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Abstract

Classic large language models struggle with abstract reasoning tasks, while rea-
soning models like OpenAI’s ol and 03 that generate extended chains of thought
achieve dramatic improvements. However, the mechanisms underlying this su-
perior performance remain poorly understood. This work presents a mechanistic
analysis of how reasoning models process abstract structural information during ex-
tended reasoning. We analyze QwQ-32B on Mystery BlocksWorld — a semantically
obfuscated planning domain and found that reasoning models progressively refine
their internal representations of actions and predicates throughout 15-20k token
traces, converging toward abstract symbolic encodings independent of surface
semantics. Through steering experiments, we established causal evidence that
these adaptations improve problem-solving: injecting refined representations from
successful traces enhances accuracy, while symbolic representations can replace
naming-specific encodings with minimal performance loss. Our findings reveal
that reasoning models’ superior performance stems partly from their ability to
dynamically construct problem-specific representational spaces during extended
reasoning, providing early mechanistic insights into chains of thought.

1 Introduction

Recent advances in large language models have produced a new class of models specifically trained
to generate extended chains of reasoning before providing answers [22]]. These reasoning models,
including OpenAl’s ol [11] and o3 [12], DeepSeek R1 [3]], and QwQ-32B [14], undergo extensive
reinforcement learning to produce long, step-by-step reasoning traces that often span tens of thousands
of tokens [[15} [7] Despite their impressive capabilities, the mechanisms underlying their superior
performance remain poorly understood.

Empirical evaluations reveal that reasoning models can solve classes of problems that remain chal-
lenging for much larger standard language models [19}[16]. A particularly striking example emerges
from planning tasks where models must manipulate objects according to specific rules — such as
BlocksWorld [19], where the goal is to rearrange blocks to achieve target configurations. When all
semantic content in these tasks is replaced with meaningless words in obfuscated versions (trans-
forming “pick up” into “attack” for example), standard LLMs achieve near-zero accuracy. However,
even moderately-sized reasoning models maintain 20-30% accuracy even when stripped of all se-
mantic guidance [19]. This performance gap suggests that extended reasoning enables qualitatively
new forms of structural understanding, allowing models to dynamically construct abstract problem
representations during the reasoning process itself.

Despite growing interest in understanding these capabilities, mechanistic insights into how extended
reasoning traces benefit model performance remain limited. A major secrion of reasoning inter-
pretability research focuses on identifying universal reasoning circuits through common token or
representation-level components [20 2| [8, 4]. However, another possible approach is to examine the
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BlocksWorld Mystery BlocksWorld Mystery BlocksWorld
Arequires: Arequires: Arequires:
1.Als clear 1. Province A 1. Province A
2. Hand is empty 2. Harmony 2. Harmony
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Y ymbolc \ 4 \J
Pass rate 96% Pass rate 30% Pass rate

Figure 1: Overview of experimental setup adaptation in reasoning models. Left: Standard
BlocksWorld achieves 96% accuracy. Center: Mystery BlocksWorld obfuscates semantics (e.g., “pick
up” becomes “attack”), reducing accuracy to 30%. During extended reasoning traces, the model
progressively refines internal representations of obfuscated actions, developing abstract symbolic
encodings (vectors vg . . . v3, ug . .. ug are extracted at different Chain-of-Though timestamps). Right:
Steering experiments inject these refined representations into early reasoning stages, improving
accuracy to 32%, demonstrating that representational adaptations causally contribute to problem-
solving performance.

problem representations that these circuits operate on. An example of this approach is a recent work
on state tracking in toy reasoning models [23]]

Prior work on in-context learning shows how models adapt internal representations when words
acquire new meanings within specific contexts [13]]. Drawing inspiration from these insights, we
investigate whether similar representational adaptations occur during extended reasoning in planning
tasks, and whether these adaptations causally contribute to problem-solving performance.

We focus our analysis on QwQ-32B [14], the most capable open-source reasoning model available,
and examine its internal representations while solving Mystery BlocksWorld [18]] puzzles. Our central
hypothesis is that reasoning models progressively refine their internal representations of problem enti-
ties during reasoning, developing context-specific semantics that enable abstract structural reasoning
independent of surface-level semantics.

Key Observations This work presents several key observations about the internal mechanisms of
reasoning models:

1. Representational Dynamics (Section[3): We observe that QwQ-32B progressively adapts
internal representations of actions and predicates during reasoning, with these adaptations
converging toward consistent encodings regardless of initial action names.

