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ABSTRACT

Knowledge distillation (KD) has shown very promising capabilities in transferring
learning representations from large models (teachers) to small models (students).
However, as the capacity gap between students and teachers becomes larger, ex-
isting KD methods fail to achieve better results. Our work shows that the ‘prior
knowledge’ is vital to KD, especially when applying large teachers. Particularly,
we propose the dynamic prior knowledge (DPK), which integrates part of teacher’s
features as the prior knowledge before the feature distillation. This means that
our method also takes the teacher’s feature as ‘input’, not just ‘target’. Besides,
we dynamically adjust the ratio of the prior knowledge during the training phase
according to the feature gap, thus guiding the student in an appropriate difficulty.
To evaluate the proposed method, we conduct extensive experiments on two image
classification benchmarks (i.e. CIFAR100 and ImageNet) and an object detection
benchmark (i.e. MS COCO). The results demonstrate the superiority of our method
in performance under varying settings. Besides, our DPK makes the performance of
the student model positively correlated with that of the teacher model, which means
that we can further boost the accuracy of students by applying larger teachers. More
importantly, DPK provides a fast solution in teacher model selection for any given
model. Our code will be released at https://github.com/Cuibaby/DPK.

1 INTRODUCTION

Tremendous efforts have been made in crafting lightweight deep neural networks applicable to the
real-world scenarios. Representative methods include network pruning (He et al., 2017), model
quantization (Habi et al., 2020), neural architecture search (NAS) (Wan et al., 2020), and knowledge
distillation (KD) (Bucilua et al., 2006; Hinton et al., 2015), etc. Among them, KD has recently
emerged as one of the most flourishing topics due to its effectiveness (Liu et al., 2021a; Zhao et al.,
2022; Chen et al., 2021; Heo et al., 2019a) and wide applications (Yang et al., 2022a; Chong et al.,
2022; Liu et al., 2019a; Yim et al., 2017b; Zhang & Ma, 2020).

Particularly, the core idea of KD is to transfer the distilled knowledge from a well-performed but
cumbersome teacher to a compact and lightweight student. Based on this, numerous methods have
been proposed and achieved great success. However, with the deepening of research, some related
issues are also discussed. In particular, several works (Cho & Hariharan, 2019; Mirzadeh et al., 2020;
Hinton et al., 2015; Liu et al., 2021a) report that with the increase of teacher model in performance,
the accuracy of student gets saturated (which might be unsurprising). To make matters worse, when
playing the role of a teacher, the large teacher models lead to significantly worse performance than the
relatively smaller ones. For example, as shown in Fig.1, ICKD (Liu et al., 2021a), a strong baseline
model which also points out this issue, performing better under the guidance of small teacher models,
whereas applying a large model as the teacher would considerably degrade the student performance.

Same as (Cho & Hariharan, 2019; Mirzadeh et al., 2020), we attribute the cause of this issue to
the capacity gap between the teachers and the students. More specifically, the small student is
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hard to ‘understand’ the high-order semantics extracted by the large model. This problem will be
exacerbated when applying larger teachers, and it makes the student’s accuracy inversely correlated
with the capacity of the teacher model1. Note that this problem also exists for humans, and human
teachers often tell students some prior knowledge to facilitates their learning in this case. Moreover,
the experienced teachers can also adjust the amounts of provided prior knowledge accordingly for
different students to fully develop their potentials.
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Figure 1: Top-1 accuracy of ResNet-18 w.r.t. var-
ious teachers on ImageNet. Different from the
baseline model (ICKD (Liu et al., 2021a)), our
method shows better performance and makes the
performance of student positively correlated with
that of the teacher.

