
T2SQNet: A Recognition Model for Manipulating
Partially Observed Transparent Tableware Objects

Young Hun Kim∗,1 Seungyeon Kim∗,1 Yonghyeon Lee2 Frank Chongwoo Park1

1Seoul National University, 2Korea Institute For Advanced Study
{yhun, ksy}@robotics.snu.ac.kr, ylee@kias.re.kr, fcp@snu.ac.kr

Abstract: Recognizing and manipulating transparent tableware from partial view
RGB image observations is made challenging by the difficulty in obtaining reliable
depth measurements of transparent objects. In this paper we present the Transpar-
ent Tableware SuperQuadric Network (T2SQNet), a neural network model that
leverages a family of newly extended deformable superquadrics to produce low-
dimensional, instance-wise and accurate 3D geometric representations of trans-
parent objects from partial views. As a byproduct and contribution of indepen-
dent interest, we also present TablewareNet, a publicly available toolset of seven
parametrized shapes based on our extended deformable superquadrics, that can
be used to generate new datasets of tableware objects of diverse shapes and sizes.
Experiments with T2SQNet trained with TablewareNet show that T2SQNet out-
performs existing methods in recognizing transparent objects and can be effec-
tively used in robotic applications like decluttering and target retrieval. The code
is available at https://github.com/seungyeon-k/T2SQNet-public.

Keywords: Transparent objects, Shape recognition, Object manipulation

1 Introduction

Recognizing and manipulating transparent tableware objects is made challenging by the difficulty
in obtaining reliable depth measurements of the transparent objects [1]. The task is made even more
difficult when such transparent objects are placed on shelves or against walls, offering only partial
views of the object. This paper addresses the recognition of transparent objects from partial view
RGB images. Specifically, we emphasize the need for a good representation for manipulation, one
that accounts for object 3D geometries and instances. The first criterion is vital to avoid collisions
and ensure effective grasping, while the second is necessary for target-driven manipulation.

Recently, methods using Neural Radiance Fields (NeRF) [2], which attempt to fit 3D field models
to multi-view RGB images via differentiable rendering without using depth images, have been in-
troduced for recognizing and grasping transparent objects [3, 4, 5]. However, since NeRF assumes
the availability of all-around views, when only partial views are available, the performance of these
methods may not be guaranteed.

Learning from data is essential to infer complete geometries from partial view information (e.g., [6]
and [7]). Given the high cost of real-world datasets, simulations are often used, emphasizing the need
for models robust to the sim-to-real gap. However, [6] produces representations that lack instance
information and shows limited robustness to the sim-to-real gap. [7] generates instance-wise 3D
representations, but these rely on depth images and are thus unsuitable for transparent objects.

In this paper, we present a novel deep learning framework that tackles all the aforementioned chal-
lenges: (i) object transparency, (ii) partial views, (iii) achieving good representations for manipu-
lation, and (iv) bridging the sim-to-real gap. Our main contribution is twofold. Firstly, we extend

*Equal contribution

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://github.com/seungyeon-k/T2SQNet-public

Figure 1: Model architecture of T2SQNet, including: (1) a pretrained SAM for predicting object
mask images [8]; (2) DETR3D for detecting object bounding boxes [9]; (3) a voxel carving mod-
ule [10]; and (4) a tableware parameter prediction model based on ResNet3D [11].

the deformable superquadrics, a family of geometric shape primitives recently introduced in [7], by
incorporating shearing and superparaboloids. This extension enables us to represent a wider range
of tableware objects, as illustrated in Figure 2. By combining these primitives, we can define shape
templates for tableware that meet the criteria for good representations in manipulation tasks.

The second contribution is the Transparent Tableware SuperQuadric Network (T2SQNet), a neural
network model that infers the geometries of tableware objects by representing each object as a union
of the extended deformable superquadrics. Our model comprises four key steps: prediction of 2D
masks, 3D bounding boxes, visual hulls, and superquadric parameters (illustrated in Figure 1). There
are two novel elements to our approach. First, we leverage SAM mask images [8], which is critical
in enhancing robustness to the sim-to-real gap. Secondly, we devise representations based on a set
of visual hulls – one for each object – as inputs to the shape prediction network. We have observed
that this approach significantly improves performance compared to models that directly estimate
superquadric parameters in an end-to-end manner.

As a second contribution obtained as a byproduct of our approach, but also of independent interest,
we introduce TablewareNet, a family of continuously parameterized shapes representing everyday
tableware objects across seven classes, using extended deformable superquadrics and their combi-
nations as shown in Figure 2. Users can easily generate a new dataset with diverse sizes and shapes
within each class; even a new class of objects can be constructed using our tools.

Our experiments demonstrate that T2SQNet trained with TablewareNet outperforms existing state-
of-the-art methods in predicting the geometries of transparent objects. This superior performance
extends beyond the test set from TablewareNet to include unseen data from the large-scale trans-
parent object dataset named TRansPose [12]. Furthermore, we show the practical applicability of
our method in two downstream tasks including sequential decluttering and object rearrangement for
target retrieval, highlighting the advantages of our representations.

2 TablewareNet: Dataset for Cluttered Transparent Tableware

In this section, we first extend the deformable superquadrics introduced in [7, 13] to represent non-
convex shapes such as bowls and wineglasses. We then propose a TablewareNet, a family of contin-
uously parametrized shapes representing tableware objects, where each shape is defined as a proper
combination of our extended deformable superquadrics.

2.1 Extended Deformable Superquadrics

Superquadrics, parametrized by only a few parameters, can represent a relatively wide range of
geometric shapes. We employ two kinds of superquadrics: superellipsoids, which have been used for
object manipulation [14, 15, 16, 7, 17, 18, 19], and superparaboloids, which are newly introduced.
Superellipsoids and superparaboloids are implicit surfaces with the following implicit functions with
size parameters (a1, a2, a3) ∈ R3

+ and shape parameters (e1, e2) ∈ R2
+: for x = (x, y, z),

Superellipsoid︷ ︸︸ ︷
fse(x) =

(∣∣∣∣ xa1
∣∣∣∣ 2
e2

+

∣∣∣∣ ya2
∣∣∣∣ 2
e2

) e2
e1

+

∣∣∣∣ za3
∣∣∣∣ 2
e1

= 1,

Superparaboloid︷ ︸︸ ︷
fsp(x) =

(∣∣∣∣ xa1
∣∣∣∣ 2
e2

+

∣∣∣∣ ya2
∣∣∣∣ 2
e2

) e2
e1

−
(

z

a3

)
= 1 .

By adjusting the parameters, various surfaces can be represented as shown in the upper of Figure 2.
For the superparaboloid, only the region where z ≤ 0 is used. Deformable superquadrics extend

2

Figure 2: Upper: Examples of superquadrics, including superellipsoids and superparaboloids, and
deformable superquadrics. Lower: TablewareNet objects as unions of deformable superquadrics.

superquadrics by incorporating global deformations. Existing works, such as [7], have employed
traditional deformations including tapering and bending. Tapering is a transformation where the
shape gradually narrows or widens along a certain direction. Bending is a transformation where
an axis turns into a circular section. Additionally, we employ a shearing transformation, where an
object is skewed along a specified axis. Each transformation used in this paper is expressed in the
following formula (deformations are applied in the z-axis direction):

x =

[
x
y
z

]
7−→

Tapering︷ ︸︸ ︷
Dt(x) =

[
t(z)x
t(z)y
z

]
,

Bending︷ ︸︸ ︷
Db(x) =

x+ (R− r) cosα
x+ (R− r) sinα
(b−1 − r) sin γ

,
Shearing︷ ︸︸ ︷

Ds(x) =

[
x
y

z + sx

]
.

Here, motivated by [7], we use a linear tapering function t(z) = tk(z) := k
a3
z + 1 with a single

parameter k. For bending, b > 0 and α represents the degree and the direction of bending in the xy
plane, and other values are computed from these parameters; r = cos(α − atan2(y, x))

√
x2 + y2,

R = b−1 − (b−1 − r) cos γ, γ = zb. In shearing, s leverages the intensity of shearing. These
deformations are concatenated in an obvious way, i.e., D = Ds ◦Db ◦Dt; we note that the deforma-
tions are not commutative. The deformable superquadric function is then given by fD = f ◦D−1,
where D and f are a concatenated deformation and a superquadric, respectively. We can position the
implicit function using an object pose T ∈ SE(3) with the following expression: fD(T−1x) = 1.

2.2 Tableware Templates and Synthetic Dataset Generation

Tableware Templates. We combine deformable superquadrics to define templates representing
seven types of tableware: wine glasses, bottles, beer bottles, bowls, dishes, handleless cups, and
mugs; see the lower of Figure 2. Let T be a tableware object constructed using n deformable
superquadrics {Si|i = 1, . . . , n}. Each superquadric Si includes function type fi ∈ {fse, fsp}, pose
Ti ∈ SE(3), size ai ∈ R3

+, shape parameters ei ∈ R2
+ and deformation parameters di = (ki, bi, αi,

si). For T to represent an appropriate shape, constraints among these parameters are necessary. For
example, to represent an appropriate wineglass, constraints on the positions of the head and the base,
as well as the length of the pillar, are needed. To easily assign these constraints, we re-parametrize
the above parameters to low-dimensional tableware parameters; we note that there is an one-to-
one mapping between tableware parameters and the superquadric parameters fi, Ti,ai, ei,di for
i = 1, . . . , n. More details are found in Appendix B.1.