2. Causal Validation (Section [d): Through steering experiments, we observe that these
representational adaptations causally improve problem-solving performance. Injecting
refined representations from successful reasoning traces into early stages of reasoning
enhances accuracy on held-out puzzles, while disabling them decreases it compared to
control.

3. Symbolic Abstraction (Sections and ): We observe that adapted representations
achieve symbolic abstraction, enabling cross-naming transfer. Models can operate effectively
when naming-specific representations are replaced with averaged symbolic representations,
suggesting convergence toward abstract structural encodings.

Our findings suggest that the superior performance of reasoning models on abstract reasoning tasks
stems, at least partially, from their ability to dynamically construct problem-specific representational
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spaces during reasoning. This capability represents a fundamental advance in how language mod-
els process and represent abstract structural information, with implications for understanding and
improving reasoning capabilities in future system.

2 Background

BlocksWorld. BlocksWorld is a classic planning domain from the International Planning Competi-
tions [6]]. Each problem specifies initial and goal block arrangements, with constraints that agents
can hold only one block at a time and cannot pick up blocks with others stacked above them. We
use PlanBench [[18]] for problem generation and verification. Despite conceptual simplicity, base
models fail to achieve perfect accuracy on four-block problems, while reasoning models demonstrate
substantially superior performance [19].

Mystery BlocksWorld. Mystery BlocksWorld [18] replaces all predicates and actions with semanti-
cally unrelated words (e.g., pick up” becomes attack’”). This obfuscation causes dramatic performance
degradation while preserving the underlying logical structure. Success requires models to operate
on abstract structural relationships and dynamically construct new semantic mappings—capabilities
reasoning models demonstrate significantly better than base LLMs. We generated 14 additional
naming variants beyond the original, creating 15 different semantic obfuscations of the same domain
structure (see Appendix [A).

Terminology. We refer to each unique initial-goal state combination as a puzzle and each semantic
variant as a naming. Our analysis focuses on 300 four-block puzzles, each mapped across all 15
mystery namings.

2.1 Initial Evaluations

We conducted comprehensive evaluations of various models on our BlocksWorld puzzle dataset to
establish baseline performance and validate our choice of QwQ-32B for detailed analysis. The results
reveal several important patterns in reasoning model capabilities.

Reasoning Model Advantages. Reasoning models consistently outperform standard LLMs on
both regular and Mystery BlocksWorld tasks. However, the landscape of open-source reasoning
models of moderate size remains limited. DeepSeek distillation models show poor performance on
our evaluation set.

QwQ-32B Performance. QwQ-32B, specifically trained for extended reasoning processes, demon-
strates exceptional performance on both Mystery and regular BlocksWorld variants. Successful
Mystery BlocksWorld solutions typically involve reasoning traces of 15-20k tokens, substantially
longer than the traces generated for regular BlocksWorld problems. This extended reasoning appears
crucial for the semantic adaptation process we investigate in this work. While Nemotron generates
reasoning traces of comparable length, it achieves lower accuracy than QwQ-32B across most mystery
namings in our evaluation set.

Behavior Analysis. Through manual investigation of DeepSeek and QwQ reasoning traces, we
identified recurring behavioral patterns in Mystery BlocksWorld solving. Models begin with com-
parative analysis, examining initial and goal states to identify conflicting predicates. They then
alternate between recursive search (working backwards from goals to identify required actions) and
exploration (experimenting with actions to discover achievable states). These exploratory behaviors
occupy the first half of reasoning traces. The second phase involves plan formulation, where models
construct action sequences and verify validity, iteratively rebuilding when conflicts arise. The final
phase consists of plan verification, where models validate solutions before committing to answers.

