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Abstract

Retrieval-augmented  generation (RAG)
enhances large language models (LLMs)
by enabling them to incorporate external
knowledge at inference time. While graph-
based RAG methods have shown promise in
multi-hop reasoning by leveraging structured
representations such as triplets, they often
struggle with semantic sparsity, noisy or
inconsistent triplet extraction, and a lack of
higher-level abstraction, which together hinder
coherent and efficient reasoning. We propose
TH-RAG, a novel graph-based RAG frame-
work that constructs a three-level hierarchical
Knowledge Graph (KG) composed of entities,
subtopics, and topics. TH-RAG maintains high
connectivity by semantically organizing triplets
through Triplet Extraction with Topic. With
Topic-based Hierarchical Graph Traversal,
TH-RAG finds related entities through topic
and subtopics. Finally, a Query-Based
Filtering selects only the most relevant triplets
and sentence chunks. Experimental results
on both open-domain and multi-hop QA
benchmarks demonstrate that TH-RAG consis-
tently outperforms existing strong baselines in
terms of accuracy and robustness. To support
further research, we release our code at:
https://anonymous.4open.science/t/KGRAG-
2C8D

1 Introduction

In recent years, large language models (LLMs)
have demonstrated outstanding performance across
various natural language processing tasks (Achiam
et al., 2023; Yang et al., 2025a; Matarazzo and
Torlone, 2025), owing to their extended context
windows and strong document understanding capa-
bilities (Team et al., 2023; Guo et al., 2025). How-
ever, integrating new knowledge into LLMs typi-
cally requires iterative fine-tuning, which incurs
significant computational costs, consumes time,
and introduces the risk of catastrophic forgetting
(Kirkpatrick et al., 2017; Luo et al., 2023).
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Figure 1: Simple example of TH-RAG compared to
PathRAG. TH-RAG can retrieve almost all information
in corpus effeciently, since use hierarchical graph struc-
ture.

Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020; Gao et al., 2024) and graph-based
RAG (Han et al., 2024) offers a promising alterna-
tive to overcome these challenges. RAG leverages
sparse or dense retrieval mechanisms (Robertson
and Zaragoza, 2009; Karpukhin et al., 2020) to
fetch relevant information from external corpora
and generates responses based on the retrieved con-
tent (Soudani et al., 2024; Balaguer et al., 2024).
Graph-based RAG further extends this paradigm
by structuring the retrieval database as Knowledge
Graphs (KGs) (Yang et al., 2025b; Kamra et al.,
2024). his approach brings two key advantages:
(1) it improves multi-hop reasoning over dispersed
information compared to standard RAG, and (2)
it facilitates the understanding of documents by
capturing their logical structure and semantic rela-
tionships (Peng et al., 2024; Wu et al., 2024).

Recent graph-based RAG methods(Edge et al.,
2024; Guo et al., 2024) have focused on construct-
ing KGs directly from domain-specific corpora by
extracting triplets (subject-relation—object). This
fine-grained representation improves the precision
of reasoning by structuring information at the se-
mantic level. However, these methods often assume
that sufficient connectivity exists among triplets
within a chunk, which is rarely true in practice



(Han et al., 2024; Zhu et al., 2025c).

Moreover, triplet-based graphs generated by
large language models are frequently fragmented,
which significantly hinders effective reasoning over
the graph. To address this, several studies have pro-
posed techniques such as graph clustering, commu-
nity detection, or node merging based on summa-
rization (Edge et al., 2024; Xu et al., 2025; Wang
et al., 2025). While these methods attempt to re-
store coherence, they often introduce additional
computational overhead and may distort seman-
tics or hallucinate facts, thereby compromising the
integrity of the information.

To overcome these challenges, we propose TH-
RAG, a novel graph-based RAG framework that
constructs a three-level hierarchical KG com-
posed of Triplets, Subtopics, and Topics. This
semantic hierarchy enhances graph connectivity,
facilitates integration across fragmented informa-
tion, and supports efficient multi-hop reasoning.
TH-RAG operates in three stages: (1) Hierarchi-
cal KG Construction, where an LLM extracts
Triplets, Subtopics, and Topics simultaneously to
build a semantically structured graph; (2) Topic-
based Graph Traversal, which begins from the
most relevant Topic node and recursively explores
related Subtopics and Entities to retrieve candidate
Triplets; and (3) Query-based Retrieval & Filter-
ing, where cosine similarity is computed between
the query and each edge of candidate triplet, and
the most relevant information is selected as the final
context for answer generation.

Experimental results show that TH-RAG outper-
forms existing graph-based RAG methods across
both general-purpose (abroad-type) and domain-
specific (specific-type) QA benchmarks. Notably,
TH-RAG achieves accuracy improvements of 6.9
and 1.3 percentage points over current state-of-the-
art methods on the MultiHopRAG and HotpotQA
datasets, respectively. Additional ablation studies
validate the effectiveness of our hierarchical graph
design and retrieval strategy, demonstrating that
TH-RAG offers a promising and scalable approach
for enabling more robust multihop reasoning in
triplet-based graph RAG systems.

2 Related Works

2.1 RAG and the Graph-based RAG

Early RAG methods(Gao et al., 2024) utilized
dense retrievers such as DPR(Karpukhin et al.,
2020; Lewis et al., 2020) to chunk long documents

into smaller units and retrieve relevant chunks
based on similarity to a given query(Sharma, 2025;
Hu and Lu, 2024; Gao et al., 2023). Since then,
the RAG framework has evolved through integra-
tion with techniques such as reranking (Chen et al.,
2024), query expansion (Jagerman et al., 2023;
Wang et al., 2023; Chan et al., 2024), and fusion-
in-decoder (Izacard and Grave, 2021).

However, similarity-based retrieval alone often
struggles with capturing logical dependencies or
supporting multi-hop reasoning (Zhao et al., 2024;
Wau et al., 2024). To address this limitation, graph-
based RAG approaches have been proposed (Peng
et al., 2024; Zhang et al., 2025b).

