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Abstract001

Retrieval-augmented generation (RAG)002
enhances large language models (LLMs)003
by enabling them to incorporate external004
knowledge at inference time. While graph-005
based RAG methods have shown promise in006
multi-hop reasoning by leveraging structured007
representations such as triplets, they often008
struggle with semantic sparsity, noisy or009
inconsistent triplet extraction, and a lack of010
higher-level abstraction, which together hinder011
coherent and efficient reasoning. We propose012
TH-RAG, a novel graph-based RAG frame-013
work that constructs a three-level hierarchical014
Knowledge Graph (KG) composed of entities,015
subtopics, and topics. TH-RAG maintains high016
connectivity by semantically organizing triplets017
through Triplet Extraction with Topic. With018
Topic-based Hierarchical Graph Traversal,019
TH-RAG finds related entities through topic020
and subtopics. Finally, a Query-Based021
Filtering selects only the most relevant triplets022
and sentence chunks. Experimental results023
on both open-domain and multi-hop QA024
benchmarks demonstrate that TH-RAG consis-025
tently outperforms existing strong baselines in026
terms of accuracy and robustness. To support027
further research, we release our code at:028
https://anonymous.4open.science/r/KGRAG-029
2C8D030

1 Introduction031

In recent years, large language models (LLMs)032

have demonstrated outstanding performance across033

various natural language processing tasks (Achiam034

et al., 2023; Yang et al., 2025a; Matarazzo and035

Torlone, 2025), owing to their extended context036

windows and strong document understanding capa-037

bilities (Team et al., 2023; Guo et al., 2025). How-038

ever, integrating new knowledge into LLMs typi-039

cally requires iterative fine-tuning, which incurs040

significant computational costs, consumes time,041

and introduces the risk of catastrophic forgetting042

(Kirkpatrick et al., 2017; Luo et al., 2023).043
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Figure 1: Simple example of TH-RAG compared to
PathRAG. TH-RAG can retrieve almost all information
in corpus effeciently, since use hierarchical graph struc-
ture.

Retrieval-Augmented Generation (RAG) (Lewis 044

et al., 2020; Gao et al., 2024) and graph-based 045

RAG (Han et al., 2024) offers a promising alterna- 046

tive to overcome these challenges. RAG leverages 047

sparse or dense retrieval mechanisms (Robertson 048

and Zaragoza, 2009; Karpukhin et al., 2020) to 049

fetch relevant information from external corpora 050

and generates responses based on the retrieved con- 051

tent (Soudani et al., 2024; Balaguer et al., 2024). 052

Graph-based RAG further extends this paradigm 053

by structuring the retrieval database as Knowledge 054

Graphs (KGs) (Yang et al., 2025b; Kamra et al., 055

2024). his approach brings two key advantages: 056

(1) it improves multi-hop reasoning over dispersed 057

information compared to standard RAG, and (2) 058

it facilitates the understanding of documents by 059

capturing their logical structure and semantic rela- 060

tionships (Peng et al., 2024; Wu et al., 2024). 061

Recent graph-based RAG methods(Edge et al., 062

2024; Guo et al., 2024) have focused on construct- 063

ing KGs directly from domain-specific corpora by 064

extracting triplets (subject–relation–object). This 065

fine-grained representation improves the precision 066

of reasoning by structuring information at the se- 067

mantic level. However, these methods often assume 068

that sufficient connectivity exists among triplets 069

within a chunk, which is rarely true in practice 070
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(Han et al., 2024; Zhu et al., 2025c).071