Synthetic Dataset Generation. We then generate the TablewareNet dataset as shown in Figure 3.
By adjusting tableware parameters, we can create diverse 3D tableware meshes. Spawning these
meshes in a user-defined environment (e.g., table or shelf) within PyBullet [20], a physics simulator,
allows us to generate cluttered scenes. Using Blender [21], a photorealistic renderer, with transpar-

3

Figure 3: Examples of the TablewareNet dataset, including 3D geometries of transparent objects on
a table or shelf (Upper) and RGB images rendered from Blender (Lower).

ent textures, we obtain RGB images of the scenes from arbitrary poses. For data generation, we
first randomly spawn one to four tableware objects. Each dataset includes the poses, tableware pa-
rameters, bounding boxes of the objects, RGB images, mask images, and depth images from seven
camera views. Detailed statistics can be found in Appendix B.2. Note that this dataset can be used
not only to train our model but also for other data-driven recognition models. Additionally, users
can create customized datasets by modifying the compositions of superquadrics.

3 T2SQNet: Transparent Tableware SuperQuadric Network

In this section, we propose a novel framework for recognizing the 3D shapes and locations of trans-
parent objects using only partial multi-view RGB observations. Overall, our method consists of four
steps: (1) prediction of masks in 2D images, (2) prediction of 3D bounding boxes, (3) computation
of a smoothed visual hull through voxel carving, and (4) prediction of tableware parameters (i.e., a
set of parameters of the superquadrics); see Figure 1. We sequentially apply these modules during
inference, which can accumulate prediction errors. Therefore, we develop techniques to train each
module accurately and robustly against noise and sim-to-real gaps, which we explain in detail below.

Mask Prediction. Simulated RGB images are often non-photorealistic, leading to significant sim-
to-real discrepancies. To mitigate this, we use the pretrained segmentation network SAM [8], trained
on real images, to generate masks for the next module, the bounding box estimator. Specifically, we
use SAM with a “tableware” prompt to generate masks. However, SAM sometimes incorrectly
predicts parts of tableware objects as background. To address this, we apply random color-jittering
five times to an image, obtain five corresponding SAM output mask images, and compute their union
to derive the final mask. Empirically, this approach significantly improves mask predictions.

Figure 4: Visualization of the corrupted vi-
sual hull and smoothed visual hull when one
mask image (view 3) is corrupted.

3D Bounding Box Prediction. The mask images
are then input into a 3D bounding box prediction
model, the DETR3D [9]. This model outputs the
class probability along with the central coordinates
and sizes of the bounding boxes along the x, y, and
z axes for tableware objects. We apply a random
cut-out augmentation to a randomly selected mask
image to prevent the model from relying solely on
information from a specific image among the multi-
view mask images. This encourages the model to ex-
tract information evenly from the multi-view masks
for predictions of bounding boxes.

Smoothed Visual Hull. Voxel carving constructs a visual hull by removing voxels from a volumetric
grid that do not match object silhouettes captured from multiple camera views [10]. Voxel carving
is applied to a volumetric grid within each detected bounding box using the predicted masks as
object silhouettes. We found that, although rarely, the predicted masks can confuse objects with the
background, leading to significant distortion in the resulting visual hull when even one mask fails to
identify object pixels and removes corresponding voxels, as shown in Figure 4. To construct more
robust 3D representations, we count the number of images whose mask pixels include the projection
of each corresponding 3D voxel instead of storing binary values. We then store normalized values
representing the frequency of voxel appearances, which we refer to as the smoothed visual hull.

4

Figure 5: Left: 6-DoF grasp sampling results for various tableware objects. Right: Collision-free
grasp poses for a target object A (blue wine glass); green grippers indicate collision-free grasp poses,
while red grippers indicate poses with collisions.

Tableware Parameter Prediction. The smoothed visual hulls are input into neural networks based
on ResNet3D [11] to predict the tableware parameter. Since each tableware class has different voxel
resolutions and a varying number of shape parameters, separate predictors are assigned to each
class. After our bounding box predictor outputs the position, size, and class of a bounding box,
the parameter predictor for the corresponding class takes as input the smoothed visual hull carved
within the predicted bounding box. To train these networks, we use the Chamfer loss between the
ground truth point cloud and point cloud sampled from the predicted superquadrics in a differentiable
manner. Lastly, to enhance the model’s robustness to bounding box prediction errors, we apply
random perturbations to the location and size of the bounding box to generate a perturbed smoothed
visual hull, which is then used for robust training. Further implementation details on our overall
methods can be found in Appendix B.4.

4 Geometry-Aware Object Manipulation with T2SQNet

T2SQNet offers many practical advantages for downstream object manipulation tasks. It enables
faster recognition compared to approaches that require real-time optimization, such as NeRF vari-
ants [3, 4]. Moreover, its instance-wise object recognition facilitates target-driven manipulation.

A distinctive advantage of T2SQNet arises from its use of extended deformable superquadrics for
output representations. First of all, the implicit function representations for their surfaces enable
rapid collision checks. Suppose the surface meshs of the robot’s links and gripper are represented
by surface points. We can determine if the robot is in collision with the recognized objects by
assessing whether the implicit function values of the surface points are greater than or equal to zero.

Additionally, we can easily design an effective 6-DoF grasp sampler (see the left of Figure 5).
Given the superquadric representations, we can intuitively design grasp pose distributions, which
adapt continuously (even differentiably) almost everywhere as the superquadric parameters change.
As demonstrated with the wine glass examples in the left of Figure 5 (the top part of the wine glass
on the far left can be grasped, whereas that of the other wine glass cannot), the distributions may
not change continuously at some shapes. Nonetheless, for the most part, the distributions change
differentiably, offering the potential for applying gradient-based grasp pose modulation.

We conclude this section with our graspability-aware object rearrangement algorithm, which demon-
strates the effective use of the grasp pose sampler and rapid collision checking in downstream robotic
tasks. Consider a scenario in which a target object A is initially not graspable, surrounded by a set of
objects. Our objective is to determine how to reconfigure the surrounding objects through pick-and-
place actions to make A graspable. To achieve this, we explore the action space to identify an action
or a sequence of actions that result in A becoming graspable. This process requires rapid grasp pose
sampling and computation of the graspability of A, which we accomplish by assessing collisions
between grippers at sampled grasp poses and the surrounding objects; see the right of Figure 5. We
refer to further details including grasp sampler and object rearrangement to Appendix B.5.

5 Experiments

In this section, we empirically demonstrate that (i) our proposed model, T2SQNet, surpasses existing
state-of-the-art models in recognizing transparent objects, and (ii) our method is highly effective in
various robotic applications, including sequential decluttering and target retrieval tasks.

5

Figure 6: Recognition results from RGB images from a test set of Tableware dataset. Upper: Re-
constructed depth images, Middle: Depth reconstruction errors within object masks, Lower: Recon-
structed occupancy maps; for T2SQNet, the occupancy grid is colored by the instance.

Figure 7: Real-world robot environment setting
and various transparent objects.

Environment. We use the 7-DoF Franka
Emika Panda robot equipped with a parallel-
jaw gripper and an Intel RealSense D435 cam-
era mounted on the gripper. The raw visual in-
put consists of a sequence of seven RGB images
captured from different robot poses. Figure 7
illustrates the real-world robot environment, in-
cluding the robot, camera, table, shelf, and the
transparent objects used in the experiments.

Baseline Methods. We compare T2SQNet with the following baseline methods: NeRF [2], Dex-
NeRF [3], DVGO [22], DVGO using segmentation masks (denoted as Mask DVGO) adopted from
[5], and GraspNeRF [6]. The differentiable rendering-based methods, including NeRF, Dex-NeRF,
DVGO, and Mask DVGO, input multi-view RGB images to fit a 3D opacity field, which is then
pre-processed into other representations (e.g., depth image or occupancy map) as needed. For the
segmentation mask for Mask DVGO, we use the SAM [8]. GraspNeRF is a generalizable NeRF-
based model that inputs multiple RGB images from random view-poses and predicts a voxelized
truncated signed distance field (TSDF). Detailed implementations can be found in Appendix C.1.

5.1 Transparent Object Recognition Performance

In this section, we demonstrate the performance advantages of T2SQNet over existing methods. We
adopt two metrics to evaluate 3D recognition quality: depth accuracy and volumetric occupancy
IoU. Depth accuracy is the ratio of predicted depth values that fall within a certain threshold of the
ground-truth depth values in a depth image. This accuracy is measured only for pixels where the
ground-truth object is present, using depth images obtained from the view-poses used during train-
ing. Volumetric occupancy IoU is is the ratio of the intersection to the union between ground-truth
occupancy voxel grid and predicted occupancy voxel grid. Further details for calculating evaluation
metrics for each method can be found in Appendix C.1.

We compare the recognition performances of T2SQNet, trained with TablewareNet, and the baseline
methods using (i) 40 scenes from the test set of TablewareNet, with 10 scenes each containing one
to four objects, and (ii) 40 scenes from the TRansPose dataset [12], with 10 scenes each containing
one to four tableware objects. Figure 6 shows the recognition results, including reconstructed depth
images (with depth reconstruction error maps) and occupancy grids on a test set of TablewareNet.
T2SQNet exhibits the lowest depth error and demonstrates the best performance in terms of 3D
occupancy, accurately delivering instance information.

Table 1 shows the quantitative recognition results. Differentiable rendering-based methods struggle
due to sparse partial views. Specifically, the opacity field seems to concentrate near the camera lens,
resulting in lower depth accuracy in Dex-NeRF, which measures depth based on the distance to an
opacity exceeding a certain threshold, compared to NeRF. Among these methods, Mask DVGO has
the best performance but still shows relatively low performance from an occupancy IoU perspective.
GraspNeRF achieves higher volumetric IoU performance than other differentiable rendering-based
methods, likely due to its use of supervised learning to train on ground truth TSDF values. How-

6

Table 1: Depth and occupancy reconstruction accuracy on TablewareNet and TRansPose dataset.

TablewareNet TRansPose [12]
Depth Occ. Depth Occ.

