A Implies B: Circuit Analysis in LLMs for
Propositional Logical Reasoning

Guan Zhe Hong*! Nishanth Dikkala? Enming Luo? Cyrus Rashtchian?
Xin Wang? Rina Panigrahy?
'Purdue University 2 Google Research
hong2880purdue. edu,
{nishanthd, enming, cyroid, wanxin, rinap}@google.com

Abstract

Due to the size and complexity of modern large language models (LLMs), it has
proven challenging to uncover the underlying mechanisms that models use to solve
reasoning problems. For instance, is their reasoning for a specific problem localized
to certain parts of the network? Do they break down the reasoning problem into
modular components that are then executed as sequential steps as we go deeper
in the model? To better understand the reasoning capability of LLMs, we study
a minimal propositional logic problem that requires combining multiple facts to
arrive at a solution. By studying this problem on Mistral and Gemma models, up
to 27B parameters, we illuminate the core components the models use to solve
such logic problems. From a mechanistic interpretability point of view, we use
causal mediation analysis to uncover the pathways and components of the LLMs’
reasoning processes. Then, we offer fine-grained insights into the functions of
attention heads in different layers. We not only find a sparse circuit that computes
the answer, but we decompose it into sub-circuits that have four distinct and
modular uses. Finally, we reveal that three distinct models — Mistral-7B, Gemma-
2-9B and Gemma-2-27B — contain analogous but not identical mechanisms.

1 Introduction

LLMs can solve many tasks in a few-shot manner (Brown et al., |2020; [Radford et al., [2019b).
One emergent ability of these models is solving problems that require planning and reasoning. In
particular, LLMs seem to have internal components that judiciously process and transform the
provided information. Unfortunately, it is not clear whether these models implement step-by-step
algorithms or whether they perform opaque computations to arrive at their answers.

The area of circuit analysis has emerged as a way to understand how transformers use their internal
components. While the definition of a circuit varies across different works, in this paper, our definition
follows [Wang et al.| (2023a)). A circuit within a transformer is a collection of model components
(attention heads, neurons, etc.) with the edges in the circuit indicating the information flow between
the components in the forward pass. Circuit analysis can inform how to improve models, how
to debug errors, and how to explain patterns in their behavior. Despite the importance of these
goals, there has been a limited number of large-scale studies of interpreting LLM reasoning. Within
mechanistic interpretability (Geva et al., 2021 [Vig et al.| 2020; [Hou et al., [2023)), existing studies
either only provide partial evidence for the underlying circuits (Meng et al.,[2022) or are limited to
small models like a 3-layer transformer or GPT-2 sized models (Merullo et al., |2024a}; |Rauker et al.,
2023 Wang et al., [2023a). Our goal is to go beyond this, uncovering the distinct roles of different

*Part of this work was done as a student researcher at Google Research.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

sets of components for solving a canonical propositional reasoning problem in frontier models with
as many as 27B parameters. Specifically, we aim to identify separate sub-circuits for distinct steps
like retrieving information from the context, processing this information, and arriving at an answer

1.1 A Suitable Set of Propositional Logical Reasoning Problems

Performing circuit analysis for LLMs requires a careful selection of what problem to study. If it is
too simple (e.g., just copying part of the input), then we will learn little about reasoning. If it is too
complex (e.g., generic math word problems), then we will have no way to systematically apply causal
analysis and we will struggle to localize and delineate the model’s internal components. The problem
also needs to be sufficiently natural, such that it is a common subproblem of more complex reasoning
problems in the wild, such as those found in natural logic (MacCartney & Manning, [2014).

Keeping the above considerations in mind, we study the following propositional logic template,
which requires reasoning over distinct parts of the input. The problem involves five boolean variables.
Given two propositions as “Rules” and truth values of three variables as “Facts” we wish to infer the
unknown truth value of a different variable (which we call the “query”). For concreteness, here are
two possible instantiations:

Rules: A or B implies C'. D implies E. Rules: V and W implies X. Y implies Z.
Facts: A is true. B is false. D is true. Facts: V is false. W is true. Y is false.
Question: what is the truth value of C'? Question: what is the truth value of Z?

Consider the left problem, which queries the LogOp (disjunction) chain. One concise solution to the
question is “A is true. A or B implies C; C is true.” This problem, while simple-looking on the surface,
requires the model to perform actions that are essential to more complex reasoning problems. Even
writing down the first answer token (A in “A is true”) takes multiple steps The model must resolve
the ambiguity of which rule is being queried. In this case, it is “A or B implies C” not “D implies E”.
Then, the model needs to determine which facts are relevant and to process the information “A is
true” and “B is false”. Finally, it decides that “A is true” is relevant and implies that “C is true” due to
the nature of disjunction. In contrast, the problem on the right queries the linear chain, requiring the
model to locate different rules (Y implies Z) and process the facts (Y is false).

Our logic problem is also inspired by some of the ones in reasoning benchmarks such as
GSMS8k (Cobbe et al.| 2021) or ProofWriter (Tafjord et al. [2021). The issue with using exist-
ing benchmarks directly is that there is too much syntactic and semantic variation in the questions.
This makes it challenging to use the tools of mechanistic interpretability, which require changing
parts of the input in a systematic way to minimize confounding factors. One can amplify the difficulty
of our problem by increasing the number of variables or the length of the reasoning chain. However,
even on this simple problem, Mistral and Gemma models only achieve 70% to 86% accuracy in
writing the correct proof and determining the query value, even with few-shot prompting.

1.2 Interpreting How LLMs Solve the Logic Problems

Given the above problem template, we design systematic causality-based experiments to understand
how LLMs solve it. We aim to localize and delineate circuits, as a way to interpret how contemporary
LLMs solve propositional logic problems (e.g., how they determine relevant parts of the input, how
they move information around, how they process facts, and how they make decisions). Finding
an interpretable circuit amounts to identifying a small number of components that map to natural
operations and together implement an intuitive reasoning algorithm. It is important to note that,
a priori, a non-interpretable outcome is also possible, where the LLM internally merges steps in
reasoning or distributes the steps across all its parameters. One of our contributions is strong evidence
that the mechanisms for LLMs to solve such reasoning problems are indeed modular and localized.

Figure[T|shows the main ideas of our approach, including the data model, the interpretability tools,
and some findings that are shared across all three models: Gemma-2-27B, Gemma-2-9B (Gemma
Team et al.| |2024) and Mistral-7B-v0.1 (Jiang et al.,|2023)). Our main findings are:

2Qur code is available at https: //github. com/guanzhehong/prop-logic-transformer-circuit
3Each word (or capital letter representing a boolean variable) gets tokenized as an individual token.

https://github.com/guanzhehong/prop-logic-transformer-circuit

Problem Set-up Mechanistic Interpretability for Logical Reasoning Model Comparison
Causal Data Model 1. Necessity 2. Sufficiency 3. Fine-Grained Mistral 7B Gemma 9B
(Patching) (Verification) (Interventions) o000 0]0)0)
Logical 0000 00O
X outl || out2 Output
Operator | “ | | | DI:MIDD 0000 01010
0®00 O®00 5000 000
Linear Chain 2 o000
L O0®0O 00O Gemma 278
5} Facts
Facts: {V, W, Y} are {true, false} 5;‘ OOOO OOOO 88888
Query: ... truth value of {X, Z}? O O O O O O O O Info 00000
_______________________________ Locate
O®O00O 000 Rule 00000
Constructing Counterfactuals
9 Input. Rules: V and W implies X. Y implies Z. Customized Q) O O QO
Capture signals from model Facts: Vis true. Wis true. Y is false. Causal Mediation 0O000O
components after modifying Question: what is the truth value of X? Analysis New Findings from Analysis:
theinput (e.g., changingthe = |--==- - - = m oo)
query variable from X to Z) Necessity Test: Sufficiency Test: These LLMs.contain t'he same
Swap activations @ with Replace the complement of core reasoning functionality
counterfactual signals O and conjectured circuit with They contain separate parts
check for output degradation counterfactual signals and verify that locate rules, move info,
(e.g., logit differences) the model maintains its behavior . Sio
-g., 10g process facts, make decisions

Figure 1: Left: Problem set-up. Top left shows the data model. The causal structure has two chains:
one with a logical operator (LogOp, “and” or “or”’) and the other with a linear causal chain. Bottom
left shows how we get counterfactual signals for the model components (e.g., attention heads). We
vary parts of the input, such as the query variable, truth values, and order of rules. Middle: Key
steps in our interpretability approach. We use causal mediation analysis to localize components in
LLMs that are used to solve the logic problem (circles represent attention heads, with layers stacked
vertically). We derive evidence about the functionality of components using multiple methods. For
necessity, we patch with counterfactual signals (represented by blue and red nodes). Then we check
the impact of each component by looking at the output of the network (e.g., checking if it outputs very
different distributions “outl” vs. “out2” after patching). For sufficiency, we replace the complement
of the circuit with counterfactuals, and we verify that the output does not change too much. For
fine-grained analysis, we use key-value-query interventions to identify the role each component plays.
Right: New findings. Three LLMs use similar reasoning steps when solving these problems. They
use four sparse and distinct sets of attention heads in a step-by-step fashion to execute rule locating,
rule moving, fact processing, and decision making (depicted by the colored nodes).

* All three models contain four families of attention heads with specialized roles in solving
different steps in the problem: queried-rule locating heads, queried-rule mover heads, fact-
processing heads, and decision heads (§3). This is surprising, as it indicates the model solves
the logic problem in a sequential manner, without merging the steps. We further verify the
roles of these four families by analyzing their behavior separately by patching after various
types of counterfactual prompts, e.g., swapping rule locations or fact values (§3.3).

Intriguingly, the three LLMs all perform a type of lazy reasoning. The core circuit does
not immediately pre-process the Rules and Facts in the input. Rather, it primarily activates
after seeing the Question and the ultimate query variable (§3). Moreover, the LLMs tend to
reuse some of their sub-circuits for different parts of the argument when possible, consistent
with Merullo et al.|(2024a). We verify this for Gemma-2-9B and Mistral-7B (§@).

* We provide a partial analysis of Gemma-2-27B, which is somewhat limited due to compu-
tational contraints (§3.4). While all three models contain these four families components,
Gemma-2-27B also possesses certain logical-operator heads that do not seem to exist or
have strong causal roles in the 9B version. Gemma-2-27B’s circuit appears to be slightly
more parallel than the 9B version, which is more sequential. This adds nuances to a study
showing that circuits are consistent across scale by [Tigges et al.| (2024). Indeed, from
Gemma-2-9B to Gemma-2-27B, while the core algorithm appears to stay the same, there
are mechanical differences and additional functional components which likely contribute to
the larger model’s higher proof accuracy.

* Finally, we contrast pre-trained LLMs with 3-layer models trained on our task. The small
models perform intermingled reasoning, linking together their attention blocks and residual
streams in subtle ways. These small models have nearly perfect accuracy, but their reasoning
mechanisms are less modular, as the functional roles of model’s internal components tend

to be situation-dependent (§3.5)). In contrast, Mistral and Gemma seem to consistently use
specialized components for different parts of the task.

Our analysis is, to our knowledge, the first to characterize the circuits employed by LLMs in the
wild for solving a logic problem that involves distracting clauses and requires multi-step reasoning.
While this reasoning is limited compared to the abilities of today’s thinking models (Guo et al.,
2025a; |Arcuschin et al., [2025)), we still go beyond single-hop tasks like token copying or addition
from recent studies, e.g., [Feucht et al.| (2025); Hu et al.| (2025). As another outcome, we have
uncovered fundamental differences between small (3-layer), medium (7B/9B), and large (27B)
models, indicating only some mechanistic insights generalize across scales.

2 Preliminaries and Methodology

We explain our data model and then give an overview of the methodology we use for our analysis.

Input Prompts. We query pre-trained LLMs in a few-shot manner on propositional logic problems
defined in the introduction. We show 4 or 6 examples of questions and their minimal proofs (see
Appendix [B.T] for details). Then, we append a new problem that asks for the truth value of one
variable, in the “Question” part. We refer to this variable as the QUERY token. A minimal reasoning
chain consists of invoking the relevant fact(s) and rule to answer the query. Given the in-context
examples, the models we consider always output a proof followed by the value of QUERY from
{true, false, undetermined}. Interestingly, for the disjunction problem (e.g., invoking A or B implies
C) when the model makes errors, it always starts with an incorrect first token (e.g., saying B is true,
where relevant fact is that A is true). Hence, we can analyze the model’s components when predicting
the first token. In other words, to produce the first answer token in the minimal proof, the model must
execute the causal chain “QUERY —Relevant Rule—Relevant fact(s)—Decision” over the context.

Causal Mediation Analysis. Following prior work, we primarily rely on Causal Mediation Analysis
(CMA) (Pearl,[2001)) to characterize the reasoning circuits. In our setting, CMA is primarily concerned
with measuring the (natural) direct and indirect effects (DE and IE) of a model component. Consider
the following classic causal diagram of CMA, in Figure 2]

Suppose we wish to understand whether a certain mediator
M plays an important role in the causal path from the input
X to the outcome Y. We decompose the “total effect” of
X on Y into the sum of direct and indirect effects, as
shown in the figure. The indirect effect (IE) measures how
important a role the mediator M plays in the causal path Figure 2: CMA causal graph.

X — Y. To measure it, we compute Y given X, except

that we artificially hold M’s output to its “corrupted” version (called an intervention), which is
obtained by computing M on a counterfactual (“corrupted”) version of the input. A significant
change in Y indicates a strong IE, which implies that M is important in the causal path. On the other
hand, a weak IE (so a strong DE) implies that M is unimportant.

Indirect effect

Direct effect

Using CMA for Circuit discovery in LLMs — Necessity and Sufficiency. We can apply the above
CMA methodology to identify the reasoning circuits in LLMs. We look at both the proof and the
final answer output by the model. We perform our interpretability analysis before the model has
produced the first token. We believe the first token demands the greatest number of latent reasoning
steps by the model, so it is the most interesting place to examine. Consider the conjunction problem
in The first step in our analysis is the construction of a ‘counterfactual’ prompt given a base
prompt (we refer to the base prompt as the normal prompt in the rest of the paper). For the first
answer token, when we flip the QUERY token from C to E, the LLM must execute a fully different
causal chain, from “C—A and B implies C—A is true, B is false—B” to “E—D implies E(—D is
true)—D”. In other words, flipping the QUERY token alone generates a “‘counterfactual” prompt
which will help reveal the how the LLM latently executes the causal chain of “QUERY —Relevant
rule—Relevant fact(s)—Decision”. The outcome Y to measure is also naturally defined here: the
softmax layer’s logit difference between the two possible answers, B and D. Therefore, by generating
normal-counterfactual prompt pairs in this fashion, LLM components with strong IEs, i.e., those
pushing the LLM from the normal to the counterfactual answer, must belong to the reasoning circuit.
To verify the sufficiency of the circuit, we just need to set the complement of the circuit as the
mediator, and show that the DE is strong.

Aor Bimplies C Component Legend i KeyNvalue
D implies E Query Attention head type Output
(Layer idx, head idx)

Dis true

Alis true

Bis false v

Queried-rule
locating heads

(179), (19:11), 21,7, y :

(22,5), (23,12) ind . i

: ‘(Queried-rule Fact-processing Decision heads
Answer: > mover heads heads (28,12), (30,9)
t (20,7), (23,6), (24,15) (24,5), (25,7), (26,0;12) reE

Figure 3: Gemma-2-9B’s reasoning circuit for the first answer token: The (chunks of) input tokens
are on the left, which are passed into the residual stream and processed by the attention heads. We
use (¢, h) to denote an attention head. When referencing multiple heads in the same layer, we write
(€, h1; ha;...; hy,) for brevity. We illustrate the information flow manipulated by the different types of
attention heads we identified to be vital to the reasoning task.

=1
[oeme |

!

Fine-grained analysis: Understanding sub-component functionality. After obtaining the full
circuit, we can theorize about the role each component in the circuit plays in the reasoning chain.
However, we need to verify such interpretations with empirical causal evidence. To do so, we again
perform CMA with specific sub-components of the circuit held as the mediator, and we measure their
IEs. For instance, if we hypothesize that an attention head uses the QUERY token to locate the rule
being queried (the first reasoning step), then we perform two experiments. First, we set the mediator
as the key activations of this head in the Rule section, and generate the counterfactual prompt by
swapping the position of the rules, without touching anything else in the prompt. We should then
observe a strong IE. Second, we generate the counterfactual prompt by flipping QUERY. Then, the
query activation of this head, when held as the mediator, should have strong IE. In general, testing a
hypothesis of a reasoning circuit component’s role requires careful control on where the input prompt
is “corrupted”, where we need control over how the answer changes or does not change.

For the model to solve our logic problem, it has to perform multiple steps of reasoning, going from
the Question to the Rules to writing down the proof. This leads to a more complicated process for
systematically investigating the internal mechanisms in the LLMs. Other tools commonly used in
mechanistic interpretability such as activation patching, causal tracing (Vig et al.,|2020; Meng et al.,
2022; |Hase et al.| [2024; Heimersheim & Nandal [2024; Zhang & Nanda, |2024) are types of CMA.

3 Discovering Modular Reasoning Circuits in LLMs

To make the problem easier for the smaller models, we only examine Gemma-2-9B and Mistral-7B on
the disjunction version (the LogOp is “or”); but, we study Gemma-2-27B on the full problem. For the
“or” problem, Gemma-2-9B and Mistral-7B have proof accuracy around 83% and 70% respectively.
Their accuracy with “and” is lower, while Gemma-2-27B has accuracy of 86% on the full problem.

We focus on Gemma-2-9B in the main text, which illustrates our analysis process. This example
elucidates the common procedure we apply to the other models as well. Appendix [B]contains the full
results for Gemma-2-9B, Mistral-7B and Gemma-2-27B models.

3.1 Discovering the Necessary Circuit: QUERY-based Search for Model Components

We discover the core reasoning circuit by performing QUERY-based intervention experiments. After
performing attention head output patching and measuring logit differences, we locate a small set of
attention heads that are central to the reasoning circuit of the LLM. The MLPs have much lower
intervened logit difference (mostly < 0.1) showing they play a limited role in the reasoning process.
However, we observe MLP-0 has a higher intervened logit difference. Prior work has observed that
MLP-0 acts more as a “nonlinear token embedding” than a complex high-level processing unit (Wang
et al.,[2023a). Hence, in the rest of this section, we focus our analysis on the attention heads.

18 (19,11)@QUERY
19 * (236)@: 1
20 0.8 (26,12)@: 20

21 [] »_ (309)@: 2
52 o _ 2
523 || Queried-rule mover ,#3
<24 Fact processing 24
225 B 04 25
~26 [| 26
27 27
28 | 02 28

29 Decision ~ _ __--7 - 29
30 e 0.0 ul;-l-iltlnwu L»-A—I-»»Lt;;;»i 30

== m‘-:-'no- = SO~

= . 2 4
@2 Head Index

6 8 X
Head Index e}

Rules
A'mplle
Facts
true
true
false
uesnon
what
truth
va!ue
Answer

impl

(a) Query (b) Typical attention pattern (c) Value

Figure 4: Patching of query and value activations in (a) and (c). We show in (b) the typical attention
patterns of a representative set of the attention heads, which are important in the intervention
experiments shown in (a) and (c). We make several observations from (b).

: observe that it correctly locates the queried rule that ends with Q. Queried-rule mover
head (23.6): it primarily focuses on the QUERY token Q, with some small amount of attention on the
tokens following it. Fact processing head (26,12): attention concentrates in the fact section. Decision
head (30,9): attention focused on the correct first answer token U. In this experiment, intervening on
“key” activations yields trivial scores, so we focus on “value” and “query.”.

Remark. Unless otherwise specified, we adopt a calibrated version of the logit difference (see
Appendix [B): the closer to 1, the stronger the indirect effect of that component is in the causal chain,
and the greater a role that component plays in the reasoning circuit.