Moreover, triplet-based graphs generated by072

large language models are frequently fragmented,073

which significantly hinders effective reasoning over074

the graph. To address this, several studies have pro-075

posed techniques such as graph clustering, commu-076

nity detection, or node merging based on summa-077

rization (Edge et al., 2024; Xu et al., 2025; Wang078

et al., 2025). While these methods attempt to re-079

store coherence, they often introduce additional080

computational overhead and may distort seman-081

tics or hallucinate facts, thereby compromising the082

integrity of the information.083

To overcome these challenges, we propose TH-084

RAG, a novel graph-based RAG framework that085

constructs a three-level hierarchical KG com-086

posed of Triplets, Subtopics, and Topics. This087

semantic hierarchy enhances graph connectivity,088

facilitates integration across fragmented informa-089

tion, and supports efficient multi-hop reasoning.090

TH-RAG operates in three stages: (1) Hierarchi-091

cal KG Construction, where an LLM extracts092

Triplets, Subtopics, and Topics simultaneously to093

build a semantically structured graph; (2) Topic-094

based Graph Traversal, which begins from the095

most relevant Topic node and recursively explores096

related Subtopics and Entities to retrieve candidate097

Triplets; and (3) Query-based Retrieval & Filter-098

ing, where cosine similarity is computed between099

the query and each edge of candidate triplet, and100

the most relevant information is selected as the final101

context for answer generation.102

Experimental results show that TH-RAG outper-103

forms existing graph-based RAG methods across104

both general-purpose (abroad-type) and domain-105

specific (specific-type) QA benchmarks. Notably,106

TH-RAG achieves accuracy improvements of 6.9107

and 1.3 percentage points over current state-of-the-108

art methods on the MultiHopRAG and HotpotQA109

datasets, respectively. Additional ablation studies110

validate the effectiveness of our hierarchical graph111

design and retrieval strategy, demonstrating that112

TH-RAG offers a promising and scalable approach113

for enabling more robust multihop reasoning in114

triplet-based graph RAG systems.115

2 Related Works116

2.1 RAG and the Graph-based RAG117

Early RAG methods(Gao et al., 2024) utilized118

dense retrievers such as DPR(Karpukhin et al.,119

2020; Lewis et al., 2020) to chunk long documents120

into smaller units and retrieve relevant chunks 121

based on similarity to a given query(Sharma, 2025; 122

Hu and Lu, 2024; Gao et al., 2023). Since then, 123

the RAG framework has evolved through integra- 124

tion with techniques such as reranking (Chen et al., 125

2024), query expansion (Jagerman et al., 2023; 126

Wang et al., 2023; Chan et al., 2024), and fusion- 127

in-decoder (Izacard and Grave, 2021). 128

However, similarity-based retrieval alone often 129

struggles with capturing logical dependencies or 130

supporting multi-hop reasoning (Zhao et al., 2024; 131

Wu et al., 2024). To address this limitation, graph- 132

based RAG approaches have been proposed (Peng 133

et al., 2024; Zhang et al., 2025b). 134

Initial graph-based RAG systems (Sun et al., 135

2023; Ma et al., 2024) relied on pre-constructed 136

KGs such as Freebase (Bollacker et al., 2008) or 137

Wikidata (Vrandečić and Krötzsch, 2014). More 138

recent work has shifted toward constructing graphs 139

directly from the corpus to improve adaptability to 140

domain-specific settings (Zhu et al., 2024; Chen 141

and Bertozzi, 2023). 142

2.2 Triplet-based Graph-based RAG 143

Triplet-based Graph-based RAG focuses on extract- 144

ing triplets from within document chunks to build 145

structured representations at the entity level (Han 146

et al., 2024; Zhu et al., 2025c). 147

These triplet-based graphs are used to sup- 148

port structured multi-hop reasoning over the doc- 149

ument content. Recent studies propose various 150

enhancements to this paradigm, such as improv- 151

ing triplet connectivity (Luo et al., 2025), enabling 152

lightweight reasoning (Luo et al., 2024; Böckling 153

et al., 2025), or focusing on explicit path-based 154

retrieval (Chen et al., 2025). 155

Edge et al. (2024)demonstrated promising re- 156

sults by constructing a triplet-based KG and ap- 157

plying community detection (Traag et al., 2019) to 158

enhance semantic grouping and retrieval. Guo et al. 159

(2024); Abane et al. (2024) proposed a more effi- 160

cient and simplified usage of such graphs, relying 161

on coarse graph structure for lightweight retrieval. 162

Subsequent studies (Liang et al., 2024; 163

Jimenez Gutierrez et al., 2024; Gutiérrez et al., 164

2025) have explored various strategies to enhance 165

graph connectivity and utility (Panda et al., 2024; 166

Zhao et al., 2025). Some methods(Xu et al., 2025; 167

Wang et al., 2025) adopt clustering techniques such 168

as HNSW (Malkov, 2018) to group similar entities 169

and reduce graph sparsity, while others employ 170

explicit graph traversal strategies—such as path 171
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Documents

Chunk_1 :|-Sentence_1 → Triplet: Sam Altman-leads-ChatGPT
                     Sam Altman = Topic: business,      Subtopic: CEO
                          ChatGPT = Topic: application, Subtopic: tech
                  |-Sentence_2 → Triplet: Elon Musk-build-factory
...
Chunk_N : ...

Question

business

technology

board   member

tech company

tech   executer

CEO

former CEO
startup founders

Sam Altman

ChatGPT

OpenAI

Ilya Sutskever

generative AI

Retrive

Annie Altman

Graph Traversal
Chosen Edges

(d)Filtering

Instruction 
+ 

Context 
↓ 

LLM:
Sam

Altman

Top-K  : Cosine
Similarity Filtering

1

Top-K  : Context
Expansion

2

Candidate Node

Chosen Node

Unchosen NodeWhich OpenAI figure rose with ChatGPT,
promoted AI agents, and faced board
controversy per Fortune and TechCrunch?

(a) Hierarchical Graph Construction

(c) Query-based Retrieval

(b) Topic-based Graph Traversal 

(e) Genereting Answer 

1.Topic

2.Subtopic

3.Triplet

Chosen Triplet : 
•Sam Altman-leads-ChatGPT
  Chunk_1+Sentence_1(Top-K )2

•ChatGPT-by-OpenAI 
  Sentence_30(Top-K )1

•Ilya Sutskever-at-OpenAI
  Sentence_22(Top-K )1

Figure 2: Overview of TH-RAG Framework. The framework consists of three stages: (a) Hierarchical Graph
Construction – Documents are processed into triplet extraction with topic to build a hierarchical graph. (b) Topic-
based Graph Traversal – The graph is navigated from topic to subtopic to triplet, guided by LLM-based relevance
to the query. (c-d) Query-based Retrieval & Filtering – Triplets linked to selected subtopics are expanded by
retrieving 1-hop neighboring entities. Retrieved triplets are filtered by cosine similarity (Top-K1), and context is
expanded from relevant chunks (Top-K2).

finding or reasoning over entity connections—to172

support multi-hop question answering (Luo173

et al., 2024; Han et al., 2025b; Chen et al., 2025;174

Böckling et al., 2025). In addition, several hybrid175

approaches (Zhu et al., 2025a; Sarmah et al., 2024)176

have been proposed that combine graph-based177

structures with traditional chunk-level retrieval.178

3 Method179

We now describe the architecture and implemen-180

tation details of TH-RAG. Each component of the181

framework corresponds to the stages illustrated in182

Figure 2 with simple example.183

3.1 Hierarchical Graph Construction184

Following prior graph-based RAG approaches, TH-185

RAG constructs a KG from a corpus by extracting186

triplets (subject–relation–object) using an LLM.187

As discussed in Section 1, existing methods for188

addressing graph fragmentation face two key limi-189

tations: increased computational cost and impaired190

information fidelity.191

To improve efficiency and minimize informa-192

tion distortion„ we propose Triplet Extraction193

with Topic, a method that augments each extracted194

triplet with subtopic and topic annotations to form a195

hierarchically structured graph. Each entity is con-196

nected to one or more subtopics, and each subtopic197

to one or more topics, creating a semantic contain-198

ment hierarchy:199

• Entities represent factual units. 200

• Subtopics cluster semantically related enti- 201

ties. 202

• Topics abstract groups of subtopics into 203

higher-level categories. 204

To ensure semantic grounding, we instruct the 205

LLM to extract only corpus-relevant subtopics and 206

topics (see Table 11). The output example can be 207

found on Appendix D.1 208

Then We define the resulting graph as G = 209

(V, E), where: 210

• V consists of three disjoint sets of nodes: 211

– E: entity nodes, 212

– ST : subtopic nodes, 213

– T : topic nodes. 214

• E consists of typed directed edges: 215

– Etriplet: entity-to-entity relations (i.e., 216

(h, r, t) where h, t ∈ V ), 217

– Esub: subtopic–entity links (i.e., (s, e) 218

where s ∈ ST, e ∈ E), 219

– Etop: topic–subtopic links (i.e., (t, s) 220

where t ∈ T, s ∈ ST ). 221

Each edge in Etriplet also stores its source sen- 222

tence as an attribute for sentence-level retrieval. 223

Each entity is connected via at least two edges, 224

and each subtopic is linked to both its entities and 225
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parent topic. This structure improves connectivity226

and prevents node isolation.227

Each triplet also stores its source sentence as228

an edge attribute. As these sentences are directly229

extracted from the corpus, hallucination risk is min-230

imized. These annotations support sentence-level231

retrieval in later stages. Moreover, graph updates232

require only one LLM call per chunk, making the233

method highly scalable.234

The overall process of graph construction is sum-235

marized in Algorithm 1.236

Algorithm 1 Hierarchical Graph Construction

1: Input: Corpus chunk C
2: Output: Hierarchical graph G = (V, E) with

triplets, subtopics, and topics
3: TRIP, ST, T = LLM(Ci)
4: for each triplet (s, r, o) ∈ TRIP do
5: Attach source sentence S as an edge for r
6: Connect s and o with edge r
7: Connect s and o to each st
8: Connect st to each tp
9: end for