Inspired by the above observations from hu-
man teachers, we propose the dynamic prior
knowledge (DPK) framework for feature distil-
lation. Specifically, to provide the prior knowl-
edge to the student, we replace student’s features
at some random spatial positions with corre-
sponding teacher features at the same positions.
Besides, we further design a ViT (Dosovitskiy
et al., 2020)-style module to fully integrate this
‘prior knowledge’ with student’s features. Fur-
thermore, our method also dynamically adjusts
the amounts of the prior knowledge, reflected in
the proportion of teacher features in the hybrid
feature maps. Particularly, DPK dynamically
computes the differences of features between
the student and the teacher in the training phase,
and updates the ratio of feature mixtures accord-
ingly. In this way, students always learn from
the teacher at an appropriate difficulty, thus al-
leviating the performance degradation issue.

We evaluate DPK on two image classification
benchmarks (i.e. CIFAR-100 (Krizhevsky et al.,
2009) and ImageNet (Deng et al., 2009)) and
an object detection benchmark (i.e. MS COCO
(Lin et al., 2014)). Experimental results indicate
that DPK outperforms other baseline models under several settings. More importantly, our method
can be further improved by applying larger teachers (see Fig. 1 for an example). We argue that this
characteristic of DPK not only further boosts student performance, but also provides a quick solution
in model selection for finding the best teacher for a given student. In addition, we conduct extensive
ablations to validate each design of DPK in detail.

In summary, the main contributions of this work are:

• We propose the prior knowledge mechanism for feature distillation, which can fully excavate
the distillation potential of big models. To the best of our knowledge, our method is the first
to take the features of teachers as ‘input’, not just ‘target’ in knowledge distillation.

• Based on our first contribution, we further propose the dynamic prior knowledge (DPK).
Our DPK provides a solution to the ‘larger models are not always better teachers’ issue.
Besides, it also gives better (or comparable) results under several settings.

2 METHODOLOGY

In this section, we first provide the background of KD, and then introduce the framework and details
of the proposed DPK.

2.1 PRELIMINARY

The existing KD methods can be grouped into two groups. In particular, the logits-based KD methods
distill the dark knowledge from the teacher by aligning the soft targets between the student and

1student’s performance is positively correlated with the accuracy of the teacher if the capacity gap is fixed,
see Appendix A.6 for more details.
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teacher, which can be formulated as a loss item:

Llogits = Dlogits(σ(z
s; τ), σ(zt; τ)), (1)

where zs and zt are the logits from the student and the teacher. σ(·) is the softmax function that
produces the category probabilities from the logits, and τ is a non-negative temperature hyper-
parameter to scale the smoothness of predictive distribution. Specifically, we have σi(z; τ) =
softmax(exp(zi/τ)). Dlogits is a loss function which can capture the difference between two
categorial distributions, e.g. Kullback-Leibler divergence. Similarly, the feature-based KD methods,
whose main idea is to mimick the feature representations between students and teachers, can also be
represented as an auxiliary loss item:

Lfeat = Dfeat(Ts(F
s),Tt(F

t)), (2)

where Fs and Ft denote the feature maps from the student and the teacher, respectively. Ts,Tt

denote the student and the teacher transformation module respectively, which align the dimensions of
Fs and Ft (and transform the feature representations, such as (Tung & Mori, 2019)). Dfeat denotes
the function which can compute the distance between two feature maps, such as ℓ1- or ℓ2-norm.
So the KD methods can be represented by a generic paradigm. The final loss is the weighted sum
of the classification loss Lcls (the original training loss), the logits distillation loss, and the feature
distillation loss:

L = Lcls + αLlogits + βLfeat, (3)

where {α, β} are hyper-parameters controlling the trade-off between these three losses.

2.2 DYNAMIC PRIOR KNOWLEDGE

An overview of the proposed DPK is presented in Fig. 2. As a feature distillation method, the main
contributions of the DPK include the prior knowledge mechanism and dynamic mask generation.
Here we give the details of these two designs.

