emerge from world-knowledge training.

LLM-based planners, in their simplest form, depend on textual scene descriptions as prompts, mak-
ing their performance highly reliant on the quality and detail of these descriptions. Detailed prompts
require extensive engineering and generate many tokens for the LLM to process. Conversely, our
evaluations show that simple, heuristic prompts do not tap into the common-sense reasoning abil-
ities of LLMs due to insufficient scene understanding. As a result, Multi-Modal Large Language
Models (MM-LLMs), which naturally integrate various data modalities beyond text, are emerging
as promising foundations for developing autonomy stacks in autonomous vehicles.

The predominant approach is to leverage pre-trained encoders (typically pre-trained using visual-
text alignment) to extract features from the sensory inputs, followed by a querying transformer that
uses latent queries to tokenize the features into dense latent tokens and feed them to the LLMs
[7, 8, 9, 10, 11]. Training an effective scene tokenizer (encoder and querying transformer) often re-
quires a significant amount of question-answer pairs (QAs) (for example, Flamingo used more than
one billion QAs to reach satisfactory performance [12]). However, current MM-LLM datasets for
autonomous driving typically contain fewer than one million QAs [7, 13]. Consequently, without
careful model and training scheme designs, these models often exhibit poor performance in rea-
soning and planning tasks due to a lack of scene understanding and grounding capability. The key
challenge is to enable the scene tokenizer to extract informative and structured information that can
unlock the common-sense reasoning ability of the LLM in a low-data regime.

We propose TOKEN (Fig. 1), a novel MM-LLM framework that utilizes object-centric tokenization
to tokenize the world into a few object-level tokens to enhance the planning ability of autonomous
vehicles, especially in long-tail scenarios. Our key insight is that object-level latent tokens, with
each token representing a relevant object in the scene, are much more informative and easier
for the LLM to interpret compared to unstructured dense tokens. TOKEN not only produces a
condensed and semantically informed representation of the scene but also enables us to use a state-
of-the-art end-to-end driving model as the pre-trained scene tokenizer, effectively alleviating both
the data scarcity and inefficient tokenization challenges present in current MM-LLM frameworks.

In Sec. 5.1, we compare TOKEN to alternative MM-LLM frameworks and demonstrate its supe-
rior grounding, reasoning, and planning capabilities in a low-data regime. In Sec. 5.2, we compare
TOKEN to the state-of-the-art end-to-end (SOTA) autonomous driving planner [2] and showcase its
strong performance in long-tail scenarios, including navigating around construction sites, executing
3-point turns, resuming motion after a full stop, and overtaking parked cars through the oncoming
lane. In Sec. 5.3, we compare TOKEN to the SOTA LLM-based planner [5] and demonstrate its su-
periority in long-tail scenarios. We further conduct an ablation study to highlight the importance of
proper representation alignment and structured reasoning process alignment in effectively evoking
the common-sense reasoning ability of the LLM backbone for planning. To the best of our knowl-
edge, we are the first to conduct an in-depth analysis to demonstrate the promising potential and
necessity of such alignment in effectively leveraging MM-LLM to mitigate long-tail challenges.

2 Related Work
End-to-End Driving & Long-tail Event Mitigation. Traditional end-to-end autonomous driving
models inherently suffer from performance degradation in long-tail scenarios [1, 2]. To mitigate
this issue, previous works focused on detecting such situations online [14, 15, 16, 17] and switching
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the planner to a model-based planner [18, 19] to ensure safety. In contrast, we leverage a pre-
trained end-to-end driving model to tokenize the scene and share features with a LLM, leveraging
its common-sense reasoning ability to enhance planning performance in long-tail scenarios.

LLM-Based Motion Planning. In light of LLMs’ outstanding understanding and generalization
abilities, previous works have attempted to fine-tune LLMs into motion planners [4, 5, 6, 3]. How-
ever, LLM-based planners are highly dependent on the quality and resolution of the scene descrip-
tions. While a more comprehensive and fine-grained description can help the LLM better parse and
understand the scene, it also makes the LLM inefficient to train and run inference. Additionally,
designing templates to textualize scenes requires extensive prompt engineering. To alleviate the
model from text-based scene description, recent works exploits object-centric vectors using parsed
symbolic information [20]. However, relying on parsed symbolic information making the system
less robust to inductive bias and vulnerable to salient information from the scene context [21]. In
contrast, we directly uses raw sensory inputs to enhance the LLM’s scene understanding ability.

Multi-Modal Large Language Models. MM-LLMs have been increasingly integrated into the au-
tonomous driving stack (e.g., 3D detection [22], driving co-pilot [9], driving scene summarization
[23], ). Previous works typically fine-tune existing MM-LLMs (e.g., [24, 25, 26]) using driving-
related QAs. The existing MM-LLMs are mostly optimized for visual understanding. Consequently,
autonomous driving MM-LLMs fine-tuned using these models [7, 8, 9, 10, 11] often lack the ground-
ing, 3D understanding, and behavior reasoning abilities. To mitigate this issue, recent works attempt
to integrate a detection head into the querying transformer (the latent queries used for token extrac-
tion additionally interact with the detection queries to guide the tokens to capture 3D information)
[27] or leverage a BEV encoder pre-trained in driving tasks to extract features for the querying
transformer [28]. However, the tokens in both works remain unstructured and entangled (i.e., one
object’s information could be distributed across multiple tokens), leading to ineffective tokenization.
Our work differs from existing ones in two key ways: first, we use object-centric tokenization and a
pre-trained end-to-end driving model to tokenize the scene into structured and disentangled tokens;
second, we analyze the importance of representation alignment and structured reasoning process
alignment to effectively evoke the common-sense reasoning ability of the MM-LLM for planning.
More related work on object-centric representation in robotics are discussed in App. A

3 TOKEN Framework
We propose a novel MM-LLM framework, TOKEN, tailored for autonomous driving. It consists
of three modules: a scene tokenizer that tokenizes the sensory inputs into object-level tokens, an
adapter that aligns the object token’s embedding space with the text embedding space, and an LLM.

Object-Centric Scene Tokenization. Existing MM-LLMs’ scene tokenizers typically leverage pre-
trained vision encoders (e.g., CLIP [7, 8, 9, 10, 11]) to extract features from the sensory inputs,
followed by a querying transformer [25] that uses learnable queries to tokenize the features into
dense latent tokens and feed them to the LLM. Training an effective scene tokenizer poses a sig-
nificant challenge. On one hand, the scale of existing question-answering MM-LLM datasets for
autonomous driving is far from enough. On the other hand, relying on latent queries to extract to-
kens in a low-data regime often results in unstructured and redundant tokens that are difficult for the
LLM to interpret and process efficiently, which leads to poor performance in reasoning and planning
tasks due to a lack of scene understanding and grounding capability (Sec. 5.1).