3.2 Topic-based Graph Traversal237

To leverage the hierarchical structure of our graph,238

we design a two-step LLM-guided traversal strat-239

egy : Topic-based Graph Traversal.240

Step 1: Topic Selection. Given a query, the241

LLM selects NT relevant topics from all available242

topic nodes. Since topics are core keywords that243

represent the entire corpus, this step can be inter-244

preted as the first step in setting the scope of re-245

sponses for LLM.246

Step 2: Subtopic Selection. For each selected247

topic, the LLM chooses NST subtopics from its con-248

nected subtopic nodes, based on semantic relevance249

to the query. In practice, NT and NST are bounded250

to small values, enabling our traversal method to251

scale with minimal LLM calls.252

While the entire list of candidates is provided in253

each step, the extended context capacity of modern254

LLMs (Hurst et al., 2024) ensures that this selection255

process remains efficient. Typically, NT and NST256

are small values, requiring just one LLM call for257

topic selection and NT calls for subtopic selection.258

This approach offers greater robustness com-259

pared to methods that extract entities from query260

(Guo et al., 2024) or implicitly infer topics and261

subtopics. By providing the LLM with explicit262

lists of candidate topics, subtopics, and entities263

as context, it selects the most relevant ones based264

on the query, reducing ambiguity and increasing 265

reliability. 266

Ultimately, this process can be viewed as a hier- 267

archical graph traversal that progressively narrows 268

down the search space within a large corpus to 269

efficiently locate the answer (the visualization of 270

results can be found in Figure 4. 271

Algorithm 2 Topic-based Graph Traversal &
Query-based Retrieval

1: Input: Query q, graph G = (V, E), parameters
NT , NST , K1, K2

2: Output: Final context set
3: Extract top-NT topics relevant to q:
4: Tselected = LLM(Tlist, q)
5: for each ti ∈ Tchosen do
6: Extract top-NST subtopics relevant to ti

and q:
7: Si = LLM(ST

(ti)
list , q)

8: STselected ← STselected ∪ Si

9: end for
10: Retrieve all entities under STselected

11: For each entity e, collect its 1-hop neighbors
12: Compute similarity between q and all sen-

tences
13: Select top-K1 sentences as primary context
14: Select top-K2 sentences and include their

source chunks as extended context

3.3 Query-based Retrieval 272

From each selected subtopic, we collect the con- 273

nected entity nodes, which act as anchors for con- 274

text retrieval. For each entity, we explore its 1-hop 275

neighbors within the graph, collecting all associ- 276

ated edges, since each edge is annotated with its 277

original source sentence. This process yields a set 278

of candidate evidence sentences directly grounded 279

in the source corpus. 280

These edge-level sentences form the basis for 281

our filtering mechanism, enabling precise and faith- 282

ful sentence-level evidence retrieval. To reduce 283

redundancy and improve relevance, we apply a 284

two-stage filtering strategy: 285

• Cosine Similarity Filtering: We compute the 286

cosine similarity between the query and each 287

candidate sentence. The top-K1 most relevant 288

sentences are selected as the primary context 289

for generation. 290

• Context Expansion: We further select a sub- 291

set of K2 sentences (K2 ≪ K1) and retrieve 292

their full source chunks. This expansion pro- 293
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vides additional contextual cues around high-294

confidence sentence.295

As noted by Han et al. (2025a), answer entities296

or key supporting sentences are sometimes omitted297

during the graph construction process. To miti-298

gate this risk, we adopt targeted context expansion299

around the most relevant sentences.300

This pipeline combines hierarchical graph traver-301

sal and semantic filtering to enable scalable, accu-302

rate, and context-aware retrieval.303

The overall process of topic-based graph traver-304

sal and query-based retrieval is summarized in Al-305

gorithm 2.306

3.4 Multi-hop Reasoning Robustness307

While triplet-based graphs theoretically enable308

structured reasoning, practical limitations arise309

when constructing them using LLMs. In nat-310

ural language, semantic relations do not al-311

ways conform to a clean subject–relation–object312

pattern. A single sentence may express313

reflexive relations (e.g., (the committee,314

reorganized, itself)), symmetric interactions315

(e.g., (Alice, collaborates_with, Bob) and316

(Bob, collaborates_with, Alice)), or im-317

plicit structures with missing arguments (e.g.,318

(Tesla, founded, —) inferred from “Tesla was319

founded in 2003”). LLMs often overlook such sub-320

tle or implicit connections, leading to incomplete or321

oversimplified triplet representations. As a result,322

node-centric graph reasoning like Guo et al. (2024)323

can become brittle, especially when crucial edges324

are omitted due to these structural ambiguities.325

This limitation becomes particularly evident in326

cases like the following:327

Query: Who collaborated with Marie Curie on328

research related to radioactivity?329

Corpus Sentence: Marie Curie and Pierre Curie330

conducted groundbreaking research on radioactiv-331

ity together.332

Here, an LLM-based triplet extractor may333

only produce (Marie Curie, conducted,334

research), and fail to encode the co-reference to335

Pierre Curie. Despite the sentence clearly implying336

collaboration, the triplet graph lacks a direct edge337

connecting the two entities. Consequently, graph338

traversal mechanisms alone would be insufficient339

to reach the correct answer node.340

To mitigate this issue, TH-RAG attaches the orig-341

inal source sentence as an edge attribute for every342

Agri CS Legal Mix Hotpot MultiHop
Tokens 1.9M 2M 4.7M 602K 1.2M 991K
Passages 12 10 94 61 9,827 435
# QA 125 125 125 125 1,000 1,000

Table 1: Document statistics for our experimental
datasets. Agri, Hotpot, and MultiHop refer to Agricul-
ture, HotpotQA, and MultiHopRAG, respectively.