Attention-head sub-component patching (QUERY-based patching). We now aim to understand
why the attention heads identified in the last sub-section are important. For now, we continue with
altering the QUERY in the prompt as our causal intervention. We intervene on the sub-components
of each attention head, namely their value, key, and query, and we examine details of their attention
weights. We find that there are four types of attention heads. We show the results in Figure [

. Attention head (19,11)’s query activation has a large intervened logit
difference according to Figure [fa). Therefore, its query (and attention patterns) are QUERY-
dependent and have strong IE. Furthermore, at the QUERY position, we find that on average, its
attention weight is above 85% at the “conclusion” variable of the rule being queried. It is responsible
for locating the queried rule, and storing that rule’s information at the QUERY positionﬂ

Queried-rule mover head. Attention head (23,6)’s value activations have large intervened logit
difference, and intriguingly, its query and key activations do not share that tendency. This already
suggests that its attention pattern performs a fixed action on both the original and altered prompts,
and only the value information is sensitive to QUERY. Furthermore, within the relevant context
(excluding the 4 in-context examples given), (23,6) assigns around 50% attention weight to the
QUERY position, and its attention weight at QUERY is about 5 times larger than the second largest
one on average. Recalling the role of the shallower layers, we find evidence that (23,6) moves the
QUERY and queried-rule information to the “:” positionﬂ

Fact processing heads. Attention heads (26,12)’s query activations have large intervened logit
differences. Within the relevant context, at the “:” token position, it attention weight on the sentence
stating the correct fact is around 60% on averageﬂ

Decision head. Attention heads (28,12) and (30,9)’s query activations have large intervened logit
differences. Their attention patterns suggest that they are “decision” heads. Within the relevant
context, each head’s attention weight focuses on the correct Fact variable (when the model is correct).
The single token position occupies about than 80% of its total attention in the relevant context on
average. In other words, it locates the correct answer token.

417,9), (21,0), (21,7), (22,5), (23,12) exhibit similar tendencies.
5(20,7), (24,15) also belong to this type.
6(24,5), (25,7), (26,0) also belong to this type.

We delay detailed inspection and visualization of the attention statistics to Appendix [B.4.2] Figure[3]
illustrates the reasoning circuit we identify. We remark on two intriguing properties:

1. Compared to the attention blocks, the MLPs are relatively unimportant to correct prediction.

2. There is a sparse set of attention heads that are found to be central to the reasoning circuit: the
queried-rule locating heads, queried-rule mover heads, fact-processing heads, and decision
heads. We discuss circuit discovery in §3.1] and verification in §3.2] This indicates that a
very small fraction of the 9B parameters are taking part in solving a specific question.

3.2 Verifying Sufficiency of the Discovered Circuit

A natural question now arises: is C sufficient to explain the (QUERY-sensitive) reasoning actions of
the LLM? We prove sufficiency by measuring the direct effect of the input prompt on the difference
in the final logits, with the complement of the identified circuit treated as the mediator (defined in
§2). More concretely, we run the model on the normal prompts and only allow normal information
flow in every attention head in the circuit C = {(19,11), (23,6), (26,12), (30,9), ...} (on or after
QUERY), while freezing all the other attention heads to their counterfactual activations obtained by
running on the counterfactual prompts. We expect the average circuit-intervened logit difference
Agormu ; approaching or surpassing the average logit difference of the (un-intervened) model run on
the normal prompts, A, ,-maq;. We confirm this hypothesis in Table

ct | Chuu C C—QRLH C—-QRMH C-FPH C-DH
AC i) Dnormar | 110 0.94 -0.97 -0.40 0.17 -1.11

Table 1: Afjormal /Apormar for Gemma-2-9B, with different choices of Ct. Chuu denotes the
empty circuit, i.e. the case where no intervention is performed. We abbreviate the attention head
families: QRLH = queried-rule locating heads, Q RM H = queried-rule mover heads, FPH =
fact-processing heads, DH = decision heads; C — DH = full circuit but with the decision heads

removed.

Including all 13 attention heads in C, Afmmaz is about 94% of A, ,ma; On the normal samples.
Removing any one of the four families of attention heads from C renders the direct effect almost
trivial. Therefore, every head family is critical to the circuit. Additionally, for Mistral-7B’s circuit
which we obtained via the same search process, we were able to recover about 98% of the average
logit-difference, indicating transferability of the procedure; please see[B.5|for more details.

Please refer to Appendix [B.8.3|for deeper discussions of the experimental procedure and nuances of
the results, including different versions of the circuit which we performed sufficiency tests on for
Gemma-2-9B, the complexities of this verification process, and how we consider certain aspects of
circuit verification a major open problem in mechanistic studies of LLM reasoning.

3.3 Additional Evidence: More Fine-Grained Circuit Analysis

In this sub-section, we discuss example experiments of how we further verify the functionalities of
the attention head families. We present the full analysis in Appendix

Queried-rule locating heads. We use the queried-rule locator heads, the “first step” in the reasoning
circuit, to demonstrate how we perform finer “causal surgery” on the LLM to understand sub-
components of the full circuit better.

First, based on our full-circuit CMA experiments, we have formed an interpretation of the queried-rule
locator heads: they rely on the QUERY information to locate the queried rule in the Rules section.
This is further corroborated by the attention statistics of these attention heads, shown in Figure Ekb)(i):
these attention heads place significant amount of attention weight on the correct position of the
queried rule.

To further verify the “look-up” functionality, we create counterfactual prompts by swapping the
location of the rules while keeping everything else untouched in the normal prompt. For instance, we
would have the following normal-counterfactual pairs:

15 1.0 0.8

0.2 W Attn on QUERY
16 : %0.8 06 W= Max attn on other posn
k= .
1 . 206
01 § 0.4
18 20.4
g 2
1 202 0.
0.0
0.0 0.0

(17,9) (19,11) (22,5) (23,12) (23,6) (20,7) (24,15)

N
o ©

Layer Index

N
-

o1 (b)(i) Queried-rule locators (b)(ii) Queried-rule movers
1.0

. . Wl Attn on correct fact . N Attn on answer tok
. W Attn on QUERY and : 0.8 ™= Max attn on other posn
*7 mmm Max attn on other posn
-0.2 P
24
o 1 2 3 4 5 6 7

' 0.6
2 } 0.4
. 0.2
(a) Example fine-grained intervention: o i 00 L

Head Index
swap rule locations, then patch key @245 (2571 (260) (2612) (28,12) (30,9)
activations in the Rules positions (b)(iii) Fact processors (b)(iv) Decision

N
N

N
w
[=]
o

[=}
IS

Attention weight

=
N

Figure 5: Finer-grained examination of circuit components in the Gemma-2-9B model. (a) shows
the (zoomed-in) result of a finer-grained activation patching experiment, aimed at providing further
causal evidence of the rule-locating heads’ functionalities. (b)(i) to (iv) show the attention statistics
of the core attention head families in the circuit.

Rules: A or B implies C. D implies E.
Facts: A is true. B is false. D is true.
Question: what is the truth value of C?

Rules: D implies F. A or B implies C.
Facts: A istrue. B is false. D is true.
Question: what is the truth value of C?

altered

prompt

Clearly, this rule location swap does not cause any change to the answer (here, C' is true in both
versions). However, the queried-rule locator heads’ functionality suggests that they heavily rely on
the key activations (in the Rules section) to perform their role correctly. To provide further causal
evidence for this interpretation, we should set the mediator as the key activations of the attention
heads in the Rules section, and observe their indirect effects on the model’s output logits, namely the
drop in the logit difference between the answer of the queried rule and that of the alternative rule.

As expected, heads with the largest IE are the queried-rule locator heads, as shown in Figure[5{(a). The
keys with strong indirect effects are (17,4), (19,5), (22,2) and (23,6). By noting that Gemma-2-9B
uses Grouped Query Attention which results in key and value activations shared per two heads, we see
that keys with strong indirect effects indeed correspond to the attention heads (17,9), (19,11), (22,5)
and (23,12). In addition, we perform CMA experiments where we swap the Fact value assignments.
The fact-processing heads indeed exhibit the strongest IE.

A possible limitation in generalizing this specific “causal surgery” to contexts with a large number
of clauses is that, how distant the two clauses we interchange positions with becomes a possible
confounding factor. Careful control on how distant the two interchanged clauses are and their absolute
positions in the context is then required.

Attention statistics. We also show the weight of four attention head families in Figure[5[b)(i) to (iv).
The main takeaway is correlational evidence showing that heads attend to the expected part of the
input (blue bars), which varies by type of head, rather than other positions.

3.4 The Reasoning Circuit in Gemma-2-27B

We summarize a few interesting observations about Gemma-2-27B here (Appendix [B-9]has details).

Mechanical circuit differences between 27B and 9B models. Even though the 27B model also
possesses attention heads which can be roughly divided into the 4 families as in the case of the 9B
model, there still are certain finer differences between their circuits: the 27B model’s circuit appears
to have a greater degree of parallelism. In particular, a number of its fact-processing heads have direct
effects on the model’s output: they tend to bypass the “decision” heads. On the other hand, the 9B
model’s circuit is more sequential: the fact processing heads are mostly “connected” to the decision
heads and exhibit weak direct effects on the model’s logits.

Logical-operator heads. As the 27B model is required to solve the full version of the problem, on
top of the four generic families of attention heads, we find that there are certain “logical-operator”
heads which pay particular attention to the words “and” and “or” in the rules, and exhibit strong
causal influence on the model’s reasoning actions. In particular, if we generate counterfactual prompts
by flipping the logical operator from “and” to “or” (or vice versa) while keeping everything else the
same as the normal prompt, then we find these logical-operator heads to have strong indirect effects.
This is further discussed in Appendix [B.9]

3.5 Further Mechanistic Observations

Subcircuit reuse. Both Gemma-2-9B and Mistral-7B reuse their queried-rule locator heads and
decision heads. Specifically, when the model needs to invoke a relevant rule (from the input) later to
construct their output proof, it uses the same heads (but other input positions) to retrieve the location
of the rule. Similarly, the decision heads may perform their function multiple times. In other words,
this pair of components serve as the first and last reasoning step in both places of the model’s proof.
Please refer to Appendix for details.

Prompt-format variation. To provide insights on how generalizable the sub-circuits we found are,
we perform CMA on Gemma-2-9B on our logic problem, but with the prompt-format changed to
“Facts: ... Rules: ... Question: ... Answer: ...” (Rules and Facts sections are swapped in position). The
queried-rule locators and decision heads remain almost the same in the discovered circuit as before.
The mover and fact-processing heads experienced some changes, however. For example, some of the
fact-processing heads focus both on relevant premise variables in the Rules section and facts in the
Facts section now. This indicates that the intermediate heads are more “fluid” in their functional roles
in the circuit. We discuss these results in detail in Appendix [B.8.7]

Contrast against small transformers. To contrast against LLMs which are highly overparameterized
and trained on a large variety of data, we also conducted a mechanistic analysis of a small GPT-like
transformer trained from scratch on a slightly more complex version of our logic problem. We present
the analysis of the 3-layer 3-head transformer in Appendix [C]and[D] with the high-level reasoning
strategy employed by the model illustrated in Figure it is the smallest model capable of achieving
100% test accuracy on the problems.

The most pronounced difference we found is the less interpretable and modular nature of the attention
heads in the small transformer. We show that, when a linear chain is queried, the second layer
attention heads already arrive at the answer and the third layer stays “dormant”, but when a logical-
operator-chain is queried, layer-3 attention heads need to actively participate to resolve the right
answer. In other words, the small model does not have specialized “decision heads” for all situations
in the problem, unlike the LLMs. Furthermore, when the logical-operator chain is queried, even
though the final-layer attention heads are proven to be the ones resolving the correct answer, their
attention patterns are unstructured, scattered across token positions in the Rules and Facts sections.
These observations suggest a (relative) lack of modularity and interpretability in the small model.

4 Related Work

Mechanistic Interpretability. This area explores the hidden mechanisms that enable language-
modeling capabilities and other underlying phenomena from LLMs (Olsson et al., 2022; |Wang et al.,
2023b; |[Feng & Steinhardt, [2024; |Wu et al., [2023} [Hanna et al.| 2024; McGrath et al.,2023; Singh
et al., | 2024; |Geiger et al., 2024; [Feng et al., [2024; Marks et al., 2024} |[Engels et al., [2024; (Csordas
et al.| |2025}; [Baroni et al.,[2025; |Merullo et al.,2024b;|Yin & Wang, 2025} Lindsey et al.,|2025). Some
works show how models retrieve knowledge and facts (Ferrando et al.| 2025} (Geva et al., [2023} [Sun
et al.| 2025} |Yao et al., [2024; Wang et al., |2024bj; [Lu et al., [2025), encode concepts (Todd et al.,|[2024;
Yin & Steinhardt, 2025; Hong et al., [2025; |Beaglehole et al., 2025; [Li et al.|[2025c)) or employ certain
features in CoT reasoning (Dutta et al., [2024; Troitskii et al.,|2025; |Wang et al.,2025a} [Venhoff et al.}
2025b; |Chen et al.l 2025} |[Venhoff et al., [2025a; Baek & Tegmarkl, 2025} [Li et al., [2025b; [Huang
et al., 2025} Dai et al.| 2025} [Lee et al.,|2025). These works primarily provide causal evidence of
their claims through variants of causal mediation analysis (Vig et al.||2020; Meng et al., 2022} Hase
et al.}2024; Heimersheim & Nandal 2024} |Zhang & Nanda, [2024; Mueller et al., [2025; \Geiger et al.,
2025)). Our paper is in the sub-area of circuit-based mechanistic interpretability, e.g., (Elhage et al.|
2021} (Wang et al.l 2023a). The novelty of our work is that we study larger LLMs on a compact logic

problem requiring hidden intermediate reasoning steps, which affords the analysis of how retrieval,
processing, and decision components operate in conjunction, distinct from aforementioned works
which identify certain steering features for CoT reasoning.

Coarse-Grained Evaluation of Reasoning in LLMs. There has been a flurry of work on training
and evaluating reasoning LLMs (Muennighoff et al., 2025} |Ye et al., [2025; Wang et al., 2025c} |Sinha
et al 2025; Zhang et al., [2025} [Shojaee et al., 2025)). This extends the work on evaluating the
reasoning abilities of LLMs across different tasks (Xue et al., 2024} |Tafjord et al., 2021; [Hendrycks
et al., 20215 |Chen et al., [2024 |Patel et al., 2024; Berglund et al.,|2024; Morishita et al., [2023} [Liu
et al.| 2023} |Fu et al.,2024; Seals & Shalin, |2024; Joren et al.| 2025} Zhang et al., [2024,2023}; Saparov:
& He), |2023}; Saparov et al., 2024} |Sun et al.| 2023} |Luo et al.,|2024; Shah et al.| 2024} |Arora et al.,
2024; Han et al.| 2024} |Dziri et al., [2024; | Yang et al., 2024; [Loo et al.,2026; |Li et al., 2025a). While
these studies primarily benchmark their performance on sophisticated tasks, our work focuses on
understanding “how” transformers reason on logic problems accessible to fine-grained analysis (e.g.,
mechanistic circuit analysis).

Fine-Grained Analysis of How LLMs Reason. There are fewer studies that provide fine-grained
analysis of how pretrained LLMs reason latently. We build on ideas from mechanistic interpretability
for arithmetic (Stolfo et al., 2023} |'Yu & Ananiadou, 2024} Kantamneni & Tegmarkl [2025}; |[Zhou
et al., |2024; Wang et al., [2025b; |Mamidanna et al., 2025), syllogistic reasoning (Kim et al., [2024),
graph connectivity (Saparov et al., 2025), and indirect object identification (Wang et al., |2023a)).
However, none studies full propositional-logic problems with [Variable relationships]+[Variable
value assignment]+[Query] aspects while considering modern LLMs. We complement existing work
on mechanistic analysis for such symbolic reasoning that considers small models trained on the
task (Brinkmann et al., 2024} |Guo et al., 2025b; Wang et al., 2024a; Zhu et al.| 2024} Lin et al., |2025)).

5 Discussion and Conclusion

We studied the reasoning mechanisms of three pre-trained models, ranging from 7B to 27B pa-
rameters. To do so, we introduced a simple propositional logic problem that was amenable to
mechanistic interpretability tools. We characterized the LLMs’ reasoning circuits, showing that they
contain four families of attention heads. These components implement the reasoning pathway of
“QUERY —Relevant Rule—Relevant Facts—Decision.” Our findings provide valuable insights into
the inner workings of LLMs on in-context logical reasoning problems, going beyond prior work. The
fact that we found similar circuits in three distinct LLMs suggests that certain components organically
arise from pre-training (even though it is unlikely that the LLMs were trained on identical problems).

A priori, it was not clear whether we could find isolated reasoning components in LLMs. In fact, we
had a different conjecture based on studying the logic problem for small models, such as the 3-layer
transformers (Appendix [C| and D). As mentioned before, for these small models, we found less
modularity in their components, and in particular, they are less lazy. This behavior on Transformers
trained specifically on a synthetic task is also supported by the work of |Ye et al.| (2024). Real-
world LLMs seem to behave in a different manner, where not much processing happens until the
QUERY token is seen, and their attention patterns tend to be sparser and exhibit more consistent
and specialized structures. Plainly, LLMs not only ingest facts from the input prompt (via in-context
learning), but they also have specialized internal components that process the provided information
before downstream computation.

Limitations. An area of improvement is to extend to more complex problems. With more computa-
tional resources, we should aim to understand what structures are consistently employed by LLMs in
implementing longer logical chains. A possible direction is analyzing latent circuits at critical token
positions in the CoT trace of (thinking) LLMs, building on works such as|Bogdan et al.|(2025)), but in
more formalized settings, such as on longer propositional-logic problems. This would strengthen
and generalize our claims about the existence and robustness of reasoning circuits. Moreover, there
are unanswered questions about how model size and family impact the types of reasoning circuits.
We compare the results on Gemma with Mistral-7B in Appendix [B.4.1] providing some evidence
that model size may be more indicative of capabilities than model family (given certain similarities
between Gemma-2-9B and Mistral-7B). Embedding-level analysis and steering are other important
future directions.

10

Acknowledgements

The authors wish to thank Fred Zhang for the fruitful discussions around circuit analysis of LLMs,
and the anonymous reviewers for their helpful comments and suggestions for improving the paper.

References

Arcuschin, I., Janiak, J., Krzyzanowski, R., Rajamanoharan, S., Nanda, N., and Conmy, A. Chain-of-
thought reasoning in the wild is not always faithful. In ICLR Workshop on Reasoning and Planning
for Large Language Models, 2025.

Arora, A., Jurafsky, D., Potts, C., and Goodman, N. D. Bayesian scaling laws for in-context learning,
2024. URL https://arxiv.org/abs/2410.16531,

Ba,J. L., Kiros, J. R., and Hinton, G. E. Layer normalization, 2016. URL https://arxiv.org/
abs/1607.06450.

Baek, D. D. and Tegmark, M. Towards understanding distilled reasoning models: A representational
approach, 2025. URL https://arxiv.org/abs/2503.03730,

Baroni, L., Khara, G., Schaeffer, J., Subkhankulov, M., and Heimersheim, S. Transformers don’t
need layernorm at inference time: Scaling layernorm removal to gpt-2 xI and the implications for
mechanistic interpretability, 2025. URL https://arxiv.org/abs/2507.02559\

Beaglehole, D., Radhakrishnan, A., Boix-Adsera, E., and Belkin, M. Toward universal steering and
monitoring of ai models, 2025. URL https://arxiv.org/abs/2502.03708.

Berglund, L., Tong, M., Kaufmann, M., Balesni, M., Stickland, A. C., Korbak, T., and Evans, O.
The reversal curse: LLMs trained on “a is b” fail to learn “b is a”. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=
GPKTIktAOKkl

Bogdan, P. C., Macar, U., Nanda, N., and Conmy, A. Thought anchors: Which Ilm reasoning steps
matter?, 2025. URL https://arxiv.org/abs/2506.19143.

Brinkmann, J., Sheshadri, A., Levoso, V., Swoboda, P., and Bartelt, C. A mechanistic analysis of
a transformer trained on a symbolic multi-step reasoning task. In Ku, L.-W., Martins, A., and
Srikumar, V. (eds.), Findings of the Association for Computational Linguistics: ACL 2024, pp.
4082—4102, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024 findings-acl.242. URL https://aclanthology.org/2024.findings-acl,
242/.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam,
P, Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R.,
Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray,
S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, 1., and Amodei, D.
Language models are few-shot learners. In NeurIPS, 2020.