Driving is a highly structured and object-oriented task - the ego vehicle’s behavior is largely con-
strained by the traffic agents and map elements around it. Instead of training the driving scene
tokenizer from scratch through question-answering tasks and using unstructured tokens to encode
the driving scene, we obtain object-centric tokens from existing end-to-end autonomous driving
stacks trained on tasks such as detection, tracking and segmentation and are thus already optimized
to encode rich spatial, temporal, and semantic information directly associated with relevant objects
in the scene. This approach allows us to leverage state-of-the-art multi-modal end-to-end driving
models as our scene tokenizer, effectively addressing both the data scarcity and inefficient tokeniza-
tion challenges present in current MM-LLM frameworks. We illustrate our general framework in
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Figure 2: TOKEN obtains object-centric tokens from existing end-to-end autonomous driving stacks
and uses a condensed and semantically-informed representation to encode the scene.
Fig. 2 and introduce the specific design choices of our scene tokenizer in Sec. 4.1. In addition to
the object-level tokens, unstructured scene-level latent tokens learned from scratch can be optionally
included to compensate for missing information, such as weather conditions.

Adapter. While the object-level tokens generated by our scene tokenizer already encode rich in-
formation, it is crucial to align the latent token embedding space with the text embedding space in
order for the LLM to understand and extract information. We perform a wide range of QA tasks to
train the adapter to align the tokens, paving the road for the subsequent behavior planning task.

4 Experimental Setup
4.1 Design Choice of the Scene-Tokenizer
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Figure 3: End-to-End driv-
ing model (PARA-Drive) as
the scene-tokenizer.

In this work, we leverage the transformer-based end-to-end driving
model, PARA-Drive [2], as our scene tokenizer to extract object-level
tokens. PARA-Drive is a parallelized modular autonomous vehicle
stack that encompasses a diverse set of modules for the co-training
of bird’s-eye view (BEV) features from multi-view video input. Each
module is a querying transformer that uses latent queries to attend to
the BEV features and decode the corresponding task output. We pre-
train PARA-Drive on object-centric and scene-centric tasks, including
mapping, object tracking, occupancy prediction, and motion predic-
tion, as shown in Fig. 3. In object-centric tasks, each query produces
a latent token that encodes information about a specific scene object.

Specifically, the track query Qi
track is trained to produce a token

zitrack ∈ R1×256 that encodes object i’s 3D bounding box and se-
mantic category, the motion query Qi

motion is trained to produce a token zimotion ∈ R1×256 that
encodes object i’s potential dynamic behavior, and the map query Qj

map is trained to produce a
token zmap ∈ R1×256 that encodes the map element j’s geometry and semantics (e.g., crossing area)
information. We concatenate the track token and motion token to constitute non-map object tokens:
ziagent = zitrack

⊕
zimotion, and directly use the map token zjmap as the map element token. Although we

don’t use latent tokens from the occupancy prediction module, we still include this module during
training to fairly compare with PARA-Drive. We follow the same training procedure in [2] to train
the scene tokenizer. All non-map element tokens share one MLP adapter and all map element tokens
share another one.

4.2 Dataset Construction

To train and evaluate TOKEN, we construct a dataset based on the NuScenes dataset [29], including
visual question-answering (QA) pairs that span the full stack of autonomous driving development.
We illustrate a few examples of these QAs in Fig. 1; more can be found in App. B.

Perception. We build perception QAs based on the DriveLM dataset [7], covering object semantics
and dynamic behavior identification. Additionally, we create object-lane association QAs to enhance
the model’s understanding of map elements and objects’ topological relationships to the ego vehicle.
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Behavior Reasoning. Behavior reasoning QAs include two types of questions: 1) object level
behavior analysis questions where we ask the model to reason about whether an object is critical
(i.e., is likely to influence the ego vehicle’s planning) and provide the corresponding reason; 2)
scene-level critical object grounding questions where we ask the model to predict the locations of
critical objects in the ego vehicle’s local frame. Behavior reasoning QAs aim to enable the model to
understand context-dependent critical objects, thereby connecting the object tokens with the LLM
to simplify the scene for downstream planning.

Route-conditioned Hierarchical Planning. Different from previous works that use the relative
position of the ground-truth ego trajectory to define high-level commands ("keep forward" and "turn
right/right"), we re-labeled the NuScenes dataset to use road-level navigation signals as high-level
commands, including: "keep forward along the current road," "prepare to turn right/left at the next
intersection," "turn right/left at the intersection," "left/right U-turn," and "left/right 3-point turn." We
utilize chain-of-thought reasoning to align the model’s planning process and guide it to progressively
generate the driving plans in three steps. First, the model identifies the critical objects in the current
driving scene, including their categories and 2D locations in the ego frame. Next, it proposes the
desired behavior mode, detailing interaction plans with the critical objects (e.g., overtake) and lane-
level decisions (e.g., left lane change). Finally, it generates a 3-second motion plan (6 waypoints).

4.3 Training Strategy
We use LLaMA-2-7B [30] as our LLM backbone. We keep the scene tokenizer frozen and use
a Low-Rank Adaptation (LoRA) module [31] to fine-tune the LLM. We note that the tokenizer is
trained on the NuScenes dataset, ensuring that both the tokenizer pre-training and the MM-LLM
training share the same source driving training data. We train TOKEN in three stages: pre-training,
reasoning fine-tuning, and planning fine-tuning. More details are in App. C.

5 Experimental Results
5.1 On the Value of Object-Centric Tokenization

Experiment Design. We compare TOKEN against existing MM-LLMs to demonstrate its effec-
tiveness and efficiency in scene understanding, grounding, and planning. Our experimental setup
focuses on the impact of 1) different tokenization schemes and 2) pre-training on driving data.

Baseline. We compare TOKEN against (1) VILA-1.5 [32], which uses a trainable ViT to tokenize
frames, (2) Video-LLaMA [26], which leverages a pre-trained and frozen ViT to extract visual
features and a querying transformer to produce visual tokens from the extracted features, and (3)
BEV-TOKEN, a variant of TOKEN that directly uses dense bird’s-eye view (BEV) features from
the same pre-trained PARA-Drive instead of sparse object-level tokens, similar to most MM-LLMs
(e.g., Video-LLaMA). We follow the same training recipe for all models and use the same LLaMA-
2-7B as the LLM backbone. For Video-LLaMA and VILA-1.5, we use the past four front view
frames to render a 2-second video as input for each QA.

Metrics. We use classification accuracy to measure the model’s ability to 1) classify the object at
a location in the ego frame, 2) identify the lane in which the object is located, and 3) answer other
categorical questions in the DriveLM dataset [7]. To evaluate the model’s ability to localize and
reason about critical objects, we use precision and recall to measure its grounding ability (we use
Hungarian matching to match the predictions with the ground truth), and use accuracy to measure
its ability to identify whether an object is critical given the object’s center location in the ego frame.
We consider three variants of trajectory L2 error to evaluate the predicted motions from different
perspectives in various scenarios: the overall, turning, and progress errors, which are calculated
from the original L2 distance, heading difference, and longitudinal-weighted L2 distance between
the prediction and GT1. We use the average collision rate over the entire horizon to measure the
safety of a motion plan. More details about our evaluation protocol can be found in App. D.