triplet. This allows the retrieval mechanism to op- 343

erate at the sentence level rather than relying solely 344

on the triplet graph structure. By preserving the 345

full semantic context of each relation, this design 346

reduces noise during retrieval and minimizes dis- 347

tortion of the original corpus semantics. 348

Taken together, TH-RAG’s design enables robust 349

multi-hop reasoning by integrating three comple- 350

mentary strategies: (1) a semantically grounded hi- 351

erarchical graph that improves connectivity across 352

fragmented information, (2) LLM-guided hierar- 353

chical graph traversal that efficiently focuses re- 354

trieval on relevant subregions of the graph, and (3) 355

sentence-level evidence filtering and targeted con- 356

text expansion, enabling the retrieval of relevant 357

information even when it is not structurally cap- 358

tured in the triplet graph. This holistic approach al- 359

lows TH-RAG to retrieve and reason over informa- 360

tion that is semantically dispersed but contextually 361

relevant, leading to more accurate and complete 362

answers on complex multi-hop queries. 363

4 Experiments 364

To evaluate the effectiveness and robustness of TH- 365

RAG, we design experiments to answer the follow- 366

ing research questions: 367

• RQ1: Is our method effective for QA datasets 368

of multi-hop reasoning and abroad domain? 369

• RQ2: How well does our method perform, 370

especially in terms of mitigating graph frag- 371

mentation? 372

• RQ3: How efficient is our method in terms of 373

resource usage and scalability? 374

• RQ4: What are the core components of our 375

method and the optimal hyperparameters? 376

4.1 Datasets 377

In our experiments, we used two types of data 378

sets. One is an open-domain QA dataset, such 379

as UltraDomain (Qian et al., 2025), which does 380

not have specific evidence and requires answering 381

open-ended questions based on abroad knowledge. 382

Following prior studies, we used three domain- 383

specific datasets (Agriculture, CS, and Legal) and 384

one mixed-domain corpus. 385
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Agriculture CS
Comprehensive Diversity Empowerment Overall Comprehensive Diversity Empowerment Overall

Win Rate TH-RAG Baseline TH-RAG Baseline TH-RAG Baseline TH-RAG Baseline TH-RAG Baseline TH-RAG Baseline TH-RAG Baseline TH-RAG Baseline
vs Naive 84.2% 15.8% 88.3% 11.7% 87.5% 12.5% 86.7% 13.3% 86.9% 13.1% 91.0% 9.0% 86.9% 13.1% 86.9% 13.1%
vs GraphRAG G 87.0% 13.0% 91.1% 8.9% 88.6% 11.4% 88.6% 11.4% 78.7% 21.3% 74.6% 25.4% 78.7% 21.3% 78.7% 21.3%
vs GraphRAG L 88.7% 11.3% 90.3% 9.7% 89.5% 10.5% 89.5% 10.5% 84.6% 15.4% 86.2% 13.8% 87.0% 13.0% 86.2% 13.8%
vs LightRAG 87.1% 12.9% 91.9% 8.1% 89.5% 10.5% 88.7% 11.3% 80.7% 19.3% 80.7% 19.3% 81.5% 18.5% 81.5% 18.5%
vs PathRAG 80.7% 19.3% 92.4% 7.6% 85.7% 14.3% 85.7% 14.3% 78.4% 21.6% 86.4% 13.6% 81.6% 18.4% 81.6% 18.4%
vs HypergraphRAG 52.3% 47.7% 60.4% 39.6% 51.4% 48.6% 52.3% 47.7% 49.1% 50.9% 46.4% 53.6% 50.9% 49.1% 49.1% 50.9%

Legal Mix
Comprehensive Diversity Empowerment Overall Comprehensive Diversity Empowerment Overall

Win Rate TH-RAG Baseline TH-RAG Baseline TH-RAG Baseline TH-RAG Baseline TH-RAG Baseline TH-RAG Baseline TH-RAG Baseline TH-RAG Baseline
vs Naive 86.2% 13.8% 89.4% 10.6% 90.2% 9.8% 90.2% 9.8% 91.9% 8.1% 95.5% 4.5% 93.7% 6.3% 93.7% 6.3%
vs GraphRAG G 79.8% 20.2% 69.4% 30.6% 81.5% 18.5% 81.5% 18.5% 84.5% 15.5% 84.1% 15.9% 90.1% 9.9% 90.1% 9.9%
vs GraphRAG L 89.4% 10.6% 87.0% 13.0% 90.2% 9.8% 90.2% 9.8% 96.5% 3.5% 98.3% 1.7% 96.5% 3.5% 96.5% 3.5%
vs LightRAG 85.5% 14.5% 85.5% 14.5% 89.5% 10.5% 89.5% 10.5% 91.3% 8.7% 95.7% 4.3% 92.2% 7.8% 92.2% 7.8%
vs PathRAG 86.4% 13.6% 84.0% 16.0% 86.4% 13.6% 86.4% 13.6% 90.5% 9.5% 97.4% 2.6% 92.2% 7.8% 92.2% 7.8%
vs HypergraphRAG 50.9% 49.1% 43.8% 56.2% 50.9% 49.1% 50.9% 49.1% 57.9% 42.1% 63.2% 36.8% 57.0% 43.0% 57.9% 42.1%

Table 2: Main Results on UltraDomain, specially for Agriculture, CS, Legal and Mix domains. Metrics using
1vs1 win rate, as llm-as-a-judge. We exclude GraphRAG-G from our evaluation, as its use of global community
detection and summarization spans numerous chunks, making the comparison less meaningful in our setting.

Answer Retrieval
MultiHopRAG HotpotQA MultiHopRAG HotpotQA

F1 Precision Recall Accuracy F1 Precision Recall Accuracy Recall F1 Rec@5 NDCG@5 Recall F1 Rec@5 NDCG@5
Naive 0.501 0.475 0.599 0.604 0.584 0.612 0.590 0.509 0.330 0.210 0.337 0.375 0.394 0.143 0.342 0.352
GraphRAG-G 0.526 0.501 0.618 0.653 0.393 0.410 0.402 0.343 - - - - - - - -
GraphRAG-L 0.469 0.451 0.536 0.535 0.668 0.696 0.678 0.595 0.267 0.239 0.267 0.412 0.830 0.479 0.833 0.794
LightRAG 0.464 0.448 0.527 0.526 0.496 0.519 0.507 0.439 0.072 0.039 0.061 0.082 0.323 0.129 0.282 0.217
PathRAG 0.468 0.453 0.523 0.525 0.551 0.578 0.562 0.488 0.203 0.113 0.182 0.265 0.818 0.326 0.808 0.805
HyperGraphRAG 0.526 0.503 0.619 0.621 0.674 0.703 0.683 0.599 0.426 0.283 0.402 0.460 0.848 0.382 0.848 0.763
TH-RAG 0.712 0.711 0.720 0.722 0.671 0.692 0.685 0.612 0.392 0.249 0.393 0.522 0.781 0.304 0.781 0.743

Table 3: Main results on HotpotQA and MultiHopRAG. Bold indicates the best result, and underline indicates
the second-best.