Prior knowledge. To introduce the prior knowledge, the teacher provides part of its features to the
student, and the Eq. 2 can be reformulated as:

Lfeat = Dfeats(Ts(F
s,Ft),Tt(F

t)), (4)

and then we introduce how to build the hybrid feature map, i.e. the student transformation module
Ts. Specifically, given the paired feature maps Fs and Ft from the student and the teacher, we
divide them into several non-overlapping patches using a k × k convolution with stride k, where k
is the pre-defined size of the patches. Meanwhile, we also align the dimension of the features with
this convolution layer. Then we randomly mask a subset of feature patches of the student under an
uniform distribution with the ratio π, and also generate the complementary feature patches from
the teachers. We take these feature patches as token sequences and use two ViT (Dosovitskiy et al.,
2020)-based encoders to further process them. After that, we stitch these token sequences together to
generate the hybrid features (tokens), add the positional embedding to these hybrid tokens, and further
integrate them with another ViT-based decoder. Finally, we re-organize generated token sequences
into original shape and apply the feature distillation loss on the hybrid features and original teacher
features. The transformation module Tt for teacher feature is an identical mapping.

Dynamic mechanism. In the above solution, we mix the features of teacher and student with the
hyper-parameter π. Furthermore, we empirically find that: (i) the optimal π for different model
combinations is different (see Table 5 for related experiments), and (ii) the feature gap is different in
the early and late stages of training phase. These facts inspire us to adjust the value of the masking ratio
flexibly and dynamically according to the teacher-student gap, e.g. when the teacher-student gap is
large, students need more prior knowledge to guide them. Upholding this principle, given a minibatch
of feature sets for a teacher-student pair, we flatten them to yield Ft ∈ RB×c×h×w 7→ X ∈ RB×p1

and Fs ∈ RB×c×h×w 7→ Y ∈ RB×p2 . We then set the iteration-specific masking ratio π at the ith

minibatch as :
πi = 1− CKAminibatch(Xi,Yi), (5)

where i indexes the minibatch within a training epoch. CKAminibatch Nguyen et al. (2020) is
the minibatch version of the Centered Kernel Alignment (CKA) Kornblith et al. (2019), which is
representation similarity measure that is widely used for quantitative understanding the representations
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Figure 2: Illustration of the proposed DPK. For each feature distillation stage, the student feature
map and the teacher feature map are sent to corresponding encoders to generate the Fs and Ft. Then,
a subset of student feature patches is replaced by that of the teacher (the ⊎ denotes the feature stitching
operation). After that, DPK further integrates the hybrid feature Fh with a decoder before applying
feature distillation loss. Note that the proportion of Fs and Ft in Fh is dynamically generated, which
is omitted in this figure.

learned by neural networks. Specifically, CKA takes the two feature representations X and Y as input
and computes their normalized similarity in terms of the Hilbert-Schmidt Independence Criterion
(HSIC). CKAminibatch instead uses an unbiased estimator of HSIC Song et al. (2012), called HISC1,

HSIC1(K,L) =
1

n(n− 3)

(
tr(K̃L̃) +

1TK̃11TL̃1

(n− 1)(n− 2)
− 2

n− 2
1TK̃L̃1

)
, (6)

where K̃ and L̃ are obtained by setting the diagonal entries of similarity matrices K and L to zero.
Then CKAminibatch can be computed by averaging HISC1scores over k minibatches:

CKAminibatch=
1
k

∑k
i=1 HSIC1(XiX

T
i ,YiY

T
i )√

1
k

∑k
i=1 HSIC1(XiXT

i ,XiXT
i )
√

1
k

∑k
i=1 HSIC1(YiYT

i ,YiYT
i )

, (7)

where Xi ∈ RB×p1 and Yi ∈ RB×p2 are now matrices containing activations of the ith minibatch of
B examples sampled without replacement.

Remarks. Eq. (7) allows us to efficiently and robustly estimate feature dissimilarity between the
teacher-student pair using minibatches. A lower CKA indicates a greater feature gap between students
and teachers. And the higher the masking ratio, the larger the feature regions masked by the student
and the larger the countparts provided by the teacher. Eq. (5) naturally establishes the connection
between feature gap and masking ratio, with its effectiveness and design choices verfied in Sec. 3.3.