Initial graph-based RAG systems (Sun et al.,
2023; Ma et al., 2024) relied on pre-constructed
KGs such as Freebase (Bollacker et al., 2008) or
Wikidata (Vrandeci¢ and Krotzsch, 2014). More
recent work has shifted toward constructing graphs
directly from the corpus to improve adaptability to
domain-specific settings (Zhu et al., 2024; Chen
and Bertozzi, 2023).

2.2 Triplet-based Graph-based RAG

Triplet-based Graph-based RAG focuses on extract-
ing triplets from within document chunks to build
structured representations at the entity level (Han
et al., 2024; Zhu et al., 2025c¢).

These triplet-based graphs are used to sup-
port structured multi-hop reasoning over the doc-
ument content. Recent studies propose various
enhancements to this paradigm, such as improv-
ing triplet connectivity (Luo et al., 2025), enabling
lightweight reasoning (Luo et al., 2024; Bockling
et al., 2025), or focusing on explicit path-based
retrieval (Chen et al., 2025).

Edge et al. (2024)demonstrated promising re-
sults by constructing a triplet-based KG and ap-
plying community detection (Traag et al., 2019) to
enhance semantic grouping and retrieval. Guo et al.
(2024); Abane et al. (2024) proposed a more effi-
cient and simplified usage of such graphs, relying
on coarse graph structure for lightweight retrieval.

Subsequent studies (Liang et al., 2024;
Jimenez Gutierrez et al., 2024; Gutiérrez et al.,
2025) have explored various strategies to enhance
graph connectivity and utility (Panda et al., 2024;
Zhao et al., 2025). Some methods(Xu et al., 2025;
Wang et al., 2025) adopt clustering techniques such
as HNSW (Malkov, 2018) to group similar entities
and reduce graph sparsity, while others employ
explicit graph traversal strategies—such as path
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Figure 2: Overview of TH-RAG Framework. The framework consists of three stages: (a) Hierarchical Graph
Construction — Documents are processed into triplet extraction with topic to build a hierarchical graph. (b) Topic-
based Graph Traversal — The graph is navigated from topic to subtopic to triplet, guided by LLM-based relevance

to the query. (c-d) Query-based Retrieval & Filtering —

Triplets linked to selected subtopics are expanded by

retrieving 1-hop neighboring entities. Retrieved triplets are filtered by cosine similarity (Top-K7), and context is

expanded from relevant chunks (Top-K5).

finding or reasoning over entity connections—to
support multi-hop question answering (Luo
et al., 2024; Han et al., 2025b; Chen et al., 2025;
Bockling et al., 2025). In addition, several hybrid
approaches (Zhu et al., 2025a; Sarmah et al., 2024)
have been proposed that combine graph-based
structures with traditional chunk-level retrieval.

3 Method

We now describe the architecture and implemen-
tation details of TH-RAG. Each component of the
framework corresponds to the stages illustrated in
Figure 2 with simple example.

3.1 Hierarchical Graph Construction

Following prior graph-based RAG approaches, TH-
RAG constructs a KG from a corpus by extracting
triplets (subject—relation—object) using an LLM.

As discussed in Section 1, existing methods for
addressing graph fragmentation face two key limi-
tations: increased computational cost and impaired
information fidelity.

To improve efficiency and minimize informa-
tion distortion,, we propose Triplet Extraction
with Topic, a method that augments each extracted
triplet with subtopic and topic annotations to form a
hierarchically structured graph. Each entity is con-
nected to one or more subtopics, and each subtopic
to one or more topics, creating a semantic contain-
ment hierarchy:

 Entities represent factual units.

* Subtopics cluster semantically related enti-
ties.

* Topics abstract groups of subtopics into
higher-level categories.

To ensure semantic grounding, we instruct the
LLM to extract only corpus-relevant subtopics and
topics (see Table 11). The output example can be
found on Appendix D.1

Then We define the resulting graph as G =
(V, &), where:

» V consists of three disjoint sets of nodes:

— FE: entity nodes,
— ST subtopic nodes,
— T': topic nodes.

» & consists of typed directed edges:

— Ejripler: entity-to-entity relations (i.e.,
(h,r,t) where h,t € V),

— Eg.: subtopic—entity links (i.e., (s,e€)
where s € ST, e € E),

— Eiop: topic—subtopic links (i.e., (,s)
wheret € T, s € ST).

Each edge in Ej,jp ¢ also stores its source sen-
tence as an attribute for sentence-level retrieval.

Each entity is connected via at least two edges,
and each subtopic is linked to both its entities and



parent topic. This structure improves connectivity
and prevents node isolation.

Each triplet also stores its source sentence as
an edge attribute. As these sentences are directly
extracted from the corpus, hallucination risk is min-
imized. These annotations support sentence-level
retrieval in later stages. Moreover, graph updates
require only one LLM call per chunk, making the
method highly scalable.

The overall process of graph construction is sum-
marized in Algorithm 1.

Algorithm 1 Hierarchical Graph Construction

1: Input: Corpus chunk C'
Output: Hierarchical graph G = (V, £) with
triplets, subtopics, and topics
TRIP,ST, T = LLM(C5)
for each triplet (s,7,0) € TRIP do
Attach source sentence .S as an edge for
Connect s and o with edge r
Connect s and o to each st
Connect st to each tp
end for

»

R A A

3.2 Topic-based Graph Traversal

To leverage the hierarchical structure of our graph,
we design a two-step LLM-guided traversal strat-
egy : Topic-based Graph Traversal.

Step 1: Topic Selection. Given a query, the
LLM selects Nt relevant topics from all available
topic nodes. Since topics are core keywords that
represent the entire corpus, this step can be inter-
preted as the first step in setting the scope of re-
sponses for LLM.

Step 2: Subtopic Selection. For each selected
topic, the LLM chooses Ngrsubtopics from its con-
nected subtopic nodes, based on semantic relevance
to the query. In practice, Nt and Ngr are bounded
to small values, enabling our traversal method to
scale with minimal LLM calls.

