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Abstract

Classic large language models struggle with abstract reasoning tasks, while rea-1

soning models like OpenAI’s o1 and o3 that generate extended chains of thought2

achieve dramatic improvements. However, the mechanisms underlying this su-3

perior performance remain poorly understood. This work presents a mechanistic4

analysis of how reasoning models process abstract structural information during ex-5

tended reasoning. We analyze QwQ-32B on Mystery BlocksWorld – a semantically6

obfuscated planning domain and found that reasoning models progressively refine7

their internal representations of actions and predicates throughout 15-20k token8

traces, converging toward abstract symbolic encodings independent of surface9

semantics. Through steering experiments, we established causal evidence that10

these adaptations improve problem-solving: injecting refined representations from11

successful traces enhances accuracy, while symbolic representations can replace12

naming-specific encodings with minimal performance loss. Our findings reveal13

that reasoning models’ superior performance stems partly from their ability to14

dynamically construct problem-specific representational spaces during extended15

reasoning, providing early mechanistic insights into chains of thought.16

1 Introduction17

Recent advances in large language models have produced a new class of models specifically trained18

to generate extended chains of reasoning before providing answers [22]. These reasoning models,19

including OpenAI’s o1 [11] and o3 [12], DeepSeek R1 [3], and QwQ-32B [14], undergo extensive20

reinforcement learning to produce long, step-by-step reasoning traces that often span tens of thousands21

of tokens [15, 7] Despite their impressive capabilities, the mechanisms underlying their superior22

performance remain poorly understood.23

Empirical evaluations reveal that reasoning models can solve classes of problems that remain chal-24

lenging for much larger standard language models [19, 16]. A particularly striking example emerges25

from planning tasks where models must manipulate objects according to specific rules — such as26

BlocksWorld [19], where the goal is to rearrange blocks to achieve target configurations. When all27

semantic content in these tasks is replaced with meaningless words in obfuscated versions (trans-28

forming “pick up” into “attack” for example), standard LLMs achieve near-zero accuracy. However,29

even moderately-sized reasoning models maintain 20-30% accuracy even when stripped of all se-30

mantic guidance [19]. This performance gap suggests that extended reasoning enables qualitatively31

new forms of structural understanding, allowing models to dynamically construct abstract problem32

representations during the reasoning process itself.33

Despite growing interest in understanding these capabilities, mechanistic insights into how extended34

reasoning traces benefit model performance remain limited. A major secrion of reasoning inter-35

pretability research focuses on identifying universal reasoning circuits through common token or36

representation-level components [20, 2, 8, 4]. However, another possible approach is to examine the37
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Figure 1: Overview of experimental setup adaptation in reasoning models. Left: Standard
BlocksWorld achieves 96% accuracy. Center: Mystery BlocksWorld obfuscates semantics (e.g., “pick
up” becomes “attack”), reducing accuracy to 30%. During extended reasoning traces, the model
progressively refines internal representations of obfuscated actions, developing abstract symbolic
encodings (vectors v0 . . . v3, u0 . . . u3 are extracted at different Chain-of-Though timestamps). Right:
Steering experiments inject these refined representations into early reasoning stages, improving
accuracy to 32%, demonstrating that representational adaptations causally contribute to problem-
solving performance.

problem representations that these circuits operate on. An example of this approach is a recent work38

on state tracking in toy reasoning models [23]39

Prior work on in-context learning shows how models adapt internal representations when words40

acquire new meanings within specific contexts [13]. Drawing inspiration from these insights, we41

investigate whether similar representational adaptations occur during extended reasoning in planning42

tasks, and whether these adaptations causally contribute to problem-solving performance.43