The other is a answer-specific QA dataset, such386

as HotpotQA (Yang et al., 2018) and MultiHo-387

pRAG (Tang and Yang, 2024), which has concrete388

multi-hop evidence that must be retrieved to gener-389

ate answers. More detailed explanations about data390

sets are provided in Appendix C.1391

We randomly selected 1,000 QA pairs along with392

their corresponding passages from both MultiHo-393

pRAG and HotpotQA to construct the corpus for394

evaluation. A detailed description of these datasets395

is provided in the Table 1.396

4.2 Metrics397

We used two evaluation approaches: For the Ul-398

tradomain dataset, we applied the LLM-as-a-399

judge method (Zheng et al., 2023), comparing400

answers pairwise as in Guo et al. (2024). For401

MultiHopRAG and HotpotQA, we used tradi-402

tional metrics—F1, Recall, Precision, and Accu-403

racy—along with retrieval metrics like recall, F1,404

recall@5, and NDCG@5.405

A detailed description of these metrics is pro-406

vided in the Appendix C.4.407

4.3 Baselines408

We compared TH-RAG against several representa-409

tive baseline methods categorized into three groups:410

(1) a basic retrieval form, NaiveRAG (Gao et al.,411

2024); (2) triplet-based graph baselines, includ-412

ing GraphRAG (Edge et al., 2024) and Ligh-413

tRAG (Guo et al., 2024); and (3) current state-414

of-the-art methods, PathRAG (Chen et al., 2025) 415

and HyperGraphRAG (Luo et al., 2025). For 416

GraphRAG, we implemented both the local and 417

global retrieval methods. We refer to the local ver- 418

sion as GraphRAG-L and the global version as 419

GraphRAG-G throughout our experiments. A de- 420

tailed explanation of baselines can be found in the 421

Appendix C.3. 422

4.4 Implementation Details 423

We used the following hyperparameters and im- 424

plementation settings: K1 and K2 were fixed at 425

30 and 5, respectively. NT and NST were deter- 426

mined through prompt-based selection, with val- 427

ues ranging from 5–10 and 10–25, respectively. 428

The exact numbers varied depending on the LLM’s 429

output. Additonal implementation details are in 430

Appendix B, and used prompts are in Appendix A 431

5 Results 432

5.1 Main Results (RQ1) 433

On the Ultradomain dataset, TH-RAG outper- 434

forms all baselines except HyperGraphRAG across 435

all four domains (in Table 2). Notably, when com- 436

pared to PathRAG—a widely regarded - state-of- 437

the-art method — TH-RAG achieves an average 438

win rate of 86.48%. While HyperGraphRAG shows 439

slightly better results in the CS domain, TH-RAG 440

outperforms it in all other domains. 441

Particularly in the mixed-domain setting, TH- 442

RAG demonstrates a more substantial performance 443
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LightRAG TH-RAG
# Nodes 20,914 50,162
# Topic Nodes - 531
# Subtopic Nodes - 15,142
# Entity Nodes 20,914 30,248
# Edges 24,707 94,507
# Topic-subtopic edges - 20,675
# Subtopic-entity edges - 34,017
# Entity-Entity edges 24,707 21,906
# Subgraphs 8,805 3
% of Biggest Subgraph 56.11% 99.98%

Table 4: Constructed graph statistics comparison with
LightRAG way on Legal dataset. PathRAG use same
graph structure with LightRAG, so #subgraphs and % of
Biggest Subgraph means PathRAG has a great weakness.
% is calculated on Nodes.

gap, suggesting that our method is more robust444

in handling diverse, open-domain questions. On445

the specific-type datasets, TH-RAG consistently446

achieves higher scores than all baselines across447

most evaluation metrics (in Table 3). In Multi-448

HopRAG, it surpasses GraphRAG-G and Hyper-449

GraphRAG by 6.9% and 10.1%, respectively, show-450

ing clear superiority in multi-hop reasoning.451

However, when examining retrieval perfor-452

mance, TH-RAG does not achieve state-of-the-art-453

level results, especially in HotpotQA, where it lags454

behind across several retrieval metrics. Neverthe-455

less, its answer generation performance remains456

superior. This discrepancy highlights known is-457

sues (Tang and Yang, 2024) with the HotpotQA458

dataset—some questions can be answered using459

single-document evidence, even when multiple sup-460

porting facts are provided—making retrieval met-461

rics less indicative of final answer quality.462

In MultiHopRAG, TH-RAG demonstrates strong463

performance not only in answer quality but also464

in retrieval. An interesting observation is that465

NaiveRAG performs relatively well on specific-466

type datasets, indicating that entity missing dur-467

ing graph construction can critically impact perfor-468

mance in fact-based QA (Edge et al., 2024; Han469

et al., 2025a).470

5.2 Graph Fragmentation and Robustness471

Analysis (RQ2)472

To assess the impact of TH-RAG’s hierarchical473

structure on mitigating graph fragmentation, we474

compare the structural properties of graphs con-475

structed by TH-RAG and a representative triplet-476

based method, LightRAG.477

Compared to LightRAG, TH-RAG substantially478

reduces the number of disconnected subgraphs479

and achieves a much higher largest-connected-480

TH-RAG HyperGraphRAG
Comparison 0.625 0.538
Temporal 0.509 0.197
Inference 0.954 0.938
Null 0.786 0.664

Table 5: Comparison on HyperGraphRAG by question
type of MultiHopRAG.