METHOD δ0.05 δ0.10 δ0.20 IoU δ0.05 δ0.10 δ0.20 IoU
NeRF [2] 0.068 0.134 0.310 0.000 0.062 0.122 0.279 0.000
Dex-NeRF [3] 0.061 0.115 0.278 0.000 0.018 0.037 0.131 0.000
DVGO [22] 0.144 0.288 0.664 0.029 0.158 0.307 0.646 0.017
Mask DVGO [5] 0.697 0.885 0.963 0.394 0.785 0.928 0.962 0.487
GraspNeRF [6] 0.771 0.827 0.888 0.554 0.716 0.778 0.881 0.551
T2SQNet (ours) 0.944 0.958 0.968 0.740 0.918 0.936 0.961 0.636

ever, GraspNeRF faces challenges in training due to its high-dimensional voxel output representation
compared to T2SQNet. T2SQNet, with its lower-dimensional output, benefits from easier training
and better generalization performance, resulting in the best overall performance. Additionally, both
GraspNeRF and T2SQNet show competitive results on the TRansPose dataset, indicating that Table-
wareNet includes a sufficiently diverse and reliable set of tableware shapes. Further experimental
results with more example figures are provided in Appendix D.1.

5.2 Object Manipulation Performance

In this section, we demonstrate the effectiveness of our model, T2SQNet, on two object manipulation
tasks: (i) sequential declutter, which involves sequential grasping in a cluttered environment, and (ii)
target retrieval, which involves object rearrangement planning to retrieve an initially non-graspable
target object1. The target object is indicated by a target tableware class name (e.g., wineglass).

Figure 8: Examples of sequential declutter experiment re-
sults on a table and a shelf.

Sequential Declutter. For sequen-
tial declutter, T2SQNet first recog-
nizes the geometries of the tableware
objects from input RGB images, as
shown on the left of Figure 8. Grasp
poses are then generated for each ob-
ject using a 6-DoF grasp sampler,
as described in Chapter 4. Among
the generated grasp poses, those for
which inverse kinematics are solved
are selected, and the grasp pose with
the least likelihood of collision is
chosen, as detailed in Chapter 4. Af-
ter grasping and removing an object,
the next grasp pose is generated to ex-
ecute sequential grasping. Figure 8.
shows an example of sequential declutter experiment results. Based on the accurately predicted
geometries of the objects, our method succeeds in sequentially grasping the objects without re-
recognition, while avoiding collisions with other objects and the environment.

Table 2: Real-world declutter success rates in
single (S) and cluttered (C) environments for ta-
ble and shelf.

Shelf Table
METHOD S C S C
Mask DVGO [5] 1/5 0/5 0/5 0/5
GraspNeRF [6] 3/5 1/5 1/5 0/5
T2SQNet (ours) 5/5 4/5 4/5 3/5

We compare the sequential declutter perfor-
mances of T2SQNet, Mask DVGO (which shows
the best recognition performance among differ-
entiable rendering-based methods), and GraspN-
eRF. We use the depth image-based pretrained
FC-GQ-CNN [23] and the TSDF-based Volumet-
ric Grasping Network (VGN) [24] for grasp pose
generation in Mask DVGO and GraspNeRF, re-
spectively. The experiments are conducted five times for each scenario: one object (single) or four
objects (cluttered) within the scene, for both table and shelf environments. Success is defined as
the robot successfully sequentially grasping all objects in the scene. The experimental details for

1The real-world manipulation videos can be found at https://youtu.be/6m5ZOrbSxxI.

7

https://youtu.be/6m5ZOrbSxxI

sequential clutter can be found in Appendix C.2. Table 2 shows the sequential declutter success rates
in real-world experiments and demonstrates that our method outperforms the other baseline meth-
ods by significant margins. Failure of baselines mainly results from inaccurate recognition results.
Further experimental results and discussions are provided in Appendix D.2.

Target Retrieval. For target retrieval, we first define a graspability function, which is set to 1 if the
object is graspable and 0 otherwise. Given a target object, we sample grasp poses for the recognized
target and check for collisions of the grippers with the environment (e.g., shelf) and surrounding
other objects. The graspability function value is then set to 1 if at least one collision-free grasp pose
exists, and 0 otherwise. Further implementation details are provided in Appendix B.4.

Figure 9: Examples of target retrieval experiment results on
a shelf (the target object is the wineglass).

Figure 9 shows an example of
target retrieval experiment results.
T2SQNet recognizes the tableware
objects and checks whether there is
exactly one object of the target class;
in this case, the target object is a
wineglass. To make the target ob-
ject graspable, we sample some pick-
and-place actions and select action
sequences that maximize the graspa-
bility function. The experimental details can be found in Appendix C.3. T2SQNet-based method
successfully rearranges the surrounding objects and finally retrieves the target wineglass. Note that
since we currently use a sampling-based method and a discrete reward function, it is not optimal in
terms of the number of actions (i.e., unnecessary rearranging actions appear), but this can be further
improved with advanced object rearrangement methods [25, 26, 27, 18]. Our method achieves an
80% success rates in the five trials. More details are provided in Appendix D.3.

5.3 Limitations and Future Directions

First, T2SQNet currently cannot recognize objects from unknown classes because it relies on known
shape templates. One future direction is to exploit research that attempts to represent complex
objects as multiple superquadrics without predefined templates [28, 7, 29, 30]. Second, we need to
use a fixed set of camera view poses for both training and testing because DETR3D, which we use
to detect bounding boxes of the objects, requires initially fixed camera view poses. To overcome this
limitation, we need to develop a model or learning technique capable of handling various camera
poses, like the method used in GraspNeRF that aggregates 2D image features in 3D volume space
to make the model capable of arbitrary views [6]. Lastly, when multiple objects extensively overlap
in images, the performance of 3D bounding box estimation is likely to decline since masks alone
may not sufficiently reveal object boundaries. Utilizing instance segmentation information is thus
an interesting direction for future work.

6 Conclusion

We have introduced a novel model, T2SQNet and a novel dataset, TablewareNet, designed to rec-
ognize and manipulate transparent tableware objects from partial-view RGB images. By leveraging
deformable superquadrics and TablewareNet dataset, T2SQNet achieves accurate, instance-wise ge-
ometric representations essential for effective manipulation tasks. Our experiments demonstrate that
T2SQNet outperforms existing state-of-the-art methods in predicting the geometries of transparent
objects and excels in sequential declutter and target retrieval tasks.

8

Acknowledgments

Y. H. Kim, S. Kim, and F. C. Park were supported in part by IITP-MSIT grant RS-2021-II212068
(SNU AI Innovation Hub), IITP-MSIT grant 2022-220480, RS-2022-II220480 (Training and In-
ference Methods for Goal Oriented AI Agents), IITP-MSIT grant RS-2024-00436680 (Collabora-
tive Research Projects with Microsoft Research) under the Global Research Support Program in
the Digital Field program, KIAT grant P0020536 (HRD Program for Industrial Innovation), SRRC
NRF grant RS-2023-00208052, SNU-AIIS, SNU-IPAI, SNU-IAMD, SNU BK21+ Program in Me-
chanical Engineering, SNU Institute for Engineering Research, and Microsoft Research Asia. Y.
Lee was the beneficiary of an individual grant from CAINS supported by a KIAS Individual Grant
(AP092701) via the Center for AI and Natural Sciences at Korea Institute for Advanced Study.

References
[1] S. Sajjan, M. Moore, M. Pan, G. Nagaraja, J. Lee, A. Zeng, and S. Song. Clear grasp: 3d shape

estimation of transparent objects for manipulation. In 2020 IEEE international conference on
robotics and automation (ICRA), pages 3634–3642. IEEE, 2020.

[2] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf:
Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

[3] J. Ichnowski, Y. Avigal, J. Kerr, and K. Goldberg. Dex-nerf: Using a neural radiance field to
grasp transparent objects. In Conference on Robot Learning, pages 526–536. PMLR, 2022.

[4] J. Kerr, L. Fu, H. Huang, Y. Avigal, M. Tancik, J. Ichnowski, A. Kanazawa, and K. Goldberg.
Evo-nerf: Evolving nerf for sequential robot grasping of transparent objects. In 6th annual
conference on robot learning, 2022.

[5] J. Lee, S. M. Kim, Y. Lee, and Y. M. Kim. Nfl: Normal field learning for 6-dof grasping of
transparent objects. IEEE Robotics and Automation Letters, 2023.

[6] Q. Dai, Y. Zhu, Y. Geng, C. Ruan, J. Zhang, and H. Wang. Graspnerf: Multiview-based 6-dof
grasp detection for transparent and specular objects using generalizable nerf. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pages 1757–1763. IEEE, 2023.

[7] S. Kim, T. Ahn, Y. Lee, J. Kim, M. Y. Wang, and F. C. Park. Dsqnet: A deformable model-
based supervised learning algorithm for grasping unknown occluded objects. IEEE Transac-
tions on Automation Science and Engineering, 2022.

[8] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,
A. C. Berg, W.-Y. Lo, P. Dollár, and R. Girshick. Segment anything. arXiv:2304.02643, 2023.

[9] Y. Wang, V. C. Guizilini, T. Zhang, Y. Wang, H. Zhao, and J. Solomon. Detr3d: 3d object
detection from multi-view images via 3d-to-2d queries. In Conference on Robot Learning,
pages 180–191. PMLR, 2022.

[10] W. N. Martin and J. K. Aggarwal. Volumetric descriptions of objects from multiple views.
IEEE transactions on pattern analysis and machine intelligence, (2):150–158, 1983.

[11] H. Kataoka, T. Wakamiya, K. Hara, and Y. Satoh. Would mega-scale datasets further enhance
spatiotemporal 3d cnns? arXiv preprint arXiv:2004.04968, 2020.

[12] J. Kim, M.-H. Jeon, S. Jung, W. Yang, M. Jung, J. Shin, and A. Kim. Transpose: Large-scale
multispectral dataset for transparent object. The International Journal of Robotics Research,
page 02783649231213117, 2023.

[13] F. Solina and R. Bajcsy. Recovery of parametric models from range images: The case for
superquadrics with global deformations. IEEE transactions on pattern analysis and machine
intelligence, 12(2):131–147, 1990.