Special Case: Mystery Naming 3. Mystery naming 3 uses random character sequences rather than
words, causing models to immediately recognize the underlying BlocksWorld structure and achieve
several times higher accuracy. Since reasoning behavior is nearly identical to clean BlocksWorld
traces, we exclude mystery naming 3 from most analyses.
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Model BlocksWorld Mystery Accuracy Preserved

Acc Tokens Acc Tokens

Regular LLMs

GPT-4.1 (CoT) 0.92 556 0.18 3837 20%
Qwen2.5-32B 0.21 71 0.00 1390 0%
Qwen2.5-32B-Instruct (CoT) 0.38 353 0.00 1479 0%
Llama 3.3 70B Instruct (CoT) 0.40 760 0.02 1142 5%
Reasoning Models

DeepSeek-R1-Distill-Qwen-32B (.81 2387 0.08 8500 10%
DeepSeek-R1-Distill-Llama-70B ~ 0.66 2674 0.10 10636 15%
Llama Nemotron Super 49B v1 0.48" 1162 0.19 9200 40%
QwQ-32B 0.96 3633 0.35 16186 36%

Table 1: Performance comparison of models on BlocksWorld and Naming 1 Mystery BlocksWorld
tasks. Acc Preserved shows percentage of accuracy retained. Tokens column shows an average length
of CoT. *The accuracy is actually higher, but the model often fails to preserve correct formatting.

2.2 Representation collection

We follow methodology of [13] to collect representations of actions and predicates from reasoning
traces. To collect representations of an action a, we first create a set of all possible token sequences
that could encode this action (it may contain several tokens).

Given a timestamp (a token index) 7, batch b of reasoning traces and action a we collect represen-
tations of action a at the layer L on a timestamp 7' in the following manner: we select tokens on
positions [T" — w, T') from each of the traces, where w is a token window size. Then we leave only
those that correspond to the token sequences associated with a. We also include a token right before
each action (it often stores an important part of the representation). Then we take hidden states at
layer L for all of the token sequences. Average them across each sequence, and then average them
across the batch.

For each Mystery naming N we collect naming-mean representation for each action and predicated
on all layers L and several timestamps. We also create centered action (or predicates) representations,
by subtracting the mean of action (or predicates) representations in a given naming, following [20]].
Additionally, we create average representations for each action and predicate by averaging their
centered representations across all of the namings.

3 Representational Studies

Our main hypothesis is that reasoning models progressively refine their internal representations
of problem entities during extended reasoning. This process develops context-specific semantics
that enable abstract structural reasoning independent of surface-level word meanings. We test this
hypothesis by analyzing how QwQ-32B’s [[14] representations of actions and predicates evolve while
solving Mystery BlocksWorld [18]] puzzles.

3.1 Cross-Naming Representational Convergence

If our hypothesis is correct, then semantically equivalent actions should converge to similar internal
encodings across different mystery namings, regardless of their surface-level differences.

As a first step to investigate our hypothesis, we extract naming-mean representations from mystery
naming 1 at timestamps 2k, 4k, 7k, and 10k tokens, then compute cosine similarities between these
and centered representations from all timesteps across all other mystery namings, averaging the
results. On Figure 2| we plot 2 lines for each mystery 1 timestamp: one for the average similarity of
an action with corresponding action from other namings and another one for average similarities of
the action with different actions from the other namings. The figure shows that except for timestamp
2k cross-naming similarity increases substantially during reasoning, plateauing around 7,000 tokens
— typically coinciding with the transition to plan formulation behavior.
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We also observe that similarities with different actions are always lower than with the corresponding
ones. Relatively high (= 0.2) similarity is caused by representations of "stack" and "unstack" being
closer to each other, than to "pick up" and "put down".
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Figure 3: Layer-wise PCA of action representa-
tions from different mystery namings extracted
at 7k tokens.

Figure 2: Average similarity of represen-
tations from other namings with naming
1 representations, extracted from differ-
ent timestamps.

To visualize how representations cluster across namings, we perform PCA analysis on action rep-
resentations extracted at 7k tokens from layers 10 and 40. Figure [3]demonstrates that semantically
equivalent actions cluster together regardless of their surface-level naming, with clustering becoming
apparent in deeper layers.

3.2 Similarity with Average and Original BlocksWorld

To better understand the nature of representational convergence, we examine similarities between
naming-specific representations and average representations computed across all namings. This
analysis reveals two important patterns that were obscured in the pairwise comparison.
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Figure 4: Similarities of centered ac- Figure 5: Similarities of centered ac-

tion/predicate representations from regular
BlocksWorld traces with naming-mean cen-
tered representations (7k timestamp). Plot
for predicates is absent, since it’s much
harder to identify their tokens in regular
BlocksWorld traces.

tion/predicate representations with naming-
mean centered representations (7k times-
tamp). Note that similarities between dif-
ferent actions become increasingly negative.