Chen, R., Zhang, Z., Hong, J., Kundu, S., and Wang, Z. Seal: Steerable reasoning calibration of large
language models for free, 2025. URL https://arxiv.org/abs/2504.07986.

Chen, X., Chi, R. A., Wang, X., and Zhou, D. Premise order matters in reasoning with large language
models, 2024. URL https://arxiv.org/abs/2402.08939,

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert, M., Tworek, J., Hilton,
J., Nakano, R., and Schulman, J. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

Csordés, R., Manning, C. D., and Potts, C. Do language models use their depth efficiently?, 2025.
URL https://arxiv.org/abs/2505.13898,

Dai, X., Guo, K., Lo, C.-H., Zeng, S., Ding, J., Luo, D., Mukherjee, S., and Tang, J. Graphghost:
Tracing structures behind large language models, 2025. URL https://arxiv.org/abs/2510!
08613.

11

https://arxiv.org/abs/2410.16531
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2503.03730
https://arxiv.org/abs/2507.02559
https://arxiv.org/abs/2502.03708
https://openreview.net/forum?id=GPKTIktA0k
https://openreview.net/forum?id=GPKTIktA0k
https://arxiv.org/abs/2506.19143
https://aclanthology.org/2024.findings-acl.242/
https://aclanthology.org/2024.findings-acl.242/
https://arxiv.org/abs/2504.07986
https://arxiv.org/abs/2402.08939
https://arxiv.org/abs/2505.13898
https://arxiv.org/abs/2510.08613
https://arxiv.org/abs/2510.08613

Dutta, S., Singh, J., Chakrabarti, S., and Chakraborty, T. How to think step-by-step: A mechanistic
understanding of chain-of-thought reasoning. Transactions on Machine Learning Research, 2024.
ISSN 2835-8856. URL https://openreview.net/forum?id=uHLDkQVtyC.

Dziri, N., Lu, X., Sclar, M., Li, X. L., Jiang, L., Lin, B. Y., Welleck, S., West, P, Bhagavatula, C.,
Le Bras, R., Ettinger, A., Harchaoui, Z., and Choi, Y. Faith and fate: Limits of transformers on
compositionality. Advances in Neural Information Processing Systems, 36, 2024.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph, N., Mann, B., Askell, A., Bai, Y., Chen, A.,
Conerly, T., DasSarma, N., Drain, D., Ganguli, D., Hatfield-Dodds, Z., Hernandez, D., Jones, A.,
Kernion, J., Lovitt, L., Ndousse, K., Amodei, D., Brown, T., Clark, J., Kaplan, J., McCandlish, S.,
and Olah, C. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. https://transformer-circuits.pub/2021/framework/index.html.

Engels, J., Riggs, L., and Tegmark, M. Decomposing the dark matter of sparse autoencoders, 2024.
URL https://arxiv.org/abs/2410.14670,

Feng, J. and Steinhardt, J. How do language models bind entities in context? In The Tivelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=zb3b60K0O77.

Feng, J., Russell, S., and Steinhardt, J. Monitoring latent world states in language models with
propositional probes, 2024. URL https://arxiv.org/abs/2406.19501.

Ferrando, J., Obeso, O., Rajamanoharan, S., and Nanda, N. Do i know this entity? knowledge
awareness and hallucinations in language models. In /CLR, 2025.

Feucht, S., Todd, E., Wallace, B., and Bau, D. The dual-route model of induction. arXiv preprint
arXiv:2504.03022, 2025.

Fu, D., Guo, R., Khalighinejad, G., Liu, O., Dhingra, B., Yogatama, D., Jia, R., and Neiswanger,
W. Isobench: Benchmarking multimodal foundation models on isomorphic representations. In
First Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
KZd1EErRJ1l

Geiger, A., Wu, Z., Potts, C., Icard, T., and Goodman, N. D. Finding alignments between interpretable
causal variables and distributed neural representations, 2024. URL https://arxiv.org/abs/
2303.02536.

Geiger, A., Ibeling, D., Zur, A., Chaudhary, M., Chauhan, S., Huang, J., Arora, A., Wu, Z.,
Goodman, N., Potts, C., and Icard, T. Causal abstraction: A theoretical foundation for mech-
anistic interpretability. Journal of Machine Learning Research, 26(83):1-64, 2025. URL
http://jmlr.org/papers/v26/23-0058.html,

Gemma Team, Riviere, M., Pathak, S., Sessa, P. G., Hardin, C., Bhupatiraju, S., Hussenot, L.,
Mesnard, T., Shahriari, B., Ramé, A., Ferret, J., Liu, P., Tafti, P., Friesen, A., Casbon, M., Ramos,
S., Kumar, R., Lan, C. L., Jerome, S., Tsitsulin, A., Vieillard, N., Stanczyk, P., Girgin, S., Momchey,
N., Hoffman, M., Thakoor, S., Grill, J.-B., Neyshabur, B., Bachem, O., Walton, A., Severyn, A.,
Parrish, A., Ahmad, A., Hutchison, A., Abdagic, A., Carl, A., Shen, A., Brock, A., Coenen, A.,
Laforge, A., Paterson, A., Bastian, B., Piot, B., Wu, B., Royal, B., Chen, C., Kumar, C., Perry, C.,
Welty, C., Choquette-Choo, C. A., Sinopalnikov, D., Weinberger, D., Vijaykumar, D., Rogoziriska,
D., Herbison, D., Bandy, E., Wang, E., Noland, E., Moreira, E., Senter, E., Eltyshev, E., Visin,
F., Rasskin, G., Wei, G., Cameron, G., Martins, G., Hashemi, H., Klimczak-Plucifiska, H., Batra,
H., Dhand, H., Nardini, 1., Mein, J., Zhou, J., Svensson, J., Stanway, J., Chan, J., Zhou, J. P,,
Carrasqueira, J., [ljazi, J., Becker, J., Fernandez, J., van Amersfoort, J., Gordon, J., Lipschultz,
J., Newlan, J., yeong Ji, J., Mohamed, K., Badola, K., Black, K., Millican, K., McDonell, K.,
Nguyen, K., Sodhia, K., Greene, K., Sjoesund, L. L., Usui, L., Sifre, L., Heuermann, L., Lago, L.,
McNealus, L., Soares, L. B., Kilpatrick, L., Dixon, L., Martins, L., Reid, M., Singh, M., Iverson,
M., Gorner, M., Velloso, M., Wirth, M., Davidow, M., Miller, M., Rahtz, M., Watson, M., Risdal,
M., Kazemi, M., Moynihan, M., Zhang, M., Kahng, M., Park, M., Rahman, M., Khatwani, M.,
Dao, N., Bardoliwalla, N., Devanathan, N., Dumai, N., Chauhan, N., Wahltinez, O., Botarda, P.,
Barnes, P., Barham, P., Michel, P, Jin, P., Georgiev, P., Culliton, P., Kuppala, P., Comanescu, R.,

12

https://openreview.net/forum?id=uHLDkQVtyC
https://arxiv.org/abs/2410.14670
https://openreview.net/forum?id=zb3b6oKO77
https://openreview.net/forum?id=zb3b6oKO77
https://arxiv.org/abs/2406.19501
https://openreview.net/forum?id=KZd1EErRJ1
https://openreview.net/forum?id=KZd1EErRJ1
https://arxiv.org/abs/2303.02536
https://arxiv.org/abs/2303.02536
http://jmlr.org/papers/v26/23-0058.html

Merhej, R., Jana, R., Rokni, R. A., Agarwal, R., Mullins, R., Saadat, S., Carthy, S. M., Cogan,
S., Perrin, S., Arnold, S. M. R,, Krause, S., Dai, S., Garg, S., Sheth, S., Ronstrom, S., Chan, S.,
Jordan, T., Yu, T., Eccles, T., Hennigan, T., Kocisky, T., Doshi, T., Jain, V., Yadav, V., Meshram, V.,
Dharmadhikari, V., Barkley, W., Wei, W., Ye, W., Han, W., Kwon, W., Xu, X., Shen, Z., Gong,
Z., Wei, Z., Cotruta, V., Kirk, P., Rao, A., Giang, M., Peran, L., Warkentin, T., Collins, E., Barral,
J., Ghahramani, Z., Hadsell, R., Sculley, D., Banks, J., Dragan, A., Petrov, S., Vinyals, O., Dean,
J., Hassabis, D., Kavukcuoglu, K., Farabet, C., Buchatskaya, E., Borgeaud, S., Fiedel, N., Joulin,
A., Kenealy, K., Dadashi, R., and Andreev, A. Gemma 2: Improving open language models at a
practical size, 2024. URL https://arxiv.org/abs/2408.00118,

Geva, M., Schuster, R., Berant, J., and Levy, O. Transformer feed-forward layers are key-value
memories. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 5484-5495, 2021.

Geva, M., Bastings, J., Filippova, K., and Globerson, A. Dissecting recall of factual associations in
auto-regressive language models. In Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pp. 12216-12235, 2023.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R., Zhu, Q., Ma, S., Wang, P,, Bi, X, et al.
Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning. arXiv preprint
arXiv:2501.12948, 2025a.

Guo, T., Zhu, H., Zhang, R., Jiao, J., Mei, S., Jordan, M. 1., and Russell, S. How do llms perform
two-hop reasoning in context? arXiv preprint arXiv:2502.13913, 2025b.

Han, S., Schoelkopf, H., Zhao, Y., Qi, Z., Riddell, M., Zhou, W., Coady, J., Peng, D., Qiao, Y.,
Benson, L., Sun, L., Wardle-Solano, A., Szabo, H., Zubova, E., Burtell, M., Fan, J., Liu, Y., Wong,
B., Sailor, M., Ni, A., Nan, L., Kasai, J., Yu, T., Zhang, R., Fabbri, A. R., Kryscinski, W., Yavuz, S.,
Liu, Y, Lin, X. V., Joty, S., Zhou, Y., Xiong, C., Ying, R., Cohan, A., and Radev, D. Folio: Natural
language reasoning with first-order logic, 2024. URL https://arxiv.org/abs/2209.00840.

Hanna, M., Liu, O., and Variengien, A. How does gpt-2 compute greater-than? interpreting
mathematical abilities in a pre-trained language model. In Proceedings of the 37th International
Conference on Neural Information Processing Systems, NIPS 23, Red Hook, NY, USA, 2024.
Curran Associates Inc.

Hase, P., Bansal, M., Kim, B., and Ghandeharioun, A. Does localization inform editing? surprising
differences in causality-based localization vs. knowledge editing in language models. In Proceed-
ings of the 37th International Conference on Neural Information Processing Systems, NIPS "23,
Red Hook, NY, USA, 2024. Curran Associates Inc.

Heimersheim, S. and Nanda, N. How to use and interpret activation patching, 2024. URL https:
//arxiv.org/abs/2404.15255,

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, E., Song, D., and Steinhardt, J.
Measuring mathematical problem solving with the math dataset. arXiv preprint arXiv:2103.03874,
2021.

Hong, G. Z., Vasudeva, B., Sharan, V., Rashtchian, C., Raghavan, P., and Panigrahy, R. Latent
concept disentanglement in transformer-based language models, 2025. URL https://arxiv,
org/abs/2506.16975.

Hou, Y., Li, J., Fei, Y., Stolfo, A., Zhou, W., Zeng, G., Bosselut, A., and Sachan, M. Towards a
mechanistic interpretation of multi-step reasoning capabilities of language models. In Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 4902-4919,
2023.

Hu, X., Yin, K., Jordan, M. L., Steinhardt, J., and Chen, L. Understanding in-context learning of
addition via activation subspaces. arXiv preprint arXiv:2505.05145, 2025.

Huang, Y., Chen, H., Ruan, S., Zhang, Y., Wei, X., and Dong, Y. Mitigating overthinking in large
reasoning models via manifold steering, 2025. URL https://arxiv.org/abs/2505.22411|

13

https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2209.00840
https://arxiv.org/abs/2404.15255
https://arxiv.org/abs/2404.15255
https://arxiv.org/abs/2506.16975
https://arxiv.org/abs/2506.16975
https://arxiv.org/abs/2505.22411

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D. S., de las Casas, D., Bressand,
F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-A., Stock, P., Scao,
T. L., Lavril, T., Wang, T., Lacroix, T., and Sayed, W. E. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Joren, H., Zhang, J., Ferng, C.-S., Juan, D.-C., Taly, A., and Rashtchian, C. Sufficient context: A new
lens on retrieval augmented generation systems. In /CLR, 2025.

Kantamneni, S. and Tegmark, M. Language models use trigonometry to do addition. arXiv preprint
arXiv:2502.00873, 2025.

Kim, G., Valentino, M., and Freitas, A. A mechanistic interpretation of syllogistic reasoning in
auto-regressive language models, 2024. URL https://arxiv.org/abs/2408.08590.

Lee, A., Sun, L., Wendler, C., Viégas, F., and Wattenberg, M. The geometry of self-verification in a
task-specific reasoning model, 2025. URL https://arxiv.org/abs/2504.14379.

Li, A., Wang, C., Fu, D., Yue, K., Cai, Z., Zhu, W. B,, Liu, O., Guo, P., Neiswanger, W., Huang, F.,
Goldstein, T., and Goldblum, M. Zebra-cot: A dataset for interleaved vision language reasoning,
2025a. URL https://arxiv.org/abs/2507.16746.

Li, Y., Dong, Z., Sun, Y., Wang, W., Xiong, S., Luo, Y., Liu, J., Lu, H., Wang, J., Su, W., Zheng,
B., and Yan, J. Attention illuminates 1lm reasoning: The preplan-and-anchor rhythm enables
fine-grained policy optimization, 2025b. URL https://arxiv.org/abs/2510.13554,

Li, Y., Michaud, E. J., Baek, D. D., Engels, J., Sun, X., and Tegmark, M. The geometry of
concepts: Sparse autoencoder feature structure. Entropy, 27(4), 2025c. ISSN 1099-4300. doi:
10.3390/e27040344. URL https://www.mdpi.com/1099-4300/27/4/344.

Lin, T., Xie, J., Yuan, S., and Yang, D. Implicit reasoning in transformers is reasoning through
shortcuts, 2025. URL https://arxiv.org/abs/2503.07604.

Lindsey, J., Gurnee, W., Ameisen, E., Chen, B., Pearce, A., Turner, N. L., Citro, C., Abrahams,
D., Carter, S., Hosmer, B., Marcus, J., Sklar, M., Templeton, A., Bricken, T., McDougall, C.,
Cunningham, H., Henighan, T., Jermyn, A., Jones, A., Persic, A., Qi, Z., Thompson, T. B.,
Zimmerman, S., Rivoire, K., Conerly, T., Olah, C., and Batson, J. On the biology of a large
language model. Transformer Circuits Thread, 2025. URL https://transformer-circuits.
pub/2025/attribution-graphs/biology.htmll

Liu, H., Teng, Z., Cui, L., Zhang, C., Zhou, Q., and Zhang, Y. LogiCoT: Logical chain-of-thought
instruction tuning. In Bouamor, H., Pino, J., and Bali, K. (eds.), Findings of the Association for
Computational Linguistics: EMNLP 2023, pp. 2908-2921, Singapore, December 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.191. URL jhttps://
aclanthology.org/2023.findings-emnlp.191/.

Loo, A., Pavlick, E., and Feiman, R. Llms model how humans induce logically structured rules.
Journal of Memory and Language, 146:104675, 2026. ISSN 0749-596X. doi: https://doi.org/10.
1016/j.jm1.2025.104675. URL https://www.sciencedirect.com/science/article/pii/
S0749596X25000683.

Lu, M., Zhang, R., Eickhoff, C., and Pavlick, E. Paths not taken: Understanding and mending the
multilingual factual recall pipeline, 2025. URL https://arxiv.org/abs/2505.20546.

Luo, M., Kumbhar, S., shen, M., Parmar, M., Varshney, N., Banerjee, P., Aditya, S., and Baral, C.
Towards logiglue: A brief survey and a benchmark for analyzing logical reasoning capabilities of
language models, 2024. URL https://arxiv.org/abs/2310.00836,

MacCartney, B. and Manning, C. D. Natural logic and natural language inference. In Computing
Meaning: Volume 4, pp. 129-147. Springer, 2014.

Mamidanna, S., Rai, D., Yao, Z., and Zhou, Y. All for one: Llms solve mental math at the last token
with information transferred from other tokens, 2025. URL https://arxiv.org/abs/2509!
09650.

14

https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2408.08590
https://arxiv.org/abs/2504.14379
https://arxiv.org/abs/2507.16746
https://arxiv.org/abs/2510.13554
https://www.mdpi.com/1099-4300/27/4/344
https://arxiv.org/abs/2503.07604
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://aclanthology.org/2023.findings-emnlp.191/
https://aclanthology.org/2023.findings-emnlp.191/
https://www.sciencedirect.com/science/article/pii/S0749596X25000683
https://www.sciencedirect.com/science/article/pii/S0749596X25000683
https://arxiv.org/abs/2505.20546
https://arxiv.org/abs/2310.00836
https://arxiv.org/abs/2509.09650
https://arxiv.org/abs/2509.09650

Marks, S., Rager, C., Michaud, E. J., Belinkov, Y., Bau, D., and Mueller, A. Sparse feature
circuits: Discovering and editing interpretable causal graphs in language models, 2024. URL
https://arxiv.org/abs/2403.19647.

McGrath, T., Rahtz, M., Kramar, J., Mikulik, V., and Legg, S. The hydra effect: Emergent self-repair
in language model computations, 2023. URL https://arxiv.org/abs/2307.15771\

Meng, K., Bau, D., Andonian, A. J., and Belinkov, Y. Locating and editing factual associations in
GPT. In Advances in Neural Information Processing Systems, 2022. URL https://openreview!
net/forum?id=-h6WAS6eE4.

Merullo, J., Eickhoff, C., and Pavlick, E. Circuit component reuse across tasks in transformer
language models. In The Twelfth International Conference on Learning Representations, 2024a.
URL https://openreview.net/forum?id=fpoAYV6Wsk.

Merullo, J., Eickhoff, C., and Pavlick, E. Talking heads: Understanding inter-layer communication in
transformer language models, 2024b. URL https://arxiv.org/abs/2406.09519,

Morishita, T., Morio, G., Yamaguchi, A., and Sogawa, Y. Learning deductive reasoning from synthetic
corpus based on formal logic. In Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., and
Scarlett, J. (eds.), Proceedings of the 40th International Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research, pp. 25254-25274. PMLR, 23-29 Jul 2023.
URL https://proceedings.mlr.press/v202/morishita23a.html.

Mueller, A., Brinkmann, J., Li, M., Marks, S., Pal, K., Prakash, N., Rager, C., Sankaranarayanan,
A., Sharma, A. S., Sun, J., Todd, E., Bau, D., and Belinkov, Y. The quest for the right mediator:
Surveying mechanistic interpretability for nlp through the lens of causal mediation analysis.
Computational Linguistics, pp. 1-48, 09 2025. ISSN 0891-2017. doi: 10.1162/COLIa.572. URL
https://doi.org/10.1162/COLI.a.572

Muennighoff, N., Yang, Z., Shi, W., Li, X. L., Fei-Fei, L., Hajishirzi, H., Zettlemoyer, L., Liang, P.,
Candes, E., and Hashimoto, T. s1: Simple test-time scaling. arXiv preprint arXiv:2501.19393,
2025.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma, N., Henighan, T., Mann, B., Askell, A.,
Bai, Y., Chen, A., Conerly, T., Drain, D., Ganguli, D., Hatfield-Dodds, Z., Hernandez, D., Johnston,
S., Jones, A., Kernion, J., Lovitt, L., Ndousse, K., Amodei, D., Brown, T., Clark, J., Kaplan, J.,
McCandlish, S., and Olah, C. In-context learning and induction heads. Transformer Circuits Thread,
2022. https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html.

Patel, N., Kulkarni, M., Parmar, M., Budhiraja, A., Nakamura, M., Varshney, N., and Baral, C.
Multi-logieval: Towards evaluating multi-step logical reasoning ability of large language models,
2024. URL https://arxiv.org/abs/2406.17169.