While the entire list of candidates is provided in
each step, the extended context capacity of modern
LLMs (Hurst et al., 2024) ensures that this selection
process remains efficient. Typically, N7 and Ngp
are small values, requiring just one LLM call for
topic selection and Ny calls for subtopic selection.

This approach offers greater robustness com-
pared to methods that extract entities from query
(Guo et al., 2024) or implicitly infer topics and
subtopics. By providing the LLM with explicit
lists of candidate topics, subtopics, and entities
as context, it selects the most relevant ones based

on the query, reducing ambiguity and increasing
reliability.

Ultimately, this process can be viewed as a hier-
archical graph traversal that progressively narrows
down the search space within a large corpus to
efficiently locate the answer (the visualization of
results can be found in Figure 4.

Algorithm 2 Topic-based Graph Traversal &
Query-based Retrieval

1: Input: Query ¢, graph G = (V, £), parameters
Nr, Nsr, K1, K2
Output: Final context set
Extract top- N topics relevant to q:
Tselected = LLM(Tlisty Q)
for each t; € T posen do
Extract top-Ngr subtopics relevant to ¢;
and q:
S; = LLM(ST}%),q)
STselected < STselected U S’L
9: end for
10: Retrieve all entities under STxejected
11: For each entity e, collect its 1-hop neighbors
12: Compute similarity between ¢ and all sen-
tences
13: Select top-K sentences as primary context
14: Select top-Ky sentences and include their
source chunks as extended context

AN AN

®

3.3 Query-based Retrieval

From each selected subtopic, we collect the con-
nected entity nodes, which act as anchors for con-
text retrieval. For each entity, we explore its 1-hop
neighbors within the graph, collecting all associ-
ated edges, since each edge is annotated with its
original source sentence. This process yields a set
of candidate evidence sentences directly grounded
in the source corpus.

These edge-level sentences form the basis for
our filtering mechanism, enabling precise and faith-
ful sentence-level evidence retrieval. To reduce
redundancy and improve relevance, we apply a
two-stage filtering strategy:

* Cosine Similarity Filtering: We compute the
cosine similarity between the query and each
candidate sentence. The top-K; most relevant
sentences are selected as the primary context
for generation.

* Context Expansion: We further select a sub-
set of K5 sentences (/o < K1) and retrieve
their full source chunks. This expansion pro-



vides additional contextual cues around high-
confidence sentence.

As noted by Han et al. (2025a), answer entities
or key supporting sentences are sometimes omitted
during the graph construction process. To miti-
gate this risk, we adopt targeted context expansion
around the most relevant sentences.

This pipeline combines hierarchical graph traver-
sal and semantic filtering to enable scalable, accu-
rate, and context-aware retrieval.

The overall process of topic-based graph traver-
sal and query-based retrieval is summarized in Al-
gorithm 2.

3.4 Multi-hop Reasoning Robustness

While triplet-based graphs theoretically enable
structured reasoning, practical limitations arise
when constructing them using LLMs. In nat-
ural language, semantic relations do not al-
ways conform to a clean subject-relation—object
pattern. A single sentence may express
reflexive relations (e.g., (the committee,
reorganized, itself)), symmetric interactions
(e.g., (Alice, collaborates_with, Bob) and
(Bob, collaborates_with, Alice)), or im-
plicit structures with missing arguments (e.g.,
(Tesla, founded, -) inferred from “Tesla was
founded in 2003”). LLMs often overlook such sub-
tle or implicit connections, leading to incomplete or
oversimplified triplet representations. As a result,
node-centric graph reasoning like Guo et al. (2024)
can become brittle, especially when crucial edges
are omitted due to these structural ambiguities.

This limitation becomes particularly evident in
cases like the following:

Query: Who collaborated with Marie Curie on
research related to radioactivity?

Corpus Sentence: Marie Curie and Pierre Curie
conducted groundbreaking research on radioactiv-
ity together.

Here, an LLM-based triplet extractor may
only produce (Marie Curie, conducted,
research), and fail to encode the co-reference to
Pierre Curie. Despite the sentence clearly implying
collaboration, the triplet graph lacks a direct edge
connecting the two entities. Consequently, graph
traversal mechanisms alone would be insufficient
to reach the correct answer node.

To mitigate this issue, TH-RAG attaches the orig-
inal source sentence as an edge attribute for every

Agri CS Legal Mix Hotpot  MultiHop
Tokens 1.9M 2M 4.M 602K 1.2M 991K
Passages 12 10 94 61 9,827 435
#QA 125 125 125 125 1,000 1,000

Table 1: Document statistics for our experimental
datasets. Agri, Hotpot, and MultiHop refer to Agricul-
ture, HotpotQA, and MultiHopRAG, respectively.

triplet. This allows the retrieval mechanism to op-
erate at the sentence level rather than relying solely
on the triplet graph structure. By preserving the
full semantic context of each relation, this design
reduces noise during retrieval and minimizes dis-
tortion of the original corpus semantics.

Taken together, TH-RAG’s design enables robust
multi-hop reasoning by integrating three comple-
mentary strategies: (1) a semantically grounded hi-
erarchical graph that improves connectivity across
fragmented information, (2) LLM-guided hierar-
chical graph traversal that efficiently focuses re-
trieval on relevant subregions of the graph, and (3)
sentence-level evidence filtering and targeted con-
text expansion, enabling the retrieval of relevant
information even when it is not structurally cap-
tured in the triplet graph. This holistic approach al-
lows TH-RAG to retrieve and reason over informa-
tion that is semantically dispersed but contextually
relevant, leading to more accurate and complete
answers on complex multi-hop queries.

4 Experiments

To evaluate the effectiveness and robustness of TH-
RAG, we design experiments to answer the follow-
ing research questions:

e RQ1: Is our method effective for QA datasets
of multi-hop reasoning and abroad domain?