1We report the errors at 1s, 2s, and 3s, the averaged error over these time steps (denoted as Ave123), and the
averaged error over the entire horizon (denoted as Aveall)
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Scene understanding ↑ Critical object grounding ↑ Traj L2 (m) ↓ Collision (%) ↓
Method Obj. class. Lane-object asso. acc. Acc. Precision Recall Import. class. 1s 2s 3s Ave123s Aveall Aveall

Video-LLaMA 0.28 0.39 0.38 0.22 0.27 0.58 0.27 1.72 6.34 3.01 2.39 2.64
VILA-1.5 0.37 0.22 0.42 0.19 0.16 0.55 0.28 1.56 4.41 2.09 1.66 1.98
BEV-TOKEN 0.68 0.64 0.61 0.58 0.62 0.76 0.39 1.01 2.02 1.14 0.96 0.39
TOKEN 0.92 0.68 0.76 0.87 0.76 0.92 0.26 0.71 1.47 0.81 0.68 0.15
PARA-Drive NA NA NA NA NA NA 0.23 0.68 1.50 0.80 0.66 0.19

Table 1: Quantitative evaluation of the scene understanding, critical object grounding, and
planning tasks. TOKEN significantly outperforms baseline VLMs due to its use of driving-task
pre-trained features and object-centric tokenization. Bold numbers denote the best results in each
column, and the numbers shaded in green indicate significant improvements. We also show the
PARA-Drive’s planning performance as reference (shaded in grey).

Traj L2 (m) ↓ Heading L2 (rad) ↓ Lon. weighted traj L2 (m) ↓ Collision (%) ↓
Long-tail Method 1s 2s 3s Ave123s Aveall 1s 2s 3s Ave123s Aveall 1s 2s 3s Ave123s Aveall Aveall

3-point turn PARA-Drive 0.50 1.38 2.76 1.55 1.29 0.40 0.83 1.03 1.48 0.90 0.78 2.10 4.19 2.36 1.96 5.33
TOKEN 0.39 1.29 2.60 1.43 1.18 0.21 0.35 0.71 0.42 0.36 0.68 2.15 4.33 2.39 1.98 4.00
TOKEN ∗ 0.20 0.73 1.77 0.90 0.73 0.35 0.41 0.37 0.38 0.33 0.37 1.28 2.93 1.53 1.24 0.00

Resume motion PARA-Drive 0.14 0.79 2.30 1.08 0.85 0.11 0.45 0.57 0.38 0.35 0.26 1.46 4.18 1.97 1.56 0
from full stop TOKEN 0.13 0.70 1.58 0.80 0.65 0.09 0.24 0.31 0.22 0.19 0.24 1.24 2.66 1.38 1.13 0

Overtake PARA-Drive 0.27 0.89 1.94 1.03 0.85 0.05 0.11 0.18 0.11 0.10 0.50 1.56 3.37 1.81 1.50 2.3
TOKEN 0.29 0.77 1.63 0.90 0.74 0.04 0.07 0.11 0.07 0.09 0.53 1.36 2.86 1.58 1.31 0

Construction zone PARA-Drive 0.38 0.93 1.65 0.99 0.84 0.05 0.09 0.11 0.08 0.07 0.69 1.61 2.84 1.71 1.47 6.70
TOKEN 0.26 0.63 1.28 0.72 0.60 0.02 0.04 0.06 0.04 0.04 0.47 1.03 2.08 1.19 1.00 2.22

Table 2: TOKEN significantly outperforms PARA-Drive in long-tail scenarios.

Results. We present the quantitative evaluation of each model’s scene understanding, object ground-
ing, and planning abilities in Tab. 1 (only traj. L2 results are shown; full planning results are in
App. E). Video-LLaMA and VILA-1.5 perform noticeably worse across all metrics, particularly in
critical object grounding. This is because their encoders are optimized for visual-text alignment,
and the limited driving QAs do not sufficiently develop their 3D understanding ability. Notably,
Video-LLaMA and BEV-TOKEN share the same tokenization scheme and only differ in visual fea-
tures, highlighting the value of visual features pre-trained with driving-related tasks. The benefits of
pre-training features using embodied-related tasks are also observed in MM-LLM for robot manipu-
lations [33]. Interestingly, TOKEN significantly outperforms BEV-TOKEN in all tasks, even though
they tokenize the same visual features. This demonstrates the benefits of object-centric tokenization.
Takeaway 1: Object-centric tokenization with pre-trained driving-aware features enables better
grounding, reasoning, and planning performance in low-data regimes.

5.2 Generalization in Long-tail Driving Scenarios
We evaluate the planning performance of TOKEN against PARA-Drive in long-tail events. TOKEN
uses the PARA-Drive as the scene-tokenizer, thus they share the same visual encoder and scene
information, and only differ in the planner structure.

Long-tail Events Construction. We manually inspected the NuScenes dataset and identified the
following long-tail scenarios for evaluation, each representing less than 1% of the training data: 1)
executing 3-point turns; 2) resuming motion after a full stop; 3) overtaking parked cars through the
oncoming lane; and 4) navigating around construction sites. More details can be found in App. F.

Quantitative Result. In Tab. 2, we summarize the quantitative evaluation for each long-tail scenario.
TOKEN significantly outperforms PARA-Drive in terms of the quality and safety of predicted plans.
Specifically, TOKEN predicts more accurate turning maneuvers in 3-point turns (60% reduction in
heading L2 Aveall), more effective motions after yielding (28% reduction in longitudinal weighted
L2 Aveall), and safer plans when navigating around blocking vehicles and construction sites (100%
and 67% collision rate reductions in the overtake and construction zone scenarios, respectively).

Qualitative Examples. In our qualitative analysis, TOKEN consistently outperforms PARA-Drive.
During a 3-point turn (Fig. 4), TOKEN accurately generates the turning maneuver while PARA-
Drive struggles. In Fig. 5, after yielding to pedestrians, TOKEN predicts a forward motion, whereas
PARA-Drive remains stationary. In the opposite direction overtake scenario (Fig. 6), TOKEN pre-
dicts motions that avoid collisions and attempt to return to its lane post-overtake, unlike PARA-
Drive, which predicts unsafe motions. Finally, TOKEN generates plans that effectively steer around
the construction zone, while PARA-Drive predicts motions that result in collisions or deviations
from the lane (Fig. 7). More detailed analysis can be found in App. G.
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TOKEN: There is no important object for the autonomous vehicle's planning. The autonomous vehicle should make a sharp left 
turn, and its 3s future trajectory is…[omitted]

Figure 4: Planning visualization in the 3-point U-turn scenario (zero-shot performance). TOKEN∗

denotes a model variant trained with additional synthetic data augmentation (few-shot performance).

Prompt: The autonomous vehicle needs to turn left. What objects are important for the autonomous vehicle's planning? What are these objects, their (x, y) 
locations, and how should the autonomous vehicle interact with them? Please plan…[omitted]

TOKEN: There are 2 important objects: pedestrian at (-5.2, 5.4), bus at (-4.4, 16.3). It should continue to drive, accelerate and steer slightly to left…[omitted]
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Figure 5: Planning performance visualization. The red dots in the left plot represent the identified
critical objects. The middle plot visualizes the predicted motions. The right plot shows the speed
plan inferred from the predicted motions. Note that TOKEN enables the ego vehicle to resume
motion after a full stop.