Pearl, J. Direct and indirect effects. In Proceedings of the Seventeenth Conference on Uncertainty
and Artificial Intelligence, 2001, pp. 411-420. Morgan Kaufman, 2001.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. Language models are
unsupervised multitask learners. In OpenAl blog, 2019a. URL https://api.semanticscholar,
org/CorpusID: 160025533,

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, 1., et al. Language models are
unsupervised multitask learners. OpenAl blog, 1(8):9, 2019b.

Rauker, T., Ho, A., Casper, S., and Hadfield-Menell, D. Toward Transparent Al: A Survey on
Interpreting the Inner Structures of Deep Neural Networks . In 2023 IEEE Conference on
Secure and Trustworthy Machine Learning (SaTML), pp. 464-483, Los Alamitos, CA, USA,
February 2023. IEEE Computer Society. doi: 10.1109/SaTML54575.2023.00039. URL https
//doi.ieeecomputersociety.org/10.1109/SaTML54575.2023.00039.

Saparov, A. and He, H. Language models are greedy reasoners: A systematic formal analysis of
chain-of-thought. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=qFVVBzXxR2V.

15

https://arxiv.org/abs/2403.19647
https://arxiv.org/abs/2307.15771
https://openreview.net/forum?id=-h6WAS6eE4
https://openreview.net/forum?id=-h6WAS6eE4
https://openreview.net/forum?id=fpoAYV6Wsk
https://arxiv.org/abs/2406.09519
https://proceedings.mlr.press/v202/morishita23a.html
https://doi.org/10.1162/COLI.a.572
https://arxiv.org/abs/2406.17169
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://doi.ieeecomputersociety.org/10.1109/SaTML54575.2023.00039
https://doi.ieeecomputersociety.org/10.1109/SaTML54575.2023.00039
https://openreview.net/forum?id=qFVVBzXxR2V

Saparov, A., Pang, R. Y., Padmakumar, V., Joshi, N., Kazemi, S. M., Kim, N., and He, H. Testing the
general deductive reasoning capacity of large language models using ood examples. In Proceedings

of the 37th International Conference on Neural Information Processing Systems, NIPS "23, Red
Hook, NY, USA, 2024. Curran Associates Inc.

Saparov, A., Pawar, S., Pimpalgaonkar, S., Joshi, N., Pang, R. Y., Padmakumar, V., Kazemi, S. M.,
Kim, N., and He, H. Transformers struggle to learn to search. In /CLR, 2025.

Seals, S. and Shalin, V. Evaluating the deductive competence of large language models. In Duh, K.,
Gomez, H., and Bethard, S. (eds.), Proceedings of the 2024 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume
1: Long Papers), pp. 8614-8630, Mexico City, Mexico, June 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.naacl-long.476. URL https://aclanthology.org/2024,
naacl-long.476.

Shah, K., Dikkala, N., Wang, X., and Panigrahy, R. Causal language modeling can elicit
search and reasoning capabilities on logic puzzles. In Globerson, A., Mackey, L., Bel-
grave, D., Fan, A., Paquet, U., Tomczak, J., and Zhang, C. (eds.), Advances in Neu-
ral Information Processing Systems, volume 37, pp. 56674-56702. Curran Associates,
Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/
67b31cal59553d5593e62d7b998d63ea-Paper-Conference. pdf.

Shojaee, P., Mirzadeh, 1., Alizadeh, K., Horton, M., Bengio, S., and Farajtabar, M. The illusion of
thinking: Understanding the strengths and limitations of reasoning models via the lens of problem
complexity, 2025. URL https://arxiv.org/abs/2506.06941.

Singh, C., Inala, J. P, Galley, M., Caruana, R., and Gao, J. Rethinking interpretability in the era of
large language models, 2024. URL https://arxiv.org/abs/2402.01761.

Sinha, A., Arun, A., Goel, S., Staab, S., and Geiping, J. The illusion of diminishing returns:
Measuring long horizon execution in llms, 2025. URL https://arxiv.org/abs/2509.09677.

Stolfo, A., Belinkov, Y., and Sachan, M. A mechanistic interpretation of arithmetic reasoning in
language models using causal mediation analysis. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 7035-7052, 2023.

Sun, J., Fu, D., Hu, Y., Wang, S., Rassin, R., Juan, D.-C., Alon, D., Herrmann, C., van Steenkiste,
S., Krishna, R., and Rashtchian, C. Dreamsync: Aligning text-to-image generation with image
understanding feedback, 2023. URL https://arxiv.org/abs/2311.17946.

Sun, Z., Zang, X., Zheng, K., Song, Y., Xu, J., Zhang, X., Yu, W,, and Li, H. Redeep: Detecting
hallucination in retrieval-augmented generation via mechanistic interpretability. In ICLR, 2025.

Tafjord, O., Dalvi, B., and Clark, P. ProofWriter: Generating implications, proofs, and abductive
statements over natural language. In Zong, C., Xia, F.,, Li, W., and Navigli, R. (eds.), Findings
of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 3621-3634, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021 findings-acl.317.
URL https://aclanthology.org/2021.findings-acl.317,

Tigges, C., Hanna, M., Yu, Q., and Biderman, S. Llm circuit analyses are consistent across training and
scale. In Advances in Neural Information Processing Systems, volume 37, pp. 40699—40731. Cur-
ran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/
2024/file/47c7edadfee365b394b2a3bd416048da-Paper-Conference. pdf.

Todd, E., Li, M., Sharma, A. S., Mueller, A., Wallace, B. C., and Bau, D. Function vectors in large
language models. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=AwyxtyMwaG.

Troitskii, D., Pal, K., Wendler, C., McDougall, C. S., and Nanda, N. Internal states before wait
modulate reasoning patterns, 2025. URL https://arxiv.org/abs/2510.04128,

16

https://aclanthology.org/2024.naacl-long.476
https://aclanthology.org/2024.naacl-long.476
https://proceedings.neurips.cc/paper_files/paper/2024/file/67b31ca159553d5593e62d7b998d63ea-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/67b31ca159553d5593e62d7b998d63ea-Paper-Conference.pdf
https://arxiv.org/abs/2506.06941
https://arxiv.org/abs/2402.01761
https://arxiv.org/abs/2509.09677
https://arxiv.org/abs/2311.17946
https://aclanthology.org/2021.findings-acl.317
https://proceedings.neurips.cc/paper_files/paper/2024/file/47c7edadfee365b394b2a3bd416048da-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/47c7edadfee365b394b2a3bd416048da-Paper-Conference.pdf
https://openreview.net/forum?id=AwyxtyMwaG
https://arxiv.org/abs/2510.04128

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., and
Polosukhin, I. Attention is all you need. In Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_
files/paper/2017/file/3f5ee243547dee91fbd053c1c4al845aa-Paper . pdf.

Venhoff, C., Arcuschin, 1., Torr, P., Conmy, A., and Nanda, N. Base models know how to reason,
thinking models learn when, 2025a. URL https://arxiv.org/abs/2510.07364.

Venhoff, C., Arcuschin, 1., Torr, P., Conmy, A., and Nanda, N. Understanding reasoning in thinking
language models via steering vectors, 2025b. URL https://arxiv.org/abs/2506.18167.

Vig, J., Gehrmann, S., Belinkov, Y., Qian, S., Nevo, D., Singer, Y., and Shieber, S. Investigating gender
bias in language models using causal mediation analysis. In Larochelle, H., Ranzato, M., Hadsell,
R., Balcan, M., and Lin, H. (eds.), Advances in Neural Information Processing Systems, volume 33,
pp- 12388-12401. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/
paper_files/paper/2020/file/92650b2e€92217715fe312e6fa7b90d82-Paper . pdf.

Wang, A., Engels, J., Clive-Griffin, O., Rajamanoharan, S., and Nanda, N. Simple mechanistic
explanations for out-of-context reasoning, 2025a. URL https://arxiv.org/abs/2507.08218.

Wang, K. R., Variengien, A., Conmy, A., Shlegeris, B., and Steinhardt, J. Interpretability in the
wild: a circuit for indirect object identification in GPT-2 small. In The Eleventh International
Conference on Learning Representations, 2023a. URL https://openreview.net/forum?id=
NpsVSN6o4ul.

Wang, L., Li, L., Dai, D., Chen, D., Zhou, H., Meng, F., Zhou, J., and Sun, X. Label words are
anchors: An information flow perspective for understanding in-context learning. In Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 9840-9855,
2023b.

Wang, X., Hu, Y., Du, W., Cheng, R., Wang, B., and Zou, D. Towards understanding fine-tuning
mechanisms of llms via circuit analysis, 2025b. URL https://arxiv.org/abs/2502.11812.

Wang, Y., Yang, Q., Zeng, Z., Ren, L., Liu, L., Peng, B., Cheng, H., He, X., Wang, K., Gao, J., et al.
Reinforcement learning for reasoning in large language models with one training example. arXiv
preprint arXiv:2504.20571, 2025c.

Wang, Z., Wang, Y., Zhang, Z., Zhou, Z., Jin, H., Hu, T., Sun, J., Li, Z., Zhang, Y., and Xu, Z.-Q. J.
The buffer mechanism for multi-step information reasoning in language models. arXiv preprint
arXiv:2405.15302, 2024a.

Wang, Z., White, B., and Xu, C. Locating and extracting relational concepts in large language models.
arXiv preprint arXiv:2406.13184, 2024b.

Wu, Z., Geiger, A., Icard, T., Potts, C., and Goodman, N. Interpretability at scale: Identifying causal
mechanisms in alpaca. In Thirty-seventh Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?id=nRfClnMhVX|

Xue, A., Khare, A., Alur, R., Goel, S., and Wong, E. Logicbreaks: A framework for understanding
subversion of rule-based inference, 2024. URL https://arxiv.org/abs/2407.00075.

Yang, S., Gribovskaya, E., Kassner, N., Geva, M., and Riedel, S. Do large language models latently
perform multi-hop reasoning? In Ku, L.-W., Martins, A., and Srikumar, V. (eds.), Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 10210-10229, Bangkok, Thailand, August 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.acl-long.550. URL https://aclanthology.org/2024,
acl-long.550.

Yao, Y., Zhang, N., Xi, Z., Wang, M., Xu, Z., Deng, S., and Chen, H. Knowledge circuits in pretrained
transformers. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=YVXzZNxcag.

Ye, T., Xu, Z., Li, Y., and Allen-Zhu, Z. Physics of language models: Part 2.1, grade-school math
and the hidden reasoning process, 2024. URL https://arxiv.org/abs/2407.20311|

17

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2510.07364
https://arxiv.org/abs/2506.18167
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://arxiv.org/abs/2507.08218
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://arxiv.org/abs/2502.11812
https://openreview.net/forum?id=nRfClnMhVX
https://arxiv.org/abs/2407.00075
https://aclanthology.org/2024.acl-long.550
https://aclanthology.org/2024.acl-long.550
https://openreview.net/forum?id=YVXzZNxcag
https://arxiv.org/abs/2407.20311

Ye, Y., Huang, Z., Xiao, Y., Chern, E., Xia, S., and Liu, P. Limo: Less is more for reasoning. arXiv
preprint arXiv:2502.03387, 2025.

Yin, K. and Steinhardt, J. Which attention heads matter for in-context learning? arXiv preprint
arXiv:2502.14010, 2025.

Yin, Y. and Wang, Z. Are transformers able to reason by connecting separated knowledge in training
data?, 2025. URL https://arxiv.org/abs/2501.15857.

Yu, Z. and Ananiadou, S. Interpreting arithmetic mechanism in large language models through
comparative neuron analysis. arXiv preprint arXiv:2409.14144, 2024.

Zhang, F. and Nanda, N. Towards best practices of activation patching in language models: Metrics
and methods. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=Hf17y6u9BC.

Zhang, H., Li, L. H., Meng, T., Chang, K.-W., and Van Den Broeck, G. On the paradox of learning to
reason from data. In Proceedings of the Thirty-Second International Joint Conference on Artificial
Intelligence, IJCAI °23, 2023. ISBN 978-1-956792-03-4. doi: 10.24963/ijcai.2023/375. URL
https://doi.org/10.24963/ijcai.2023/375,

Zhang, J., Juan, D.-C., Rashtchian, C., Ferng, C.-S., Jiang, H., and Chen, Y. Sled: Self logits evolution
decoding for improving factuality in large language models. In Advances in Neural Information
Processing Systems, pp. 5188-5209, 2024.

Zhang, Q., Fu, Y., Wang, Y., Yan, L., Wei, T., Xu, K., Huang, M., and Qiu, H. On the self-awareness
of large reasoning models’ capability boundaries, 2025. URL https://arxiv.org/abs/2509,
24711.

Zhou, T., Fu, D., Sharan, V., and Jia, R. Pre-trained large language models use fourier features to com-
pute addition. In Advances in Neural Information Processing Systems, volume 37, pp. 25120-25151.
Curran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/
paper/2024/file/2cc8dc30e52798b27d37b795cc153310-Paper-Conference. pdf,

Zhu, H., Huang, B., Zhang, S., Jordan, M., Jiao, J., Tian, Y., and Russell, S. Towards a theoretical
understanding of the 'reversal curse’ via training dynamics. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024. URL https://openreview.net/forum?id=
QoWf3lo6m?7.

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: All claims in the abstract are present in the main paper or appendix.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

18

https://arxiv.org/abs/2501.15857
https://openreview.net/forum?id=Hf17y6u9BC
https://doi.org/10.24963/ijcai.2023/375
https://arxiv.org/abs/2509.24711
https://arxiv.org/abs/2509.24711
https://proceedings.neurips.cc/paper_files/paper/2024/file/2cc8dc30e52798b27d37b795cc153310-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/2cc8dc30e52798b27d37b795cc153310-Paper-Conference.pdf
https://openreview.net/forum?id=QoWf3lo6m7
https://openreview.net/forum?id=QoWf3lo6m7

Answer: [Yes]
Justification: We have a specific limitation section in them main paper.
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: No theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Clear details of all experiments and set-up in the appendix.

Guidelines:

19

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We are not able to release code. All data generation processes are clearly
described and all models used are open source and cited.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All details of the models and experiments are in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We mention running more experiments / examples every time the significance
is in question.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We details the compute resources (GPUs) used to run the models, which follow
the standard set-up for the open source models in this work.

Guidelines:

21

0.

10.

11.

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: No ethics concerns.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: We study synthetic problems, without ties to potential applications.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

22

https://neurips.cc/public/EthicsGuidelines

12.

13.

14.

Justification: We only use existing pre-trained LLMs.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All models and ideas are cited.
Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Everything is detailed clearly, and we do not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

23

paperswithcode.com/datasets

15.

16.

Answer: [NA]
Justification: No crowdsourcing or data release.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No human involvement.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We study LLLMs and clearly specific how to use them. We do not use LLMs
for other purposes.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

24

https://neurips.cc/Conferences/2025/LLM

Appendix

A Methodology and Problem Details

A.1 Appendix Table of Contents and Outline

In this section, we provide an overview of our methodology that we presented at a high level in
Section[2] We then give forward pointers to our additional experimental evidence. We aim to provide
an outline of the LLM analysis, guiding the reader through the rest of the appendix.

 §A.7| gives representative examples of the propositional logic problem that we study. In
general, we vary the variable names, the logical operator (“or” vs. “and”), the truth values
of the variables (i.e., the “Facts”), and the QUERY variable.

. provides details of the few-shot examples and input format, and some initial results
about model accuracies. In particular, we engineer the in-context examples to ensure that all
models perform much better than random guessing.

* §B.2)is an expository, background section that shows how activation patching can surface
circuit components. For completeness, we illustrate the main techniques on a toy 2-layer
model, with figures. The main technique is to run the LLM on altered (alt) prompts, while
freezing certain components to the activations on the original (orig) prompt. Throughout, we

also define some notation, such as Ag”- g—alts which is the intervened logit difference. The

relationship between the orig and alt prompts depends on the specific experiment, where we

may change the query variable, the rule locations, or the truth values.
* §B.3|defines the metrics for QUERY-based activation patching.

* §B.4through provides the full analysis of the Mistral 7B model. We break this down
into multiple subsections to present the details of the experiments, where we use the same
approach for the Gemma models later on. In particular, §B.5|has the sufficient test,
contains results for varying the rule locations, and §B.7]has results for varying the facts.

* §B.§|contains the experiments for Gemma 2 9B. This provides full details for the experiments
that we report in the main paper.

. similarly contains results for Gemma 2 27B, including attention head analysis, and a
discussion of the mechanical differences between Gemma 2 9B and 27B.

* §C| presents a full mechanistic analysis of small transformer models (e.g., 3-layer). We
present the main insights in §C|and then supplement this with the full details in §D] We
train several models autoregressively on the propositional logic task. Then, we explore the
mechanisms through a combination of experiments (patching, probing, classification, etc),
focusing on a 3-layer model. We present the high level strategy employed by the 3-layer
model to solve the logic problems in Figure providing a contrast to the modular and
more interpretable circuit in the pre-trained LLMs.

A.2 Propositional logic problem and examples
In this section, we provide a more detailed description of the propositional logic problem we study in
this paper, and list representative examples of the problem.

At its core, the propositional logic problem requires the reasoner to (1) distinguish which chain type
is being queried (LogOp or linear), and (2) if it is the LogOp chain being queried, the reasoner must
know what truth value the logic operator outputs based on the two input truth values.

Below we provide a comprehensive list of representative examples of our logic problem at length 2
(i.e. each chain is formed by one rule). We use [Truth values] to denote the relevant input truth value
assignments (i.e. relevant facts) to the chain being queried below.

1. Linear chain queried, [True]

* Rules: A or B implies C. D implies E.
e Facts: A is true. B is true. D is true.

25

¢ Question: what is the truth value of C?
* Answer: D is true. D implies E; E True.

2. Linear chain queried, [False]

* Rules: A or B implies C. D implies E.

e Facts: A is true. B is true. D is false.

* Question: what is the truth value of C?

* Answer: D is false. D implies E; E undetermined.
3. LogOp chain queried, LogOp = OR, [True, True]

* Rules: A or B implies C. D implies E.

e Facts: A is true. B is true. D is true.

¢ Question: what is the truth value of C?

* Answer: B is true. A or B implies C; C True.

Remark A.1. In this case, the answer “A true. A or B implies C; C True” is also correct.

4. LogOp chain queried, LogOp = OR, [True, False]

* Rules: A or B implies C. D implies E.

e Facts: A is true. B is false. D is true.

¢ Question: what is the truth value of C?

* Answer: A is true. A or B imples C; C True.

5. LogOp chain queried, LogOp = OR, [False, False]
* Rules: A or B implies C. D implies E.
* Facts: A is false. B is false. D is true.

¢ Question: what is the truth value of C?
* Answer: A false B false. A or B implies C; C undetermined.

6. LogOp chain queried, LogOp = AND, [True, True]

* Rules: A and B implies C. D implies E.

e Facts: A is true. B is true. D is true.

* Question: what is the truth value of C?

* Answer: A is true. B is true. A and B implies C; C True.
7. LogOp chain queried, LogOp = AND, [True, False]

* Rules: A and B implies C. D implies E.

 Facts: A is true. B is false. D is true.

¢ Question: what is the truth value of C?

* Answer: B is false. A and B implies C; C undetermined.
8. LogOp chain queried, LogOp = AND, [False, False]

* Rules: A and B implies C. D implies E.

e Facts: A is false. B is false. D is true.

¢ Question: what is the truth value of C?

* Answer: A is false. A and B implies C; C undetermined.

Remark A.2. In this case, the answer “B is false. A and B implies C; C undetermined” is
also correct.

Importance of the first answer token. As discussed in correctly writing down the first answer
token is central to the accuracy of the proof. First, it requires the model to process every part of the
context properly without CoT due to the minimal-proof requirement of the solution. Moreover, it
is the answer token position which demands the greatest number of latent reasoning steps in the
whole answer, making it the most challenging token for the model to resolve. Therefore, this token
is the most interesting place to focus our study on, as we are primarily interested in how the model
internalizes and plans for the reasoning problems in this work.

26

B The reasoning circuit in LLMs: experimental details

B.1 Problem format

We present six examples of the propositional-logic problem in context to the Mistral-7B model, and
four examples to the Gemma-2-9B model. We then prompt them for their answer to a newly appended
problem. To generate the problem, we use the template and then sample variables and truth values.
The two chains have independent proposition variables (leading to five distinct boolean variables).
We randomly choose variables from capital English letters (A—Z) and truth values (true or false).