9

[14] A. Makhal, F. Thomas, and A. P. Gracia. Grasping unknown objects in clutter by superquadric
representation. In 2018 Second IEEE International Conference on Robotic Computing (IRC),
pages 292–299. IEEE, 2018.

[15] G. Vezzani, U. Pattacini, and L. Natale. A grasping approach based on superquadric models. In
2017 IEEE International Conference on Robotics and Automation (ICRA), pages 1579–1586.
IEEE, 2017.

[16] G. Vezzani, U. Pattacini, G. Pasquale, and L. Natale. Improving superquadric modeling and
grasping with prior on object shapes. In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 6875–6882. IEEE, 2018.

[17] S. Kim, B. Lim, Y. Lee, and F. C. Park. Se (2)-equivariant pushing dynamics models for
tabletop object manipulations. In Conference on Robot Learning, pages 427–436. PMLR,
2023.

[18] S. Kim, Y. H. Kim, Y. Lee, and F. C. Park. Leveraging 3d reconstruction for mechanical search
on cluttered shelves. In Conference on Robot Learning, pages 822–848. PMLR, 2023.

[19] S. Kim. Learning for Vision-Based Object Manipulation: A Shape Recognition-Based Ap-
proach. PhD thesis, Seoul National University, Seoul, South Korea, 2024.

[20] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics
and machine learning. 2016.

[21] B. O. Community. Blender - a 3D modelling and rendering package. Blender Foundation,
Stichting Blender Foundation, Amsterdam, 2018. URL http://www.blender.org.

[22] C. Sun, M. Sun, and H.-T. Chen. Direct voxel grid optimization: Super-fast convergence
for radiance fields reconstruction. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5459–5469, 2022.

[23] V. Satish, J. Mahler, and K. Goldberg. On-policy dataset synthesis for learning robot grasping
policies using fully convolutional deep networks. IEEE Robotics and Automation Letters,
2019.

[24] M. Breyer, J. J. Chung, L. Ott, S. Roland, and N. Juan. Volumetric grasping network: Real-time
6 dof grasp detection in clutter. In Conference on Robot Learning, 2020.

[25] J. Lee, Y. Cho, C. Nam, J. Park, and C. Kim. Efficient obstacle rearrangement for object
manipulation tasks in cluttered environments. In 2019 International Conference on Robotics
and Automation (ICRA), pages 183–189. IEEE, 2019.

[26] J. Lee, C. Nam, J. Park, and C. Kim. Tree search-based task and motion planning with pre-
hensile and non-prehensile manipulation for obstacle rearrangement in clutter. In 2021 IEEE
International Conference on Robotics and Automation (ICRA), pages 8516–8522. IEEE, 2021.

[27] E. R. Vieira, D. Nakhimovich, K. Gao, R. Wang, J. Yu, and K. E. Bekris. Persistent homology
for effective non-prehensile manipulation. In 2022 International Conference on Robotics and
Automation (ICRA), pages 1918–1924. IEEE, 2022.

[28] D. Paschalidou, A. O. Ulusoy, and A. Geiger. Superquadrics revisited: Learning 3d shape
parsing beyond cuboids. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10344–10353, 2019.

[29] W. Liu, Y. Wu, S. Ruan, and G. S. Chirikjian. Robust and accurate superquadric recovery: a
probabilistic approach. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2676–2685, 2022.

10

http://www.blender.org

[30] W. Liu, Y. Wu, S. Ruan, and G. S. Chirikjian. Marching-primitives: Shape abstraction from
signed distance function. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8771–8780, 2023.

[31] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K. Goldberg. Dex-
net 2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp
metrics. arXiv preprint arXiv:1703.09312, 2017.

[32] A. Zeng, S. Song, K.-T. Yu, E. Donlon, F. R. Hogan, M. Bauza, D. Ma, O. Taylor, M. Liu,
E. Romo, et al. Robotic pick-and-place of novel objects in clutter with multi-affordance grasp-
ing and cross-domain image matching. The International Journal of Robotics Research, 41(7):
690–705, 2022.

[33] Y. Tang, J. Chen, Z. Yang, Z. Lin, Q. Li, and W. Liu. Depthgrasp: Depth completion of
transparent objects using self-attentive adversarial network with spectral residual for grasping.
In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
5710–5716. IEEE, 2021.

[34] H. Fang, H.-S. Fang, S. Xu, and C. Lu. Transcg: A large-scale real-world dataset for transpar-
ent object depth completion and a grasping baseline. IEEE Robotics and Automation Letters,
7(3):7383–7390, 2022.

[35] Q. Dai, J. Zhang, Q. Li, T. Wu, H. Dong, Z. Liu, P. Tan, and H. Wang. Domain randomization-
enhanced depth simulation and restoration for perceiving and grasping specular and transparent
objects. In European Conference on Computer Vision, pages 374–391. Springer, 2022.

[36] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF in-
ternational conference on computer vision, pages 10012–10022, 2021.

[37] Z. Li, Y.-Y. Yeh, and M. Chandraker. Through the looking glass: Neural 3d reconstruction
of transparent shapes. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1262–1271, 2020.

[38] E. Xie, W. Wang, W. Wang, M. Ding, C. Shen, and P. Luo. Segmenting transparent objects in
the wild. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XIII 16, pages 696–711. Springer, 2020.

[39] H. Xu, Y. R. Wang, S. Eppel, A. Aspuru-Guzik, F. Shkurti, and A. Garg. Seeing glass: joint
point cloud and depth completion for transparent objects. arXiv preprint arXiv:2110.00087,
2021.

[40] X. Chen, H. Zhang, Z. Yu, A. Opipari, and O. Chadwicke Jenkins. Clearpose: Large-scale
transparent object dataset and benchmark. In European conference on computer vision, pages
381–396. Springer, 2022.

[41] Y. R. Wang, Y. Zhao, H. Xu, S. Eppel, A. Aspuru-Guzik, F. Shkurti, and A. Garg. Mv-
trans: Multi-view perception of transparent objects. In 2023 IEEE International Conference
on Robotics and Automation (ICRA), pages 3771–3778. IEEE, 2023.

[42] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778,
2016.

[43] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature pyramid
networks for object detection. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2117–2125, 2017.

11

Appendix

A Related Works

A.1 NeRF-based Transparent Objects Recognition for Manipulation

NeRF [2] and its variants use differentiable rendering to find optimal 3D vision models (e.g., 3D
color fields, occupancy fields) from multiple 2D RGB images. Due to NeRF’s ability to learn 3D
structures without using depth images, several studies [3, 4] have attempted to use NeRF for grasping
transparent objects. Dex-NeRF [3] has first proposed transparent object recognition and grasping
using NeRF, introducing a depth rendering technique suitable for grasping differing from traditional
NeRF approaches. This work utilizes the rendered depth images to grasp objects using a pre-trained
Dex-Net [31]. Building on this, Evo-NeRF [4] has enhanced performance by improving the time
efficiency of the training process and adding a geometry regularizer term. Recently, NFL [5] has
employed pre-trained mask estimators and 2D normal field estimators to more accurately capture
3D geometry.

The primary limitation of these NeRF-based methods is their dependency on having access to all-
around, hemispheric views. When only partial views are available, these methods experience catas-
trophic failures. Furthermore, while NeRFs effectively capture the overall geometry of a scene, they
do not provide details about specific object instances. This absence of instance-specific information
poses significant challenges for tasks requiring target-driven manipulation.

A.2 Learning-based Transparent Objects Recognition for Manipulation

In this section, we summarize learning-based methods developed for transparent object recognition
and manipulation. One of the dominant approaches attempts to refine a corrupted depth image using
information from an RGB image, and then apply existing depth image-based grasp pose generation
algorithms [32]. For instance, Cleargrasp [1] has proposed a method that takes an RGB-D image
of a scene containing transparent objects, uses the RGB portion to estimate surface normals, detect
boundaries, and segment objects with a neural network, and then globally optimizes these outputs
to restore the damaged depth image. DepthGrasp [33] has developed a GAN-based generator to
directly produce a completed depth image from raw RGB-D input. Similarly, TransCG [34] has
provided a dataset of raw and refined depth images of real-world transparent objects and train a
U-Net structure neural network to predict refined depth images from RGB images and incomplete
depth images. Moreover, SwinDRNet [35] has proposed depth image completion using a two-stream
Swin Transformer [36], introducing domain randomization to tackle sim-to-real domain shift issues.

However, the grasp pose generation methods based on depth images have fundamental limitations.
First, full 6-DoF grasping is not possible, resulting in reduced diversity of grasp poses. Second,
there is often a lack of information on the 3D geometry of objects, making it difficult to generate
collision-free grasping trajectories. Third, most cases do not involve instance-wise representation,
which complicates target-driven manipulation.

GraspNeRF [6] predicts TSDF values from multiple RGB images and trains a model to predict grasp
poses using VGN [24]. This method overcomes some of the disadvantages mentioned above. Since
it directly generates grasp poses, it can also be trained to create 6-DoF grasp poses. Additionally,
because it outputs TSDF values, it has information on 3D geometry, enabling the generation of
collision-free trajectories. However, since the current version does not provide instance information,
target-aware manipulation is challenging. One of the most significant differences in our research is
that we use extended deformable superquadrics for 3D scene representation, which, compared to
TSDF, is more memory-efficient and allows for much faster collision checks and grasp sampling.

We would like to emphasize that all the learning-based methods mentioned above face a sim-to-real
issue. Because RGB images in simulation differ from real images, models trained on simulated RGB
images commonly experience a significant performance drop when applied to real images. It would
be ideal to use real-world data, but collecting it is quite challenging. Although various methods

12

have been introduced in previous studies [35, 6] to enhance robustness to the sim-to-real gap, none
have been particularly effective. In our research, we developed a model that uses mask images as
input, which we found to be significantly more robust to the sim-to-real gap compared to models
that directly take RGB images as input.