First, when comparing centered representations with their corresponding average representations (Fig-
ure[4), we observe the same temporal dynamics as in the cross-naming analysis: similarity increases
substantially during reasoning, plateauing around 7,000 tokens. Crucially, however, similarities
between different actions now become negative and continue to decrease (become more negative) as
reasoning progresses. This suggests that the model is not merely developing similar representations
for all actions, but is actively differentiating between distinct action types while converging toward
shared symbolic encodings for equivalent actions across namings.
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Second, we investigate whether similar representational adaptation occurs in clean BlocksWorld by
comparing mystery naming representations at 7k tokens with clean BlocksWorld representations
across all timestamps (Figure [5). We compute the average pairwise similarity between mystery
representations (extracted at 7k tokens) and clean representations at each timestamp. This analysis
reveals that similarity with clean BlocksWorld representations starts near zero at early timestamps
and increases substantially as clean reasoning progresses. This demonstrates that the model develops
similar symbolic representations even when semantic content is preserved, suggesting that represen-
tational adaptation toward abstract encodings is a fundamental mechanism of extended reasoning
rather than merely a compensation strategy for semantic obfuscation.

3.3 Base Model Comparison

Finally, we investigate whether the representational adaptation capabilities we observe are specific to
reasoning models or represent a more general property of large language models. Since we could
not obtain long reasoning traces from the base model directly, we analyze representations from both
QwQ and its base model when processing the same QwQ-generated traces.

The comparison reveals that both models exhibit similar representational adaptation dynamics
(Figure[6a). While the base model appears to adapt slightly more slowly, this difference is modest and
may reflect artifacts from processing unnatural traces. Both models show comparable convergence
toward shared symbolic representations (Figure [6b).

This finding, combined with prior work on in-context learning [[13]], suggests that representational
adaptation is an inherent property of large language models rather than a specialized feature of
reasoning models. The key distinction is that reasoning models naturally expose and leverage these
mechanisms more extensively through their ability to generate extended context-relevant traces.

0.8 0.8

—— Base (Same Action) —— Base (Same Action)

0.6

0.4+

0.2

Average Similarity
Average Similarity

___________________

-02 T T T T -02 T T T y T
2k 4k 6k 8k 1000 1500 2000 2500 3000 3500

Tokens Tokens
(a) Cross-naming similarity comparison (b) Clean BlocksWorld similarity comparison

Figure 6: Average similarity of representations extracted from the 7k timestamp, plotted for both
QwQ and its base model on QwQ traces. (a) Shows similarity of representations from other namings
with naming 1 representations. (b) Shows similarity of representations from original BlocksWorld
traces with representations from different mystery namings.

4 Causal validation

The representational analysis in Section [3|reveals two key findings about how QwQ-32B processes
Mystery BlocksWorld puzzles. First, the model dynamically adapts representations of actions and
predicates to reflect their new in-context semantics, moving beyond their original lexical meanings.
Second, these adaptations appear highly independent of the original word meanings, suggesting they
may capture the abstract symbolic nature of the planning operations themselves.

These observations lead to two testable hypotheses about the nature of these representational changes:
1. Structural Understanding Hypothesis: The representational adaptations reflect genuine

improvements in understanding the abstract puzzle structure, developed through the model’s
exploratory reasoning process.
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2. Symbolic Abstraction Hypothesis: The adapted representations achieve a more symbolic
nature that transcends their original lexical tokens, potentially enabling transfer across
different naming schemes.

To validate these hypotheses, we design steering experiments that test whether the learned rep-
resentations contain actionable knowledge about puzzle structure and whether they can function
independently of their original linguistic context.

4.1 Positive Steering

To validate our hypothesis that the observed representational adaptations contain improved understand-
ing of the problem structure, we conduct a positive steering experiment. This approach tests whether
injecting “refined” representations from correctly solved puzzles can improve overall performance.

Experimental Setup Our positive steering procedure operates as follows:

1. Hyper Parameters: We select a steering layer L, a token window [, tend), and a steering
scale s.

2. Reference Representation Collection: We collect centered naming-mean representations
cr for all actions and predicates at layer L from the 40 correctly solved puzzles. These serve
as our target representations embodying successful problem-solving patterns.

3. Input Preparation: We extract prefixes of t.,q tokens from all 300 4-block problem rollouts
to create our intervention dataset.