Since 3-point turn is a zero-shot generalization scenario, we evaluate TOKEN’s few-shot learning
ability by generating synthetic 3-point turn motions and augmenting the training dataset with 40
samples (0.12% of the training data). The resulting model TOKEN∗’s predicted motions (dark gray
lines in Fig. 4) show qualitative improvement and better alignment with a 3-point turn. This example
demonstrates the data efficiency of adapting LLM-based planners to new concepts.

Takeaway 2: By leveraging the LLM’s common-sense reasoning capabilities, TOKEN predicts more
accurate plans in long-tail scenarios in which traditional end-to-end planning methods struggle.

5.3 On the Value of Alignment

We compare TOKEN with the SOTA LLM-based planner Agent-Driver [5]. Agent-Driver queries
text-based scene information using various tools and then fine-tunes GPT-3.5 into a motion planner.
Our evaluation (Tab. 3) shows that TOKEN and Agent-Driver have similar overall performance, but
TOKEN significantly outperforms agent-driver in long-tail scenarios with a much smaller model and
less privileged information (details in App. H). We hypothesize that evoking common-sense reason-
ing in a LLM-powered planner requires proper alignment rather than just a larger LLM backbone.
Motivated by this finding, we further conduct a detailed ablation study to shed more light on this.

Traj L2 (m) ↓ Heading L2 (rad) ↓ Lon. weighted traj L2 (m) ↓ Collision (%) ↓
Split Method 1s 2s 3s Ave123s Aveall 1s 2s 3s Ave123s Aveall 1s 2s 3s Ave123s Aveall Aveall

Val Agent-driver 0.23 0.69 1.52 0.81 0.67 0.03 0.06 0.11 0.06 0.06 0.43 1.27 2.78 1.49 1.23 0.13
TOKEN 0.26 0.71 1.47 0.81 0.68 0.02 0.04 0.06 0.04 0.03 0.50 1.32 2.73 1.52 1.27 0.15

Long-tail Agent-Driver 0.38 1.31 2.93 1.54 1.26 0.07 0.21 0.35 0.21 0.18 0.64 2.26 4.78 2.56 2.11 2.67
TOKEN 0.26 0.81 1.77 0.95 0.78 0.05 0.10 0.18 0.11 0.09 0.50 1.47 3.09 1.69 1.40 0.35

Table 3: Quantitative comparison with an LLM-based planner - Agent-Driver.

Alignment Traj L2 (m) ↓ Heading L2 (rad) ↓ Lon. weighted traj L2 (m) ↓ Collision (%) ↓
Split representation reasoning 1s 2s 3s Ave123s Aveall 1s 2s 3s Ave123s Aveall 1s 2s 3s Ave123s Aveall Aveall

Val x x 0.34 0.85 1.67 0.96 0.80 0.05 0.08 0.08 0.07 0.08 0.66 1.62 3.14 1.81 1.52 0.22
✓ x 0.28 0.75 1.55 0.86 0.72 0.03 0.05 0.08 0.05 0.04 0.5 1.32 2.72 1.51 1.26 0.19
x ✓ 0.20 0.75 1.89 0.95 0.76 0.03 0.06 0.11 0.07 0.7 0.35 1.38 3.48 1.74 1.41 0.24
✓ ✓ 0.26 0.71 1.47 0.81 0.68 0.02 0.04 0.06 0.04 0.03 0.50 1.32 2.73 1.52 1.27 0.15

Long-tail x x 0.35 1.10 2.39 1.29 1.06 0.12 0.19 0.24 0.18 0.18 0.60 1.81 3.87 2.10 1.74 0.61
✓ x 0.32 0.99 2.09 1.13 0.94 0.11 0.17 0.21 0.16 0.15 0.60 1.78 3.69 2.02 1.68 0.52
x ✓ 0.36 1.09 2.26 1.24 1.03 0.14 0.19 0.23 0.18 0.17 0.64 1.93 3.98 2.18 1.82 0.47
✓ ✓ 0.26 0.81 1.77 0.95 0.78 0.05 0.10 0.18 0.11 0.09 0.50 1.47 3.09 1.69 1.40 0.35

Table 4: Value of alignment. Both the pre-training representation alignment and structured reason-
ing alignment are necessary to leverage the LLM’s common sense reasoning ability.
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TOKEN: There is 1 important object: car at (-1.9, 8.1). The autonomous vehicle should proceed with caution and prepare to overtake the car at (-1.9, 8.1) 
from the autonomous vehicle's left side. It should use the adjacent right lane to continue driving, decelerate and steer slightly to right, …[omitted]

PARA-Drive
TOKEN
GT

Prompt: The autonomous vehicle needs to keep forward along the road. What objects are important for the autonomous vehicle's planning? What are 
these objects, their (x, y) locations, and how should the autonomous vehicle interact with them? Please plan…[omitted]

t = 4[s]

t = 6[s]

Figure 6: Planning performance visualization. The right plot visualizes the predicted motion plans
at two consecutive time steps. TOKEN enables the ego vehicle to decelerate when approaching the
obstacle and drive back to the original lane after overtaking.

TOKEN: There are 4 important objects: traffic cone at (2.2, 13.4), traffic cone at (2.1, 11.7), traffic cone at (1.7, 16.8), traffic cone at (1.6, 19.8). These traffic 
cones are blocking the ego vehicle’s lane. The autonomous vehicle should bypass the traffic cone at (2.2, 13.4) from the autonomous vehicle's right side, 
bypass the traffic cone at (2.1, 11.7) from the autonomous vehicle's right side, bypass the traffic cone at (1.7, 16.8) from the autonomous vehicle's right 
side, bypass the traffic cone at (1.6, 19.8) from the autonomous vehicle's right side …[omitted]

PARA-Drive
TOKEN
GT

Prompt: The autonomous vehicle needs to keep forward along the road. What objects are important for the autonomous vehicle's planning? What are 
these objects, their (x, y) locations, and how should the autonomous vehicle interact with them? Please plan…[omitted]

Figure 7: Planning performance visualization. The red rectangle denotes the identified critical traffic
cones. The right plot visualizes the predicted motions at two constitutive time steps. TOKEN
instructs the ego vehicle to steer and bypass the traffic cones from the ego vehicle’s right side.

Ablation Study. We test three variants of TOKEN to investigate the value of alignment: 1) no rep-
resentation alignment nor reasoning alignment - treating TOKEN as a traditional end-to-end model
and training it to directly predict the ego vehicle’s motion plan; 2) with representation alignment but
no reasoning alignment; 3) without representation alignment but with reasoning alignment.

Results. We summarize the quantitative evaluation results over the evaluation set and all long-tail
scenarios in Tab. 4. Our evaluation shows that without the pre-training stage, the performance vari-
ation is not significant in both the validation and long-tail splits. This indicates the necessity of
aligning the sensory token’s embedding space with the text embedding space. Interestingly, with
representation alignment pre-training, additional reasoning process alignment does not significantly
benefit the entire validation set but significantly improves the accuracy and safety of predicted mo-
tion plans in the long-tail split. This suggests that proper reasoning process alignment is essential to
unlock the common-sense reasoning ability encoded in the LLM backbone. Qualitative comparisons
can be found in the App. I.