component ratio. These improvements highlight 481

the effectiveness of our Topic–Subtopic–Entity 482

hierarchy in enhancing global graph connectiv- 483

ity. Summary statistics are presented in Table 4. 484

Results on other datasets are provided in Ap- 485

pendix C.2, and visualization results are included 486

in Appendix D.2. 487

Figure 1 further illustrates the benefit of re- 488

duced fragmentation through a qualitative compar- 489

ison with PathRAG. In conventional triplet-based 490

methods, answer-relevant entities often appear in 491

separate subgraphs, making reasoning paths in- 492

complete or unreachable—especially for methods 493

like PathRAG that depend heavily on connectiv- 494

ity. In contrast, TH-RAG does not rely on direct 495

entity–entity connections. Instead, it accesses rele- 496

vant information by navigating through topic-based 497

hierarchical graph traversal and retrieving sentence- 498

level evidence, enabling robust reasoning even in 499

partially disconnected entities. 500

Furthermore, the number of topic nodes remains 501

small, and the average Topic-to-Subtopic ratio is ap- 502

proximately 1:30. This ensures that the Topic and 503

Subtopic selection process remains token-efficient 504

and computationally lightweight during inference. 505

We also provide a comparison of question-type- 506

level performance on MultiHopRAG in Table 5. 507

While TH-RAG performs comparably to Hyper- 508

GraphRAG on Inference, Comparison, and Null 509

types, it significantly outperforms on Temporal 510

questions. This suggests that TH-RAG’s sentence- 511

based retrieval and topic-aware traversal are better 512

at capturing temporally grounded relations com- 513

pared to HyperGraphRAG, leading to high robust- 514

ness of TH-RAG. 515

5.3 Efficiency Analysis (RQ3) 516

We next evaluate the efficiency of TH-RAG in 517

terms of token usage and LLM call overhead, focus- 518

ing on two key stages: indexing and retrieval. We 519

compare TH-RAG against GraphRAG-L, Hyper- 520

GraphRAG, and LightRAG—three strong base- 521

lines known for either high performance or retrieval 522

efficiency (Table 6). 523

In the indexing phase, TH-RAG demonstrates 524
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Light Hyper Local TH-RAG
Indexing Call 5,978 2,772 4,354 902
Indexing Token 8M 20.3M 15M 2.3M
Querying Time 2.66s 9.78s 0.77s 3.54s
Context Token 25K 20K 13.6K 7.4K

Table 6: Efficiency comparison of representative meth-
ods on MultiHopRAG. Token counts include both
prompt and context. Light, Hyper, and Local refer to
LightRAG, HyperGraphRAG, and GraphRAG-L, re-
spectively.

Accuracy F1 Recall Precision
Original 0.722 0.712 0.72 0.71
w/o chunks 0.580 0.576 0.577 0.577
w/o Triplets 0.692 0.68 0.691 0.678
w/o Traversal 0.624 0.62 0.622 0.62

Table 7: Ablatioin study on key components of TH-
RAG. W/o Traversal means we don’t apply graph-
travesal, using only filtering by all sentences.

remarkable efficiency. It requires only 32.5% of525

the LLM calls used by HyperGraphRAG (902 vs.526

2,772) and just 29% of the tokens consumed by527

LightRAG (2.3M vs. 8M). This reduction is pri-528

marily attributed to our graph construction method529

and prompt-based topic/subtopic annotation, which530

eliminate the need for costly iterative clustering or531

summarization at the entity level.532

During retrieval, TH-RAG incurs slightly higher533

latency compared to GraphRAG-L due to the534

(NT + 1) LLM calls needed for topic and subtopic535

selection. Nevertheless, its total token usage re-536

mains low—only 54% of that required by Hyper-537

GraphRAG (7.4K vs. 13.6K). Since the number538

of topic nodes rarely exceeds 1,000, the retrieval539

time complexity remains O(NT + 1), making TH-540

RAG scalable even for large corpora. Overall, TH-541

RAG achieves a favorable balance between compu-542

tational efficiency and retrieval quality.543

5.4 Ablation and Hyperparameter Analysis544

(RQ4)545

We conduct ablation studies to evaluate the contri-546

bution of each component in TH-RAG. As shown547

in Table 7, removing chunks in context leads to548

significant performance degradation. Disabling549

triplet usage or bypassing the topic–subtopic traver-550

sal (e.g., applying filtering over all sentences) also551

results in noticeable accuracy drops.552

These results confirm that TH-RAG’s strength553

lies in its ability to semantically scope the graph554

through topic and subtopic selection, enabling it to555

isolate focused subgraphs that are rich in relevant556

information. This targeted traversal leads to the557

extraction of high-quality chunks grounded in the558

K1=5 10 30 50
K2=1 0.536 0.565 0.622 0.630

3 0.662 0.679 0.697 0.702
5 0.697 0.685 0.72 0.719
10 x 0.714 0.743 0.726

Table 8: Ablation on K1 & K2 on MultiHopRAG with
accuracy.

original corpus, enabling more robust and reliable 559

multi-hop reasoning. 560

We also evaluate the impact of varying the hyper- 561

parameters K1 and K2, which control the number 562

of retrieved sentences and the number of expanded 563

chunks, respectively (Table 8). While our main 564

experiments adopt K1 = 30 and K2 = 5 for cost 565

efficiency, increasing K2 to 10 leads to slightly 566

better performance, indicating a trade-off between 567

answer quality and token cost (Joren et al., 2024). 568

Interestingly, increasing both K1 and K2 beyond 569

a certain point (e.g., K1 = 50 and K2 = 10) de- 570

grades performance—likely due to context rot or 571

lost-in-the-middle effects, as noted in recent stud- 572

ies (Zhang et al., 2025a; Hsieh et al., 2024). This 573

underscores the importance of careful context en- 574

gineering (Mei et al., 2025) and hyperparameter 575

tuning in retrieval-augmented systems. 576

6 Conclusion 577

We proposed TH-RAG, a novel graph-based RAG 578

framework designed to address two central chal- 579

lenges of prior methods: graph fragmentation 580

and difficulty in multi-hop reasoning. TH-RAG 581

constructs a three-level hierarchical knowledge 582

graph—composed of topics, subtopics, and enti- 583

ties—that semantically organizes information ex- 584

tracted from unstructured text. 585

Leveraging this structure, TH-RAG performs 586

topic-guided graph traversal to retrieve focused 587

subgraphs relevant to the query. Each edge in the 588

graph stores its original sentence, allowing the re- 589

trieval process to operate directly on sentence-level 590

evidence grounded in the source corpus. This de- 591

sign improves both semantic fidelity and reasoning 592

robustness, especially in cases where traditional 593

triplet-based graphs may omit key relationships. 594

Through this integrated approach, TH-RAG 595

achieves strong performance across both general 596

and multi-hop QA tasks, while maintaining scal- 597

ability and reducing graph fragmentation. Our 598

results suggest TH-RAG provides a reliable and 599

extensible foundation for graph-based retrieval in 600

LLM-augmented systems. 601
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Limitations602