We focus our analysis on QwQ-32B [14], the most capable open-source reasoning model available,44

and examine its internal representations while solving Mystery BlocksWorld [18] puzzles. Our central45

hypothesis is that reasoning models progressively refine their internal representations of problem enti-46

ties during reasoning, developing context-specific semantics that enable abstract structural reasoning47

independent of surface-level semantics.48

Key Observations This work presents several key observations about the internal mechanisms of49

reasoning models:50

1. Representational Dynamics (Section 3): We observe that QwQ-32B progressively adapts51

internal representations of actions and predicates during reasoning, with these adaptations52

converging toward consistent encodings regardless of initial action names.53

2. Causal Validation (Section 4): Through steering experiments, we observe that these54

representational adaptations causally improve problem-solving performance. Injecting55

refined representations from successful reasoning traces into early stages of reasoning56

enhances accuracy on held-out puzzles, while disabling them decreases it compared to57

control.58

3. Symbolic Abstraction (Sections 3.2 and 4.2 ): We observe that adapted representations59

achieve symbolic abstraction, enabling cross-naming transfer. Models can operate effectively60

when naming-specific representations are replaced with averaged symbolic representations,61

suggesting convergence toward abstract structural encodings.62

Our findings suggest that the superior performance of reasoning models on abstract reasoning tasks63

stems, at least partially, from their ability to dynamically construct problem-specific representational64
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spaces during reasoning. This capability represents a fundamental advance in how language mod-65

els process and represent abstract structural information, with implications for understanding and66

improving reasoning capabilities in future system.67

2 Background68

BlocksWorld. BlocksWorld is a classic planning domain from the International Planning Competi-69

tions [6]. Each problem specifies initial and goal block arrangements, with constraints that agents70

can hold only one block at a time and cannot pick up blocks with others stacked above them. We71

use PlanBench [18] for problem generation and verification. Despite conceptual simplicity, base72

models fail to achieve perfect accuracy on four-block problems, while reasoning models demonstrate73

substantially superior performance [19].74

Mystery BlocksWorld. Mystery BlocksWorld [18] replaces all predicates and actions with semanti-75

cally unrelated words (e.g., pick up” becomes attack”). This obfuscation causes dramatic performance76

degradation while preserving the underlying logical structure. Success requires models to operate77

on abstract structural relationships and dynamically construct new semantic mappings—capabilities78

reasoning models demonstrate significantly better than base LLMs. We generated 14 additional79

naming variants beyond the original, creating 15 different semantic obfuscations of the same domain80

structure (see Appendix A).81

Terminology. We refer to each unique initial-goal state combination as a puzzle and each semantic82

variant as a naming. Our analysis focuses on 300 four-block puzzles, each mapped across all 1583

mystery namings.84

2.1 Initial Evaluations85

We conducted comprehensive evaluations of various models on our BlocksWorld puzzle dataset to86

establish baseline performance and validate our choice of QwQ-32B for detailed analysis. The results87

reveal several important patterns in reasoning model capabilities.88

Reasoning Model Advantages. Reasoning models consistently outperform standard LLMs on89

both regular and Mystery BlocksWorld tasks. However, the landscape of open-source reasoning90

models of moderate size remains limited. DeepSeek distillation models show poor performance on91

our evaluation set.92

QwQ-32B Performance. QwQ-32B, specifically trained for extended reasoning processes, demon-93

strates exceptional performance on both Mystery and regular BlocksWorld variants. Successful94

Mystery BlocksWorld solutions typically involve reasoning traces of 15-20k tokens, substantially95

longer than the traces generated for regular BlocksWorld problems. This extended reasoning appears96

crucial for the semantic adaptation process we investigate in this work. While Nemotron generates97

reasoning traces of comparable length, it achieves lower accuracy than QwQ-32B across most mystery98

namings in our evaluation set.99

Behavior Analysis. Through manual investigation of DeepSeek and QwQ reasoning traces, we100

identified recurring behavioral patterns in Mystery BlocksWorld solving. Models begin with com-101

parative analysis, examining initial and goal states to identify conflicting predicates. They then102

alternate between recursive search (working backwards from goals to identify required actions) and103

exploration (experimenting with actions to discover achievable states). These exploratory behaviors104

occupy the first half of reasoning traces. The second phase involves plan formulation, where models105

construct action sequences and verify validity, iteratively rebuilding when conflicts arise. The final106

phase consists of plan verification, where models validate solutions before committing to answers.107

Special Case: Mystery Naming 3. Mystery naming 3 uses random character sequences rather than108

words, causing models to immediately recognize the underlying BlocksWorld structure and achieve109

several times higher accuracy. Since reasoning behavior is nearly identical to clean BlocksWorld110

traces, we exclude mystery naming 3 from most analyses.111
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Model BlocksWorld Mystery Accuracy Preserved