Takeaway 3: Representation and structured reasoning process alignments are important for evoking
the common-sense reasoning ability of the LLM backbone for planning.
We include additional results in App. J to demonstrate the performance improvement brought by the
additional HD-map modality, the impact of interaction mode (as opposed to simple behavior mode)
in the reasoning alignment, and further highlight the few-shot learning ability of TOKEN.

6 Limitation & Future Work
A strength and limitation of TOKEN is using a pre-trained and frozen end-to-end driving model
as the scene tokenizer. This allows for extracting informative tokens and controlled experiments.
However, TOKEN’s performance is tightly coupled with the quality of the pretrained tokenizer. We
show a failure case in App. K in which the critical object is not detected by the tracking querying
transformer in PARA-Drive. Consequently, TOKEN is unable to understand the scene and generates
incorrect behavior. Further work will focus on co-training PARA-Drive to leverage the knowledge
within the LLM to improve the scene tokenizer. Another limitation is outputting the trajectory plan
as text, with each digit as a separate token. This increases computational expense and complicates
motion generation, leading to misalignment between predicted behavior and the motion plan (e.g.,
TOKEN predicts the correct behavior but incorrect motion in Fig. 6). Future work will focus on
quantizing motions into discrete LLM-understandable tokens [34] or using a dedicated trajectory
decoder [35]. More discussions about inference speed and closed-loop evaluations are in App. L.
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Supplementary Materials

A Extended Related Work

Object-Centric Representation. Existing MM-LLMs often utilize Vision Transformers (ViTs) to
tokenize visual inputs into latent tokens. These tokens, resembling a static grid over the inputs, are
unstructured and pose challenges for LLMs to interpret in embodied reasoning tasks [33]. To address
this, prior work [20] employs vectors of symbolic representations generated by a state estimation
module to encode scene information, which are then used as tokens for the LLM. Our work is
closely related to [33] and [36], which use object scene representation transformers [37] to extract
object-level latent tokens. However, unlike [33] and [36], our paper focuses on the autonomous
driving domain and use an end-to-end driving model to tokenize the scene.

B Dataset Construction

B.1 Examples of the QAs

In Fig. 8, we illustrate examples of QAs used in training TOKEN.

Q: What lane is the vehicle at (11.9, 12.1) 
driving in relative to the autonomous vehicle?
A: Vehicle at (11.9, 12.1) is merging into ego 
vehicle’s lane.

Scene Understanding Reasoning

Q: Should the autonomous vehicle pay attention 
to the object located at (-3.2, 6.7) ? Why?
A: The object is a car and is blocking the 
autonomous vehicle's lane. The answer is: Yes.

Hierarchical Planning

Q: The autonomous vehicle needs to keep forward along the road… [omitted] 
A: There is 1 important objects: car at (8.6, 3.9). The autonomous vehicle 
should yield to the car at (8.6, 3.9. It should remain roughly static, and…

Q: The autonomous vehicle needs to keep forward along the road. … 
[omitted] 
A: There are 4 important objects: traffic cone at (2.2, 13.4), traffic cone at (2.1, 
11.7), traffic cone at (1.7, 16.8), traffic cone at (1.6, 19.8). These traffic cones 
are blocking the ego vehicle’s lane. The autonomous vehicle should bypass the 
traffic cone at (2.2, 13.4) from the autonomous vehicle's right side …

Q: Should the autonomous vehicle pay attention 
to the object located at (3.1, 8.1) ? Why?
A: The object is a pedestrian with velocity (-1.6, 
0.2) m/s. Thus, it is crossing in front of the 
autonomous vehicle. The answer is: Yes.

Q: What is the observed status of the object at 
(-3.8, 6.0)?
A: Stationary
Q: What is the type of the object at (-3.8, 6.0)?
A: Pedestrian.

Figure 8: Examples of perception, reasoning, and planning QAs.

B.2 Road-Level Navigation Signal

Previous works on VLM/LLM for autonomous vehicle planning often prompt the model with a
high-level command based on the relative position of the ground-truth ego trajectory, including
"keep forward" and "turn right/left." However, these high-level commands are not only unrealistic
but also simplify the planning problem by removing the need for behavior planning. Therefore,
we re-labeled the NuScenes dataset to use road-level navigation signals as high-level commands,
including "keep forward along the current road," "prepare to turn right/left at the next intersection,"
"turn right/left at the intersection," "left/right U-turn," and "left/right 3-point turn."

B.3 Interaction Mode Labeling

We use a combination of heuristics and manual labeling to annotate the interactions between the
ego vehicle and the other traffic agents. We first use two types of categorical modes to describe the
lane-relationship between a traffic agent and the ego vehicle (agent-ego lane mode) and the relative
motion between a traffic participant and the ego vehicle (homotopy)[35]. Agent-ego lane mode at a
time step t encodes the topology relationship between the ego’s current lane and the traffic agent’s
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lane, including: LEFT, RIGHT, AHEAD, BEHIND, and NOTON, where NOTON describes that the
traffic agent is not on any derivable lanes in the scene (e.g., a parked vehicle in a parking lot). To
compute the agent-ego lane mode for each traffic agent, we follow [35] to first identify the lane on
which each agent is located and then leverage the lane topology map to annotate the agent-ego lane
mode. We project the agent’s center to the lane polyline and use its relative position in the local
Frenet frame to determine its lane association. Homotopies describe the relative motion between a
pair of agents shown in the video, including: [S, CW, CCW] (static, clockwise, counterclockwise).
Combining agent-ego lane mode, homotopy, agent ground truth state information, and scene con-
text information (e.g., ego is located near an intersection) together, we can leverage heuristics to
annotate the interaction. For example, within a 3-second horizon, a static object’s agent-ego lane
mode changes from AHEAD, to LEFT, to BEHIND, while the ego vehicle performs RIGHT-LANE-
CHANGE, KEEP-LANE, then LEFT-LANE-CHANGE, indicating the ego vehicle overtakes that ob-
ject from the ego vehicle’s left side. Finally, we use human labelers to verify and correct interaction
labels in the following categories: 1) bypass blocking traffic cones to navigate around a construction
zone; 2) yield to pedestrians; 3) yield to vehicles; 4) overtake traffic agents via straddling the lane
dividers; 5) overtake traffic agents via lane-change.

C Training Details

During pre-training (“representation alignment”), we disable LoRA and only train the adapter to
enhance embedding space alignment between the scene and text tokens. We use only perception
QAs (150k QAs) to train the adapter for 5 epochs with a learning rate of 5e-4. In reasoning fine-
tuning (“reasoning alignment”), we train the adapter and LoRA together using the reasoning and
planning QAs for 10 epochs with a learning rate of 1e-4. Finally, we train the adapter and LoRA
together using just the planning QAs for another 10 epochs to maximize the model’s performance
on planning, maintaining the learning rate at 1e-4.