Remark B.1. To ensure fairness, for the disjunction problem, we provide the LLM with equal number
of in-context examples for each query type (the OR chain and the linear chain) in random order.
Please note that, while the premise variables in the linear chain examples could be set FALSE when
not queried, the actual question (the seventh example which the model needs to answer) always
sets the truth value assignment of the linear chain to be TRUE, preventing the model from taking a
shortcut and bypassing the “QUERY —Relevant Rule” portion of the reasoning path.

Additionally, the models perform much better than random on these problems, with high accuracy
for Mistral (above 70%) and Gemma-2-9B (above 83%). Gemma-2-27B achieves nearly perfect
accuracy. This reflects a balanced evaluation, with the models queried for the LogOp and linear
chains at a 50% probability each. Specifically, we tested the models on 400 samples. Mistral achieved
96% accuracy when QUERY is for the linear chain, and 70% accuracy when QUERY is for the OR
chain (so they average above 70% accuracy). Similar trends hold for the other models.

B.2 Causal mediation analysis: further explanations

This subsection complements the causal mediation analysis methodologies we presented in §2|in
the main text. In particular, we illustrate how the interventions are done in the circuit discovery and
verification processes, by using a 2-layer 2 attention head transformer as an example for simplicity.

Figure [6]illustrates the activation patching procedure in circuit discovery. We investigate how internal
transformer components causally influence model output. In the specific example, we show how we
would examine the causal influence of attention head (0,2)’s activations on the correct inference of
the model.

Circuit verification, on the other hand, goes through a somewhat more complex process of interven-
tions, as illustrated in Figure[/] Recall our main procedure (discussed in the main text).

1. We run the LLM on the original prompts, and cache the activations of the attention heads.

2. Now, we run the LLM on the corresponding altered prompts, however, we freeze all the
attention heads’ activations inside the model to their activations on the original prompts,
except for those in the circuit C which we wish to verify (i.e. only the attention heads in C
are allowed to run normally). We record the (circuit-intervened) altered logit differences on
the altered prompts.

3. We average the circuit-intervened altered logit differences across the samples, namely
% 22;1 ACM 9 _}al and check whether they approach the “maximal” altered logit differ-

o
ence, namely A

Remark B.2. As the reader can observe, we do not freeze the MLPs in our intervention experiments.
We note that the MLPs do not move information between the residual streams at different token
positions, as they only perform processing of whatever information present at the residual stream.
Therefore, similar to|Wang et al.| (2023a), we consider the MLPs as part of the “direct” path between
two attention heads, and allow information to flow freely through them, instead of freezing them and
disrupting the information flow between attention heads.

"This specific term reflects, on average, how much the model favors outputting the answer token for the
altered prompts over the original prompts after the circuit interventions.

8Recall that this term is obtained by running the LLM on the altered prompts without any modification to its
internal activations at all. This specific term reflects, on average, how much the (un-intervened) model favors
outputting the answer tokens for the altered prompts over those of the original prompts, when it is run on the
altered prompts.

27

Altered activations 1

Original activations

Patching-influenced activations

Patch altered activation
onto the original one!

Altered Input

Figure 6: Illustration of how activation patching is performed in the circuit-discovery process
(necessity-based patching), using a 2-layer, 2-head transformer as a simplified example here. An
attention head is denoted as (¢, h).

In this specific illustrated example, we are studying the causal influence of attention head (0,2)’s
activation on the correct inference of the model. After caching the altered activations of (0,2) (shown
on the left), we run the model on the original prompt and cache the activations (shown in the middle),
then replace the original activation of head (0,2) by its altered activations, and let the rest of the layers
be computed normally (shown on the right) — they now operate out of distribution, and are colored
in green.

In this specific example, the intervened run outputs logits which reflect “belief altering”: that is, the
probability for the answer token of the original prompt now is lower than the answer token for the
altered prompt. This indicates that head (0,2) has causal influence on the corrent inference of the
model.

Original Input Original Input

B.3 Finer details of activation patching

Activation patching experiments: metrics. We rely on a calibrated version of the logit-difference
metric often adopted in the literature for the QUERY-based activation patching experiments (aimed at
keeping the score’s magnitude between O and 1). In particular, we compute the following metric for
head (¢, h) at token position ¢:

1 1
N Zne[N] AOTig—)alt,n;(&h,t) - Aom‘g

(H
Aalt—Alrig
where AT = &3 v 108t X orign) Watt.n] — 10git(X orig.n)[Worign], and Agy =

% ZnG[N] logit(X qit.n)[Yait,n] — 10git(X ait,n) [Yorig,n]- The closer to 1 this score is, the stronger
the model’s “belief™ is altered; the closer to 0 it is, the closer the model’s “belief” is to the original
unaltered one.

Each of our experiments are done on 60 samples unless otherwise specified — we repeat some
experiments (especially the attention-head patching experiments) to ensure statistical significance
when necessary.

28

Altered Original Patching-influenced

; ‘ ACnu IAC ~ :
Lmalt o~ Y i i ri_qﬁ»altNA"r“‘
Null circuit has ~0 Sufficiency for
4

,,,,,,,,,,,,,,,,,,
Verifying circuit
(1n}

i
Freeze every head'’s output except
for those in the circuit C

Set of altered inputs. Set of altered inputs Set of altered inputs
Figure 7: Illustration of how activation patching is performed in the circuit-verification process
(sufficiency-based patching). We use a 2-layer 2-head transformer as a simplified example here. We
use (¢, h) to denote an attention head.

In this specific illustrated example, we are verifying whether the circuit C = {(0,2), (1, 1)} consisting
of the two attention heads is sufficient for altering the “belief” of the model.

We first obtain A4, the average altered logit difference, by running the model on the altered prompts
without interventions. We also run the model on the original prompts and cache the attention heads’
activations (these “original” activations are colored in blue in the figure).

The naive “baseline” for sufficiency verification is the null circuit C,,,;; = @ (shown in the middle):
we freeze all the attention heads to their original activations when running the model on the altered
prompts. This null circuit, as shown in this example, barely alters the model’s “belief” from the
original, as AS;};g’ Lane = —Aa, i.e. the model still strongly favors outputting the answer tokens for
the original prompts over those of the altered prompts on average.

In contrast, if we unfreeze the attention heads in the circuit C when running the model (shown on
the right), we observe that the model’s circuit-intervened logit difference approaches the “maximal”
altered logit difference A,;;. This indicates that the attention heads in C are sufficient for correctly
manipulating the information flow (and processing the information) for reaching the right answer.

B.4 Reasoning circuits in Mistral-7B
B.4.1 Attention head group patching

Starting in this subsection §B.4.T]and ending at §B.7] we present and visualize the attention heads
with the highest average intervenes logit differences, along with their standard deviations (error bars).
Furthermore, we provide further causal evidence for sub-families of attention heads in the circuit.

We note that Grouped-Query Attention used by Mistral-7B adds subtlety to the analysis of which
attention heads have strong causal influence on the LLM’s correct output. (In Mistral-7B-v0.1, each
attention layer has 8 key and value activations, and 32 query activations. Therefore, heads (¢, h x 4)
to (¢, h x 4 + 3) share the same key and value activation.) Patching a single head might not yield a
high logit difference, since other heads in the same group (which possibly perform a similar function)
could overwhelm the patched head and maintain the model’s previous “belief”. Therefore, we also run
a coarser-grained experiment which simultaneously patches the attention heads sharing the same key
and value activations, shown in Figure[8{b). This experiment reveals that heads belonging to the group
(9, 24 - 27) also have high intervened logit difference. Combining with the observation that (9,25;26)
have somewhat positive scores in the single-head patching experiments, and by examining these two
head’s attention patterns (which shall be discussed in detail in the immediate next subsection), we
determine that they also should be included in the circuit.

29

0 0.6
5 (9,24 - 27) 0.4
(13,11)
10 N (14,24;26) —
5 | (158 \ (16,12:14) 0.2
2 \ i / A —
15 u 0.0
o\
> (16,0
-120 (17,25) -0.2
(19,8;9;16)
25 -0.4
30 -0.6
0 10 20 30 0 10 20 30
(a) Single-head patching (b) Head group patching

Figure 8: Attention head patching, highlighting the ones with the highest intervened logit difference;
x-axis is the head index. (a) shows single-head patching results (same as the one shown in the main
text, repeated here for the reader’s convenience), and (b) shows a coarser-grained head patching in
groups. In (b), we only highlight the head groups that are not captured well by (a).

B.4.2 Attention patterns of QUERY-sensitive attention heads

In this subsection, we provide finer details on the attention patterns of the attention heads we
discovered. Note that the attention weights percentage we present in this section are calculated by
dividing the observed attention weight at a token position by the total amount of attention the head
places in the relevant context, i.e. the portion of the prompt which excludes the 6 in-context examples.

Queried-rule locating heads. Figure[J]presents the average attention weight the queried-rule locating
heads place on the “conclusion” variable and the period “.” immediately after the queried rule at the
QUERY token position (i.e. the query activation of the heads come from the residual stream at the
QUERY token position) — (12,9) is an exception to this recording method, where we only record
its weight on the conclusion variables alone, and already observe very high weight on average. The
heads (12,9), (14,24), (14,26), (9,25), (9,26) indeed place the majority of their attention on the correct
position consistently across the test samples. The reason for counting the period after the correct
conclusion variable as “correctly” locating the rule is that, it is known that LLMs tend to use certain
“register tokens” to record information in the preceding sentence.

Attention weight of the queried-rule locating heads

I o o =
> =) © =}

Attention weight

o
[N}

0.0

(12,9) (9,25) (9,26) (14,24) (14,26)
(Layer index, Head index)

Figure 9: Mistral 7B. Average attention weights of the queried-rule locating heads, along with the
standard deviations. The weights are calculated by dividing the actual attention weight placed on the
correct “conclusion” variable of the rule and the period “.” immediately after, by the total amount of
attention placed in the relevant context (i.e. the prompt excluding the 6 in-context examples). Head
(12,9) is an exception: we only record its attention right on the conclusion variable, and still observe
93.0 +9.4% “correctly placed” attention on average.

30

We can observe that head (12,9) has the “cleanest” attention pattern out of the ones identified, placing
on average 93.0 &= 9.4% of it attention on the correct conclusion variable alone. The more diluted
attention patterns of the other heads likely contribute to their weaker intervened logit difference score
shown in §3.1]in the main text.

Queried-rule mover heads. Figure [I0]shows the attention weight of the queried-rule mover heads.
While they do not place close to 100% attention on the QUERY location consistently (when the query
activation comes from the residual stream from token ““:”, right before the first answer token), the
top-1 attention weight consistently falls on the QUERY position, and the second largest attention
weight is much smaller. In particular, head (13,11) places 54.2 + 12.5% attention on the QUERY
position on average, while the second largest attention weight in the relevant context is 5.2 + 1.1%

on average (around 10 times smaller; this ratio is computed per sample and then averaged).

Extra note about head (16,0): it does not primarily act like a “mover” head, as its attention statistics
suggest that it processes an almost even mixture of information from the QUERY position and the *:”
position. Therefore, while we present its statistics along with the other queried-rule mover heads here
since it does allocate significant attention weight on the QUERY position on average, we do not list it
as such in the circuit diagram of Figure 3] Furthermore, we do not include it as part of the circuit
C in our circuit verification experiments.

Attention statistics of the queried-rule mover heads

0.7
I Attention weight

0.6 I Max attention weight on other positions
= 0.5
2
£04
c
ke
£0.3
£
<0.2

1

0.0

(13, 11), QUERY (16,0), QUERY (16,0), : (15,8), QUERY

(Layer index, Head index)'s attention weight on token position

Figure 10: Mistral 7B. Average attention weights of the queried-rule mover heads, along with the
standard deviations. The raw attention patterns are obtained at token position “:” (i.e. the query
activation comes from the residual stream at the “:” position), right before the first answer token,
and the exact attention weight (indicated by the blue bars) is taken at the QUERY position; for head
(16,0), we also obtain its attention weight at the “:” position, as we found that it also allocates a
large amount of attention weight to this position in addition to the QUERY position. Note: for (15,8),
we found that it only acts as a “mover” head when the linear chain is being queried, so we are only
reporting its attention weight statistics in this specific scenario; the other heads do not exhibit this
interesting behavior, so we report those heads’ statistics in all query scenarios.

Fact processing heads. Figure[TT|below shows the attention weights of the fact processing heads;
the attention patterns are obtained at the “:” position, right before the first answer token, and we sum
the attention weights in the Fact section (starting at the first fact assignment, ending on the last ““.” in
this section of the prompt). It is clear that they place significant attention on the Fact section of the
relevant context. Additionally, across most samples, we find that these heads exhibit the tendency to
assign lower amount of attention on the facts with FALSE value assignments across most samples,
and on a nontrivial portion of the samples, they tend to place greater attention weight on the correct
fact (this second ability is not consistent across all samples, however). Therefore, they do appear
to perform some level of “processing” of the facts, instead of purely “moving” the facts to the *“:”
position.

Decision heads. Figure[12]shows the attention weights of the decision heads on samples where the
model outputs the correct answer (therefore, about 70% of the samples). The attention patterns are
obtained at the “:” position. We count the following token positions as the “correct” positions:

31

Attention statistics of the fact processing heads

I o o
i o ©

Attention weight

o
N

0.0

(16, 12) (16,14) (14,26)
(Layer index, Head index)

€,

Figure 11: Mistral 7B. Average attention weights of the fact processing heads computed at the ““:
token position (last position before the answer), along with the standard deviations. The weights
are calculated by dividing the actual attention weight placed in the Fact section by the total amount
of attention placed in the relevant context (i.e. the part of the prompt excluding the 6 in-context
examples).

* In the Rules section, we count the correct answer token and the token immediately following
it as correct.

* In the Facts section, we count the sentence of truth value assignment of the correct answer
variable as correct (for example, “A is true.”).

* Note: the only exception is head (19,8), where we only find its attention on exactly the
correct tokens (not counting any other tokens in the context); we can observe that it still has
the cleanest attention pattern for identifying the correct answer token.

Attention statistics of the decision heads

0.8 Hmm Attention weight on answer tokens
B Max attention weight on other positions

(19, 8) (19,9) (19,16) (17,25)
(Layer index, Head index)

Figure 12: Mistral 7B. Average attention weights of the decision heads, along with the standard
deviations. The weights are calculated by dividing the actual attention weight placed on the correct
answer tokens by the total attention the model places in the relevant context.

An interesting side note worth pointing out is that, (17,25) tends to only concentrate its attention in
the facts section, similar to the fact-processing heads. The reason which we do not classify it as a
fact-processing head and instead as a decision head is that, in addition to finding that their attention
patterns tend to concentrate on the correct fact, evidence presented in §B.7|below suggest that they

are not directly responsible for locating and moving the facts information to the ““:” position, while
the heads (16,12;14) exhibit such tendency strongly.

B.5 Sufficiency tests for circuit verification

In §3.2] we presented a sufficiency test of the circuit. Here, we elaborate further on the experimental
procedures and finer details of the experiment.

32

The circuit which we perform verification on is the union of the four attention head families, C =
QRLHUQRMHUFPH U DH, with

* QRLH = Queried-Rule Locating Heads = {(9, 25; 26), (12, 9), (14, 24;26)} patched at
token position QUERY;

* QRMH = Queried-Rule Mover Heads = {(13,11;22), (15, 8)} patched at the “:” posi-
tion (the last position of context);

* F'PH = Fact-Processing Heads = {(16, 12;14), (14, 26) } patched at the *:” position;
* DH = Decision Heads = {(19, 8;9;16), (17, 25)} patched at the *:” position.

We obtain the following results.

ct | Chuw € C—QRLH C—-QRMH C-FPH C-DH
AC i Drormar | 1O 098 -1.02 -0.99 -0.25 -0.89

norma.

Table 2: Mistral 7B. AS, /A ,ormai» With different choices of CT. C,,,,1; denotes the empty circuit,
i.e. the case where every attention head output is frozen to its counterfactual version. We abbreviate
the attention head families, for example, D H = decision heads; C — DH = full circuit but with the
decision heads removed.

7%

An exception is that the queried-rule locating head (14, 24) is also patched at the “:” position, as we
observed that it tends to concentrate attention at the queried rule at this position: it does not locate
the queried rule as consistently as it does at the QUERY position, however. We still chose to patch
it at this position as we found that it tends to improve the altered logit difference, indicating that
either the model relies on this head to pass certain additional information about the queried rule to
the ““:” position, or certain later parts of the circuit do rely on this head for queried-rule information.
The exact function of this attention head remains part of our future study in the reasoning circuit
of Mistral-7B. We likely need to examine this head’s role in other reasoning problems to clearly
understand what its role is at different token positions, and whether there is deeper meaning behind
the fact that, their apparently redundant actions at different token positions all seem to have causal
influence on the model’s inference.

Challenges of reasoning circuit sufficiency verifications. From what we can see, verifying the
sufficiency of a reasoning circuit is a major open problem. Part of the root of the problem lies
in what exactly counts as a circuit that is truly relevant to reasoning: attention heads and MLPs
responsible for lower-level processing such as performing change of basis of the token representations,
storing information at register tokens (such as the periods “.” after sentences), and so on, do not
truly belong to a “reasoning” circuit in the narrow definition of the term. In our considerations, a
“narrow” definition of a reasoning circuit is one which is QUERY sensitive and has strong causal
influence on the correct output of the model on the reasoning problems. The first condition of
QUERY sensitivity is justified by noting that the QUERY lies at the root of the reasoning chain
of “QUERY—Relevant Rule(s)—Relevant Fact(s)—Decision”. We do not analyze through what
circuit/internal processing the “QUERY”, “Relevant Rule(s)” and “Relevant Fact(s)” underwent from
token level to representation level (notice that the reasoning circuit we identified starts at layer 9: it is
entirely possible for the token embeddings of these important items to have undergone significant
processing by the attention heads and MLPs in the lower layers). Simply setting the lower layers’
embeddings to the zero vector, to their mean activations or some fixed embeddings which erase the
instance-dependent information could completely break the circuit.

B.6 Queried-rule location interventions: analyzing the queried-rule locating heads

In this experiment, we only swap the location of the linear rule with the LogOp rule in the Rule section
of the question, while keeping everything else the same (including all the in-context examples). As
an example, we alter the rules as follows. The prompts have the same answer.

[... in-context examples ...] [... in-context examples ...]

Rules: A or B implies C. D implies F. | altered_ | Rules: D implies £. A or B implies C.
Facts: A is true. B is false. D is true. prompt | Facts: A is true. B is false. D is true.
Question: what is the truth value of C? Question: what is the truth value of C?

33

04 Increase in loss after intervention
’ Average loss before intervention = 0.463

03
| 0.2
. | N
10 1
1
12 u [01

LONOUVAEWNEFEO
° °
S o

Increase in loss

0.2
0.0
x 13 |
812 | (12.2) (14.,6) (9,6)
£15 ! lo.o Key index
%is | Increase in loss after intervention
—18 Average loss before intervention = 0.755
19 0.6
20 (01 T
21 2
22 204
23 ”
24 -02 H
% £02
2 -03 g
29 20.0
30
31
01234567 01334567 ~04 (12.2) Key index @0
(a) Key patching - loss increase (b) Average increase in loss
Left: QUERY lin chain; Right: QUERY OR chain Top: QUERY lin chan; Bottom: QUERY OR chain

Figure 13: Mistral 7B. Key activations patching results. In this experiment, we swap the location
of the linear rule and the LogOp rule in the Rule section and keep everything else in the prompt the
same; we patch the key activations of the attention heads in the Rule section only. (a) visualizes the
average increase in the cross-entropy loss with respect to the true target (the true first token of the
answer) for all key indices, and (b) shows the average and standard deviation of the top three key
indices with the highest loss increase. Observe that these are the keys for the queried-rule locating
heads (12,9), (14,24;26) and (9,25;26) identified in §3.1]

If the queried-rule locating heads (with heads (12,9), (14,25;26), (9,25;26) being the QUERY-
sensitive representatives) indeed perform their functions as we described, then when we run the model
on the clean prompts, patching in the altered key activations at these heads (within the Rules section)
should cause “negative” change to the model’s output, since it will cause these heads to mistake the
queried-rule location in the altered prompt to be the right one, consequently storing the wrong rule
information at the QUERY position. In particular, the model’s cross-entropy loss with respect to the
original target should increase. This is indeed what we observe.