Acc Tokens Acc Tokens

Regular LLMs

GPT-4.1 (CoT) 0.92 556 0.18 3837 20%
Qwen2.5-32B 0.21 71 0.00 1390 0%
Qwen2.5-32B-Instruct (CoT) 0.38 353 0.00 1479 0%
Llama 3.3 70B Instruct (CoT) 0.40 760 0.02 1142 5%

Reasoning Models

DeepSeek-R1-Distill-Qwen-32B 0.81 2387 0.08 8500 10%
DeepSeek-R1-Distill-Llama-70B 0.66 2674 0.10 10636 15%
Llama Nemotron Super 49B v1 0.48∗ 1162 0.19 9200 40%
QwQ-32B 0.96 3633 0.35 16186 36%

Table 1: Performance comparison of models on BlocksWorld and Naming 1 Mystery BlocksWorld
tasks. Acc Preserved shows percentage of accuracy retained. Tokens column shows an average length
of CoT. ∗The accuracy is actually higher, but the model often fails to preserve correct formatting.

2.2 Representation collection112

We follow methodology of [13] to collect representations of actions and predicates from reasoning113

traces. To collect representations of an action a, we first create a set of all possible token sequences114

that could encode this action (it may contain several tokens).115

Given a timestamp (a token index) T , batch b of reasoning traces and action a we collect represen-116

tations of action a at the layer L on a timestamp T in the following manner: we select tokens on117

positions [T − w, T ) from each of the traces, where w is a token window size. Then we leave only118

those that correspond to the token sequences associated with a. We also include a token right before119

each action (it often stores an important part of the representation). Then we take hidden states at120

layer L for all of the token sequences. Average them across each sequence, and then average them121

across the batch.122

For each Mystery naming N we collect naming-mean representation for each action and predicated123

on all layers L and several timestamps. We also create centered action (or predicates) representations,124

by subtracting the mean of action (or predicates) representations in a given naming, following [20].125

Additionally, we create average representations for each action and predicate by averaging their126

centered representations across all of the namings.127

3 Representational Studies128

Our main hypothesis is that reasoning models progressively refine their internal representations129

of problem entities during extended reasoning. This process develops context-specific semantics130

that enable abstract structural reasoning independent of surface-level word meanings. We test this131

hypothesis by analyzing how QwQ-32B’s [14] representations of actions and predicates evolve while132

solving Mystery BlocksWorld [18] puzzles.133

3.1 Cross-Naming Representational Convergence134

If our hypothesis is correct, then semantically equivalent actions should converge to similar internal135

encodings across different mystery namings, regardless of their surface-level differences.136

As a first step to investigate our hypothesis, we extract naming-mean representations from mystery137

naming 1 at timestamps 2k, 4k, 7k, and 10k tokens, then compute cosine similarities between these138

and centered representations from all timesteps across all other mystery namings, averaging the139

results. On Figure 2 we plot 2 lines for each mystery 1 timestamp: one for the average similarity of140

an action with corresponding action from other namings and another one for average similarities of141

the action with different actions from the other namings. The figure shows that except for timestamp142

2k cross-naming similarity increases substantially during reasoning, plateauing around 7,000 tokens143

— typically coinciding with the transition to plan formulation behavior.144
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We also observe that similarities with different actions are always lower than with the corresponding145

ones. Relatively high (≈ 0.2) similarity is caused by representations of "stack" and "unstack" being146

closer to each other, than to "pick up" and "put down".147
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Figure 2: Average similarity of represen-
tations from other namings with naming
1 representations, extracted from differ-
ent timestamps.
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Figure 3: Layer-wise PCA of action representa-
tions from different mystery namings extracted
at 7k tokens.

148

To visualize how representations cluster across namings, we perform PCA analysis on action rep-149

resentations extracted at 7k tokens from layers 10 and 40. Figure 3 demonstrates that semantically150

equivalent actions cluster together regardless of their surface-level naming, with clustering becoming151

apparent in deeper layers.152

3.2 Similarity with Average and Original BlocksWorld153

To better understand the nature of representational convergence, we examine similarities between154

naming-specific representations and average representations computed across all namings. This155

analysis reveals two important patterns that were obscured in the pairwise comparison.156
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Figure 4: Similarities of centered ac-
tion/predicate representations with naming-
mean centered representations (7k times-
tamp). Note that similarities between dif-
ferent actions become increasingly negative.
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Figure 5: Similarities of centered ac-
tion/predicate representations from regular
BlocksWorld traces with naming-mean cen-
tered representations (7k timestamp). Plot
for predicates is absent, since it’s much
harder to identify their tokens in regular
BlocksWorld traces.