D Evaluation Protocol

In this section, we provide a detailed description about our evaluation protocol. In Section 5.1 of the
main text, we introduce the three variants of trajectory L2 error (the overall, turning, and progress
errors) and the collision rate used to evaluate the predicted motion plans. As noted in [2], different
evaluation protocols used to compute these metrics can lead to significant metric variations. We use
the same evaluation protocol as described in [2] with one exception: we exclude samples where any
future motion is missing near the end of a sequence (the frame masking strategy described in [2]).
Including these partially invalid samples would significantly lower the L2 errors, as the L2 errors of
these invalid frames are set to zero.

E Additional Result: On the Value of Object-Centric Tokenization

In Tab. 5, we present the full quantitative evaluation of each model’s performance in the planning
task. We observe that TOKEN significantly outperforms all baselines across all planning metrics.

Traj L2 (m) ↓ Heading L2 (rad) ↓ Lon. weighted traj L2 (m) ↓ Collision (%) ↓
Method 1s 2s 3s Ave123s Aveall 1s 2s 3s Ave123s Aveall 1s 2s 3s Ave123s Aveall Aveall

Video-LLaMA 0.27 1.72 6.34 3.01 2.39 0.06 0.14 0.20 0.13 0.13 0.56 3.36 9.20 4.36 3.52 2.64
VILA-1.5 0.28 1.56 4.41 2.09 1.66 0.05 0.11 0.19 0.12 0.10 0.29 1.92 6.47 2.89 2.24 1.98
BEV-TOKEN 0.39 1.01 2.02 1.14 0.96 0.03 0.05 0.06 0.05 0.05 0.75 1.79 3.55 2.03 1.71 0.39
TOKEN 0.26 0.70 1.46 0.81 0.68 0.02 0.04 0.06 0.04 0.03 0.50 1.32 2.72 1.51 1.26 0.15

Table 5: Planning performance evaluation. TOKEN significantly outperforms baseline VLMs due
to its use of driving-task pre-trained features and object-centric tokenization.

F Long-tail Events Construction

We manually inspected the NuScenes dataset and identified the following long-tail scenarios for
evaluation, each representing less than 1% of the training data: 1) executing 3-point turns; 2) resum-
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ing motion after a full stop; 3) overtaking parked cars through the oncoming lane; and 4) navigating
around construction sites. We note that our design choice of extracting these long-tail driving sce-
narios is statistically valid with respect to the accessible dataset. As most open-sourced datasets
down-sample the meta dataset and only provide selected driving segments, they are inevitably al-
tered and deviate from the actual daily driving distribution. Nevertheless, the above scenarios we
selected are still representative and challenge the traditional end-to-end driving

Executing 3-point turns, which has one scene (scene-0778, frame 6-30) in the evaluation split and
0 scenes in the training distribution. We extracted 25 key frames from the scene in which the ego
vehicle is performing the 3-point U-turn for evaluation to remove the noise from other nominal
behaviors in the scene.

Resuming motion after a full-stop, which includes 14 scenes in the training split and 8 scenes in
the evaluation split. We extract key frames from each scene where the ground truth (GT) motion plan
captures the acceleration behavior after the full stop. This results in 70 key frames in the training
split (0.28% of the total training samples) and 40 key frames in the evaluation split. The scenes
and key frames in the training split are: scene-0208 (frame 25-29), scene-1023 (frame 21–25),
scene-0067 (frame 24-28), scene-0159 (frame 4-8), scene-0185 (frame 26-30), scene-0262 (frame
8-12), scene-0862 (frame 18-22), scene-0025 (frame 6-10) scene-0072 (frame 24-28), scene-0157
(frame 12-16), scene-0234 (frame 4-8), scene-0423 (frame 6-10), scene-0192 (frame 14-18), and
scene-0657 (frame 12-16). The scenes and key frames in the evaluation split are: scene-0921 (frame
21-25), scene-0925 (frame 19-23), scene-0968 (frame 7-11), scene-0552 (13-17), scene-0917 (frame
24-28), scene-0221 (frame 11-15), scene-1064 (frame 21-25), and scene-0331 (frame 8-12).

Overtaking parked cars through the oncoming lane, which includes 14 scenes in the training split
and 5 scenes in the evaluation split. We extracted key frames from each scene where the ground truth
motion plan captures the ego vehicle steering into the adjacent lane to overtake a blocking object
and then returning to its original lane. This results in 248 key frames in the training split (0.9% of
the total training samples) and 102 key frames in the evaluation split. The scenes and key frames in
the training split are: scene-0001 (frame 12-39), scene-0011 (frame 1-39), scene-0023 (frame 1-8),
scene-0034 (frame 23-39), scene-0318 (frame 10-30), scene-0379 (frame 14-26), scene-0408 (frame
12-30), scene-0417 (frame 4-20), scene-0422 (frame 18-39), scene-0865 (frame 24-39), scene-1105
(frame 18-30), scene-1065 (frame 24-35), scene-0200 (frame 20-39), and scene-0752 (frame 10-28).
The scenes and key frames in the evaluation split are: scene-0038 (frame 4-33), scene-0271 (frame
3-11), scene-0969 (frame 14-33), scene-0329 (frame 3-33), and scene-1065 (frame 24-35)

Navigating around construction sites. This common and challenging scenario requires the au-
tonomous vehicle to actively change lanes to bypass a construction zone. Although there are two
scenes (scene-0980 and scene-0535) in the training split, none exist in the evaluation split. There-
fore, we moved one training scene (scene-0980, frames 16-30) to the evaluation split. We selected
15 key frames that capture the ego vehicle decelerating and steering into the adjacent lane to bypass
the traffic cones.

G Detailed Qualitative Result

In this section, we provide an in-depth analysis of the qualitative results shown in Sec. 5.2.

Executing a 3-point turn. During a 3-point turn, a vehicle makes a sharp left turn, backs up, and
then makes another left turn to complete the maneuver. In Fig. 4, we compare the motion plans
from TOKEN and PARA-Drive. Despite receiving a "3-point turn" command, PARA-Drive predicts
straight movements at t = 2s and t = 4s, likely due to the absence of such examples in its training
set. In contrast, TOKEN understands the command and generates the correct turning behavior.
When approaching the curb to stop and back up, both PARA-Drive and TOKEN predict forward
motions at t = 8s, likely due to the lack of 3-point turn examples in the dataset. At t = 10s, when
the vehicle has enough clearance, both models predict left-turn motions, with TOKEN’s prediction
more closely aligning with the ground truth.
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Overtaking parked cars through the oncoming lane. Fig. 6 shows an example of qualitative
comparison between the motion plan from TOKEN and PARA-Drive at two constitutive time steps.
At t = 5s, PARA-Drive predicts a motion that collides with the blocking vehicle, while TOKEN
instructs the ego vehicle to decelerate to avoid the object. Interestingly, although TOKEN correctly
predicts in language that the ego vehicle should decelerate and steer to the right, the motion plan only
reflects the deceleration behavior. We hypothesize that this is caused by insufficient data that helps
the LLM associate low-level motion with mid-level behavior. When the ego vehicle straddles the
lane divider and prepares to overtake, TOKEN instructs the ego vehicle to drive back to its original
lane after overtaking, while PARA-Drive predicts a forward motion that straddles the lane divider.