* RQ2: How well does our method perform,
especially in terms of mitigating graph frag-
mentation?

* RQ3: How efficient is our method in terms of
resource usage and scalability?

* RQ4: What are the core components of our
method and the optimal hyperparameters?

4.1 Datasets

In our experiments, we used two types of data
sets. One is an open-domain QA dataset, such
as UltraDomain (Qian et al., 2025), which does
not have specific evidence and requires answering
open-ended questions based on abroad knowledge.
Following prior studies, we used three domain-
specific datasets (Agriculture, CS, and Legal) and
one mixed-domain corpus.



Agriculture CS
Comprehensive Diversity Empowerment Overall Comprehensive Diversity Empowerment Overall
Win Rate TH-RAG Baseline TH-RAG Baseline TH-RAG Baseline TH-RAG Baseline | TH-RAG Baseline TH-RAG Baseline TH-RAG Baseline TH-RAG Baseline
vs Naive 84.2% 15.8% 88.3% 11.7% 87.5% 12.5% 86.7% 13.3% 86.9% 13.1% 91.0% 9.0% 86.9% 13.1% 86.9% 13.1%
vs GraphRAG G 87.0% 13.0% 91.1% 8.9% 88.6% 11.4% 88.6% 11.4% 78.7% 21.3% 74.6% 25.4% 78.7% 21.3% 78.7% 21.3%
vs GraphRAG L 88.7% 11.3% 90.3% 9.7% 89.5% 10.5% 89.5% 10.5% 84.6% 15.4% 86.2% 13.8% 87.0% 13.0% 86.2% 13.8%
vs LightRAG 87.1% 12.9% 91.9% 8.1% 89.5% 10.5% 88.7% 11.3% 80.7% 19.3% 80.7% 19.3% 81.5% 18.5% 81.5% 18.5%
vs PathRAG 80.7% 19.3% 92.4% 7.6% 85.7% 14.3% 85.7% 14.3% 78.4% 21.6% 86.4% 13.6% 81.6% 18.4% 81.6% 18.4%
vs HypergraphRAG | 52.3% 41.7% 60.4% 39.6% 51.4% 48.6% 52.3% 41.7% 49.1% 50.9% 46.4% 53.6% 50.9% 49.1% 49.1% 50.9%
Legal Mix
Comprehensive Diversity Empowerment Overall Comprehensive Diversity Empowerment Overall
Win Rate TH-RAG Baseline TH-RAG Baseline TH-RAG Baseline TH-RAG Baseline | TH-RAG Baseline TH-RAG Baseline TH-RAG Baseline TH-RAG Baseline
vs Naive 86.2% 13.8% 89.4% 10.6% 90.2% 9.8% 90.2% 9.8% 91.9% 8.1% 95.5% 4.5% 93.7% 6.3% 93.7% 6.3%
vs GraphRAG G 79.8% 20.2% 69.4% 30.6% 81.5% 18.5% 81.5% 18.5% 84.5% 15.5% 84.1% 15.9% 90.1% 9.9% 90.1% 9.9%
vs GraphRAG L 89.4% 10.6% 87.0% 13.0% 90.2% 9.8% 90.2% 9.8% 96.5% 3.5% 98.3% 1.7% 96.5% 3.5% 96.5% 3.5%
vs LightRAG 85.5% 14.5% 85.5% 14.5% 89.5% 10.5% 89.5% 10.5% 91.3% 8.7% 95.7% 4.3% 92.2% 7.8% 92.2% 7.8%
vs PathRAG 86.4% 13.6% 84.0% 16.0% 86.4% 13.6% 86.4% 13.6% 90.5% 9.5% 97.4% 2.6% 92.2% 7.8% 92.2% 7.8%
vs HypergraphRAG | 50.9% 49.1% 43.8% 56.2% 50.9% 49.1% 50.9% 49.1% 57.9% 42.1% 63.2% 36.8% 57.0% 43.0% 57.9% 42.1%

Table 2: Main Results on UltraDomain, specially for Agriculture, CS, Legal and Mix domains. Metrics using
1vs1 win rate, as llm-as-a-judge. We exclude GraphRAG-G from our evaluation, as its use of global community
detection and summarization spans numerous chunks, making the comparison less meaningful in our setting.

Answer Retrieval
MultiHopRAG HotpotQA MultiHopRAG HotpotQA
F1  Precision Recall Accuracy | F1  Precision Recall Accuracy | Recall F1 Rec@5 NDCG@S5 | Recal F1 Rec@5 NDCG@5

Naive 0.501 0.475 0.599 0.604 0.584  0.612 0.590 0.509 0.330 0.210 0.337 0.375 0.394  0.143  0.342 0.352
GraphRAG-G 0.526  0.501 0.618 0.653 0.393 0.410 0.402 0.343 - - - - - - - -

GraphRAG-L 0.469 0.451 0.536 0.535 0.668 0.696 0.678 0.595 0.267 0.239  0.267 0.412 0.830 0.479 0.833 0.794
LightRAG 0.464 0.448 0.527 0.526 0.496 0.519 0.507 0.439 0.072  0.039  0.061 0.082 0.323  0.129 0.282 0.217
PathRAG 0.468 0.453 0.523 0.525 0.551 0.578 0.562 0.488 0203 0.113  0.182 0.265 0.818 0326 0.808 0.805
HyperGraphRAG | 0.526  0.503  0.619 0621 | 0.674 0703 0683 0599 | 0426 0.283 0.402 0.460 0.848 0382  0.848 0.763
TH-RAG 0712 0711 0720 0722 | 0.671  0.692  0.685  0.612 0392 0.249 0.393 0.522 0.781 0304 0.781 0.743

Table 3: Main results on HotpotQA and MultiHopRAG. Bold indicates the best result, and underline indicates

the second-best.