157

First, when comparing centered representations with their corresponding average representations (Fig-158

ure 4), we observe the same temporal dynamics as in the cross-naming analysis: similarity increases159

substantially during reasoning, plateauing around 7,000 tokens. Crucially, however, similarities160

between different actions now become negative and continue to decrease (become more negative) as161

reasoning progresses. This suggests that the model is not merely developing similar representations162

for all actions, but is actively differentiating between distinct action types while converging toward163

shared symbolic encodings for equivalent actions across namings.164
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Second, we investigate whether similar representational adaptation occurs in clean BlocksWorld by165

comparing mystery naming representations at 7k tokens with clean BlocksWorld representations166

across all timestamps (Figure 5). We compute the average pairwise similarity between mystery167

representations (extracted at 7k tokens) and clean representations at each timestamp. This analysis168

reveals that similarity with clean BlocksWorld representations starts near zero at early timestamps169

and increases substantially as clean reasoning progresses. This demonstrates that the model develops170

similar symbolic representations even when semantic content is preserved, suggesting that represen-171

tational adaptation toward abstract encodings is a fundamental mechanism of extended reasoning172

rather than merely a compensation strategy for semantic obfuscation.173

3.3 Base Model Comparison174

Finally, we investigate whether the representational adaptation capabilities we observe are specific to175

reasoning models or represent a more general property of large language models. Since we could176

not obtain long reasoning traces from the base model directly, we analyze representations from both177

QwQ and its base model when processing the same QwQ-generated traces.178

The comparison reveals that both models exhibit similar representational adaptation dynamics179

(Figure 6a). While the base model appears to adapt slightly more slowly, this difference is modest and180

may reflect artifacts from processing unnatural traces. Both models show comparable convergence181

toward shared symbolic representations (Figure 6b).182

This finding, combined with prior work on in-context learning [13], suggests that representational183

adaptation is an inherent property of large language models rather than a specialized feature of184

reasoning models. The key distinction is that reasoning models naturally expose and leverage these185

mechanisms more extensively through their ability to generate extended context-relevant traces.186
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(a) Cross-naming similarity comparison
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(b) Clean BlocksWorld similarity comparison

Figure 6: Average similarity of representations extracted from the 7k timestamp, plotted for both
QwQ and its base model on QwQ traces. (a) Shows similarity of representations from other namings
with naming 1 representations. (b) Shows similarity of representations from original BlocksWorld
traces with representations from different mystery namings.

4 Causal validation187

The representational analysis in Section 3 reveals two key findings about how QwQ-32B processes188

Mystery BlocksWorld puzzles. First, the model dynamically adapts representations of actions and189

predicates to reflect their new in-context semantics, moving beyond their original lexical meanings.190

Second, these adaptations appear highly independent of the original word meanings, suggesting they191

may capture the abstract symbolic nature of the planning operations themselves.192

These observations lead to two testable hypotheses about the nature of these representational changes:193

1. Structural Understanding Hypothesis: The representational adaptations reflect genuine194

improvements in understanding the abstract puzzle structure, developed through the model’s195

exploratory reasoning process.196
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2. Symbolic Abstraction Hypothesis: The adapted representations achieve a more symbolic197

nature that transcends their original lexical tokens, potentially enabling transfer across198

different naming schemes.199

To validate these hypotheses, we design steering experiments that test whether the learned rep-200

resentations contain actionable knowledge about puzzle structure and whether they can function201

independently of their original linguistic context.202

4.1 Positive Steering203

To validate our hypothesis that the observed representational adaptations contain improved understand-204

ing of the problem structure, we conduct a positive steering experiment. This approach tests whether205

injecting “refined” representations from correctly solved puzzles can improve overall performance.206