Navigating around construction sites. Fig. 7 shows an example of qualitative comparison between
the motion plan from TOKEN and PARA-Drive at two constitutive time steps. At t = 8s, TOKEN
instructs the ego vehicle to steer and bypass the traffic cones from the ego vehicle’s right side, while
PARA-Drive predicts a motion that collides with the blocking traffic cones At t = 12s, TOKEN
instructs the ego vehicle to steer to the right to keep forward along the current lane, while PARA-
Drive predicts a motion that deviates from the lane center.

H Comparison with the SOTA LLM-based Planner - Agent-Driver

We compare TOKEN with the SOTA LLM-based planner Agent-Driver [5]. They have the following
differences:

Scene representation. Agent-Driver queries text-based scene information using various tools (e.g.,
object detection, mapping, etc.) and uses the queried text-based information as an input prompt to
instruct the LLM to plan the ego vehicle’s motion. TOKEN tokenizes the scene into a few object-
level tokens. This makes TOKEN more efficient in terms of information density per-token (e.g.,
TOKEN uses one token to encode an object’s semantic, geometry, and dynamic information while
the same information is tokenized into around 60 text tokens in Agent-Driver).

LLM-backbone. Agent-Driver fine-tunes the entire GPT3.5 while TOKEN uses LORA (with a
rank of 64) to fine-tune LLaMA2.

Chain-of-Thought Reasoning. Both Agent-Driver and TOKEN utilize chain-of-thought reason-
ing to align the model’s planning process. However, Agent-Driver uses a coarse reasoning process
that instructs the LLM to directly generate the ego vehicle’s discretized steering and acceleration
command description based on the scene description, as opposed to TOKEN’s more structured rea-
soning process that instructs the model to reason about the semantically meaningful effect of the
objects (e.g., blocking the ego vehicle’s path) and interaction plans (e.g., overtake).

We use the Agent-Driver’s predictions from the official repository and show the overall quantitative
evaluation in Tab. 3 of the main text. In Tab. 6, we show the detailed quantitative evaluation of each
long-tail scenario. In addition, since Agent-Driver includes the ego-state information in the prompt,
we train a variant of TOKEN (denoted as TOKEN+) that also uses the ego-state information as
input for planning (current velocity and current acceleration) and show the quantitative evaluation
of TOKEN+ in Tab. 6. We see that TOKEN and Agent-Driver have similar overall performance,
but TOKEN significantly outperforms Agent-Driver in long-tail scenarios. Furthermore, when using
ego-state information as input, TOKEN+ significantly outperforms Agent-Driver in all splits.

I On the Value of Alignment - Qualitative Results

In Fig. 9, we show a few qualitative comparisons between TOKEN and a variant of TOKEN trained
with representation alignment but without reasoning alignment. We can see that the predicted motion
plans are more aligned the GT motion with reasoning process alignment.
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Traj L2 (m) ↓ Heading L2 (rad) ↓ Lon. weighted traj L2 (m) ↓ Collision (%) ↓
Split Method 1s 2s 3s Ave123s Aveall 1s 2s 3s Ave123s Aveall 1s 2s 3s Ave123s Aveall Aveall

val Agent-Driver 0.23 0.68 1.50 0.80 0.66 0.79 0.85 0.90 0.85 0.80 0.43 1.26 2.75 1.48 1.22 0.13
TOKEN 0.26 0.70 1.46 0.81 0.68 0.13 0.18 0.21 0.17 0.18 0.50 1.32 2.72 1.51 1.26 0.15
TOKEN + 0.17 0.52 1.21 0.64 0.52 0.10 0.16 0.19 0.15 0.17 0.33 1.00 2.30 1.21 1.00 0.13

3-point turn Agent-Driver 0.38 1.31 2.93 1.54 1.26 0.20 0.74 1.23 0.72 0.63 0.64 2.26 4.78 2.56 2.11 8.67
TOKEN 0.39 1.29 2.60 1.43 1.18 0.21 0.35 0.71 0.42 0.36 0.68 2.15 4.33 2.39 1.98 4.00
TOKEN + 0.20 0.73 1.77 0.90 0.73 0.17 0.22 0.38 0.26 0.22 0.37 1.28 2.93 1.53 1.24 1.46

Resume motion Agent-Driver 0.14 0.84 2.51 1.16 0.91 0.17 0.47 0.42 0.35 0.32 0.25 1.49 4.48 2.07 1.62 0.00
from full stop TOKEN 0.13 0.70 1.58 0.80 0.65 0.09 0.24 0.31 0.22 0.19 0.24 1.24 2.66 1.38 1.13 0.00

TOKEN + 0.06 0.43 1.27 0.59 0.46 0.05 0.13 0.17 0.12 0.10 0.11 0.78 2.30 1.06 0.84 0.00

Overtake Agent-Driver 0.27 0.89 2.07 1.08 0.88 0.05 0.13 0.24 0.14 0.12 0.47 1.46 3.37 1.77 1.45 0.77
TOKEN 0.29 0.77 1.63 0.90 0.74 0.04 0.07 0.11 0.07 0.09 0.53 1.36 2.86 1.58 1.31 0.19
TOKEN + 0.15 0.46 1.04 0.55 0.46 0.02 0.07 0.13 0.07 0.06 0.29 0.83 1.75 0.95 0.80 0.00

Table 6: Quantitative comparison with an LLM-based planner - Agent-Driver. TOKEN signifi-
cantly outperforms Agent-Driver in long-tail scenarios. TOKEN+ denotes a variant of TOKEN that
uses ego-state as input, similar to Agent-Driver.

J Additional Results

J.1 TOKEN with HD-map Information

In the main text, we use multi-view video as the sensory input. In this section, we include HD-map as
an additional input to evaluate the performance of TOKEN. We utilize the CTT encoder described
in [35] to fuse each traffic agent’s past state history with each lane’s ground truth center line and
produce a traffic agent token as an additional token for each traffic object. We use TOKEN +map

to denote the variant of TOKEN with HD-map information and show its quantitative evaluation
in Tab. 7. We can see that the additional map information and the past state history significantly
improve the planning performance in both evaluation split and long-tail scenarios.

Traj L2 (m) ↓ Heading L2 (rad) ↓ Lon. weighted traj L2 (m) ↓ Collision (%) ↓
Split Method 1s 2s 3s Ave123s Aveall 1s 2s 3s Ave123s Aveall 1s 2s 3s Ave123s Aveall Aveall

Val TOKEN 0.26 0.71 1.47 0.81 0.68 0.02 0.04 0.06 0.04 0.03 0.50 1.32 2.73 1.52 1.27 0.15
TOKEN +map 0.15 0.42 1.18 0.58 0.51 0.02 0.02 0.06 0.03 0.03 0.33 0.92 2.11 1.12 0.97 0.08

Long-tail TOKEN 0.26 0.81 1.77 0.95 0.78 0.05 0.10 0.18 0.11 0.09 0.50 1.47 3.09 1.69 1.40 0.35
TOKEN +map 0.20 0.71 1.37 0.76 0.64 0.03 0.08 0.11 0.07 0.05 0.37 1.18 2.73 1.43 1.27 0.31

Table 7: Quantitative performance of TOKEN +map, a variant of TOKEN with HD-map information.