4. Steering Intervention: For each prefix p, we identify token indices ¢ corresponding to
action or predicate a, and obtain hidden states h at layer L. We then apply the following
norm-preserving intervention:

h'[i] = s - h[i] + (1 — s) - cr[d] (1)
bl = 6l e @

This procedure adds the refined representation while preserving the original activation
magnitude, ensuring minimal disruption to the model’s computational dynamics.

5. Evaluation: We measure accuracy on the steered puzzles and compare against the non-
steered baseline. Since accuracy can only improve on initially incorrect cases, this experi-
ment directly tests whether refined representations facilitate problem-solving.

Results Figure[/|shows accuracy improvements after positive steering, averaged across namings
(excluding naming 3). The results demonstrate that injecting representations from successfully
solved puzzles leads to measurable improvements in problem-solving performance, supporting our
hypothesis that the learned adaptations encode meaningful structural understanding.

4.2 Symbolic Patching

To test the Symbolic Abstraction Hypothesis, we conduct a patching experiment that replaces
naming-specific representations with abstract “symbolic” representations on a prefix of tokens and
layers and then lets the model generate. This intervention tests whether the model can operate
effectively when forced to rely on symbolic components without any connection to original tokens.
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Symbolic Representation Construction For each layer we construct symbolic representations to
be minimally out-of-distribution while capturing abstract structural information. First, we collect
centered average representations for each action and predicate across all namings. We then compute
the overall mean of all actions and predicates, denoted as r'me.,. The symbolic representation of
action a is constructed as:

I'symbolic [a] = I'mean + S Tq 3)

where s is a scaling factor and r,, is the centered average representation of action a.

Experimental Design Our initial experiments revealed that the model’s recovery capabilities
exceeded expectations — it could maintain reasonable accuracy even when all actions and predicates
were replaced with a single vector, provided it resembled the residual stream structure. This robustness
necessitated a more nuanced experimental design.

We employ a comparative patching approach with two conditions:

1. Symbolic Patching: Replace residual stream activations for action and predicate tokens
with their corresponding symbolic representations.

2. Shuffled Patching: Shuffle symbolic representations (rsymbolic[@i] = Tsymbolic[@;], J is a
random permutation of indexes. Then perform the same patching experiment.

Patched generations are performed by selecting a token window (2000-4000), replacing residual
streams of action and predicate tokens within this window on all layers until selected End layer,
including the embedding layer, with corresponding symbolic representations, then letting the model
generate.

We measure the accuracy difference AcCgympolic — ACCshufiicd, Where shuffled representations serve
as the control. If symbolic representations contain usable abstract structural information, they
should outperform shuffled ones. Figure §|confirms this: properly matched symbolic representations
consistently outperform shuffled ones across different scaling factors s, supporting our hypothesis
that adapted representations achieve meaningful symbolic abstraction.

4.3 Negative Steering

To further validate the Structural Understanding Hypothesis, we conduct an ablation experiment
testing whether disrupting the observed representational adaptations decreases accuracy. This presents
a methodological challenge: steering interventions can easily degrade model performance through
general disruption rather than targeted ablation of the adaptation mechanism.

Experimental Design To isolate the effects of representational adaptation from general model
disruption, we use a comparative ablation approach:
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1. Following a similar approach to the patching experiments, we perform interventions across
a window of several layers, restricting our interventions to tokens between positions 2000
and 4000.

2. Instead of replacing the residual stream, we subtract centered naming representations
extracted from the 4k timestamp. We selected 4k tokens since these representations are
at the end of our selected token window while already being close to convergence (see

Figure [2).
3. We again use shuffled representations as a control condition, as random vectors provided
too weak of a baseline for meaningful comparison.

With optimal layer selection negative steering has 2.5% accuracy mean difference with control. (Full
figure in Appendix [B) This finding reinforces our conclusion that representational adaptations play
a crucial role in the problem-solving process, as disrupting these learned representations leads to
measurably worse performance even when controlling for general intervention effects.

5 Related Work

Representations and Steering A growing line of work focuses on identifying meaningful directions
in model representation spaces and using them to modify model behavior. These directions may
encode abstract concepts like refusal [1], emotions and truthfulness [25]. Beyond concept-based
representations, single directions may also contain complex functional and structural information,
such as generalized task definitions from in-context learning examples [[17, 5], new meanings of
words in in-context learning [[13]], or even reasoning behavior itself [24].