Experimental Setup Our positive steering procedure operates as follows:207

1. Hyper Parameters: We select a steering layer L, a token window [tstart, tend), and a steering208

scale s.209

2. Reference Representation Collection: We collect centered naming-mean representations210

cr for all actions and predicates at layer L from the 40 correctly solved puzzles. These serve211

as our target representations embodying successful problem-solving patterns.212

3. Input Preparation: We extract prefixes of tend tokens from all 300 4-block problem rollouts213

to create our intervention dataset.214

4. Steering Intervention: For each prefix p, we identify token indices i corresponding to215

action or predicate a, and obtain hidden states h at layer L. We then apply the following216

norm-preserving intervention:217

h′[i] = s · h[i] + (1− s) · cr[a] (1)

h[i] = h′[i] · ∥h[i]∥2
∥h′[i]∥2

(2)

This procedure adds the refined representation while preserving the original activation218

magnitude, ensuring minimal disruption to the model’s computational dynamics.219

5. Evaluation: We measure accuracy on the steered puzzles and compare against the non-220

steered baseline. Since accuracy can only improve on initially incorrect cases, this experi-221

ment directly tests whether refined representations facilitate problem-solving.222

Results Figure 7 shows accuracy improvements after positive steering, averaged across namings223

(excluding naming 3). The results demonstrate that injecting representations from successfully224

solved puzzles leads to measurable improvements in problem-solving performance, supporting our225

hypothesis that the learned adaptations encode meaningful structural understanding.226

4.2 Symbolic Patching227

To test the Symbolic Abstraction Hypothesis, we conduct a patching experiment that replaces228

naming-specific representations with abstract “symbolic” representations on a prefix of tokens and229

layers and then lets the model generate. This intervention tests whether the model can operate230

effectively when forced to rely on symbolic components without any connection to original tokens.231
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232

Symbolic Representation Construction For each layer we construct symbolic representations to233

be minimally out-of-distribution while capturing abstract structural information. First, we collect234

centered average representations for each action and predicate across all namings. We then compute235

the overall mean of all actions and predicates, denoted as rmean. The symbolic representation of236

action a is constructed as:237

rsymbolic[a] = rmean + s · ra (3)

where s is a scaling factor and ra is the centered average representation of action a.238

Experimental Design Our initial experiments revealed that the model’s recovery capabilities239

exceeded expectations — it could maintain reasonable accuracy even when all actions and predicates240

were replaced with a single vector, provided it resembled the residual stream structure. This robustness241

necessitated a more nuanced experimental design.242

We employ a comparative patching approach with two conditions:243

1. Symbolic Patching: Replace residual stream activations for action and predicate tokens244

with their corresponding symbolic representations.245

2. Shuffled Patching: Shuffle symbolic representations (rsymbolic[ai] = rsymbolic[aj ], j is a246

random permutation of indexes. Then perform the same patching experiment.247

Patched generations are performed by selecting a token window (2000-4000), replacing residual248

streams of action and predicate tokens within this window on all layers until selected End layer,249

including the embedding layer, with corresponding symbolic representations, then letting the model250

generate.251

We measure the accuracy difference Accsymbolic − Accshuffled, where shuffled representations serve252

as the control. If symbolic representations contain usable abstract structural information, they253

should outperform shuffled ones. Figure 8 confirms this: properly matched symbolic representations254

consistently outperform shuffled ones across different scaling factors s, supporting our hypothesis255

that adapted representations achieve meaningful symbolic abstraction.256

4.3 Negative Steering257

To further validate the Structural Understanding Hypothesis, we conduct an ablation experiment258

testing whether disrupting the observed representational adaptations decreases accuracy. This presents259

a methodological challenge: steering interventions can easily degrade model performance through260

general disruption rather than targeted ablation of the adaptation mechanism.261

Experimental Design To isolate the effects of representational adaptation from general model262

disruption, we use a comparative ablation approach:263
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1. Following a similar approach to the patching experiments, we perform interventions across264

a window of several layers, restricting our interventions to tokens between positions 2000265

and 4000.266

2. Instead of replacing the residual stream, we subtract centered naming representations267

extracted from the 4k timestamp. We selected 4k tokens since these representations are268

at the end of our selected token window while already being close to convergence (see269

Figure 2).270

3. We again use shuffled representations as a control condition, as random vectors provided271

too weak of a baseline for meaningful comparison.272

With optimal layer selection negative steering has 2.5% accuracy mean difference with control. (Full273

figure in Appendix B) This finding reinforces our conclusion that representational adaptations play274

a crucial role in the problem-solving process, as disrupting these learned representations leads to275

measurably worse performance even when controlling for general intervention effects.276