The other is a answer-specific QA dataset, such
as HotpotQA (Yang et al., 2018) and MultiHo-
PRAG (Tang and Yang, 2024), which has concrete
multi-hop evidence that must be retrieved to gener-
ate answers. More detailed explanations about data
sets are provided in Appendix C.1

We randomly selected 1,000 QA pairs along with
their corresponding passages from both MultiHo-
pRAG and HotpotQA to construct the corpus for
evaluation. A detailed description of these datasets
is provided in the Table 1.

4.2 Metrics

We used two evaluation approaches: For the Ul-
tradomain dataset, we applied the LLM-as-a-
judge method (Zheng et al., 2023), comparing
answers pairwise as in Guo et al. (2024). For
MultiHopRAG and HotpotQA, we used tradi-
tional metrics—F1, Recall, Precision, and Accu-
racy—along with retrieval metrics like recall, F1,
recall@5, and NDCG @5.

A detailed description of these metrics is pro-
vided in the Appendix C.4.

4.3 Baselines

We compared TH-RAG against several representa-
tive baseline methods categorized into three groups:
(1) a basic retrieval form, NaiveRAG (Gao et al.,
2024); (2) triplet-based graph baselines, includ-
ing GraphRAG (Edge et al., 2024) and Ligh-
tRAG (Guo et al., 2024); and (3) current state-

of-the-art methods, PathRAG (Chen et al., 2025)
and HyperGraphRAG (Luo et al., 2025). For
GraphRAG, we implemented both the local and
global retrieval methods. We refer to the local ver-
sion as GraphRAG-L and the global version as
GraphRAG-G throughout our experiments. A de-
tailed explanation of baselines can be found in the
Appendix C.3.

4.4 Implementation Details

We used the following hyperparameters and im-
plementation settings: K7 and K> were fixed at
30 and 5, respectively. Nt and Ngr were deter-
mined through prompt-based selection, with val-
ues ranging from 5-10 and 10-25, respectively.
The exact numbers varied depending on the LLM’s
output. Additonal implementation details are in
Appendix B, and used prompts are in Appendix A

5 Results

5.1 Main Results (RQ1)

On the Ultradomain dataset, TH-RAG outper-
forms all baselines except HyperGraphRAG across
all four domains (in Table 2). Notably, when com-
pared to PathRAG—a widely regarded - state-of-
the-art method — TH-RAG achieves an average
win rate of 86.48%. While HyperGraphRAG shows
slightly better results in the CS domain, TH-RAG
outperforms it in all other domains.

Particularly in the mixed-domain setting, TH-
RAG demonstrates a more substantial performance



LightRAG TH-RAG

# Nodes 20,914 50,162
# Topic Nodes - 531
# Subtopic Nodes - 15,142
# Entity Nodes 20,914 30,248
# Edges 24,707 94,507
# Topic-subtopic edges - 20,675
# Subtopic-entity edges - 34,017
# Entity-Entity edges 24,707 21,906
# Subgraphs 8,805 3

% of Biggest Subgraph 56.11% 99.98%

Table 4: Constructed graph statistics comparison with
LightRAG way on Legal dataset. PathRAG use same
graph structure with LightRAG, so #subgraphs and % of
Biggest Subgraph means PathRAG has a great weakness.
% is calculated on Nodes.

gap, suggesting that our method is more robust
in handling diverse, open-domain questions. On
the specific-type datasets, TH-RAG consistently
achieves higher scores than all baselines across
most evaluation metrics (in Table 3). In Multi-
HopRAG, it surpasses GraphRAG-G and Hyper-
GraphRAG by 6.9% and 10.1%, respectively, show-
ing clear superiority in multi-hop reasoning.

However, when examining retrieval perfor-
mance, TH-RAG does not achieve state-of-the-art-
level results, especially in HotpotQA, where it lags
behind across several retrieval metrics. Neverthe-
less, its answer generation performance remains
superior. This discrepancy highlights known is-
sues (Tang and Yang, 2024) with the HotpotQA
dataset—some questions can be answered using
single-document evidence, even when multiple sup-
porting facts are provided—making retrieval met-
rics less indicative of final answer quality.

In MultiHopRAG, TH-RAG demonstrates strong
performance not only in answer quality but also
in retrieval. An interesting observation is that
NaiveRAG performs relatively well on specific-
type datasets, indicating that entity missing dur-
ing graph construction can critically impact perfor-
mance in fact-based QA (Edge et al., 2024; Han
et al., 2025a).

5.2 Graph Fragmentation and Robustness
Analysis (RQ2)

To assess the impact of TH-RAG’s hierarchical
structure on mitigating graph fragmentation, we
compare the structural properties of graphs con-
structed by TH-RAG and a representative triplet-
based method, LightRAG.

Compared to LightRAG, TH-RAG substantially
reduces the number of disconnected subgraphs
and achieves a much higher largest-connected-

TH-RAG HyperGraphRAG
Comparison 0.625 0.538
Temporal 0.509 0.197
Inference 0.954 0.938
Null 0.786 0.664

Table 5: Comparison on HyperGraphRAG by question
type of MultiHopRAG.

component ratio. These improvements highlight
the effectiveness of our Topic—Subtopic—Entity
hierarchy in enhancing global graph connectiv-
ity. Summary statistics are presented in Table 4.
Results on other datasets are provided in Ap-
pendix C.2, and visualization results are included
in Appendix D.2.

Figure 1 further illustrates the benefit of re-
duced fragmentation through a qualitative compar-
ison with PathRAG. In conventional triplet-based
methods, answer-relevant entities often appear in
separate subgraphs, making reasoning paths in-
complete or unreachable—especially for methods
like PathRAG that depend heavily on connectiv-
ity. In contrast, TH-RAG does not rely on direct
entity—entity connections. Instead, it accesses rele-
vant information by navigating through topic-based
hierarchical graph traversal and retrieving sentence-
level evidence, enabling robust reasoning even in
partially disconnected entities.

Furthermore, the number of topic nodes remains
small, and the average Topic-to-Subtopic ratio is ap-
proximately /:30. This ensures that the Topic and
Subtopic selection process remains token-efficient
and computationally lightweight during inference.