Additionally, [37] combines rendering-based techniques for calculating light refraction and reflec-
tion on transparent surfaces with learning methods for normal estimation and shape refinement.
Such research excels in providing highly detailed surface representations of objects without shape
prior when (i) the environment map is fully known, (ii) the object’s center position is known, and
(iii) all-around views are available from the real-world. Meanwhile, our method, while offering
relatively constrained surface expressiveness using extended deformable superquadrics, can predict
the shape of objects in unknown poses within unknown environments, even with only partial views.

13

B Implementation Details for Our Methods

B.1 Details for TablewareNet Objects

In this section, we describe the constraints on the superquadric parameters and poses for each table-
ware object mentioned in Section 2.2. – wine glasses, bottles, beer bottles, bowls, dishes, handleless
cups, and mugs – and explain how these constraints are represented using tableware parameters.

Notations. Following the notation used in Section 2.2., each tableware object is composed of n
superquadrics {Si|i = 1, . . . , n}, with their function type, pose, size parameter, and shape parameter
denoted as fi, Ti, ai, and ei, respectively. Additionally, their deformation parameters are denoted as
di = (ki, bi, αi, si). If there is no deformation, di = (0, 0, 0, 0); we denote the absence of bending
as bi = 0 for convenience, as bending diminishes when b approaches zero. In actual implementation,
deformation Db is not computed when bi = 0.

Wine Glass. The wine glass template encompasses a wide range of wine glass and champagne glass
shapes. This template consists of three superquadrics: two superellipsoids S1, S2 for the foot and
stem, and a superparaboloid S3 for the bowl. The tableware parameters and the constraints on the
superquadrics are given in Figure 10 and Table 3.

Figure 10: Description for the wine
glass parameters.

Parameter Desc. Range
T Pose T ∈ SE(3)
t1 Foot thickness t1 ∈ [0.003, 0.006]
t2 Stem radius t2 ∈ [0.003, 0.006]
t3 Bowl radius t3 ∈ [0.03, 0.057]
t4 Wine glass Height t4 ∈ [0.155, 0.264]
t5 Bowl height ratio t5 ∈ [0.4, 0.6]
t6 Foot/bowl radius ratio t6 ∈ [0.9, 1.1]
t7 Bowl e1 t7 ∈ [0.6, 2.0]
t8 Bowl k t8 ∈ [−3.0, 0.0]

Table 3: Tableware parameters of wine glasses.

Bowl. The bowl template consists of one superquadric: a superparaboloid S1 for the bowl. The
tableware parameters are given in Figure 11 and Table 4.

Figure 11: Description for the bowl pa-
rameters.

Parameter Desc. Range
T Pose T ∈ SE(3)
t1 Bowl a1 t1 ∈ [0.04, 0.15]
t2 Bowl a2 t2 ∈ [0.04, 0.15]
t3 Bowl a3 t3 ∈ [0.02, 0.1]
t4 Bowl e1 t4 ∈ [0.01, 0.3]
t5 Bowl e2 t5 ∈ [0.1, 1.0]
t6 Bowl k t6 ∈ [−0.1, 0.3]

Table 4: Tableware parameters of bowls.

14

Bottle. The bottle template consists of three superquadrics: superellipsoids S1, S2, S3 for the body,
shoulder and finish. The tableware parameters and the constraints on the superquadrics are given in
Figure 12 and Table 5.

Figure 12: Description for the bottle pa-
rameters.

Parameter Desc. Range
T Pose T ∈ SE(3)
t1 Body radius t1 ∈ [0.03, 0.055]
t2 Body height t2 ∈ [0.10, 0.23]
t3 Shoulder height t3 ∈ [0.03, 0.05]
t4 Finish radius t4 ∈ [0.008, 0.012]
t5 Finish height t5 ∈ [0.01, 0.02]
t6 Overall e2 t6 ∈ [0.2, 1.0]

Table 5: Tableware parameters of bottles.

Beer bottle. The beer bottle template consists of three superquadrics: superellipsoids S1, S2, S3 for
the body, shoulder and neck. The tableware parameters and the constraints on the superquadrics are
given in Figure 13 and Table 6.

Figure 13: Description for the beer bot-
tle parameters.

Parameter Desc. Range
T Pose T ∈ SE(3)
t1 Body radius t1 ∈ [0.025, 0.05]
t2 Body height t2 ∈ [0.12, 0.19]
t3 Shoulder height t3 ∈ [0.01, 0.07]
t4 Neck radius t4 ∈ [0.014, 0.016]
t5 Neck height t5 ∈ [0.07, 0.1]
t6 Neck k t6 ∈ [−0.2, 0.0]

Table 6: Tableware parameters of beer bottles.

15

Handless Cup. The handless cup template consists of one superquadric: a superparaboloid S1. The
tableware parameters are given in Figure 14 and Table 7.

Figure 14: Description for the handless
cup parameters.

Parameter Desc. Range
T Pose T ∈ SE(3)
t1 Cup radius t1 ∈ [0.025, 0.05]
t2 Cup height t2 ∈ [0.05, 0.22]
t3 Cup e1 t3 ∈ [0.01, 0.3]
t4 Cup k t4 ∈ [0.0, 0.3]

Table 7: Tableware parameters of handless cups.

Mug. The mug template consists of two superquadric: superparaboloids S1, S2 for the cup and
handle. The tableware parameters and the constraints on the superquadrics are given in Figure 15
and Table 8.

Figure 15: Description for the mug pa-
rameters.

Parameter Desc. Range
T Pose T ∈ SE(3)
t1 Cup radius t1 ∈ [0.025, 0.05]
t2 Cup height t2 ∈ [0.08, 0.12]
t3 Cup e1 t3 ∈ [0.01, 0.3]
t4 Cup k t4 ∈ [−0.2, 0.2]
t5 Handle a1 t5 ∈ [0.002, 0.003]
t6 Handle a2/a1 t6 ∈ [1.0, 2.0]
t7 Handle length ratio t7 ∈ [0.5, 0.7]
t8 Handle e2 t8 ∈ [0.2, 1.0]
t9 Handle s t9 ∈ [−0.5,−0.0001]

Table 8: Tableware parameters of mugs.

Dish. The dish template consists of one superquadric: a superparaboloid S1. The tableware param-
eters are given in Figure 16 and Table 9.

Figure 16: Description for the dish pa-
rameters.

Parameter Desc. Range
T Pose T ∈ SE(3)
t1 Dish radius t1 ∈ [0.08, 0.14]
t2 Dish height t2 ∈ [0.015, 0.03]
t3 Dish e1 t3 ∈ [0.01, 0.3]
t4 Dish e2 t4 ∈ [0.5, 1.0]
t5 Dish k t5 ∈ [0.3, 0.6]

Table 9: Tableware parameters of dishes.

16

B.2 Details for Tableware Dataset

Our dataset employs uniform random sampling for each object class, offering infinitely continuous
variations in object shapes, unlike other datasets with a finite number of fixed shapes. We generate
TablewareNet objects using uniformly random sampled shape parameters and spawn them in the
physics simulator for each scene. Since the parameters of objects in all scenes are sampled from
a uniform distribution, it is rare for exactly the same object to be spawned. For each scene, we
provide mask images, depth images, and RGB images from seven different camera poses using the
synthetic camera parameters of the RealSense D435. Additionally, each scene includes 3D geometry
information including object poses, tableware parameters, class labels, bounding boxes, meshes,
and TSDF values. Currently, The dataset features two versions: one with transparent objects on a
shelf and another with on a table. Each dataset includes 128,000 scenes, with 32,000 scenes each
containing 1, 2, 3, or 4 objects. The training, validation, and test data consist of 120,000, 4,000, and
4,000 scenes, respectively.

Comparison with Existing Dataset. Here we provide brief comparisons between the Tableware
Dataset and existing datasets containing transparent objects. TRans10K [38] consists of real RGB
images of transparent objects with segmentation masks generated by manual annotation, but it only
includes segmentation information and lacks 3D information such as pose annotations or object
CAD models. Cleargrasp [1] and TODD [39] provide real-world images of transparent objects
along with annotated pose information for those objects with 3D CAD models, but they include
only a small number of object types, no more than 10. ClearPose [40] and TRansPose [12] offer
annotation-rich, large-scale real-world datasets containing relatively many transparent objects, up to
100. However, the number of objects used in data generation is still small for recognizing a wide
variety of transparent objects.

Recently, Syn-TODD [41] has provided a large-scale dataset with diverse object sets using synthetic
objects and a photorealistic renderer named Blender. Our dataset is also in the spirit of Syn-TODD,
as it aims to generate a dataset containing various objects using synthetic objects. The main differ-
ences between TablewareNet and Syn-TODD is the procedure of generating synthetic objects. The
authors of Syn-TODD generate synthetic objects using combinations of linear, polynomial, and si-
nusoidal functions with various parameters. This procedural generation provides a variety of shapes
but can also produce unrealistic transparent objects, and objects with multiple parts (e.g., mugs with
handles) are difficult to generate. Meanwhile, we have generated transparent objects that are realis-
tic and can have multiple parts by utilizing extended deformable superquadrics. However, due to the
smoothness of the superquadric, it is difficult to express surfaces with many curvatures, such as those
of a cup. We believe that the two transparent object generation methods have different advantages
and disadvantages and that they can complement each other in the future.

B.3 Examples of Class Supplementation Using Deformable Superquadrics

Figure 17: Perfume bottle and
plastic cup with spherical lid
represented by deformable su-
perquadrics.

In this section, we present examples of additional objects that
can be generated using deformable superquadrics, which are
not covered in our dataset. Perfume Bottle. Perfume bot-
tles come in various shapes and are transparent objects com-
monly seen in daily life. However, they are not included in
our dataset because they are not tableware. The perfume bottle
template consists of two superquadrics: superellipsoids S1, S2

for the body and cap. Plastic Cup with Spherical Lid. Plas-
tic cups with spherical lids are easily seen in the most coffee
shops. This template consists of two superquadrics: superel-
lipsoids S1, S2 for the cup and lid. The example of perfume
bottle and cup with spherical lid represented by deformable
superquadrics can be found in Figure 17.