The average increase in cross-entropy loss exhibit a trend which corroborate the hypothesis above,
shown in Figure[T3] While the average cross-entropy loss on the original samples is 0.463, patching
(12,9), (14,24;26) and (9,25;26)’s keys (with corresponding key indices (12,2), (14,6) and (9,6)) in
the Rule section.

Patching the other QUERY-sensitive attention heads’ keys in the Rule section, in contrast, show
significantly smaller influence on the loss on average, telling us that their responsibilities are much
less involved with directly finding or locating the queried rule via attention.

Note: this set of experiments was run on 200 samples instead of 60, since we noticed that the standard
deviation of some of the attention heads’ loss increase is large.

Remark B.3. While attention heads with key index (15,5) (i.e. heads (15, 20-23)) did not exhibit
nontrivial sensitivity to QUERY-based patching (discussed in Section [3.1)in the main text), patching
this key activation does result in a nontrivial increase in loss. Examining the attention heads belonging
to this group, we find that they indeed also perform the function of locating the queried rule similar to
head (12,9). We find them to be less accurate and place less attention on the exact rule being queried
on average, however: this weaker “queried-rule locating ability” likely contributed to their low scores
in the QUERY-based patching experiments presented in the main text.

B.7 Facts interventions: analyzing the fact-processing and decision heads

In this section, we aim to provide further validating evidence for the fact-processing heads and the
decision heads. We experiment with flipping the truth value assignment for the OR chain while

34

0 0

1 1

2 2

3 3 0 0.3

4 4 %

5 5

6 6 3

7 7 T

8 8 ;:z 0.2

9 9 7

10 10 8

11 11 18

12 12 0.1
%13 13 1
$14 14 13
£15 15 14
516 | | 16 15 0.0
717 17 16 :
—18 18 17

19 19 18

20 20 20

21 21 51 -0.1

22 22 22

23 23 23

2 £ %

25 25

26 26 28 02

27 27 58

28 28 %9

29 29 30

30 30 31 -0.3

31 31 0 5 10 15 20 25 30

01234567 01234567 Head Index
Head Index Head Index
(a) Key (b) Value (c) Query

Figure 14: Mistral 7B. Key, value and query activation patching in the Facts section, with the metric
being the calibrated intervened logit difference. The truth value assignments for the OR chain is
flipped (while keeping everything else in the prompt the same), and the OR chain is always queried.
Observe that only the key activations at index (16,3) obtain a high intervened logit difference score of
approximately 0.34 (this key index corresponds to the attention heads (16, 12 - 15)). Also observe
that the value and query activations in the facts section do not exhibit strong causal influence on the
correct inference of the model.

keeping everything else the same in the prompt (we always query for the OR chain in this experiment).
As an example, we alter the truth values as follows.

[... in-context examples ...] [... in-context examples ...]

Rules: A or B implies C'. D implies E. alered | Rules: A or B implies C. D implies E.
Facts: A is true. B is false. D is true. prompt | Facts: A is false. B is true. D is true.
Question: what is the truth value of C'? Question: what is the truth value of C'?

In this example, the variable that the answer depends on flips from A to B (since after altering, only B
is true). The (calibrated) intervened logit difference is still a good choice in this experiment, therefore
we still rely on it to determine the causal influence of attention heads on the model’s inference, just
like in the QUERY-based patching experiments.

If the fact-processing heads (with (16,12;14) being the QUERY-sensitive representatives) indeed
perform their function as described (moving and performing some preliminary processing of the facts
as described before), then patching the altered key activations in the Facts section of the problem’s
context would cause these attention heads to obtain a nontrivial intervened logit difference, i.e. it
would help in bending the model’s “belief” in what the facts are (especially the TRUE assignments in
the facts section), thus pushing the model to flip its first answer token. This is indeed what we observe.
In Figure[T4] we see that only the key activations with index (16,3) (corresponding to heads (16, 12 -
15)) obtain a much higher score than every other key index, yielding evidence that only the heads
with key index (16,3) rely on the facts (especially the truth value assignments) for answer. Moreover,
notice that patching the key activations of the decision heads does not yield a high logit difference on
average, telling us that the decision heads do not directly rely on the truth value assignment of the
variables for inference (we wish to emphasize again that, the positions of the variables in the Facts
section are not altered, only the truth value assignments for the two variables of the OR chain are
flipped).

Finally, for additional insights on the decision heads (19,8;9;16) and (17,25), we find that by patching

1733

the query activations of these decision heads at the “:” position yields nontrivial intervened logit

35

0 0 03
1 1
2 2
3 3
1 4 9
5 5 2
6 6 2 0.2
7 7
8 8 2
9 9 3
10 10 8
11 11 2 0.1
12 12
%13 13 1
14 14 13
£15 15 1
516 16 5 0.0
717 17 e
18 18 18
19 19 19 ™
20 20 20
21 21
22 22 22 -01
23 23 24
24 24 2
25 25
26 26 21
27 27 %9 -0.2
28 28 30
29 29 31
30 30 0 5 10 15 20 25 30
31 31 Head Index
5 0 5 -0.3
Head Index Head Index
(a) Key (b) Value (c) Query

(%1}

Figure 15: Mistral 7B. Key, value and query activation patching at the *“:” position (last token position
in the context, right before the answer token), with the metric being the calibrated intervened logit
difference. The truth value assignments for the OR chain is flipped (while keeping everything else in
the prompt the same), and the OR chain is always queried. Observe that only the guery activations at
index (19,8) obtain a high intervened logit difference score of approximately 0.28; the other decision
heads (19,9;16) and (17,25) also obtain nontrivial scores when their queries are patched. Also observe
that the key and value activations at the “:” position do not exhibit strong causal influence on the
correct inference of the model when we only flip the truth value assignments for the OR chain.

difference, as shown in Figure @c) ((19,8) has an especially high score of about 0.27). In other
words, the query activation at the “:” position (which should contain information for flipping the
answer from one variable of the OR chain to the other, as gathered by the fact-processing heads)
being fed into the decision heads indeed have causal influence on their “decision” making. Moreover,
patching the value activation of these heads at “:” does not yield nontrivial logit difference, further
suggesting that it is their attention patterns (dictated by the query information fed into these heads)

which influence the model’s output logits.

36

B.8 Reasoning circuit in Gemma-2-9B

In this section, we present an analysis of the reasoning circuit of Gemma-2-9B in solving the same
reasoning problem which Mistral-7B was examined on from before. We find that the discovered
attention heads’ attention patterns inside Gemma-2-9B bear surprising resemblance to Mistral-7B’s:
according to their highly specialized attention patterns, they can also be categorized into the four
families of attention heads which Mistral-7B employs to solve the problem, namely the queried-rule
locating heads, queried-rule mover heads, fact-processing heads, and decision heads. While it is too
early to draw precise conclusions on how similar the two circuits in the two LLMs truly are, the
preliminary evidence suggests that the reasoning circuit we found in this work potentially has some
degree of universality.

B.8.1 QUERY-based attention head activation patching

We perform activation patching of the attention head output of Gemma-2-9B, by flipping the QUERY
in the prompt pairs. This is the same procedure we used to discover the attention head circuit for
Mistral-7B as discussed in §A.T|and [B.2] We highlight the attention heads with the strongest causal
influence on the model’s (correct) inference in Figure@

0 0 0
0.4
5 5 5
10 10 10
0.2
15 15 o (207) (1911) 15
x 8 Val. of (20,7)
[0) (22,5)
2 (23,612 20
=20 20 ,6;
[} u \ ././ 0.0
E " (24,5) =4
24,5
25 | 25" 25
u . (25) P = ‘x Val. of (23,6)
u o %2 Val. of (24,18) 0.2
30 .- 30 (2842) |2715) 30 '
(30,9)
35 35 35
-0.4
40 40 40
0 10 0 10 0 5
(a) Query (b) Head output (c) Value

Figure 16: Gemma 2 9B. QUERY-based activation patching results of Gemma-2-9B, with sub-
component patching on the query and value activations. We highlight the attention heads with the
highest calibrated intervened logit difference.

B.8.2 Attention patterns of QUERY-sensitive attention heads in Gemma-2-9B

Queried-rule locating heads. The queried rule locating heads inside Gemma-2-9B, namely
{(19,11),(21,7),(22,5), (23,12)}, are very similar in their attention patterns to those in Mistral-7B.
At the QUERY position, their attention concentrates on the conclusion token of the queried rule, and
the “.” which follows. Interestingly, heads (21,7), (22,5) and (23,12) also tend to place some attention
on the “implies” token of the queried rule. Another intriguing difference they exhibit is redundant
behavior: these attention heads are often observed to have almost exactly the same attention pattern
at the “.” and “Answer” token positions following the QUERY token. We visualize their attention
statistics at the QUERY position in Figure[T7]

Queried-rule mover heads. When the query activations of the queried-rule mover heads
{(20,7),(23,6), (24,15)} come from the “:” residual stream, they have fixed attention patterns
which focus a large portion of their attention weights on the QUERY token and two token positions

37

Attention statistics of the queried-rule locating heads

o o o =
i o © =}

Attention weight

o
N

0.0 (19, 11) 21.7) (22.5) (23.12)

(Layer index, Head index)

Figure 17: Gemma 2 9B. Average attention weights of the queried-rule locating heads in Gemma-2-
9B, along with the standard deviations. The attention pattern is obtained at the QUERY position (i.e.
query activation of the attention head is from the residual stream at the QUERY token position). We
record the attention weight on the queried rule.

731

following it, namely the “.” and “Answer” token. Their attention weights are slightly more diffuse
compared to their counterparts in Mistral-7B, likely due to the queried-rule locating heads performing
similar functions at the “.” and “Answer” positions. Furthermore, as shown in Figure[I6]c), we note
that these attention heads are the only ones where patching their value activations results in a large
intervened logit difference, further suggesting their role in performing a fixed “moving” action. We

record their attention weights in Figure[T8]

Attention statistics of the queried-rule mover heads

I Attention weight on QUERY
W Max attention weight on other positions

Attention weight
o
S

(23,6) (24,15)

(20,7)
(Layer index, Head index)

Figure 18: Gemma 2 9B. Average attention weights of the queried-rule mover heads in Gemma-2-9B,
along with the standard deviations. The attention pattern is obtained at the “:” position, and we
sum the attention weights at the QUERY position and the “.” and “Answer” token positions which
immediately follow QUERY.

Fact-processing heads. The fact-processing heads {(24,5), (25, 7), (26,0), (26, 12)}’s attention
patterns at the *“:” position tend to place larger weight on the correct fact for the answer, similar to
the fact-processing heads in Mistral-7B. An interesting difference does exist though: heads (24,5)
and (25,7) also tend to place a nontrivial amount of weight on the QUERY and ““:” token positions,
indicating that these heads are relying on some form of mixture of information present at those
positions for processing. While it is reasonable to hypothesize that these heads are likely relying on
the queried-rule information present in the QUERY and *“:” residual streams, we have not confirmed

this hypothesis in our current experiments. We visualize the statistics of these heads in Figure [T9]

Decision heads. The decision heads {(28, 12), (30,9)}’s attention pattern are obtained at the “:”
position. They bear strong resemblance to those in Mistral-7B: they place significant attention on the
correct answer token (in both the rules and facts sections, same as Mistral-7B’s decision heads), and
little attention weight anywhere else. This is shown in Figure[20]

38

Attention statistics of the fact-processing heads

Il Attention weight on correct fact
0.7/ W Attention weight on QUERY and :
BN Max attention weight on other positions

Attention weight
I I o o
w a [} o

o
N

o
i

0.0

(24,5) (25,7) (26,0) (26,12)
(Layer index, Head index)

Figure 19: Gemma 2 9B. Average attention weights of the fact-processing heads in Gemma-2-9B,
along with the standard deviations. The attention pattern is obtained at the *“:” position. We record
the attention weights at the correct fact, QUERY and *“:” positions, and the maximum weight on any
other position.

Attention statistics of the decision heads

Bl Attention weight on answer tokens
I Max attention weight on other positions

1.0

0.8

o
o

Attention weight
o
Sy

o
N

0.0

(28,12) (30,9)
(Layer index, Head index)

Figure 20: Gemma 2 9B. Average attention weights of the decision in Gemma-2-9B, along with the
standard deviations. The attention pattern is obtained at the “:” position. We record the attention
weights at the correct answer token positions.

B.8.3 Circuit verification of Gemma-2-9B

In this sub-section, we present two versions of the circuit we performed verifications on. Version
1 was older and coarse-grained due to limited resources available at the time. Version 2 is finer-
grained and performed on a larger number of samples. We leave the older version 1 here to ensure
transparency to our circuit analysis process and show the complexities of circuit verifications.

Version 1 of Circuit Verification. This is the old version of the Gemma-2-9B circuit originally found
in the first version of our work, which we observed to already have a high faithfulness score.

The circuit which we perform verification on is the union of the four attention head families, C =
QRLHUQRMHUFPH U DH, with

* QRLH = Queried-Rule Locating Heads = {(19,11), (21,7),(22,5), (23,12)};
* QRM H = Queried-Rule Mover Heads = {(20,7), (23,6), (24,15)};

39

* FPH = Fact-Processing Heads = {(24, 5), (25,7), (26,0), (26,12)};
» DH = Decision Heads = {(28,12), (30,9)}.
Remark. This version of circuit verification is performed in a coarse-grained manner, as we patch the

output of the attention heads in C from the QUERY position to the “:” position, instead of clearly
distinguishing the token positions which each head primarily focuses on.

ct | Couu C C—QRLH C—-QRMH C-FPH C-DH
At/ Dae | 1.0 094 -0.97 -0.40 0.17 -1.11

Table 3: Gemma 2 9B. Asfi g—salt /Aqi: for Gemma-2-9B, with different choices of Ct. Cpun denotes

.

the empty circuit, i.e. the case where no intervention is performed. We abbreviate the attention head
families, for example, DH = decision heads; C — DH = full circuit but with the decision heads
removed.

We find that by patching all 13 attention heads in C, AS , g—art 18 about 94% of the “maximal”
average logit difference A,;; on the altered samples. Moreover, removing any one of the four
families of attention heads from C in the circuit interventions renders the “belief altering” effect of
the intervention almost trivial.

Version 2 of Circuit. With more resources available, we conducted a finer-grained test of the circuit,
covering a larger number of attention heads which have nontrivial causal scores in our circuit search
process, and restricted the token positions which the families are allowed to operate on, similar to
our Mistral experiments before. We also run the verification test on a larger number of samples (240
samples, instead of 80). The following updates are made.

1. Token position restrictions. For the four families of heads, we now restrict the token positions
on which they are allowed to operate normally to be (i.e. the token positions on which they
are unfrozen):

* QUERY for queried-rule locating heads;

* QUERY and “:” for the mover heads, since they have diffuse attention on these
positions.

* The last token position “:” for the fact-processing and decision heads, since we
observed their primary processing for writing down the answer token to take place at
the last token position.

2. Additional QRLHs. We add heads (17,9), (21,0) to the QRLH family. (17,9) did not exhibit
strong causal score in the initial search when we set the mediator to be the output of the
attention head, but it surfaced with high causal score in our rule-location-swap experiment
(where the key activation in the Rules section is the mediator), and its attention statistics
strongly suggest that it is locating the queried rule. (21,0) is included for completeness this
time, since it has moderately high causal score in the circuit search, and its attention pattern
resembles those of the QRLH family closely.

3. The “post-processing” heads. With these token position restrictions, the 4 families of heads
alone recover 86% of the logit difference — a high score, but still lower than before by a
nontrivial margin. We find that for two more attention heads deeper in the model which
have high causal scores in the search process, (27,15) and (33,4), un-freezing them at the
QUERY and “:” positions (along with the rest of the circuit as we described above) helps us
recover 95% of the un-intervened average logit difference.

* We term these heads the “post-processing” heads. Their attention patterns are somewhat
similar to the mover heads’ — consistently heavy attention at the last token position
“:”, with small amount of attention on QUERY - yet they are deeper in the model,

and patching their value activations alone does not yield high causal scores. This

suggests that they are not merely moving information, but boosting the answer signal
given by the core circuit (from the 4 families of heads). The exact role of these two

post-processing heads remains mysterious, and requires future investigations.

* These two heads were not included in the Version 1 circuit as they have less interpretable
functional roles in the circuit, and lower causal scores than the dominant heads in the
four core circuit families (especially head (33,4)). Another reason to include them now

40

is that they seem to have counterparts in the larger Gemma-2-27B model: some of the
heads in the deeper layers in that model also exhibit the tendency to only focus on the
last token position, and have nontrivial causal scores.

Further remarks.

1. To see the nuances with the sufficiency tests of these circuits more clearly, we encourage the
interested reader to examine, and ideally work with our open-sourced Jupyter notebook “LLM
Analysis Part 1 - Circuit search, interpretation, and verification.ipynb” in our GitHub repository,
which covers the full workflow from environment setup to the details of circuit tests. By ablating
different combinations of the circuit components and token positions (and with/without the post-
processing heads), the reader should be able to gain a more concrete understanding of the reasoning
circuits.

2. We find it surprising that two LLMs (Mistral-7B and Gemma-2-9B) which are trained with different
procedures and data ended up relying on attention-head circuits which bear strong resemblance to
each other’s. In the current literature, it is unclear how one can rigorously quantify the similarity
of two nontrivial circuits inside different LLMs, however, this subsection does yield preliminary
evidence that, the reasoning circuit we discover potentially has some degree of universality to it, and
is likely an emergent trait of LLMs.

B.8.4 Analysis of queried-rule locating heads

Similar to the Mistral-7B experiments in verifying the queried-rule locating heads, we only swap the
location of the linear rule with the LogOp rule in the Rule section of the question, while keeping
everything else the same (including all the in-context examples). As an example, we alter “Rules: A
or B implies C. D implies E.” to “Rules: D implies E. A or B implies C.” while keeping everything
else the same. The two prompts have the same answer. As the results have already been visualized in
the main text, we do not repeat the results here.

The basic intuition is that, if the queried-rule locating heads indeed perform their functions as we
described, then when we run the model on the clean prompts, patching in the altered key activations
at these heads (within the Rules section) should cause “negative” change to the model’s output, since
it will cause these heads to mistake the queried-rule location in the altered prompt to be the right one,
consequently storing the wrong rule information at the QUERY position. In particular, the model’s
logit difference between the two possible answers (to the LogOp chain and linear chain) should
decrease. Indeed, that is what we observe.

B.8.5 Analysis of fact-processing heads and decision heads

Similar to the Mistral-7B experiments, in this section, we aim to provide further validating evidence
for the fact-processing heads and the decision heads. We experiment with flipping the truth value
assignment for the OR chain while keeping everything else the same in the prompt (we always query
for the OR chain in this experiment). As an example, we alter “Rules: A or B implies C. D implies E.
Facts: A is true. B is false. D is true. Query: please state the truth value of C.” to “Rules: A or B
implies C. D implies E. Facts: A is false. B is true. D is true. Query: please state the truth value of
C.”. In this example, the answer is flipped from A to B. The (calibrated) intervened logit difference
between the two variables in the OR chain is still a good choice in this experiment.

If the fact-processing heads indeed perform their function as described (selecting the correct fact to
invoke, and moving such facts to the “:” position for next-word prediction), then patching the altered
key activations in the Facts section of the problem’s context would cause these attention heads to
obtain a nontrivial intervened logit difference, i.e. it would help in bending the model’s “belief” in
what the facts are (especially the TRUE assignments in the facts section), thus pushing the model
to flip its first answer token. This is indeed what we observe. In Figure [21] we see that only the
key activations with index (23,6), (25,3), (26,6) and (28,4) (corresponding to heads (23,13), (25,6),
(26,12) and (28,8)) obtain a higher score than every other key index, yielding evidence that they are
sensitive to the truth values assignments. Interestingly, head (23,13) did not exhibit strong causal
influence in our CMA experiment in the main text, thus was not included in the circuit. We suspect
that this is due to its inconsistent ability in locating the correct fact: we find that when QUERY is
for the linear chain, this head tends to be correct, and allocates a large amount of attention to the
sentence of the correct fact, yet, when QUERY is for the OR chain, its performance is inconsistent.