We also provide a comparison of question-type-
level performance on MultiHopRAG in Table 5.
While TH-RAG performs comparably to Hyper-
GraphRAG on Inference, Comparison, and Null
types, it significantly outperforms on Zemporal
questions. This suggests that TH-RAG’s sentence-
based retrieval and topic-aware traversal are better
at capturing temporally grounded relations com-
pared to HyperGraphRAG, leading to high robust-
ness of TH-RAG.

5.3 Efficiency Analysis (RQ3)

We next evaluate the efficiency of TH-RAG in
terms of token usage and LLLM call overhead, focus-
ing on two key stages: indexing and retrieval. We
compare TH-RAG against GraphRAG-L, Hyper-
GraphRAG, and LightRAG—three strong base-
lines known for either high performance or retrieval
efficiency (Table 6).

In the indexing phase, TH-RAG demonstrates



Light Hyper Local TH-RAG
Indexing Call 5978 2,772 4354 902
Indexing Token 8M 20.3M 15M 2.3M
Querying Time | 2.66s  9.78s  0.77s 3.54s
Context Token 25K 20K 13.6K 74K

Table 6: Efficiency comparison of representative meth-
ods on MultiHopRAG. Token counts include both
prompt and context. Light, Hyper, and Local refer to
LightRAG, HyperGraphRAG, and GraphRAG-L, re-
spectively.

Accuracy F1 Recall Precision
Original 0.722 0.712 0.72 0.71
w/o chunks 0.580 0.576  0.577 0.577
w/o Triplets 0.692 0.68 0.691 0.678
w/o Traversal 0.624 0.62 0.622 0.62

Table 7: Ablatioin study on key components of TH-
RAG. W/o Traversal means we don’t apply graph-
travesal, using only filtering by all sentences.

remarkable efficiency. It requires only 32.5% of
the LLM calls used by HyperGraphRAG (902 vs.
2,772) and just 29% of the tokens consumed by
LightRAG (2.3M vs. 8M). This reduction is pri-
marily attributed to our graph construction method
and prompt-based topic/subtopic annotation, which
eliminate the need for costly iterative clustering or
summarization at the entity level.

During retrieval, TH-RAG incurs slightly higher
latency compared to GraphRAG-L due to the
(N7 + 1) LLM calls needed for topic and subtopic
selection. Nevertheless, its total token usage re-
mains low—only 54 % of that required by Hyper-
GraphRAG (7.4K vs. 13.6K). Since the number
of topic nodes rarely exceeds 1,000, the retrieval
time complexity remains O(Np + 1), making TH-
RAG scalable even for large corpora. Overall, TH-
RAG achieves a favorable balance between compu-
tational efficiency and retrieval quality.

5.4 Ablation and Hyperparameter Analysis
(RQ4)

We conduct ablation studies to evaluate the contri-
bution of each component in TH-RAG. As shown
in Table 7, removing chunks in context leads to
significant performance degradation. Disabling
triplet usage or bypassing the topic—subtopic traver-
sal (e.g., applying filtering over all sentences) also
results in noticeable accuracy drops.

These results confirm that TH-RAG’s strength
lies in its ability to semantically scope the graph
through topic and subtopic selection, enabling it to
isolate focused subgraphs that are rich in relevant
information. This targeted traversal leads to the
extraction of high-quality chunks grounded in the

K1=5 10 30 50
Ko=1 | 0536 0.565 0.622 0.630
3 0.662 0.679 0.697 0.702
5 0.697 0.685 0.72 0.719
10 X 0.714 0.743 0.726

Table 8: Ablation on K1 & K2 on MultiHopRAG with
accuracy.

original corpus, enabling more robust and reliable
multi-hop reasoning.

We also evaluate the impact of varying the hyper-
parameters K; and Ko, which control the number
of retrieved sentences and the number of expanded
chunks, respectively (Table 8). While our main
experiments adopt K; = 30 and Ko = 5 for cost
efficiency, increasing K3 to 10 leads to slightly
better performance, indicating a trade-off between
answer quality and token cost (Joren et al., 2024).

Interestingly, increasing both K1 and K» beyond
a certain point (e.g., K1 = 50 and Ko = 10) de-
grades performance—Ilikely due to context rot or
lost-in-the-middle effects, as noted in recent stud-
ies (Zhang et al., 2025a; Hsieh et al., 2024). This
underscores the importance of careful context en-
gineering (Mei et al., 2025) and hyperparameter
tuning in retrieval-augmented systems.

6 Conclusion

We proposed TH-RAG, a novel graph-based RAG
framework designed to address two central chal-
lenges of prior methods: graph fragmentation
and difficulty in multi-hop reasoning. TH-RAG
constructs a three-level hierarchical knowledge
graph—composed of topics, subtopics, and enti-
ties—that semantically organizes information ex-
tracted from unstructured text.

Leveraging this structure, TH-RAG performs
topic-guided graph traversal to retrieve focused
subgraphs relevant to the query. Each edge in the
graph stores its original sentence, allowing the re-
trieval process to operate directly on sentence-level
evidence grounded in the source corpus. This de-
sign improves both semantic fidelity and reasoning
robustness, especially in cases where traditional
triplet-based graphs may omit key relationships.

Through this integrated approach, TH-RAG
achieves strong performance across both general
and multi-hop QA tasks, while maintaining scal-
ability and reducing graph fragmentation. Our
results suggest TH-RAG provides a reliable and
extensible foundation for graph-based retrieval in
LLM-augmented systems.