Due to the space limitation, we only introduce the main designs of our DPK, and more details (e.g.
how to apply DPK in object detection) can be found in Appendix A.2.

3 EXPERIMENTS

We conduct extensive experiments on image classification and object detection. Moreover, we present
various ablations and analysis for the proposed method. Besides, our codes as well as training recipes
will be publicly available for reproducibility.

3.1 IMAGE CLASSIFICATION

We evaluate our method on CIFAR-100 and ImageNet for image classification (see Appendix A.1
for the introduction of these datasets and related evaluation metrics). We compare DPK with a wide
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range of baseline models, including KD (Hinton et al., 2015), FitNets (Romero et al., 2015), FT (Kim
et al., 2018), AB (Heo et al., 2019b), AT (Zagoruyko & Komodakis, 2017), PKT (Passalis & Tefas,
2018), SP (Tung & Mori, 2019), SAD (Ji et al., 2021), CC (Peng et al., 2019), RKD (Park et al.,
2019), VID (Ahn et al., 2019), CRD (Tian et al., 2020), OFD (Heo et al., 2019a), ReviewKD (Chen
et al., 2021), DKD (Zhao et al., 2022), ICKD-C (Liu et al., 2021a) and MGD (Yang et al., 2022b).

Results on CIFAR-100. We first evaluate DPK on the CIFAR-100 dataset and summarize the results
on Table 1. From these results, we can observe that the proposed DPK performs best for all six
teacher-student pairs, which firmly demonstrates the effectiveness of our method.

Table 1: Results on the CIFAR-100 validation set. We report the top-1 accuracy (%) of the methods
for homogeneous teacher-student pairs. “-” indicates results are not available, and we highlight the
best results in bold.

Teacher WRN40-2 WRN40-2 ResNet56 ResNet110 ResNet110 VGG13
Acc. 75.61 75.61 72.34 74.31 74.31 74.64

Student WRN16-2 WRN40-1 ResNet20 ResNet20 ResNet32 VGG8
Acc. 73.26 71.98 69.06 69.06 71.14 70.36

KD 74.92 73.54 70.66 70.67 73.08 72.98
FitNets 73.58 72.24 69.21 68.99 71.06 71.02

AT 74.08 72.77 70.55 70.22 72.31 71.43
PKT 74.54 73.45 70.34 70.25 72.61 72.88

SP 73.83 72.43 69.67 70.04 72.69 72.68
CC 73.56 72.21 69.63 69.48 71.48 70.71

RKD 73.35 72.22 69.61 69.25 71.82 71.48
VID 74.11 73.30 70.38 70.16 72.61 71.23

CRD 75.48 74.14 71.16 71.46 73.48 73.94
OFD 75.24 74.33 70.98 - 73.23 73.95

ReviewKD 76.12 75.09 71.89 - 73.89 74.84
DKD 76.24 74.81 71.97 - 74.11 74.68

ICKD-C 75.57 74.63 71.69 71.91 74.11 73.88

DPK 76.42 75.27 72.37 72.44 74.89 74.96

Results on ImageNet. We also conduct experiments on the large-scale ImageNet to evaluate our DPK.
In particular, following the previous conventions (Tian et al., 2020; Chen et al., 2021), we present the
performance of ResNet-18 guided by ResNet-34 in Table 2. The results show the superiority of DPK
in performance to other baselines.

KD for heterogeneous models. Table 1 and 2 show the experiments for homogeneous models
(e.g. ResNet18 and ResNet34), and we show our method can also be applied to heterogeneous models
(e.g. MobileNet and ResNet50) in this part. From the results shown in Table 3, we can observe that
DPK performs best among all listed methods for heterogeneous models (more experiments for this
setting can be found in Appendix A.4).