TH-RAG introduces a hierarchical KG built from603

LLM-extracted topics, subtopics, and triplets. How-604

ever, the current approach has several limitations605

that suggest avenues for future improvement. First,606

the topic and subtopic normalization remains im-607

perfect. Due to inconsistencies in LLM outputs,608

semantically similar concepts are often assigned609

to different topic or subtopic labels, unnecessar-610

ily inflating the graph structure (e.g. sports <->611

sport, film director <-> director). To address this,612

future work could explore embedding-based clus-613

tering techniques to group semantically equivalent614

nodes (Chang et al., 2025; Liu et al., 2025b). Ad-615

ditionally, incorporating conversational history or616

memory-based context into the topic extraction step617

may help the LLM produce more consistent and618

coherent topic assignments. Second, this work de-619

liberately omits widely-used RAG techniques such620

as query expansion, and context reranking, in or-621

der to isolate the effectiveness of our hierarchical622

graph structure in its most basic and efficient form.623

However, given the demonstrated effectiveness of624

these techniques in recent literature (Gao et al.,625

2024; Sharma, 2025), integrating them in a way626

that aligns with our topic-based hierarchy could627

further enhance performance. Lastly, future direc-628

tions include enabling the LLM to directly interact629

with the graph structure for more explicit reasoning630

over graphs (Han et al., 2025b; Ma et al., 2024), po-631

tentially unlocking stronger multi-hop capabilities632

and interpretability.633
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A Prompts 996

A.1 Answer Generation Prompt 997

Instruction description
—Role—
You are a helpful assistant responding to user query

—Goal—
Generate a concise response based on the following information and follow Response Rules. Do not
include information not provided by following Information
—Target response length and format—
Multiple Paragraphs

—Information—
{{context}}

—Response Rules—
- Use markdown formatting with appropriate section headings
- Please respond in the same language as the user’s question.
- If you don’t know the answer, just say so.
- Do not make anything up. Do not include information not provided by the Information.

—Query—
{{question}}

Table 9: Answer Generation Prompt for Ultradomain. This prompts is used when we need long, comprehensive
response.
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A.2 Short Answer Generation Prompt998

Instruction description
—Role—
You are a multi-hop retrieval-augmented assistant.

—Goal—
Read the Information passages and generate the correct answer to the Query. Use only the given
Information; if it is insufficient, reply with "Insufficient information.". If you need to answer like yes or
no, use "Yes" or "No" only.
—Target response length and format—
- One-word or minimal-phrase answer (max 5 words).

—Response Rules—
- Answer must be short and concise.
- Answer language must match the Query language.
- Do NOT add or invent facts beyond the Information.

—Information—
{{context}}

—Query—
{{question}}

Table 10: Short Answer Generation Prompt used for HotpotQA and MultiHopRAG. This prompt is used when we
need short, concise response.
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A.3 Triplet Extraction with Topic Prompt 999

Instruction description
—Role—
You are a highly skilled information extraction system designed to process factual information accu-
rately and clearly.
—Goal—
Extract factual (subject, relation, object) triples from the document and classify the subject and object
into a subtopic and a main topic.
—Instructions—
1. Read the entire document below and extract all factual (subject, relation, object) triples. Each triple
must be grounded in a specific sentence from the document.
2. Paraphrasing is acceptable only if the relation is clearly implied by the sentence.
3. Resolve all pronouns such as "it", "he", "she", "they", etc. using the surrounding context. Replace
all pronouns in the triple with their correct referents.
- Do not include any unresolved or ambiguous pronouns in the triples.
- Be specific and use full entity names instead of pronouns wherever applicable.
4. For each subject and object:
- Assign a Subtopic (a specific category such as "Electronic Musician", "Sound Label", etc.)
- Assign a Main topic (a broader category such as "Music", "Art", etc.)
- Ensure the subtopic and main topic reflect both the entity and the overall context of the document.
5. Return only valid JSON in the specified format. Do not include markdown, comments, or any other
text.
6. Ensure that the JSON is well-formed and valid.

—Examples—
{{example}}

—Input Document—
{{document}}

Table 11: Triplet Extraction with Topic Prompt
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A.4 Topic Selection Prompt1000

Instruction description
—Goal—
Given the user’s question, choose all topics from the supplied list that are directly relevant to answering
the question. Select between {min_topics} and {max_topics} topics. Choose exhaustively but do NOT
invent new topics. Return the chosen topics exactly as they appear in the list. Always return at least
{min_topics} topics.
—Instructions—
1. The list of allowed topics will be provided in the placeholder {TOPIC_LIST}.
2. Read the user question provided in the placeholder {question}.
3. Identify every topic from {TOPIC_LIST} that is pertinent to the question.
4. Output only valid JSON. Do not include markdown, comments, or extra text.
5. Output JSON format: { "topics": ["TopicLabel1", "TopicLabel2", ...]}
6. You MUST ONLY choose from the list provided below. Do not invent or rephrase any subtopics.
7. If you cannot find any relevant topics, just find the most relevant {min_topics} topics.

—Question—
{{question}}

—Allowed Topics—
{{TOPIC_LIST}}

Table 12: Topic Selelction Prompt
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A.5 Subtopic Selection Prompt 1001

Instruction description
—Goal—
Given the user’s question, choose all topics from the supplied list that are directly relevant to answering
the question. For the given topic {TOPIC_LABEL}, choose every subtopic from the list below that is
helpful for answering the user’s question. Select {min_subtopics} to {max_subtopics} subtopics. Do
NOT invent new subtopics. Always return at least {min_subtopics} subtopics, unless case of list is
shorter than {min_subtopics}.
—Instructions—
1. Consider only the subtopics provided in {SUBTOPIC_LIST}.
2. Read the user’s question provided in {question}.
3. Output your selection as valid JSON without markdown, comments, or extra text.
4. Preserve the original order of {SUBTOPIC_LIST} when listing the chosen subtopics.
5. Output JSON Format: {"subtopics": ["SubLbl1", "SubLbl2", ...]}
6. You MUST ONLY choose from the list provided below. Do not invent or rephrase any subtopics.
7. If you cannot find any relevant topics, just find the most relevant {min_subtopics} topics.