41

6,9

Moreover, by patching the attention head output on and after the QUERY token (up to “:”’), we gain
understanding of which heads output important truth-value-sensitive information for the model’s
inference. We find that the fact-processing heads (25,7), (26,12), (28,12), and (30,9) indeed have large
intervened logit differences. Interestingly, head (27,15) also has a large score: examining its attention
pattern, we find that it resembles a mover head, focusing attention on “Answer” and “:” positions.
We suspect that this head is moving truth-value-sensitive information sent out by the shallower layers
(e.g. from the heads (25,7), (26,12)). Due to resource constraints, we were not able to verify this
hypthesis.

16 16 16 0.8
17 17 17
18 18 0.4 18
19 19 19 0.6
20 20 20
21 21 21
22 22 22 0.4
23 23 0.2 23
24 24 24
25 O 25 25 [] 0.2
%26 26 26 |]
°27 27 27 [|
<28 28 0.0 28 B 0.0
%29 29 29
S30 30 30 []
31 31 31 || -0.2
32 32 32
33 33 -0.2 33
34 34 34 -0.4
35 35 35
36 36 36
37 37 37 -0.6
38 38 —0.4 38
39 39 39
40 40 40 -0.8
41 41 41
01234567 01234567 00 25 50 75 100 125 15.0
Head Index Head Index Head Index
(a) Key (b) Value (c) Output, on and after QUERY

Figure 21: Gemma 2 27B. Key, value and output intervention experiment results. We note that the
key and value activations are intervened in the Facts section, while the output intervention is done on
token positions on and after QUERY. The former two helps us understand which attention heads are
truth-value-sensitive and rely on truth value information for inference. The output intervention helps
us know which attention heads’ output are truth-value-sensitive, and send out truth-value-assignment-
dependent information for the model’s reasoning actions.

B.8.6 Rule invocation: circuit reuse in proof writing

We localize the attention heads which invoke the correct rule for the argument. In particular, we
still generate the counterfactual prompt by flipping the query token: clearly, this not only flips
the first answer token (the correct fact invocation), but also the “first rule token”. Consider the
normal-counterfactual pairs:

[... in-context examples ...] [... in-context examples ...]

Rules: A or B implies C'. D implies E. dierea | Rules: A or B implies C. D implies E.
Facts: A is true. B is false. D is true. ——— | Facts: A is true. B is false. D is true.
Question: what is the truth value of C? prompt Question: what is the truth value of £?

Answer: A is true. Answer: D is true.

What follows would be the correct rule invocation. For the normal prompt, it would be “A or B
implies C”, and for the counterfactual prompt, it would be “D implies E”. We perform patching again
at the first answer token position to localize components responsible for retrieving the correct rule to
invoke; we show the results in Figure 22] We intervene on the token positions starting at QUERY,
and ending at the final token position “.”. Note that we perform patching accounting for GQA for
Mistral-7B — we know from before that this coarser-grained patching actually helps us locate more
attention heads which perform the role of rule-locating (recall Figure[8). As we see, the models reuse
the rule-locator and decision heads.

42

11 0.6

13 | Queried-rule locator heads |
14 = 0.4
15 18 ||
16 Queried-rule locator heads 0.4 1
1 12 —— 03
18 13
1 B 1 _—— 02
15
21 0.2 16
22 17 0.1
x 23 318
$24 219 | |
£25 0.0 20 0.0
526 I T
27
83 ;3‘ -0.1
Erd 2
-0.2 % -0.2
31 57
32 28
33 2 -0.3
34 = 30
36 0 5 10 15 20 25 30 ’
37 Head Index
38
39
40 -0.6
41
0 5 10 15
Head Index
(a) Gemma-2-9B (b) Mistral-7B

Figure 22: We observe subcircuit reuse when the Gemma-2-9B and Mistral-7B models invoke the
correct rule.

Remark. With finer examination of the rule-locator heads in Gemma-2-9B, we found that the rule-
locator heads’ activations causally implicate the answer at both the QUERY token position and the
first token of fact invocation (right after “Answer:”): indeed, both positions store information about
the queried rule (reflected in their attention patterns). The decision heads, on the other hand, causally
implicate the answer primarily at the last token position, right before invoking the rule — their precise
functionality is more similar to that for fact invocation.

B.8.7 Prompt format ablation

In this subsection, we aim to understand how robust our discovered subcircuits (the 4 families of
heads) are to prompt format changes. In particular, we switch the Facts and Rules section of our
problems. Our problem pairs now have the following form:

[... in-context examples ...] [... in-context examples ...]|

Facts: A is true. B is false. D is true. dltered Facts: A is true. B is false. D is true.
Rules: A or B implies C'. D implies £. | —— |Rules: A or B implies C. D implies E.
Question: what is the truth value of C? prompt Question: what is the truth value of £?

Answer: A is true. Answer: D is true.

We show the CMA results, along with representative attention patterns of the surfaced attention heads.
Please refer to Figure 23] for detailed visualization and explanations of our observations.

B.9 Gemma-2-27B reasoning circuit

In this section, we analyze Gemma-2-27B’s reasoning circuit. We first show the CMA result below,
again relying on QUERY-based activation patching.

Additionally, we caution the reader that the experimental study in this subsection is less exhaustive in
nature compared to our study of Mistral-7B and Gemma-2-9B, due to limitations in our computation
budget.

B.9.1 Attention head analysis

Most of the attention heads’ attention patterns in this model’s reasoning circuit (for writing down the
first answer token) resemble those in Gemma-2-9B, therefore we omit another set of visualizations

43

Attention pattern of head (19.11)
of s of
nnnnn Answef|

< o

Attention pattern of head (20.7) .
— |U '

<sge 00

] 5o g o
g
y Attention pattern of head (2 Attention patter of head (24.5)
o o 02
o
e T, | T answer 0.1
H o 58, 0.0
<

3 E E
Attention pattern of head (22,5) 17 0.4
? o2 18
Answer| 01 19 0.3 Attention pattern of head (23,12)
0.0 04
g g z D - Answer 02
s s < 02 -°
-

2
o

¢

Attention pattern of head (25,7) 3
o i 02 E s g
! 23 - =101 s
0.1 x 24 Attention pattern of head (26,12)
] o oa
g loos, E25 | == -
‘<526 7’ . - 0.0 02
] o
- 5 0.0
: s

. -0.1
Queried-rule locating . 28 i — .,

Attention pattern of head (28.8)
: 31 o EY o
_____ Relevant premise variables . 32 P] ‘-0.3 00
locating + Facts aggregating ~ © 33 - ~.

B - PRki

. 3
. . < —
Y m Decision . 27012345678 9101112131415 0 S Attcptionpatiemot head 2222 »
. . .7 Head Index . _ |
................................ - 8 ; 0
Attention pattern of head (30.9) Attention pattern of head (34.12) 0 H oo
| 04 o

Answer| 0.2 Answer| o1 °

<8y ug a0y g T 00 praag ag auy g5 g % 50

Figure 23: (Best viewed when zoomed in) CMA results on logic problems presented in the format
“Facts: ... Rules: ... Question: ...”, along with representative attention patterns of the discovered
attention heads. Overall, the attention heads which have strong IEs remain almost the same as before.
However, some of their functional roles changed. We elaborate on what stayed the same and what
changed below.

First, the majority of the queried-rule locating and decision heads remain the same as before (with
head (34,12) being a new hybrid decision head + fact-processing head which was not present in
our circuit before). In other words, the “starting” and “ending” sub-circuits in the model remain
virtually unchanged. However, the “middle-layer heads”, namely the fact-processing and mover
heads experienced some changes. In particular, a significant portion of these heads shifted to locating
the relevant premise variables and aggregating relevant facts, instead of only performing moving
actions or only focusing on the correct fact-sentence.

showing almost identical results to the 9B subsection from before (besides different layer-head
indices). We focus on attention heads which exhibit significantly new behavior which had not been
observed in the smaller models. This includes two intriguing points mentioned in the main text, (1)
analyzing the logical-operator heads, and (2) showing that a portion of the fact-processing heads
exhibit strong direct effect on the model’s logits.

Logical-operator heads. We discuss how we localize these attention heads, and then show examples
of their attention patterns: we find these heads’ attention pattern not so easy to capture by simple bar
plots showing summarized statistics.

First, to localize these attention heads, we perform the following set of experiments. We set the
following restrictions to the problem context:

* We always query for the logical-operator (LogOp) chain

* We always set the truth value assignments for the two premise variables of the LogOp chain
to be [“true”, “false”’]. We do not allow [“true”, “true”] or [“false”, “false”] in this analysis.
The reason is that for both the situations of LogOp=AND and LogOp=O0R, there is a unique

first answer token (i.e. a unique fact that should be invoked in the minimal proof).

Given a normal prompt such as “Rules: A or B implies C. D implies E. Facts: A is true. B is false. D
is true. Query: please state the truth value of C.”, we generate the counterfactual prompt as “Rules: A
and B implies C. D implies E. Facts: A is true. B is false. D is true. Query: please state the truth
value of C.” This can also be done the other way around of course.

We then hold the attention head output on or after QUERY as the mediator, and search for attention
heads with strong indirect effects. In this setting, we measure the logit different between the two

44

possible answer tokens, namely the two premise variables in the LogOp chain. We show the results
in Figure 24

While a significant portion of the attention heads with nontrivial indirect effects are mover and
decision heads, we find that heads (23,13), (23,31) place significant attention not only on the rule
being queried, but also specifically on the logical operator of the queried rule, whenever that rule
has a logical operator. Figure 25| contrasts their behavior on samples querying for the LogOp chain
versus linear chain.

14 0.3

19 0.2

24 0.1

34 —0.1

39 -0.2

43 m
44 -0.3

0 5 10 15 20 25 30
Head Index

Figure 24: Gemma 2 27B. Output intervention experiment results of the logical-operator-flipping
experiment. We note that the outputs are intervened on and after QUERY.

Mechanical differences in Gemma-2-9B and Gemma-2-27B: Fact—Decision. We illustrate in the

Figure[26]

45

QUERY (23,13) (23,31) QUERY (20,16) (2213)

Linear
Chain

Linear
Chain

LogOp
Chain

LogOp
Chain

ene heads 0.10

« .4

P ,V/”

4 RS | — Hybrid of rule locator
Hybrid fact precessm + Logical-operator 9 P and facts-processor

Moving/post-process 0.00
ing

Layer Index
°
°

Fact-processing

-0.05

-0.4
-0.10
4 -06 42
o 5 10 15 20 25 30 o 5 10 15 20 25 30 0.15

Head Index Head Index

(a) Path patch to decision heads (b) Path patch to (23,13;31)

Figure 25: Please zoom in to view the detailed path patching results and attention patterns. (a) shows
the query-based path patching result to the decision heads of Gemma-2-27B, and (b) shows the
query-based path patching results to the heads (23,13;31), which we found to place attention not
only on the right fact(s), but also the logical operator word “and” or “or”. Furthermore, we show the
typical attention patterns of the logical-operator related heads on top. The path patching results are
done by flipping the logical operator, as detailed in text.

The two attention heads (23,13) and (23,31) are sensitive to the change in the logical operator, and
exhibit the strongest direct effects on the decision heads. For the four rows showing the example
attention patterns of these two heads, the top two rows are the attention patterns of the attention heads
obtained on samples querying for the linear chain, the bottom two rows are from samples querying
for the LogOp chain. Each row is obtained from the same sample. Observe that in the bottom two
rows, the two heads consistently place attention on the word “and” and “or” in addition to placing
attention on the queried rule.

We also show typical attention patterns of (20,16) and (22,13), which have strong direct effects on
(23,13;31) and also place significant attention on the logical operator. Moreover, note that they are
not very precise fact-processing heads, even though they do place attention on certain facts: they do
not place attention on the correct fact consistently. We hypothesize that these heads’ role has more to
do with informing later attention heads (particularly (23,13;31)) the logical operator present in this
problem instance.

C The reasoning circuit in a small transformer

In this section, we study how small GPT-2-like transformers, trained solely on the logic problem,
approach and solve it. While there are many parts of the answer of the transformer which can lead to
interesting observations, in this work, we primarily focus on the following questions:

1. How does the transformer mentally process the context and plan its answer before writing
down any token? In particular, how does it use its “mental notes” to predict the crucial first
token?

2. How does the transformer determine the truth value of the query at the end?

We pay particular attention to the first question, because as noted in §| the first answer token reveals
the most about how the transformer mentally processes all the context information without any access
to chain of thought (CoT). We delay the less interesting answer of question 2 to the Appendix due to
space limitations.

46

5 0.4 gg Logical-operator or fact-processing heads
23 ‘ 0.15
10 24
%g 0.10
02 27
. 2
0.05
3 330
£20 23! Decision heads ———— W
5 0.0 - 32 0.00
B Decision heads ggi
25 835))
gg Moving/post-processing -0.05
30 _0'2 3
o 20 -0.10
iz
35 _04 15 -0.15
44
45
40 0 5 10 15 20 25 30 -0.20
0 10 Head Index
Head Index
(a) Gemma-2-9B, direct effects on logits (b) Gemma-2-27B, direct effects on logits

Figure 26: Direct effects of attention heads on the model logits for Gemma-2-9B and Gemma-2-27B.
The latter appears to have more parallel processing components than the 9B model. More specifically,
for the 9B model, only the decision heads exhibit strong direct effects on the logits, the earlier ones
(including fact-processing heads) do not. In contrast, the 27B has logical-operator and fact-processing
heads exhibiting strong indirect effects on the logits, in addition to actual decision heads. Rather
interestingly, if we recall the results in the previous Figure [25] we know that the logical-operator
and fact-processing heads also have direct effects on the decision heads. This tells us that these
intermediate heads are “connected” to both the decision heads, and also have direct influence on the
logits. This is not observed in the smaller 9B model!

C.1 Learner: a decoder-only attention-only transformer

In this section, we study decoder-only attention-only transformers, closely resembling the form of
GPT-2 (Radford et al.|[2019a)). We train these models exclusively on the synthetic logic problem. The
LogOp chain is queried 80% of the time, while the linear chain is queried 20% of the time during
training. Details of the model architecture are provided in Appendix

Architecture choice for mechanistic analysis. We select a 3-layer 3-head transformer to initiate our
analysis since it is the smallest transformer that can achieve 100% test accuracy; we also show the
accuracies of several candidate model sizes in Figure 28]in Appendix [D]for more evidence. Note that
a model’s answer on a problem is considered accurate only if every token in its answer matches that
of the correct answer. Please refer to Appendix [D.2]for an illustration of the model components.

C.2 Mechanism analysis
The model approximately follows the strategy below to predict the first answer token:

1. (Linear vs. LogOp chain) At the QUERY position, the layer-2 attention block sends out a
special “routing” signal to the layer-3 attention block, which informs the latter whether the
chain being queried is the linear one or not. The third layer then acts accordingly.

2. (Linear chain queried) If QUERY is for the linear chain, the third attention block focuses
almost 100% of its attention weights on the QUERY position, that is, it serves a simple
“message passing” role: indeed, layer-2 residual stream at QUERY position already has the
correct (and linearly decodable) answer in this case.

3. (LogOp chain queried) The third attention block serves a more complex purpose when the
LogOp chain is queried. In particular, the first two layers construct a partial answer, followed
by the third layer refining it to the correct one.

47

We illustrate the overall reasoning strategy and core evidence for it in Figure[30]in Appendix [D.3]

C.2.1 Linear or LogOp chain: routing signal at the QUERY position

The QUERY token is likely the most important token in the context for the model: it determines
whether the linear chain is being queried, and significantly influences the behavior of the third
attention block. The transformer makes use of this token in its answer in an intriguing way.

Routing direction at QUERY. There exists a “routing” direction b, present in the embedding
generated by the layer-2 attention block, satisfying the following properties:

l. a1(X)hyoute is present in the embedding when the linear chain is queried, and
(X)hroute s present when the LogOp chain is queried, where the two «;(X)’s are
sample dependent, and satisfy the property that oy (X) > 0, and (X)) < 0.

2. The “sign” of the h,,ye signal determines the “mode” which layer-3 attention operates in
at the ANSWER position. When a sufficiently “positive” h,.o¢c is present, layer-3 attention
acts as if QUERY is for the linear chain by placing significant attention weight at the QUERY
position. A sufficiently “negative” h,.,,:. causes layer-3 to behave as if the input is the
LogOp chain: the model focuses attention on the rules and fact sections, and in fact outputs
the correct first token of the LogOp chain!

We discuss our empirical evidence below to support and elaborate on the above mechanism.

Cosine similarity matrix between embeddings

Sample index
=
o
o

125
150 i 0.0

175 -0.2

0 25 50 75
Sample index

Figure 27: Small transformer (trained from scratch). Cosine similarity matrix between output
embeddings from layer-2 attention block. Samples 0 to 99 query for the linear chain, samples 100 to
199 query for the LogOp chain. Observe the in-group clustering in angle (top left and bottom right),
and the negative cross-group cosine similarity (top right and bottom left).

Evidence la: chain-type disentanglement at QUERY. We first observe that, at the QUERY position,
the layer-2 attention block’s output exhibits disentanglement in its output direction depending on
whether the linear or LogOp chain is being queried, as illustrated in Figure 27}

To generate Figure[27] we constructed 200 samples, with the first half querying the linear chain and
the second half querying the LogOp chain. We then extracted the layer-2 self-attention block output
at the QUERY position for each sample, and calculated the pairwise cosine similarity between these
outputs.

Evidence 1b: distinct layer-3 attention behavior w.r.t. chain type. When the linear chain is queried,
the layer-3 attention heads predominantly focus on the QUERY position, with over 90% of their
attention weights on the QUERY position on average (based on 1k test samples). In contrast, when
the LogOp chain is queried, less than 5% of layer-3 attention is on the QUERY on average. Instead,
attention shifts to the Rules and Facts sections of the context, as shown in Figure [31)in Appendix [D-4]

Observations la and 1b suggest that given a chain type (linear or LogOp), certain direction(s)
in the layer-2 embedding significantly influences the behavior of the third attention block in the

48

aforementioned manner. We confirm the existence and role of this special direction and reveal more
intriguing details below.

Evidence 1c: computing h,,ute, and proving its role with interventions. To erase the instance-
dependent information, we average the output of the second attention block over 1k samples where

QUERY is for the linear chain. We denote this estimated average as h,.,;. Which effectively

preserves the sample-invariant signal. To test the influence of Roroute, We investigate its impact on the
model’s reasoning process, and we observe two intriguing properties:

1. (Linear—LogOp intervention) We generate 500 test samples where QUERY is for the linear
chain. Subtracting the embedding h,¢. from the second attention block’s output causes
the model to consistently predict the correct first token for the LogOp chain on the test

samples. In other words, the “mode” in which the model reasons is flipped from “linear” to
“LOgOp”.

2. (LogOp—linear intervention) We generate 500 test samples where QUERY is for the LogOp
chain. Adding b, to the second attention block’s output causes the three attention heads
in layer 3 to focus on the QUERY position: greater than 95% of the attention weights are

on this position averaged over the test samples. In this case, however, the model does not
output the correct starting node for the linear chain on more than 90% of the test samples.

It follows that b, indeed exists, and the “sign” of it determines the attention patterns in layer 3
(and the overall network’s output!) in the aforementioned manner.

C.2.2 Answer for the linear and LogOp chain

Linear chain: answer at layer-2 residual stream at QUERY position. At this point, it is clear to
us that, when QUERY is for the linear chain, the third layer mainly serves a simple “message passing”
role: it passes the information in the layer-2 residual stream at the QUERY position to the ANSWER
position. One natural question arises: does the input to the third layer truly contain the information to
determine the first token of the answer, namely the starting node of the linear chain? The answer is
yes.