Limitations

TH-RAG introduces a hierarchical KG built from
LLM-extracted topics, subtopics, and triplets. How-
ever, the current approach has several limitations
that suggest avenues for future improvement. First,
the topic and subtopic normalization remains im-
perfect. Due to inconsistencies in LLM outputs,
semantically similar concepts are often assigned
to different topic or subtopic labels, unnecessar-
ily inflating the graph structure (e.g. sports <->
sport, film director <-> director). To address this,
future work could explore embedding-based clus-
tering techniques to group semantically equivalent
nodes (Chang et al., 2025; Liu et al., 2025b). Ad-
ditionally, incorporating conversational history or
memory-based context into the topic extraction step
may help the LLM produce more consistent and
coherent topic assignments. Second, this work de-
liberately omits widely-used RAG techniques such
as query expansion, and context reranking, in or-
der to isolate the effectiveness of our hierarchical
graph structure in its most basic and efficient form.
However, given the demonstrated effectiveness of
these techniques in recent literature (Gao et al.,
2024; Sharma, 2025), integrating them in a way
that aligns with our topic-based hierarchy could
further enhance performance. Lastly, future direc-
tions include enabling the LLM to directly interact
with the graph structure for more explicit reasoning
over graphs (Han et al., 2025b; Ma et al., 2024), po-
tentially unlocking stronger multi-hop capabilities
and interpretability.
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A Prompts

A.1 Answer Generation Prompt

Instruction description
—Role—
You are a helpful assistant responding to user query

—Goal—
Generate a concise response based on the following information and follow Response Rules. Do not
include information not provided by following Information

—Target response length and format—
Multiple Paragraphs

—Information—
{{context}}

—Response Rules—

- Use markdown formatting with appropriate section headings

- Please respond in the same language as the user’s question.

- If you don’t know the answer, just say so.

- Do not make anything up. Do not include information not provided by the Information.

—Query—
{{question} }

Table 9: Answer Generation Prompt for Ultradomain. This prompts is used when we need long, comprehensive
response.
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A.2 Short Answer Generation Prompt

Instruction description
—Role—
You are a multi-hop retrieval-augmented assistant.

—Goal—

Read the Information passages and generate the correct answer to the Query. Use only the given
Information; if it is insufficient, reply with "Insufficient information.". If you need to answer like yes or
no, use "Yes" or "No" only.

—Target response length and format—

- One-word or minimal-phrase answer (max 5 words).

—Response Rules—

- Answer must be short and concise.

- Answer language must match the Query language.

- Do NOT add or invent facts beyond the Information.

—Information—
{{context}}

—Query—
{{question}}

Table 10: Short Answer Generation Prompt used for HotpotQA and MultiHopRAG. This prompt is used when we
need short, concise response.
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A.3 Triplet Extraction with Topic Prompt

Instruction description

—Role—
You are a highly skilled information extraction system designed to process factual information accu-
rately and clearly.

—Goal—
Extract factual (subject, relation, object) triples from the document and classify the subject and object
into a subtopic and a main topic.

—Instructions—

1. Read the entire document below and extract all factual (subject, relation, object) triples. Each triple
must be grounded in a specific sentence from the document.

2. Paraphrasing is acceptable only if the relation is clearly implied by the sentence.

3. Resolve all pronouns such as "it", "he", "she", "they", etc. using the surrounding context. Replace
all pronouns in the triple with their correct referents.

- Do not include any unresolved or ambiguous pronouns in the triples.

- Be specific and use full entity names instead of pronouns wherever applicable.

4. For each subject and object:

- Assign a Subtopic (a specific category such as "Electronic Musician", "Sound Label", etc.)

- Assign a Main topic (a broader category such as "Music", "Art", etc.)

- Ensure the subtopic and main topic reflect both the entity and the overall context of the document.
5. Return only valid JSON in the specified format. Do not include markdown, comments, or any other
text.

6. Ensure that the JSON is well-formed and valid.

—Examples—
{{example}}

—Input Document—
{{document} }

Table 11: Triplet Extraction with Topic Prompt
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A.4 Topic Selection Prompt

Instruction description

—Goal—

Given the user’s question, choose all topics from the supplied list that are directly relevant to answering
the question. Select between {min_topics} and {max_topics} topics. Choose exhaustively but do NOT
invent new topics. Return the chosen topics exactly as they appear in the list. Always return at least
{min_topics} topics.

—Instructions—

. The list of allowed topics will be provided in the placeholder {TOPIC_LIST}.

. Read the user question provided in the placeholder {question}.

. Identify every topic from { TOPIC_LIST} that is pertinent to the question.

. Output only valid JSON. Do not include markdown, comments, or extra text.

. Output JSON format: { "topics": ["TopicLabell", "TopicLabel2", ...]}

. You MUST ONLY choose from the list provided below. Do not invent or rephrase any subtopics.

. If you cannot find any relevant topics, just find the most relevant {min_topics} topics.

NN RN =

—Question—
{{question}}

—Allowed Topics—
{{TOPIC_LIST}}

Table 12: Topic Selelction Prompt
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A.5 Subtopic Selection Prompt

Instruction description

—Goal—

Given the user’s question, choose all topics from the supplied list that are directly relevant to answering
the question. For the given topic { TOPIC_LABEL}, choose every subtopic from the list below that is
helpful for answering the user’s question. Select {min_subtopics} to {max_subtopics} subtopics. Do
NOT invent new subtopics. Always return at least {min_subtopics} subtopics, unless case of list is
shorter than {min_subtopics}.

—Instructions—

. Consider only the subtopics provided in {SUBTOPIC_LIST}.

. Read the user’s question provided in {question}.

. Output your selection as valid JSON without markdown, comments, or extra text.

. Preserve the original order of {SUBTOPIC_LIST} when listing the chosen subtopics.

. Output JSON Format: {"subtopics": ["SubLbl1", "SubLbl2", ...]}

. You MUST ONLY choose from the list provided below. Do not invent or rephrase any subtopics.

. If you cannot find any relevant topics, just find the most relevant { min_subtopics} topics.