17

B.4 Details for Model Architecture and Training Process

B.4.1 Bounding Box Prediction Model Architecture

In this section, we describe the structure of the neural network used for bounding box prediction.
We utilize the architecture of DETR3D [9], which takes fixed multi-view RGB images as input and
outputs multiple 3D bounding boxes. DETR3D first obtains 2D features from the multi-view images
using ResNet [42] and FPN [43]. It employs a Transformer architecture, where each layer decodes
candidate positions for bounding box centers using a sub-network for object queries. These decoded
positions are projected onto each image plane, and the corresponding image feature values are in-
corporated into the object queries using multi-head attention. The refined object queries are then
used as input for the next layer. From each object query passing through the layers, the bounding
box center, size, and class are predicted using an MLP structure for training. During inference, the
bounding boxes and classes are predicted from the object queries of the final layer. For more details,
refer to [9].

We adopt the DETR3D structure with a few modifications. Instead of using a classifier to predict the
object class for each object query, we pre-assign classes to the object queries and use a confidence
predictor to predict a value in [0, 1] whether the query corresponds to a present object. For example,
if there are 3500 object queries and 7 classes, the first 500 queries represent the first class, and if
the confidence predictor assigns high confidence (we use a threshold value of 0.75) to one of these
queries, it is predicted that a bounding box for an object of that class exists. Unlike the original
DETR3D using RGB image inputs, we use binary mask images as inputs.

B.4.2 Bounding Box Prediction Model Training

Matching and Loss Calculation. As in the original DETR3D, we use bipartite matching to cal-
culate the loss. Since we have pre-assigned classes to each query, the matching occurs within each
class. We use binary cross-entropy for the confidence scores and L1 loss for the bounding box co-
ordinates and size. The weights between the binary cross-entropy loss and the L1 loss are set to 5:1.
After calculating the loss for the optimal matching within each class, we sum these losses across all
classes to obtain the final loss value.

Training Process. We train the network using 12,000 scenes from the TablewareNet dataset; al-
though our model can utilize the 120,000 scenes, we use only the 12,000 samples that include RGB
images for comparison with other RGB-based baselines. We employ the Adam optimizer with an
initial learning rate of 0.00005. A cosine annealing scheduler is used, and the training process spans
200 epochs. Using a validation set composed of 400 scenes, we defined the best model as the one
with the highest mAP, calculated with a bounding box IoU threshold of 0.75.

Cutout Augmentation. For cutout augmentation, the number of holes per mask image is determined
by uniformly sampling an integer between 0 and 2. The size of each hole is determined by uniformly
sampling an integer between 50 and 100 for both the width and height; note that mask image size is
(240, 320). The position of each hole is also uniformly sampled within the image pixels.

B.4.3 3D Voxel Representation of Smoothed Visual Hull

We need to voxelize the predicted bounding boxes with fixed voxel size Li, to create the raw 3D
space to be carved. Here, i represents the class index. Given that bounding boxes can vary in size,
voxelizing them directly would result in different resolution of voxels, disabling the inference of the
3D CNN and FCN architecture. To address this, we follow a specific procedure to standardize the
raw voxel representation.

First, we inspect the all size of the ground truth bounding boxes of class i and store the maximum size
(Wimax , Himax , Dimax). Using this maximum size, we create a standardized 3D voxel space centered
on the predicted bbox center. This ensures that all voxel representations have a consistent resolution
(Wimax/Li, Himax/Li, Dimax/Li).

18

Next, we calculate the smoothed visual hull within this standardized voxel space. To further refine
the representation, we add a channel to the voxel grid, where voxels inside the predicted bounding
box are assigned a value of 1, and those outside are assigned a value of 0. The final voxel input
to the network thus takes the shape (Wimax/Li, Himax/Li, Dimax/Li, 2), with the first channel repre-
senting the smoothed visual hull and the second channel indicating bounding box occupancy. This
standardized approach ensures consistent and accurate input for the 3D CNN, facilitating reliable
network inference.

B.4.4 Tableware Parameter Prediction Model Architecture

We employ a ResNet3D [11] + FCN architecture to predict the tableware parameters, including the
pose T, using the smoothed visual hull voxel as input. Given that each tableware class has different
voxel resolutions and the number of parameters, we train separate predictors for each class. In other
words, there are as parameter predictors as the number of the classes, with each predictor dedicated
to estimating the parameters of a single class of tableware objects.

In addition, we assume that all objects are upright. Therefore, instead of predicting the entire SE(3)
matrix for the object pose T, the model only predict the relative position p ∈ R3 to the bounding
box center and the rotation around the z-axis, θ ∈ [0, 2π).

B.4.5 Tableware Parameter Prediction Model Training

Chamfer Distance as Loss function. The tableware parameters output by the parameter predictor
could be directly trained via supervised learning using the L1 or L2 distance from the ground truth
tableware parameters. However, this approach may not yield a zero loss value even when the pre-
dicted object shape matches the ground truth shape due to symmetrical ambiguities. For instance,
orientations of objects with circular symmetry such as wine glasses, beer bottles, handless cups, and
dishes, do not affect their shapes. In the case of a bottle, rotating the object by 90 degrees results
in the same shape, thus the ground truth shape has four possible orientations. For bowls, swapping
the width t1 and length t2 and rotating the orientation by 90 degrees along the z-axis results in the
same shape. We want a loss function that yields a zero value when the predicted shape matches the
ground truth shape, regardless of these symmetrical ambiguities.

To address this, we use the Chamfer distance between point clouds sampled from the predicted and
ground truth object surfaces as the loss function. This requires a differentiable point cloud sampling
method from deformable superquadric parameters, which we will discuss later. For a tableware
object composed of multiple superquadrics S1, . . . , Sn, we compute the Chamfer distance for each
deformable superquadric part. Specifically, if Pi,pred and Pi,gt are the point clouds sampled from the
predicted and ground truth i-th deformable superquadric Si,pred and Si,gt, respectively, the Chamfer
loss is defined as:

n∑
i=1

chamfer(Pi,pred, Pi,gt)

Differentiable Point Sampling on Deformable Superquadrics. For superquadrics without defor-
mation, there exists an explicit parameterization as follows;

xse =

[
x
y
z

]
=

[
a1 cos

e1 θ cose2 ϕ
a2 cos

e1 θ sine2 ϕ
a3 sin

e1 θ

]
, xsp =

[
x
y
z

]
=

 a1h cos
e2 ϕ

a2h sin
e2 ϕ

a3(h
2/e1 − 1)

 ,

where −π/2 ≤ θ ≤ π/2, −π ≤ ϕ ≤ π and 0 ≤ h ≤ 1, and cose θ := sgn(cos θ)| cos θ|e and
sine θ := sgn(sin θ)| sin θ|e.

We utilize a uniform grid in θ, ϕ, and h coordinates to sample points on the superquadric surface
using this explicit parameterization. This method is differentiable with respect to the superquadric
parameters.

19

When dealing with deformations, we apply the transformations Dt, Db, and Ds described in Section
2.1 to these sampled points. These transformations are also differentiable with respect to deforma-
tion parameters.

Training Process. During training, we observe empirically that adding L1 loss for tableware param-
eters (excluding the object’s pose) and MSE loss for position as regularizers accelerate the training
process. We do not use a regularizer for orientation due to symmetry issues previously discussed.
The weights used between the position MSE loss, parameter L1 loss, and Chamfer loss were set to
1 : 0.1 : 1. The model is trained with 12,000 data which include RGB images. The input smoothed
visual hulls are generated using ground truth bounding boxes and mask images for each scene. Sim-
ilar to the bounding box predictor training, we employed the Adam optimizer with an initial learning
rate of 0.00005, using a cosine annealing scheduler. The training process spanned 200 epochs. Us-
ing a validation set composed of 400 scenes, we defined the best model as the one with the lowest
chamfer distance.

Data Augmentation with Bounding Box Perturbation. During inference, errors in the bounding
box predictions may lead to low performance of the parameter predictor if it is trained solely on
visual hulls generated from ground truth bounding boxes. To address this, we add noise to the
bounding box’s position and size to create a perturbed visual hull during training. Specifically, as
mentioned in B.4.3., while generating the voxel representation, we apply perturbations to the center
and size of the bounding boxes when creating the second channel representing the bounding box
occupancy. This data augmentation strategy ensures that the parameter predictor remains robust to
prediction errors from the bounding box predictor, enabling T2SQNet to maintain high performance
even when bounding box predictions are not perfectly accurate.

B.5 Details for Geometry-Aware Object Manipulation

Collision Checking. The implicit function representations for deformable superquadrics enable
precise and rapid collision checks. Suppose the surface meshes of the robot’s links and gripper are
represented by surface points Pr ⊂ R3. In practice, we represent the last two links (i.e., links 6
and 7 of the 7-DoF Franka Emika Panda robot) and the grippers of the robot, where collisions are
likely to occur, as a point cloud Pr = {xr

j ∈ R3}nr
j=1, where nr is the number of points of the point

cloud. Let a recognized object be composed of n extended deformable superquadrics {Si}ni=1. Each
deformable superquadric Si is represented by an implicit function Si(x) = fi ◦ D−1

i (T−1
i x) =

1, where fi ∈ {fse, fsp} is the superquadric equation of the i’th part defined by superquadric
parameters, Ti is the pose of the i’th part, and Di is the deformation of the i’th part.

The main idea to check for collision is that a point x ∈ R3 is inside the i’th part Si when the value
Si(x) is less than 1; otherwise, it is outside. Using this fact, we can determine if the robot is in
collision with the recognized objects by assessing whether the implicit function values of Si for the
surface points are greater than or equal to zero. The collision can be determined by

1(min
i,j

Si(x
r
j) > 1)

where i = 1, ..., n is the object index, j = 1, ..., nr is the point index of the robot point cloud Pr,
and 1(·) is the indicator function. If the value is 1, there is no collision between the robot and the
recognized object; if it is 0, there is a collision.