Better teacher, better student. The above experiments show DPK performs well for the common
teacher-student pairs. Here we show our method can be further improved with better teachers. As
illustrated in Fig. 3, the accuracy of the student model trained by our method is continuously improved
by progressively replacing larger teacher models, while the model trained by other algorithms fluctu-
ates in performance. Meanwhile, our method surpasses it counterparts at each stage and progressively
widen the performance gap. To show the generalization, we also present the performance change for
other teacher-student combinations in Fig. 4, which confirms the same conclusion again. Note that it
is a reasonable phenomenon that the performance of the given student tends to be saturated gradually,
but the performance fluctuation will cause many difficulties in practical application.

3.2 OBJECT DETECTION

DPK can also be applied to other tasks, and we evaluate it on a popular one, i.e. object detection. Note
that our method can be easily integrated into other KD methods, and we apply DPK into FGD (Yang
et al., 2022a) and evaluate the performance on the most commonly used MS COCO dataset (Lin
et al., 2014) (see Appendix A.1 and A.2 for the details of dataset/metrics and implementation).

Comparison with SOTA methods. As presented in Table 4, we evaluate our model on a one-stage
detector (RetinaNet (Lin et al., 2017b)) and a two-stage detector (Faster-RCNN (Ren et al., 2015))
with several strong baselines, including FGFI (Wang et al., 2019), GID (Dai et al., 2021), FGD
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Table 2: Results on ImageNet validation set. We show the top-1 and top-5 accuracy (%) for
ResNet18 guided by ResNet34. “-” indicates the results are not available.

Acc. Student Teacher KD RKD CRD+KD SAD CC ICKD-C ReviewKD DKD MGD Ours

Top-1 69.55 73.31 70.68 71.34 71.38 71.38 70.74 72.19 71.61 71.70 71.80 72.51
Top-5 89.09 91.42 90.16 90.37 - 90.49 - 90.72 90.51 90.41 90.40 90.77

Table 3: Results for heterogeneous models. We show the top-1 and top-5 accuracy (%) of Mo-
bileNetV2 guided by ResNet50 on ImageNet validation set.

Acc. Student Teacher FT AB AT OFD CRD ReviewKD KD DKD MGD Ours

Top-1 68.87 76.16 69.88 69.89 69.56 71.25 71.37 72.56 68.58 72.05 72.59 73.26
Top-5 88.76 92.86 89.50 88.71 89.33 90.34 90.41 91.00 88.98 91.05 90.94 91.17
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Figure 3: Better teacher, better student. We show the top-1 accuracy of our method and some
baselines on the CIFAR-100 (left) and ImageNet (right).

78 79 80
Top-1 Accuracy (%)

Te
ac

he
rs

Student ConvNeXt-E (77.43)
79.05ConvNeXt-T

79.51ConvNeXt-S

79.75ConvNeXt-B

80.47ConvNeXt-L

71 72
Top-1 Accuracy (%)

Te
ac

he
rs

Student ResNet18 (69.55)
71.80ConvNeXt-T

71.99ConvNeXt-S

72.36ConvNeXt-B

72.68ConvNeXt-L

72 73
Top-1 Accuracy (%)

Te
ac

he
rs

Student MobileNetV2 (68.87)
72.92ResNet34

73.26ResNet50

73.39ResNet101

73.53ResNet152

69.0 69.2 69.4 69.6
Top-1 Accuracy (%)

Te
ac

he
rs

Student ShuffleNetV2 (68.99)
69.39ResNet34

69.48ResNet50

69.50ResNet101

69.60ResNet152

Figure 4: More teacher-student combinations, covering the lightweight ShuffleNetV2 (Ma et al.,
2018) to the recently ConvNeXt (Liu et al., 2022). Top-1 accuracy (%) on ImageNet val set is
reported. Both homogeneous and heterogeneous settings are considered. By changing the teacher size,
we see that, larger models are always better teachers holds true when applying DPK. ConvNeXt-E
is a small model built by us, following the design principles of ConvNeXt (Liu et al., 2022), see
Appendix A.2 for details. Best viewed in color with zoom in.