J.2 Ablation on the Effect of Structured Reasoning Process Alignment.

One of the unique features of TOKEN is that it reasons about semantically meaningful interactions
with identified critical objects (e.g., bypassing the blocking traffic cones). We hypothesize that this
structured reasoning process supervision enhances the model’s planning performance by encour-
aging the model to understand the interactions between the ego vehicle and other traffic objects,
aligning more closely with how an expert reasons in the real world. To ablate the effect of structured
reasoning process alignment, we removed it from the planning QAs’ answer labels and used a sim-
ilar chain-of-thought reasoning and task planning method as in Agent-Driver (i.e., instructing the
LLM to generate the steering and acceleration command description first, followed by the motion
plan) to TOKEN (denoted as TOKEN −interact.). We show the evaluation result in Tab. 8. We can
see that the structured reasoning process alignment improves the planning performance in both the
evaluation set and the long-tail scenarios.

Traj L2 (m) ↓ Heading L2 (rad) ↓ Lon. weighted traj L2 (m) ↓ Collision (%) ↓
Split Method 1s 2s 3s Ave123s Aveall 1s 2s 3s Ave123s Aveall 1s 2s 3s Ave123s Aveall Aveall

Val TOKEN −interact. 0.28 0.77 1.54 0.86 0.75 0.02 0.03 0.08 0.04 0.04 0.52 1.39 2.82 1.58 1.31 0.17
TOKEN 0.26 0.71 1.47 0.81 0.68 0.02 0.04 0.06 0.04 0.03 0.50 1.32 2.73 1.52 1.27 0.15

Long-tail TOKEN −interact. 0.33 1.01 2.06 1.13 0.92 0.09 0.15 0.19 0.14 0.12 0.58 1.82 3.66 2.02 1.65 0.59
TOKEN 0.26 0.81 1.77 0.95 0.78 0.05 0.10 0.18 0.11 0.09 0.50 1.47 3.09 1.69 1.40 0.35

Table 8: Quantitative performance of TOKEN −interact., a variant of TOKEN that uses a similar
chain-of-thought reasoning as Agent-Driver does.

16



TOKEN [no reasoning alignment] TOKEN GT

Figure 9: Qualitative comparison between TOKEN and a variant of TOKEN trained with represen-
tation alignment but without reasoning alignment. With reasoning process alignment, TOKEN is
able to instruct the ego vehicle to resume motion after a full-stop (top figure) and safely overtake
static obstacles (middle and bottom figures).

J.3 Few-Shot Learning.

To stress test TOKEN’s few shot learning ability, we further remove 50% long-tail scenes from the
training split and re-train PARA-drive and TOKEN and compare their performance. In Tab. 9, we
show the quantitative evaluation result in long-tail scenarios. We see that TOKEN only degrades
slightly as opposed to PARA-Drive’s significant performance degradation. For example, Traj L2
Aveall of PARA-Drive is degraded by 24% while TOKEN only experiences 9% degradation with
50% long-tail scenes removed. The results indicate the superior few-shot learning ability of TOKEN.

Traj L2 (m) ↓ Heading L2 (rad) ↓ Lon. weighted traj L2 (m) ↓ Collision (%) ↓
Split Method 1s 2s 3s Ave123s Aveall 1s 2s 3s Ave123s Aveall 1s 2s 3s Ave123s Aveall Aveall

Long-tail PARA-Drive 0.26 0.96 2.16 1.13 0.91 0.09 0.20 0.34 0.21 0.18 0.47 1.61 3.51 1.86 1.57 0.51
(full long-tail training set) TOKEN 0.26 0.81 1.77 0.95 0.78 0.05 0.10 0.18 0.11 0.09 0.50 1.47 3.09 1.69 1.40 0.35
Long-tail PARA-Drive 0.51 1.17 2.30 1.32 1.12 0.09 0.17 0.29 0.18 0.16 0.76 1.96 3.93 2.22 1.86 0.89
(with 50% long-tail training scenes removed) TOKEN 0.28 0.86 1.83 0.99 0.85 0.06 0.15 0.24 0.15 0.13 0.56 1.66 3.29 1.84 1.62 0.41

Table 9: Planning performance of TOKEN and PARA-Drive with 50% long-tail training scenes
removed.
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Prompt: You are the brain of an autonomous vehicle and try to plan a safe and efficient motion. The autonomous vehicle needs to turn right at the next 
intersection. What objects are important for the autonomous vehicle's planning? What are these objects, their (x,y) locations? and how to interact with 
them? Please plan the autonomous vehicle's 3s future trajectory using 6 waypoints, one every 0.5 seconds.

TOKEN: There is no important object for the autonomous vehicle's planning. The autonomous vehicle should keep forward, and its 3-second future 
trajectory is…[omitted]

TOKEN
GT

Missed object

Figure 10: Failure mode example: The critical object (an oncoming motorcycle annotated by the red
rectangle) is not detected by TOKEN’s scene tokenizer, resulting in a dangerous motion plan.

K Failure Mode

One limitation of TOKEN is using a pre-trained and frozen PARA-Drive model as the scene tok-
enizer, which makes the TOKEN’s performance tightly coupled with the quality of the pretrained
tokenizer. In Fig. 10, we illustrate a failure mode where the critical object (the motorcycle) is not
detected by the tracking querying transformer in PARA-Drive. Consequently, TOKEN assumes
the road is clear to proceed and fails to generate a motion that yields to the oncoming motorcycle.
Further work will focus on co-training PARA-Drive to leverage the knowledge within the LLM to
improve the scene tokenizer.

L Extended Limitation & Future Work

TOKEN currently is not validated in closed-loop evaluations. We think that open-loop metrics
are still valuable, and enable us to efficiently validate the model in a controlled environment free
from the noises brought by other components in closed-loop evaluations (e.g., agents reactivity,
motion optimization, and control). To mitigate the bias induced by general open-loop metrics, we
specifically evaluate our planning metrics using key frames that reflect the critical behavior/decision
changes. We will investigate TOKEN’s reasoning and planning performance with closed-loop simu-
lation in our future work. Last but not least, one of the limitations of deploying LLM-based systems
onboard is their slow inference speed. In our current setup, TOKEN takes approximately 1.3 sec-
onds to generate mid-level behavior and around 1.8 seconds to generate the motion plan without any
speed optimization using an A100 GPU. One practical deployment solution is to use TOKEN solely
as a runtime decision-level monitor: instead of predicting the full motion plan, it could predict route-
conditioned mid-level behavior (e.g., bypassing a construction zone) at a much slower frequency to
inform the traditional motion planner. Although there are many ongoing efforts aimed at improving
LLM inference speed through quantization and caching, the large model size still makes it infeasible
for onboard deployment. One direction we are particularly interested in is distillation. In our future
work, we are very excited about distilling the 7B TOKEN model into a much smaller, lightweight
model that can retain the benefits of common-sense reasoning in long-tail events while being more
suitable for onboard deployment.
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