6-DoF Grasp Sampler. After obtaining the deformable superquadric representation of the transpar-
ent objects, we sample feasible grasp poses from the obtained shapes. While it is possible to find the
antipodal point by utilizing the implicit function of the deformable superquadric and its closed-form
normal vector [7], we manually design a faster and more diverse grasp sampler in this paper. Since
each object consists of multiple deformable superquadric parts, we first generate grasp poses for
each part. Inspired by previous works [17], we manually generate top-down and side grasp poses
for the superellipsoids according to their shapes. For superparaboloids, we generate grasp poses that
grasp the edge. Example grasp poses can be found in Section 4. After generating grasp poses for
each part, we check whether the grasp poses avoid self-collision with the object. Grasp poses with

20

a distance between the antipodal points greater than 7.5 cm are removed from the candidates, as the
maximum gripper width of the Franka gripper is 8 cm.

Details for Sequential Declutter. Suppose that no objects are recognized and the i’th recognized
object is composed of ni extended deformable superquadrics {Sij}ni

j=1. We additionally represent
the environment (e.g., table or shelf) using superquadric implicit functions and consider the envi-
ronment as the (no + 1)’th object; for example, a shelf can be composed of five boxes, so it is
represented by five superquadric implicit functions {S(no+1)j}

nno+1

j=1 .

For sequential declutter, we first sample the grasp poses using the 6-DoF grasp sampler for all
recognized objects. For each recognized object, we sample up to 30 grasp poses. For each grasp
pose, we manually design the grasping trajectory, in which the gripper approaches about 20 cm
along the z-direction of the gripper. Among the grasping trajectories, we reject those for which
inverse kinematics cannot be solved. We denote each grasping trajectory by index k.

After generating the grasping trajectories, we should check whether the robot following the trajec-
tory collides with the surrounding tableware objects or the environment (e.g., table or shelf). For the
k’th grasping trajectory, we obtain an afterimage mesh of the robot and the gripper and obtain the
point cloud sampled from the afterimage mesh; we denote the point cloud as Pk = {xk

l ∈ R3}nr

l=1,
where nr = 2048. We can determine that the k’th grasping trajectory does not collide with the
recognized objects and the environment if the value

1(min
i

min
j,l

Sij(x
k
l) > 1)

is one for i = 1, . . . , no + 1, j = 1, . . . , ni, and l = 1, · · · , nr. Sometimes there may be multiple
grasping trajectories that do not result in a collision. In this case, the grasping trajectory with the
largest value of mini minj,l Sij(x

k
l) for k is selected. Since all these computations are parallelizable,

grasp planning for sequential declutter can be performed in real-time.

Details for Target Retrieval. Suppose that no objects excluding the target object are recognized
and the i’th recognized object is composed of ni extended deformable superquadrics {Sij}ni

j=1. We
also represent the environment using superquadric implicit functions and consider the environment
as the (no + 1)’th object.

For target retrieval, we define a graspability function, which is set to 1 if the object is graspable and 0
otherwise. To compute the graspability function, we first sample ng kinematically feasible grasping
trajectories for the target object. As in the case of sequential decluttering, we denote the afterimage
point cloud of the robot and the gripper for the k’th grasping trajectory as Pk = {xk

l ∈ R3}nr

l=1,
where nr = 2048. The target object is defined to be graspable if there is at least one collision-free
grasping trajectory. Therefore, the graspability function can be calculated by:

1(max
k

min
i

min
j,l

Sij(x
k
l) > 1),

for i = 1, . . . , no + 1, j = 1, . . . , ni, l = 1, · · · , nr, and k = 1, · · · , ng . This function can also be
calculated in real-time through parallel computation after recognition is performed.

To make the initially non-graspable target object graspable, we maximize the graspability func-
tion using pick-and-place actions with a sampling-based model predictive control (MPC) approach.
Since the dynamics of the objects after the pick-and-place actions are precisely known, we do not use
an additional learning-based model to predict the dynamics. When sampling pick-and-place actions,
it is important not only to find a collision-free trajectory for grasping the object to be picked-and-
placed but also to identify placeable locations for the object. Therefore, it is crucial to check whether
the robot collides with the recognized objects and the environment. The collision checking using
superquadric representation makes this possible precisely and rapidly as described above. Among
these sampled pick-and-place actions, we find the action that maximizes the function the most, and
then repeat the same process to perform pick-and-place actions until the target object becomes gras-
pable.

21

C Experimental Details

C.1 Additional Details for Recognition Experiments

Baseline Implementations. NeRF and Dex-NeRF are trained using the seven partial views available
in TablewareNet and use the same views for depth rendering. We use the model from the final epoch
of training for evaluation. We follow the approach described in [3] for depth rendering of NeRF and
Dex-NeRF, with a σ threshold of 15 for Dex-NeRF. To generate occupancy voxel grids, we render
depth images from uniformly sampled view poses over a hemisphere using the trained NeRF and
Dex-NeRF models. These depth images are converted to TSDFs, and regions with negative TSDF
values are marked as occupied. DVGO and Mask DVGO are also trained using the seven partial
views. For depth rendering, both methods employ the depth rendering technique used by NeRF
in [3]. Predicted occupancy voxels are defined as those with an occupancy probability exceeding a
threshold of 0.1, based on the trained DVGO and Mask DVGO models. For GraspNeRF, we train
the model with the TablewareNet dataset, where the training and validation data consist of 12,000
and 100 samples, respectively. We use rendering loss and TSDF loss, where ground truth TSDF
values are used to derive the occupancy voxels directly from the predicted TSDF values. In detail,
GraspNeRF is trained on TablewareNet dataset with slight modifications: we fix the camera view
poses during both training and testing to match the input view poses of T2SQNet. We do not train
the volumetric grasp detection module simultaneously, nor do we use the Eikonal regularization
term in the geometry loss. Depth images are directly rendered from the reconstructed TSDF values.
For our model, T2SQNet, we train the model with the TablewareNet dataset, where the training and
validation data consist of 120,000 and 1,000 samples, respectively. We obtain depth images and
occupancy voxels using the implicit function representation of the superquadrics of the predicted
tableware objects.

Test Dataset. The test dataset consists of (i) 40 scenes from the test set of TablewareNet, with
10 scenes each containing one to four TablewareNet objects, and (ii) 40 scenes generated from
TRansPose objects, with 10 scenes each containing one to four transparent objects. For test dataset
generation using TRansPose objects, we first select some transparent objects from the TRansPose
dataset [12]. The TRansPose objects we use are shown in Figure 18. Using the TRansPose objects,
we follow the same process as when generating the TablewareNet dataset, as described in Section
2.2. We first spawn random objects from the TRansPose objects within PyBullet and then render
RGB images of the scenes using Blender with transparent textures.

Figure 18: TRansPose objects used for test dataset [12].

Runtime of T2SQNet. We recall that the T2SQNet consists of four steps: (1) prediction of masks
in 2D images, (2) prediction of 3D bounding boxes, (3) computation of a smoothed visual hull

22

through voxel carving, and (4) prediction of tableware parameters (i.e., a set of parameters of the
superquadrics).

(1) The average inference time for one RGB image using the segmentation model (i.e., SAM) is
0.69 seconds. We use a total of 7 camera views and infer a total of 35 images by performing
color jittering 5 times on each camera view. Therefore, the average time it takes to obtain
the 2D mask is 24.2 seconds.

(2) It takes an average of 0.28 seconds to infer 3D bounding boxes using 7 mask images as
input with DETR3D.

(3) It takes an average of 0.15 seconds to obtain a smoothed visual hull from the bounding box
of each object through voxel carving.

(4) It takes an average of 0.004 seconds to predict tableware parameters via ResNet3D on the
smoothed visual hull of each object.

The average total runtime of T2SQNet, when there are 4 objects in a scene and it takes 7 RGB
images as input to output the superquadrics of all objects, is 25 seconds. If SAM could be inferred
in batches, the overall runtime could be greatly reduced. All computation times are measured with
a GeForce RTX 3090 and a Gen Intel(R) Core(TM) i9-11900K @ 3.50GHz.

C.2 Additional Details for Sequential Declutter Experiment

We generate five scenarios for each number of objects, one (single) and four (cluttered), and for each
environment type, including shelf and table, resulting in a total of 20 scenarios. The initial settings
for all scenes, including the configuration and poses of objects, can be seen in Figure 19. When
testing the three baselines, including Mask DVGO, GraspNeRF, and T2SQNet, we place the same
objects in the same pose as consistently as possible for each scene.

Figure 19: Initial scene settings for real-world sequential declutter experiments.

23

C.3 Additional Details for Target Retrieval Experiment

We generate five scenarios with designated target objects in a shelf environment. The initial scene
settings, including the target tableware class name (e.g., wine glass), for all scenarios can be found
in Figure 20. For the target retrieval experiment, we place the target object so that it is not initially
graspable.

Figure 20: Initial scene settings for real-world target retrieval experiments.

24

D Additional Experimental Results

D.1 Additional Results for Recognition Experiments

Additional examples of transparent object recognition results are shown in Figure 21 and Figure 22.
The trends of these additional results are similar to the representative example in Section 5.1. For
the test sets of the Tableware dataset in Figure 21, T2SQNet succeeds in recognizing accurate 3D
geometries of the transparent objects while also delivering instance information. GraspNeRF per-
forms best among the baselines but predicts less accurate results than T2SQNet. Although T2SQNet
has slightly lower performance on the Tableware dataset compared to TRansPose, it succeeds in
predicting somewhat accurate instance-wise geometries, as shown in Figure 22.

Figure 21: Recognition results from RGB images from test sets of Tableware dataset.

25

Figure 22: Recognition results from RGB images from TRansPose dataset.