Reasoning Interpretability A major part of reasoning interpretability research focuses on iden-
tifying universal reasoning circuits through common reasoning components. These can be key
intermediate sentences or "thought anchors" [2], reasoning behaviors like uncertainty expression and
backtracking [20]], self-verification directions [8]], or reasoning-related sparse autoencoder features
[4]. As an alternative approach, [23] study state tracking during chain-of-thought in toy transformers.

Model Diffing  Another rapidly developing approach to studying complex model behaviors involves
analyzing differences between models trained on different data. For example, comparing represen-
tations in reasoning and base models [21], identifying new concepts in chat-tuned models [[10], or
studying context-sensitivity capabilities [9].

6 Conclusions and Limitations

This work presents a mechanistic analysis of how reasoning models process abstract structural
information during extended reasoning. We demonstrated three key findings: reasoning models
progressively refine internal representations of actions and predicates during 15-20k token traces, con-
verging toward abstract symbolic encodings independent of surface semantics; these representational
adaptations causally improve problem-solving performance, as evidenced by steering experiments
that enhance accuracy when refined representations are injected and decrease it when disrupted; and
adapted representations achieve symbolic abstraction that enables cross-naming transfer, suggesting
convergence toward universal structural encodings.

Our findings reveal that reasoning models’ superior performance on abstract reasoning tasks stems
partly from their ability to dynamically construct problem-specific representational spaces during
reasoning. This work represents an early step in studying model internals on extended reasoning
traces from the perspective of evolving representations and in-context adaptations, contributing to
mechanistic interpretability research on long-form reasoning processes.

Several limitations constrain our findings. Computational constraints limited our exploration of
layers and hyperparameters, while our use of greedy decoding may have contributed to larger error
bars. We focus on a single model (QwQ-32B) due to limited availability of comparable open-source
reasoning models, and restrict analysis to BlocksWorld, which may not generalize to other reasoning
domains. Future work should evaluate multiple reasoning models across diverse problem domains
and investigate how sampling strategies affect representational dynamics during extended reasoning.
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A Mystery BlocksWorld Naming Variants

Table 2: Action Mappings Across Mystery Namings

Naming pick up put down | stack unstack
Mystery 1 attack succumb | overcome | feast
Mystery 2 | illuminate | silence distill divest
Mystery 3 | tltezi jchntg deesdu xavirm
Mystery 4 | swim fire deduct respond
Mystery 5 | whisper calculate | orbit navigate
Mystery 6 | decode hibernate | thunder quench
Mystery 7 | explore ripen weave bloom
Mystery 8 | harvest ignite carve suspend
Mystery 9 | construct | demolish | reinforce collapse
Mystery 10 | plant harvest nurture prune
Mystery 11 | prosecute | acquit testify appeal
Mystery 12 | broadcast | receive encrypt decode
Mystery 13 | whisper banish entangle unmask
Mystery 14 | question resolve interweave | liberate
Mystery 15 | summon dismiss fold unravel

B Negative steering
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Table 3: Predicate Mappings Across Mystery Namings

Naming ontable clear handempty | holding holding
Mystery 1 | planet province harmony craves pain
Mystery 2 | aura essence nexus harmonizes | pulse
Mystery 3 oxtslo adohre jqlyol gSZSWg ivbmyg
Mystery 4 | fever marble craving mines shadow
Mystery 5 crystal fountain autumn illuminates | legend
Mystery 6 | prism hollow zenith echoes emblem
Mystery 7 | fossil dialect equinox fractures symphony
Mystery 8 | nebula labyrinth mirage captivates cascade
Mystery 9 | eclipse vintage paradox resonates twilight
Mystery 10 | crystal puzzle vortex whispers cipher
Mystery 11 | nebula molecule anthem silhouettes | voltage
Mystery 12 | horizon compass solstice orbits quantum
Mystery 13 | tethered unburdened | hollow shrouds consuming
Mystery 14 | echoing sovereign potential obscures contemplating
Mystery 15 | suspended | timeless interval transcends | enveloping
Mystery 16 | aura essence nexus harmonizes | pulse

—~_~ 44

8

g 357

GRS

=

A 2.5

Z

g 29

=3

20 30
End Layer

Figure 9: Mean accuracy difference with control on negative steering. Layer 10 was used as the
starting layer. Horizontal axis represents the final layer for steering. Error bars show standard error
across different namings.
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