5 Related Work277

Representations and Steering A growing line of work focuses on identifying meaningful directions278

in model representation spaces and using them to modify model behavior. These directions may279

encode abstract concepts like refusal [1], emotions and truthfulness [25]. Beyond concept-based280

representations, single directions may also contain complex functional and structural information,281

such as generalized task definitions from in-context learning examples [17, 5], new meanings of282

words in in-context learning [13], or even reasoning behavior itself [24].283

Reasoning Interpretability A major part of reasoning interpretability research focuses on iden-284

tifying universal reasoning circuits through common reasoning components. These can be key285

intermediate sentences or "thought anchors" [2], reasoning behaviors like uncertainty expression and286

backtracking [20], self-verification directions [8], or reasoning-related sparse autoencoder features287

[4]. As an alternative approach, [23] study state tracking during chain-of-thought in toy transformers.288

Model Diffing Another rapidly developing approach to studying complex model behaviors involves289

analyzing differences between models trained on different data. For example, comparing represen-290

tations in reasoning and base models [21], identifying new concepts in chat-tuned models [10], or291

studying context-sensitivity capabilities [9].292

6 Conclusions and Limitations293

This work presents a mechanistic analysis of how reasoning models process abstract structural294

information during extended reasoning. We demonstrated three key findings: reasoning models295

progressively refine internal representations of actions and predicates during 15-20k token traces, con-296

verging toward abstract symbolic encodings independent of surface semantics; these representational297

adaptations causally improve problem-solving performance, as evidenced by steering experiments298

that enhance accuracy when refined representations are injected and decrease it when disrupted; and299

adapted representations achieve symbolic abstraction that enables cross-naming transfer, suggesting300

convergence toward universal structural encodings.301

Our findings reveal that reasoning models’ superior performance on abstract reasoning tasks stems302

partly from their ability to dynamically construct problem-specific representational spaces during303

reasoning. This work represents an early step in studying model internals on extended reasoning304

traces from the perspective of evolving representations and in-context adaptations, contributing to305

mechanistic interpretability research on long-form reasoning processes.306

Several limitations constrain our findings. Computational constraints limited our exploration of307

layers and hyperparameters, while our use of greedy decoding may have contributed to larger error308

bars. We focus on a single model (QwQ-32B) due to limited availability of comparable open-source309

reasoning models, and restrict analysis to BlocksWorld, which may not generalize to other reasoning310

domains. Future work should evaluate multiple reasoning models across diverse problem domains311

and investigate how sampling strategies affect representational dynamics during extended reasoning.312
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Mystery 4 swim fire deduct respond
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Mystery 9 construct demolish reinforce collapse
Mystery 10 plant harvest nurture prune
Mystery 11 prosecute acquit testify appeal
Mystery 12 broadcast receive encrypt decode
Mystery 13 whisper banish entangle unmask
Mystery 14 question resolve interweave liberate
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Table 3: Predicate Mappings Across Mystery Namings
Naming ontable clear handempty holding holding
Mystery 1 planet province harmony craves pain
Mystery 2 aura essence nexus harmonizes pulse
Mystery 3 oxtslo adohre jqlyol gszswg ivbmyg
Mystery 4 fever marble craving mines shadow
Mystery 5 crystal fountain autumn illuminates legend
Mystery 6 prism hollow zenith echoes emblem
Mystery 7 fossil dialect equinox fractures symphony
Mystery 8 nebula labyrinth mirage captivates cascade
Mystery 9 eclipse vintage paradox resonates twilight
Mystery 10 crystal puzzle vortex whispers cipher
Mystery 11 nebula molecule anthem silhouettes voltage
Mystery 12 horizon compass solstice orbits quantum
Mystery 13 tethered unburdened hollow shrouds consuming
Mystery 14 echoing sovereign potential obscures contemplating
Mystery 15 suspended timeless interval transcends enveloping
Mystery 16 aura essence nexus harmonizes pulse
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Figure 9: Mean accuracy difference with control on negative steering. Layer 10 was used as the
starting layer. Horizontal axis represents the final layer for steering. Error bars show standard error
across different namings.
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