26

Additional Results for T2SQNet on TRansPose Objects. We provide additional inference results
of T2SQNet on TRansPose objects to (i) more closely compare the inference results of T2SQNet
with the ground-truth surface shapes and (ii) assess how well T2SQNet generalizes to common
transparent tableware objects. Figure 23 shows the ground-truth shapes of the transparent TRans-
Pose objects alongside the inferred implicit surfaces from T2SQNet. Although capturing surface
details such as the curvature of a water bottle is challenging due to the nature of superquadric sur-
faces, we can confirm that T2SQNet infers the overall shapes to a considerable extent. In particular,
the predicted shapes appear accurate enough to perform manipulation tasks, including sequential
declutter and target retrieval, which highlights the high performance of our method in real-world
object manipulation scenarios.

Figure 23: Recognition results of T2SQNet on TRansPose objects.

27

Additionally, we provide some failure cases of T2SQNet on TRansPose objects, as shown in Fig-
ure 24. The first case (upper row of Figure 24) involves an error in the segmentation mask. In this
instance, the long bowl was predicted to be short because the back part of the long bowl was not de-
tected in the segmentation mask. The second case (middle row of Figure 24) involves an error in the
bounding box predictor. The bounding box predictor fails to predict the bounding box of one bottle,
so T2SQNet does not predict any shape for the corresponding bottle. The third case is an interesting
failure case for the bounding box predictor, where it gets confused between two object classes and
predicts two shapes for one object. This suggests a potential improvement for the current T2SQNet:
Currently, when learning a bounding box predictor, bipartite matching is performed only within a
class, and a loss function is provided. However, if we generalize this approach and perform bipartite
matching between classes, we can avoid duplicate predictions. This is an interesting direction for
our future work.

Figure 24: Failure cases in the recognition of T2SQNet on TRansPose objects.

28

Detailed Results and Analysis for Rendering-based Methods. We describe the recognition results
of rendering-based methods when provided with limited partial views and analyze the underlying
reasons for their failure to predict the correct depth images. NeRF and Dex-NeRF are trained using
seven partial camera view poses over a total of 200,000 iterations, and the results are shown in
Figure 25. DVGO and Mask DVGO are also trained using the seven partial camera view poses.
DVGO employs a two-stage training process consisting of a coarse stage with 5,000 iterations and
a fine stage with 20,000 iterations. The results of DVGO and Mask DVGO are shown in Figure 26
and Figure 27.

Figure 25: Results of RGB rendering and depth prediction for NeRF and Dex-NeRF trained on 7
partial views across training iterations.

Figure 26: Results of RGB rendering and depth prediction for DVGO across training iterations.

As illustrated in the figures, the rendering-based methods, except for Mask DVGO, fail to predict
accurate depth images even for the training views, despite successfully reconstructing RGB images
for these views. Mask DVGO shows some success in predicting depth for the training views (e.g.,
the front view) but performs poorly in novel views (e.g., the side view).

The core issue is that the ultimate goals of NeRFs are to match the rendered images to the ground
truth images. In other words, any radiance field that can generate the ground truth image can be a
final solution, and there is no method to select which of these solutions accurately represents real-
world geometry based solely on the given RGB information. Note that with sufficient view poses
sampled from a hemisphere, the solution set can be expected to approximate real-world geometry;
this has been demonstrated by Dex-NeRF and its subsequent study [3, 4]. However, the problem our
work targets involves situations where only partial views are accessible, without the expectation of
such extensive camera poses.

The figures above show how the problem of infinite solutions for generating the given RGB images
becomes more severe with partial views. As shown in Figure 25, NeRF misinterprets the floor and

29

Figure 27: Results of RGB rendering and depth prediction for Mask DVGO across training itera-
tions. The first two rows show the rendered results from the front view. The last row shows the
rendered depth images from the side view, obtained by rotating the camera pose of front view 100
degrees around the z-axis of the world frame passing through the workspace center.

table surface depths as similar. Although the scene consists of a dark brown table placed on a light-
colored floor, NeRF perceives the table as part of the floor with a darker brown area. The issue is
more pronounced with DVGO, where most voxels are initially generated near the camera lens. The
RGB values of these voxels are trained to match the real images at the lens proximity, resulting in
very shallow depth values for all pixels, as observed in the Figure 26.

Mask DVGO, by utilizing mask information in addition to RGB, succeeds in predicting depth in
training views. This success is attributed to the regularization term that forces points in rays outside
the mask region to have zero opacity, effectively constraining opacity to exist only within the visual
hull obtained from training mask images and view poses. While this visual hull functions well for
depth observed near training view poses, it fails to accurately represent geometry in occluded or
shadow regions, as these areas cannot be carved out. As shown in Figure 27, rendering side-view
depth from Mask DVGO results in high opacity and depth in regions occluded from front views,
indicating inaccurate geometry. One might argue that the accurate front view depth is sufficient for
obtaining grasping poses using works like DexNet [31]. However, this is unsuitable for the target
retrieval conducted in this paper, where reliable geometry information in occluded regions is crucial.

30

D.2 Additional Results for Sequential Declutter Experiments

More examples of sequential decluttering with T2SQNet on shelves and tables are shown in Fig-
ure 28 and Figure 29, respectively. Generally, our method succeeds in sequentially grasping objects
without re-recognition, while avoiding collisions with other objects and the environment based on
the accurately predicted geometries of the objects. However, there are several failure cases: (i) a
slightly incorrect shape leads to an unstable grasp pose, as shown in the third example of Figure 28,
(ii) some objects are not recognized by T2SQNet, as shown in the first example of Figure 29, and (iii)
an inverse kinematics solution does not exist, as shown in the third example of Figure 29. The first
and second failure cases can be resolved through a more accurate recognition model, as described in
the future works section (Section 5.3). The third failure case can be addressed by designing a more
diverse 6-DoF grasp sampler.

Figure 28: Examples of sequential declutter experiment results on shelves.

31

Figure 29: Examples of sequential declutter experiment results on tables.

32

D.3 Additional Results for Target Retrieval Experiments

Additional results for target retrieval with T2SQNet are shown in Figure 30. In the three examples
above, T2SQNet-based method successfully rearranges surrounding objects and retrieves target ob-
jects through appropriate pick-and-place actions. In the last example, T2SQNet fails to recognize
one wine glass; consequently, the robot performs an action of directly retrieving the target object,
the mug, and as a result, it grasps both the wine glass and the mug together.

Figure 30: Examples of target retrieval experiment results on shelves.

33

D.4 Comparison of T2SQNet with an End-to-End Method

To validate the effectiveness of our T2SQNet framework, which combines several separate modules,
we developed and trained a simple end-to-end model for comparison. The end-to-end model struc-
ture is as follows: it utilizes our modified DETR3D structure (where queries are pre-assigned classes
and a confidence estimation is incorporated) but replaces the bounding box predicting FCN with an
FCN that predicts tableware parameters. Given that the dimension of tableware parameters varies by
object class, separate FCNs are used for each class to predict the parameters. These class-specific
FCNs take as input the queries assigned to the same class and output the corresponding tableware
parameters. The learning loss for these parameters employs the same position regularizer, parameter
regularizer, and chamfer loss as T2SQNet. In this end-to-end method, we set the weights for con-
fidence loss, position regularizer, parameter regularizer, and chamfer loss to 1:1:1:0.1, respectively.
The training results are shown in Figure 31. We observed that training this end-to-end model is
considerably challenging, and we hypothesize the following reasons:

Figure 31: Visual comparison of T2SQNet output with an end-to-end method output on validation
set

Chamfer Loss Scale. As the centers of two objects diverge, the chamfer loss scale increases
quadratically. During the initial training phases, failing to align the object’s position significantly
inflates the chamfer loss scale relative to the confidence loss and position loss. Conversely, as ob-
jects come closer, the chamfer loss scale becomes much smaller than the confidence loss and other
loss terms. This large variation in loss scale during training leads to inconsistent bipartite matching
results, hindering significant training progress.

Positional Constraints. In T2SQNet, the object center position is constrained to remain within the
bounding box, providing a structured framework for the output. However, the end-to-end method
bypasses the bounding box prediction process, resulting in the lack of such positional constraints.
Consequently, the predicted object can be located anywhere within the workspace during the initial
training stages, making it difficult to resolve the aforementioned issues.

In conclusion, the large scale variation of the chamfer loss during training makes it challenging
to balance the losses, leading to unstable bipartite matching results and ultimately hindering the
learning process. While the end-to-end method theoretically streamlines the process, the practical
challenges in training and the inherent issues in loss scaling and positional constraints highlight the
advantages of our modular T2SQNet framework.

34

	Introduction
	TablewareNet: Dataset for Cluttered Transparent Tableware
	Extended Deformable Superquadrics
	Tableware Templates and Synthetic Dataset Generation

	T2SQNet: Transparent Tableware SuperQuadric Network
	Geometry-Aware Object Manipulation with T2SQNet
	Experiments
	Transparent Object Recognition Performance
	Object Manipulation Performance
	Limitations and Future Directions

	Conclusion
	Related Works
	NeRF-based Transparent Objects Recognition for Manipulation
	Learning-based Transparent Objects Recognition for Manipulation

	Implementation Details for Our Methods
	Details for TablewareNet Objects
	Details for Tableware Dataset
	Examples of Class Supplementation Using Deformable Superquadrics
	Details for Model Architecture and Training Process
	Bounding Box Prediction Model Architecture
	Bounding Box Prediction Model Training
	3D Voxel Representation of Smoothed Visual Hull
	Tableware Parameter Prediction Model Architecture
	Tableware Parameter Prediction Model Training

	Details for Geometry-Aware Object Manipulation

	Experimental Details
	Additional Details for Recognition Experiments
	Additional Details for Sequential Declutter Experiment
	Additional Details for Target Retrieval Experiment

	Additional Experimental Results
	Additional Results for Recognition Experiments
	Additional Results for Sequential Declutter Experiments
	Additional Results for Target Retrieval Experiments
	Comparison of T2SQNet with an End-to-End Method