—Question—
{{question}}

—Allowed Subtopics for {{TOPIC_LABEL}}—
{{SUBTOPIC_LIST}}

Table 13: Subtopic Selection Prompt
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Category Agriculture CS Legal Mix HotpotQA MultiHopRAG
Nodes 44,588 45,921 50,162 19,806 50,256 26,250
Topic Nodes 1,568 531 424 401 374 446
Subtopic Nodes 12,280 15,142 14,319 5,993 9,188 7,921
Entity Nodes 30,740 30,248 35,419 13,412 40,694 17,883
Edges 76,946 76,598 94,507 31,580 87,757 42,857
Topic-Subtopic 18,424 20,675 19,212 7,436 12,672 9,825
Subtopic-Entity 35,219 34,017 41,268 14,312 43,843 19,680
Entity-Entity 23,303 21,906 34,027 9,832 31,242 13,352

Table 14: Detailed graph statistics of datasets.

B Implementation Details1002

Our implementation details on experiments are as follows:1003

• NaiveRAG and TH-RAG used Faiss as the vector DB for retrieval.1004

• For similarity calculation with the query, we did not use Faiss’s built-in L2-distance or inner product1005

but implemented cosine similarity.1006

• Answer generation prompts were unified across all methods, and the rest of the settings were based1007

on the default values of the respective baselines.1008

• We fixed the chunk size at 1200 and overlap at 100 for all methods. The temperature during answer1009

generation was set to 0, and gleaning was also set to 0.1010

• Including graph construction and answer generation, we used gpt-4o-mini when needed, and for1011

sentences and chunks embedding, we used text-embedding-small-3 for all methods.1012

C Datasets and Baselines Details1013

C.1 Datasets1014

• Ultradomain: A collection of 20 domain-specific datasets, consisting of long-form passages that1015

make it ideal for abroad-type evaluation. We generated a total of 125 questions, following the same1016

methodology used in Edge et al. (2024); Guo et al. (2024).1017

• HotpotQA: A Wikipedia-based QA dataset that requires multi-hop reasoning across two to four1018

steps. Each question comes with context that contains relevant information. HotpotQA has evaluation1019

settings: Distractor and FullWiki. We conducted evaluations only on the setting, where 8 out of 101020

paragraphs are irrelevant, making it suitable for evaluating the ability to retrieve accurate information.1021

• MultihHopRAG: A QA dataset based on English news articles, requiring multi-hop reasoning across1022

2–4 documents. The question types include Inference, Comparison, Temporal, and Null.1023

C.2 Statistics of our mehtods1024

Table 14 presents graph statistics of TH-RAG across the entire dataset.1025

C.3 Baselines1026

• NaiveRAG: The most basic version, where chunks with high similarity are retrieved and used. We1027

used top-7 similar chunks, for fair comparison with other methods on context length.1028

• GraphRAG: One of the first successful applications of KG construction for RAG. It includes Global1029

and Local configurations. While former one is closer to original paper’s method and use global1030

community summarization, later one uses more detail and samller commulity to generate answer.1031

We evaluated both versions, denoted as GraphRAG-G and GraphRAG-L.1032
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• LightRAG: An efficient version of GraphRAG that improves retrieval efficiency. Since it is known 1033

for simlpe and effecient, we compare our effeciency with this baseline. 1034

• PathRAG: A method specialized for multi-hop reasoning, based on LightRAG. It retrieves only the 1035

necessary information by connecting entities and pruning path to answer. 1036

• HyperGraphRAG: state-of-the-art method that extends traditional triplet structures to use hyper- 1037

edges for connecting multiple entities in a graph. 1038

There exist other strong baselines, such as Gutiérrez et al. (2025); Zhu et al. (2025b); Zhao et al. (2025), 1039

as well as chunk-to-graph approaches like Sarthi et al. (2024); Liu et al. (2025a). However, we excluded 1040

the former because they do not operate on fixed-length chunks, and the latter because they are not based 1041

on triplet-style graph construction. 1042

C.4 Metrics 1043

We used two evaluation approaches depending on the dataset type. 1044

For the Ultradomain dataset, we followed previous studies and used the LLM-as-a-judge method 1045

(Zheng et al., 2023). Similar to Guo et al. (2024), answers were compared 1vs1 in three dimensions, and 1046

the overall win rates were computed. This approach was adopted due to the longer answer nature of this 1047

dataset. 1048

For the MultiHopRAG and HotpotQA datasets, we adopted traditional evaluation metrics—F1, Recall, 1049

Precision, and Accuracy—as the answers are typically short and fact-based. While LLM-as-a-judge has 1050

demonstrated strong alignment with human evaluation, it may introduce bias. Therefore, we employed 1051

quantitative metrics to provide a more objective assessment of our method on these datasets. For both 1052

HotpotQA and MultiHopRAG, we followed the official evaluation protocol of HotpotQA. Accuracy is 1053

determined by whether the predicted answer contains the gold answer. 1054

For retrieval evaluation, we additionally used Recall, F1, Recall@5, and NDCG@5 to ensure a fair and 1055

comprehensive comparison. All methods either generate answers from specific chunks or indicate the 1056

chunk IDs from which their context is derived; we consider these as the predicted chunks. For the gold 1057

chunks, we use those that contain the supporting evidence for each query, treating them as ground truth 1058

for retrieval evaluation. 1059

D Examples 1060

D.1 Triplet Extraction Example 1061

Example Input and Output Format
—Input—
Moscow State University Lomonosov Moscow State University is a coeducational and public research
university. ... MSU was renamed after Lomonosov in 1940 and was then known as "Lomonosov
University". It also houses the tallest educational building in the world. ...

—Output—
"triple": [ "Lomonosov Moscow State University", "was renamed after", "Mikhail Lomonosov" ],
"sentence": "MSU was renamed after Lomonosov in 1940 and was then known as ’Lomonosov

University’.",
"subject": { "subtopic": "University", "main_topic": "Education" },
"object": { "subtopic": "Person", "main_topic": "Biography" }

Table 15: Example Input and Output Format for Triplet Extraction with Topic. We divide entity, subtopic and topic
for graph structure corruption.
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D.2 Example of Constructed KG and Retrieval Result1062

Figure 3: Comparison of Knowledge Graph (KG) structures between LightRAG (left) and TH-RAG (right). In the
TH-RAG visualization, green nodes represent topics, red nodes represent subtopics, and purple nodes represent
entities. The graphs are visualized using the Force Atlas 2 layout algorithm (Jacomy et al., 2014).

Figure 4: Retrieved subgraphs for different questions using TH-RAG
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