(Yang et al., 2022a), and DeFeat (Guo et al., 2021). Following the previous conventions, we first
adopt the ResNet101-FPN as the teacher model and ResNet50-FPN as the student model, and our
model achieves better (or matched) performance than other baselines, i.e. our model gets a matched
performance with FGD, and significantly surpasses other baselines in accuracy.

Better teacher, better student. Similar to image classification, our method also benefits from better
teacher model for object detection. In particular, we enlarge the capacity gap between the teacher
and student models, and the results in Table 4 suggest that effectiveness of our method can be further
improved by replacing more powerful teacher models. For instance, replacing teacher model from
ResNet101-FPN to ResNet152-FPN further improves the student’s performance (ResNet50-FPN,
Faster RCNN) by 0.6 mAP, while the number for FGD (Yang et al., 2022a) is 0.1 for the same setting.
This conclusion also stands for other teacher-student pairs and frameworks.

3.3 ABLATION STUDIES

In this section, we provide extensive ablation studies to analyze the effects of each component of
DPK. The experiments are conducted on ImageNet for classification task, ResNet34 and ResNet18
are adopted as teacher and student. Only last stage distillation is applied unless stated otherwise.

6



Published as a conference paper at ICLR 2023

Table 4: Results on object detection. Experiments are evaluated on COCO validation set. ‘T’ and
‘S’ represent the teacher and the student, respectively. “-” indicates results are not available.

Methods RetinaNet Faster-RCNN
mAP AP50 AP75 APS APM APL mAP AP50 AP75 APS APM APL

R101-FPN(T) 38.9 58.0 41.5 21.0 42.8 52.4 39.9 60.1 43.3 23.5 44.2 51.5
R50-FPN(S) 37.4 56.7 39.6 20.6 40.7 49.7 38.4 59.0 42.0 21.5 42.1 50.3

FGFI 38.6 58.7 41.3 21.4 42.5 51.5 39.3 59.8 42.9 22.5 42.3 52.2
GID 39.1 59.0 42.3 22.8 43.1 52.3 40.2 60.7 43.8 22.7 44.0 53.2
FGD 39.6 - - 22.9 43.7 53.6 40.4 - - 22.8 44.5 53.5
Ours 39.7 58.6 42.5 22.8 43.6 53.6 40.6 60.7 44.4 22.8 44.7 54.0

R152-FPN(T) 39.9 59.4 42.7 23.5 44.2 51.5 41.6 62.3 45.4 23.3 46.1 53.6
R50-FPN(S) 37.4 56.7 39.6 20.6 40.7 49.7 38.4 59.0 42.0 21.5 42.1 50.3

FGFI 38.9 - - 21.9 42.5 52.2 39.9 - - 22.9 43.6 52.8
DeFeat 39.7 - - 23.4 43.6 52.9 40.9 - - 23.6 44.8 53.5

FGD 39.7 58.9 42.9 23.2 44.0 52.7 40.5 61.1 44.2 23.4 44.4 53.7
Ours 40.2 59.6 43.0 23.4 44.5 53.6 41.2 61.6 45.0 23.3 45.2 54.3

R101-FPN(T) 38.9 58.0 41.5 21.0 42.8 52.4 39.9 60.1 43.3 23.5 44.2 51.5
R18-FPN(S) 33.1 51.4 34.9 17.4 35.8 43.4 33.8 53.2 36.8 19.2 36.6 43.6

FGD 34.7 52.5 37.1 17.8 38.0 48.5 36.0 55.8 39.2 18.3 39.4 48.7
Ours 35.8 53.9 38.2 19.1 39.4 49.1 36.7 56.2 40.1 19.2 40.3 49.2