~N O kAW -

—~Question—
{{question} }

—Allowed Subtopics for {{TOPIC_LABEL}}—
{{SUBTOPIC_LIST}}

Table 13: Subtopic Selection Prompt

17



Category Agriculture CS Legal Mix  HotpotQA MultiHopRAG
Nodes 44,588 45,921 50,162 19,806 50,256 26,250
Topic Nodes 1,568 531 424 401 374 446
Subtopic Nodes 12,280 15,142 14,319 5,993 9,188 7,921
Entity Nodes 30,740 30,248 35,419 13,412 40,694 17,883
Edges 76,946 76,598 94,507 31,580 87,757 42,857
Topic-Subtopic 18,424 20,675 19,212 7,436 12,672 9,825
Subtopic-Entity 35,219 34,017 41,268 14,312 43,843 19,680
Entity-Entity 23,303 21,906 34,027 9,832 31,242 13,352

Table 14: Detailed graph statistics of datasets.

B Implementation Details

Our implementation details on experiments are as follows:
* NaiveRAG and TH-RAG used Faiss as the vector DB for retrieval.

* For similarity calculation with the query, we did not use Faiss’s built-in L2-distance or inner product
but implemented cosine similarity.

* Answer generation prompts were unified across all methods, and the rest of the settings were based
on the default values of the respective baselines.

* We fixed the chunk size at 1200 and overlap at 100 for all methods. The temperature during answer
generation was set to 0, and gleaning was also set to 0.

* Including graph construction and answer generation, we used gpt-4o-mini when needed, and for
sentences and chunks embedding, we used text-embedding-small-3 for all methods.

C Datasets and Baselines Details

C.1 Datasets

* Ultradomain: A collection of 20 domain-specific datasets, consisting of long-form passages that
make it ideal for abroad-type evaluation. We generated a total of 125 questions, following the same
methodology used in Edge et al. (2024); Guo et al. (2024).

* HotpotQA: A Wikipedia-based QA dataset that requires multi-hop reasoning across two to four
steps. Each question comes with context that contains relevant information. HotpotQA has evaluation
settings: Distractor and FullWiki. We conducted evaluations only on the setting, where 8 out of 10
paragraphs are irrelevant, making it suitable for evaluating the ability to retrieve accurate information.

* MultihHopRAG: A QA dataset based on English news articles, requiring multi-hop reasoning across
2-4 documents. The question types include Inference, Comparison, Temporal, and Null.
C.2 Statistics of our mehtods
Table 14 presents graph statistics of TH-RAG across the entire dataset.

C.3 Baselines

* NaiveRAG: The most basic version, where chunks with high similarity are retrieved and used. We
used top-7 similar chunks, for fair comparison with other methods on context length.

* GraphRAG: One of the first successful applications of KG construction for RAG. It includes Global
and Local configurations. While former one is closer to original paper’s method and use global

community summarization, later one uses more detail and samller commulity to generate answer.
We evaluated both versions, denoted as GraphRAG-G and GraphRAG-L.
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» LightRAG: An efficient version of GraphRAG that improves retrieval efficiency. Since it is known
for simlpe and effecient, we compare our effeciency with this baseline.

* PathRAG: A method specialized for multi-hop reasoning, based on LightRAG. It retrieves only the
necessary information by connecting entities and pruning path to answer.

* HyperGraphRAG: state-of-the-art method that extends traditional triplet structures to use hyper-
edges for connecting multiple entities in a graph.

There exist other strong baselines, such as Gutiérrez et al. (2025); Zhu et al. (2025b); Zhao et al. (2025),
as well as chunk-to-graph approaches like Sarthi et al. (2024); Liu et al. (2025a). However, we excluded
the former because they do not operate on fixed-length chunks, and the latter because they are not based
on triplet-style graph construction.

C.4 Metrics

We used two evaluation approaches depending on the dataset type.

For the Ultradomain dataset, we followed previous studies and used the LL.M-as-a-judge method
(Zheng et al., 2023). Similar to Guo et al. (2024), answers were compared 1vs1 in three dimensions, and
the overall win rates were computed. This approach was adopted due to the longer answer nature of this
dataset.

For the MultiHopRAG and HotpotQA datasets, we adopted traditional evaluation metrics—F1, Recall,
Precision, and Accuracy—as the answers are typically short and fact-based. While LLM-as-a-judge has
demonstrated strong alignment with human evaluation, it may introduce bias. Therefore, we employed
quantitative metrics to provide a more objective assessment of our method on these datasets. For both
HotpotQA and MultiHopRAG, we followed the official evaluation protocol of HotpotQA. Accuracy is
determined by whether the predicted answer contains the gold answer.

For retrieval evaluation, we additionally used Recall, F1, Recall@5, and NDCG@5 to ensure a fair and
comprehensive comparison. All methods either generate answers from specific chunks or indicate the
chunk IDs from which their context is derived; we consider these as the predicted chunks. For the gold
chunks, we use those that contain the supporting evidence for each query, treating them as ground truth
for retrieval evaluation.

D Examples
D.1 Triplet Extraction Example

Example Input and Output Format

—Input—

Moscow State University Lomonosov Moscow State University is a coeducational and public research
university. ... MSU was renamed after Lomonosov in 1940 and was then known as "Lomonosov
University". It also houses the tallest educational building in the world. ...

—Output—
"triple": [ "Lomonosov Moscow State University", "was renamed after", "Mikhail Lomonosov" ],
"sentence": "MSU was renamed after Lomonosov in 1940 and was then known as ’Lomonosov

sn

University’.",
"subject": { "subtopic": "University", "main_topic": "Education" },

non

"object": { "subtopic": "Person", "main_topic": "Biography" }

Table 15: Example Input and Output Format for Triplet Extraction with Topic. We divide entity, subtopic and topic
for graph structure corruption.
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D.2 Example of Constructed KG and Retrieval Result

Figure 3: Comparison of Knowledge Graph (KG) structures between LightRAG (left) and TH-RAG (right). In the
TH-RAG visualization, green nodes represent topics, red nodes represent subtopics, and purple nodes represent
entities. The graphs are visualized using the Force Atlas 2 layout algorithm (Jacomy et al., 2014).
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Figure 4: Retrieved subgraphs for different questions using TH-RAG
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