Evidence 2: linearly-decodable linear-chain answer at layer 2. We train an affine classifier with
the same input as the third attention block at the QUERY position, with the target being the start
of the linear chain; the training samples only query for the linear chain, and we generate 5k of
them. We obtain a test accuracy above 97% for this classifier (on 5k test samples), confirming that
layer 2 already has the answer linearly encoded at the QUERY position. To add further contrasting
evidence, we train another linear classifier with exactly the same task as before, except it needs to
predict the correct start of the LogOp chain. We find that the classifier achieves a low test accuracy of
approximately 27%, and exhibits severe overfitting with the training accuracy around 94%.

LogOp chain: partial answer in layers 1 & 2 + refinement in layer 3. To predict the correct
starting node of the LogOp chain, the model employs the following strategy:

1. The first two layers encode the LogOp and only a “partial answer”. More specifically, we
find evidence that (1) when the LogOp is an AND gate, layers 1 and 2 tend to pass the
node(s) with FALSE assignment to layer 3, (2) when the LogOp is an OR gate, layers 1 and
2 tend to pass node(s) with TRUE assignment to layer 3.

2. The third layer, combining information of the two starting nodes of the LogOp chain, and
the information in the layer-2 residual stream at the ANSWER position, output the correct
answer.

We provide a full technical explanation of this high-level overview in Appendix[D.4] Our argument

mainly relies on linear probing and causal interventions at different layers and token positions in the
model.

D Length-3 small transformer study: further technical details

In this section, we provide further technical details of our three-layer transformer experiments.

49

D.1 Data definition and examples

As illustrated in Figure[I] the propositional logic problem always involve one logical-operator (LogOp)
chain and one linear chain. In this paper, we study the length-3 case for the small-transformer setting,
and length-2 case for the Mistral-7B-v0.1 case.

The input context has the following form:

RULES_START K implies D. V implies E. D or E implies A.
P implies T. T implies S. RULES_END

FACTS_START K TRUE. V FALSE. P TRUE. FACTS_END
QUERY_START A. QUERY_END

ANSWER

and the answer is written as
K TRUE. K implies D; D TRUE. D or E implies A; A TRUE.

In terms the the English-to-token mapping, RULES_START, RULES_END, FACTS_START, FACTS_END,
QUERY_START, QUERY_END ANSWER, . and ; are all unique single tokens. The logical operators and
and or and the connective implies are unique single tokens. The proposition variables are also
unique single tokens.

Remark D.1. The rules and facts are presented in a random order in the respective sections of the
context in all of our experiments unless otherwise specified. This prevents the model from adopting
position-based shortcuts in solving the problem.

Additionally, for more clarity, it is entirely possible to run into the scenario where the LogOp chain is
queried, LogOp = OR and the two relevant facts both have FALSE truth values (or LogOp = AND
and both relevant facts are TRUE), in which case the answer is not unique. For instance, if in the
above example, both K and V are assigned FALSE, then both answers below are logically correct:

K FALSE V FALSE. K implies D; D UNDETERMINED. V implies E;
E UNDETERMINED. D or E implies A; A UNDETERMINED.

and

V FALSE K FALSE. V implies E; E UNDETERMINED.
K implies D; D UNDETERMINED. D or E implies A; A UNDETERMINED.

Problem specification. In each logic problem instance, the proposition variables are randomly
sampled from a pool of 80 variables (tokens). The truth values in the fact section are also randomly
chosen. In the training set, the linear chain is queried 20% of the time; the LogOp chain is queried
80% of the time. We train every model on 2 million samples.

Architecture choice. Figure[28]indicates the reasoning accuracies of several candidate model variants.
We observe that the 3-layer 3-head variant is the smallest model which achieves 100% accuracy. We
found that 3-layer 2-head models, trained of some random seeds, do converge and obtain near 100%
in accuracy (typically above 97%), however, they sometimes fail to converge. The 3-layer 3-head
variants we trained (3 random seeds) all converged successfully.

D.2 Small transformer characteristics, and training details
D.2.1 Transformer definition

The architecture definition follows that of GPT-2 closely. We illustrate the main components of this
model in Figure[29] and point out where the frequently used terms in the main text of our paper are in
this model.

The following is the more technical definition of the model. Define input & = (21, x2, ..., Z¢) € Nt
a sequence of tokens with length ¢. It is converted into a sequence of (trainable) token embeddings
Xioken = (€(11), e(x2), ..., e(x;))T € R¥*9e, where we denote the hidden embedding dimension of
the model with d,. Adding to it the (trainable) positional embeddings P = (p;, Py, ..., p;)T € Rt*de,

50

100

90

80

70

Reasoning accuracy

60

50
L=2, H=1 L=2, H=12 L=3, H=1 L=3, H=3 L=3, H=12

Figure 28: Small transformers (trained from scratch), varying sizes. Reasoning accuracies of several
models on the length-3 problem. x-axis: model architecture (number of layers, number of heads);
y-axis: reasoning accuracy. Note that the 3-layer 3-head variant is the smallest which obtains 100%
accuracy on the logic problems.

Linear classifier Attention block embedding

Layer-3 residual stream 5
Repn @
position 1 \
\

Repn @ \\\\ s
position2 \ \\"

Repn @ ..
Layer-2 residual stream N
\

+> Repn @ \ \\\\1 Attn 1 - Value1
position N -
4 Projection

Attn 2 J { Value 2 }

Layer-3 attention block
embedding

Attention block
L=3

Layer-2 attention block
embedding

Attention block
L=2

Layer-1 attention block
embedding

Attention block
L=1

_ - - Attention weights/probabilities

Layer-1 residual stream Attention block
embedding at token
position t

Figure 29: Illustration of the major components of a 3-layer attention-only decoder-only transformer
on the left, and a rough “sketch” of what is computed inside an attention block (2 attention heads for
simplicity of the sketch).

we form the zero-th layer embedding of the transformer

Xo = Xtoken + P = (6(131) +p1, ...7€(l’t) +pt) (2)

This zero-th layer embedding is then processed by the attention blocks as follows.

Let the model have L layers and H heads. For layer index ¢ € [L] and head index j € [H], attention
head Ay ; is computed by

T T T —
A (X)) =S <causa] [(QMXZ,I) KmX“D X, VE eRX 3

1
Vi

where d;, = %.

51

We explain how the individual components are computed below.

* Let us begin with how the S(...) term is computed.

. }g,l = LayerNorm(X,_1) € R*de where LayerNorm denotes the layer normalization
operator (Ba et al.| [2016)).

QK j€ R?r*de are the key and query matrices of attention head (¢, 5), where d;, = dﬁe

— ~T
They are multiplied with the input X, to obtain the query and key activations Q, ; X ,_;
and K ; X ;_1, both in the space R%*!. We then perform the “scaled dot-product” of the

query and key activations to obtain
L (Qu, X1,)TK X, , R @)
\/ﬁ £,j<>€—1 £,js > p—1)

which was introduced in|Vaswani et al.|(2017) and also used in GPT2 (Radford et al.,[2019Db).
* The causal mask operator causal : R*** — R**? allows the lower triangular portion of
the input (including the diagonal entries) to pass through unchanged, and sets the upper
triangular portion of the input to —U, where U is a very large positive number (some papers
simply denote this —U as —oo). In other words, given any M € R**? and (i, k) € [t] x [t],
[causal [M]];), = [M], ., if i > k;

[causal [M]], , = —U, if i <k. ©)

o §: Rt — R¥*! is the softmax operator, which computes the row-wise softmax output
from the input square matrix. In particular, given a square input matrix M € R**? with its
upper triangular portion set to —U (note that the causal mask operator indeed causes the
input to S to have this property), we have

ieXp([Jik) ifti >k
2 n=1exp([M];.n) (6)
[S(M)]; =0, ifi <E.
* To recap a bit, we have now explained how to compute the first major term in (3)), namely

—~—17 \T —~T
N <Causal [\/17, (QZ,]’XE—I) Kl,jXZ—1:|) € [0, 1]***. Tt reflects the attention pattern

[S(M)]ik =

(also called attention probabilities) of the attention head (¢, j) illustrated in Figure s
right half. Intuitively speaking, the (i, k) entry of this ¢ by ¢ matrix reflects how much the
attention head moves the information from the previous layer £ — 1 at the source token
position of k to the current layer ¢ at the target token position .

* Now what about }4,1VZJ-? Vi€ Ren*de s the value matrix of attention head (¢,). It
is multiplied with X y_; to obtain the value activation X ,_; VZ]- € Rtxdn,

* At this point, we have shown how the whole term in equation (3)) is computed.

Having computed the output of the all H attention heads in the attention block at layer ¢, we find the
output of the attention block as follows:

X=X, 1+ Concat[Ay 1 (X o-1), ... Aot (X -1)]W 5 4. (7
The operators are defined as follows:

* Concat[-] is the concatenation operator, where Concat[A;1(X¢—1), ..., Ae,u(X-1)] €
Rtxda‘

» W, € R¥*de s the projection matrix (sometimes called output matrix) of layer £. In our
implementation, we allow this layer to have trainable bias terms too.

Finally, having computed, layer by layer, the hidden outputs X, ; for ¢ € [L], we apply an affine
classifier (with softmax) to obtain the output of the model

f(z) = S<XL,tW5ass + beiass) ®
This output indicates the probability vector of the next word.

In this paper, we set the dimension of the hidden embeddings d. = 768.

52

D.2.2 Training details

In all of our experiments, we set the learning rate to 5 x 10~°, and weight decay to 10™%. We use a
batch size of 512, and train the model for 60k iterations. We use the AdamW optimizer in PyTorch,
with 5k iterations of linear warmup, followed by cosine annealing to a learning rate of 0. Each model
is trained on a single V100 GPU; the full set of models take around 2 - 3 days to finish training.

D.3 High-level reasoning strategy of the 3-layer transformer

We complement the text description of the reasoning strategy of the 3-layer transformer in the main
text with Figure [30]below. It not only presents the main strategy of the model, but also summarizes
the core evidence for specific parts of the strategy.

i Query type 1 ‘ Query for linear chain Query for LogOp chain
''''''' oo 2 ¢h 3 ¢h
- Layer 2 sends “+h,oute” to layer Layer 2 sends “ —hyoute " to layer 3
- Routlng :nrlz?yrerr 2] at QUERY position at QUERY position
i ! Layer 3 @ ANSWER focuses ~100% Layer 3 @ ANSWER allocates ~0% attention on
S L L attention on QUERY position b QUERY, instead focuses on rules and facts
Routing-dependent b
! actionin layer 3 P - b -
777777777777777777 b Layer-2 resid stream @ QUERY: b Layer-2 resid stream @ ANSWER:
l ' linearly decodable answer P Linearly decodable “partial” answer
Answer e v Layer-3 pre-projection embd @ ANSWER:
Linearly decodable relevant premise variables
Answer
Layer-3 post-projection embd @ ANSWER:
linearly decodable answer

Answer

Figure 30: High-level overview of how the 3-layer transformer solves the logic problem, particularly
in writing down the first answer token (the hardest place in the proof). As shown in the grey blocks
on the left, the model performs “routing” in layer 2 by sending a routing signal h,.,, to layer 3
(with its “sign” dependent on the query type), then the layer-3 attention block acts according to the
“sign” of the routing signal sent to it. The middle (right) chain shows the strategy when the problem
queries for linear (LogOp) chain.

D.4 Answer for the LogOp Chain

Evidence 3a: Distinct behaviors of affine predictors at different layers. We train two affine classifiers
at two positions inside the model (each with 10k samples): W ,..4;q =2 at layer-2 residual stream,
and W 444, ¢—3 at layer-3 attention-block output, both at the position of ANSWER, with the target
being the correct first token. In training, if there are two correct answers possible (e.g. OR gate,
starting nodes are both TRUE or both FALSE), we randomly choose one as the target; in testing, we
deem the top-1 prediction “correct” if it coincides with one of the answers. We observe the following
predictor behavior on the test samples:

1. W 4ttn =3 predicts the correct answer 100% of the time.
2. W ,esid,e—=2 always predicts one of the variables assigned FALSE (in the fact section) if
LogOp is the AND gate, and predicts one assigned TRUE if LogOp is the OR gate.

Evidence 3b: linearly decodable LogOp information from first two layers. We train an affine classifier
at the layer-2 residual stream to predict the LogOp of the problem instance, over 5k samples (and
tested on another 5k samples). The classifier achieves greater than 98% accuracy. We note that
training this classifier at the layer-1 residual stream also yields above 95% accuracy.

Evidence 3c: identification of LogOp-chain starting nodes at layer 3. Attention heads (3,1) and (3,3),
when concatenated, produce embeddings which we can linearly decode the two starting nodes of

53

the LogOp chain with test accuracy greater than 98%. We also find that they focus their attention
in the rule section of the context (as shown in Figure[3T). Due to causal attention, this means that
they determine the two starting nodes from the LogOp-relevant rules. Remark. The above pieces
of observations suggest the “partial information—refinement” processﬂ To further validate that the
embedding from the first two layers are indeed causally linked to the correct answer at the third layer,
we perform an activation patching experiment.

Evidence 3d: linear non-decodability of linear chain’s answer. To provide further contrasting
evidence for the linear decodability of the LopOp chain’s answer, we experimentally show that it
is not possible to linearly decode the answer of the /inear chain in the model. Due to the causal
nature of the reasoning problem (it is only possible to know the answer at or after the QUERY token
position), and the causal nature of the decoder-only transformer, we train a set of linear classifiers on
all token positions at or after the QUERY token and up to the ANSWER token, and on all layers of
the residual stream of the transformer. We follow the same procedure as in Evidence 3c, except in this
set of experiments, for contrasting evidence, QUERY is for the LopOp chain, while the classifier is
trained to predict the answer of the Linear chain. The maximum test accuracy of the linear classifiers
across all aforementioned token positions and layer indices is only 32.7%. Therefore, the answer of
the Linear chain is not linearly encoded in the model when QUERY is for the LopOp chain.

Evidence 3e: layer-2 residual stream at ANSWER is important to correct prediction. We verify that
layer-3 attention does rely on information in the layer-2 residual stream (at the ANSWER position):

* Construct two sets of samples D; and Ds, each of size 10k: for every sample X ,, € D;
and X ,, € Do, the context of the two samples are exactly the same, except the LogOp is
flipped, i.e. if X ,, has disjunction, then X5 ,, has the conjunction operator. If layer 3 of the
model has no reliance on the Residy—o (layer-2 residual stream) for LogOp information at the
ANSWER position, then when we run the model on any X5 ,,, patching Residy—2 (X, 2)
with Resid;—2(X 1) at ANSWER should not cause significant change to the model’s
accuracy of prediction. However, we observe the contrary: the accuracy of prediction
degrades from 100% to 70.87%, with standard deviation 3.91% (repeated over 3 sets of
experiments).

Observation: LogOp-relevant reasoning at the third layer. We show that the output from attention
heads (3,1) and (3,3) (before the output/projection matrix of the layer-3 attention block), namely
A3 1(X) and A3 35(X2), when concatenated, contain linearly decodable information about the two
starting nodes of the LogOp chain. We frame this as a multi-label classification problem, detailed as
follows:

1. We generate 5k training samples and Sk test samples, each of whose QUERY is for the
LogOp chain. For every sample, we record the farget as a 80-dimension vector, with every
entry set to 0 except for the two indices corresponding to the two proposition variables
which are the starting nodes of the LogOp chain.

2. Instead of placing softmax on the final classifier of the transformer, we use the Sigmoid
function. Moreover, instead of the Cross-Entropy loss, we use the Binary Cross-Entropy
loss (namely the torch.nn.functional.binary_cross_entropy_with_logits in Py-
Torch, which directly includes the Sigmoid for numerical stability).

3. We train an affine classifier, with its input being the concatenated
Concat[A31(X32), A3 3(X2)] (a 512-dimensional vector) on every training sample,
and with the targets and training loss defined above. We use a constant learning rate of
0.5 x 1073, and weight decay of 10~2. The optimizer is AdamW in PyTorch.

4. We assign a “correct” evaluation of the model on a test sample only if it correctly outputs the
two target proposition variable as the top-2 entries in its logits. We observe that the classifier
achieves greater than 98% once it converges.

°In fact, the observations suggest that layer 3 performs a certain “matching” operation. Take the OR gate as
an example. Knowing which of the three starting nodes (for LogOp and linear chain) are TRUE, and which two
nodes are the starting nodes for the LogOp chain are sufficient to determine the first token! This exact algorithm,
however, is not fully validated by our evidence; we leave this as part of our future work.

54

0.40 —e— Head (3,1)

Head (3,2)
®— Head (3,3)

0.35
0.30
0.25
0.20
0.15 [°
0.10

0.05]

{ ..
000 0606060600600 0600006000s o006o0so000¢ $0oo0voeld

Oﬂsb-%o%%ﬂ(,-vﬂ%-\zsﬂ\-oﬂ% e,-o«&c-(y«&z.e,ac-eé’o

. _o%
g @O o

Figure 31: Attention statistics, averaged over 500 samples, all of which query for the LogOp chain.
The x-axis is simply an example prompt that helps illustrate where the attention is really placed at.
Observe that only attention head (3,2) pays significant attention to the fact section. The other two
heads focus on the rule section. Note that none of them concentrate attention on the QUERY token.
Reminder: due the the design of the problem, the rule, fact and query sections all have consistent
length for every sample!

D.5 Extra remarks

Observation 3 supplement: linearly-decodable linear-chain answer at layer 2. We simply frame
the learning problem as a linear classification problem. The input vector of the classifier is the same
as the input to the layer-3 self-attention block, equivalently the layer-2 residual-stream embedding.
The output space is the set of proposition variables (80-dimensional vector). We train the classifier on
5k training samples (all whose QUERY is for the linear chain) using the AdamW optimizer, with
learning rate set to 5 x 1072 and weight decay of 10~2. We verify that the trained classifier obtains
an accuracy greater than 97% on an independently sampled test set of size 5k (all whose QUERY is
for the linear chain too).

Remarks on truth value determination. Evidence suggests that determining the truth value of the
simple propositional logic problem is easy for the model, as the truth value of the final answer is
linearly decodable from layer-2 residual stream (with 100% test accuracy, trained on 10k samples)
when we give the model the context+chain of thought right before the final truth value token. This
is expected, as the main challenge of this logic problem is not about determining the query’s truth
value, but about the model spelling out the minimal proof with careful planning. When abundant CoT
tokens are available, it is natural that the model knows the answer even in its second layer.

55

	Introduction
	A Suitable Set of Propositional Logical Reasoning Problems
	Interpreting How LLMs Solve the Logic Problems

	Preliminaries and Methodology
	Discovering Modular Reasoning Circuits in LLMs
	Discovering the Necessary Circuit: QUERY-based Search for Model Components
	Verifying Sufficiency of the Discovered Circuit
	Additional Evidence: More Fine-Grained Circuit Analysis
	The Reasoning Circuit in Gemma-2-27B
	Further Mechanistic Observations

	Related Work
	Discussion and Conclusion
	Methodology and Problem Details
	Appendix Table of Contents and Outline
	Propositional logic problem and examples

	The reasoning circuit in LLMs: experimental details
	Problem format
	Causal mediation analysis: further explanations
	Finer details of activation patching
	Reasoning circuits in Mistral-7B
	Attention head group patching
	Attention patterns of QUERY-sensitive attention heads

	Sufficiency tests for circuit verification
	Queried-rule location interventions: analyzing the queried-rule locating heads
	Facts interventions: analyzing the fact-processing and decision heads
	Reasoning circuit in Gemma-2-9B
	QUERY-based attention head activation patching
	Attention patterns of QUERY-sensitive attention heads in Gemma-2-9B
	Circuit verification of Gemma-2-9B
	Analysis of queried-rule locating heads
	Analysis of fact-processing heads and decision heads
	Rule invocation: circuit reuse in proof writing
	Prompt format ablation

	Gemma-2-27B reasoning circuit
	Attention head analysis

	The reasoning circuit in a small transformer
	Learner: a decoder-only attention-only transformer
	Mechanism analysis
	Linear or LogOp chain: routing signal at the QUERY position
	Answer for the linear and LogOp chain

	Length-3 small transformer study: further technical details
	Data definition and examples
	Small transformer characteristics, and training details
	Transformer definition
	Training details

	High-level reasoning strategy of the 3-layer transformer
	Answer for the LogOp Chain
	Extra remarks