Table 5: Ablations on mask ratios. We report top-1 accuracy on ImageNet with setting (a): ResNet18
as student, ResNet34 as teacher, and setting (b): ResNet18 as student, ResNet101 as teacher.

setting teacher student 15% 35% 55% 75% 95% dynamic

(a) 73.31 69.55 72.33 72.34 72.38 72.36 72.34 72.46
(b) 77.37 69.55 72.46 72.55 72.57 72.60 72.53 72.87

Mask ratio. Feature masking (and stitching) is a key component of our method, and Table 5
reports the results of various DPK variants under different mask ratios. Surprisingly, a broad range
of masking ratios from 15% to 95% can offer considerable performance gains for students. This
implies that the prior knowledge provided by teachers is very beneficial to students’ network learning.
Besides, note that the optimal mask ratio is inconsistent under different teacher-student pairs, e.g.
55% mask ratio performs best for ResNet-18 and ResNet34, while the optimal one for ResNet-18
and ResNe101 is 75%. Table 5 also shows students achieve the best accuracy using the proposed
dynamic masking strategy, which suggests the necessity and effectiveness of the proposed dynamic
masking strategy for automatic selection of mask ratio.

Masking Strategy Ratio Top-1 Top-5

Vanilla ✗ 69.55 89.09

Random 75% 72.36 90.61
Block-wise 75% 72.36 90.57
Grid-wise 75% 72.32 90.38

1-CKA ✗ 72.46 90.67
1-CosineSimi ✗ 72.38 90.58
Exponential decay ✗ 72.35 90.51
Linear decay ✗ 72.36 90.58

Table 6: Ablations on mask strategies.

Mask strategy. Table 6 summarizes the effects of differ-
ent mask strategies. ResNet34 and ResNet18 are adopted
as teacher and student for all experiments in this part. For
the fixed mask ratio, we take the simple random mask
as baseline, and consider the block-wise mask strat-
egy, introduced by BEIT (Bao et al., 2022). We also
consider grid-wise mask, which regularly retains one
of every four patches, similar to MAE (He et al., 2021).
Besides fixed mask designs, several alternatives for re-
alizing a dynamic mask ratio are explored. Particularly,
the cosinesimi indicates that we use the cosine sim-
ilarity to measure the teacher-student feature gap. The
exponential decay schedule divides the mask ratio by
the same factor every epoch, which can be expressed as
πi=π0 ∗ (0.95)epochi , where π0 is the initial mask ratio
and is set to 1.0. The linear schedule decreases the mask ratio by the same decrement every epoch,
which is defined as πi = π0−(epochi ∗ decrement), and we set decrement = 0.95. The results
reveal that: i) simple random sampling works best for our DPK when using fixed mask ratios. ii)
1−CKA outperforms its competitors, and we use it to generate dynamic mask ratios by default.
We also observe that both 1−cosinesimi and 1−CKA outperform the manually-set heuristic
masking strategies, e.g., linear decay, demonstrating the advantage of dynamically adjusting
the ratio of teacher prior knowledge based on the teacher-student feature gap. Furthermore, the CKA
is superior to the cosinesimi, indicating that our CKA can efficiently measure the similarity of
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Table 7: Ablations on prior
knowledge.

Prior Knowledge Top-1 Top-5

Zero-Padding 72.16 90.35
Learnable 72.28 90.63
Ours 72.46 90.67

Table 8: Ablations on transfor-
mation functions.

Transform Top-1 Top-5

Baseline 71.08 90.00
Conv 71.39 90.46
MLP-Decoder 72.31 90.50
Encoder-Decoder 72.46 90.67

Table 9: Ablations on loss cal-
culation.

Target Top-1 Top-5

Non-Masked 72.39 90.63
Full 72.46 90.67

the hidden representations between teachers and students using minibatches, and provide a robust
way to automatically determine the masking ratio.

Prior knowledge. Table 7 ablates the significance of integrating teacher’s knowledge in building
hybrid student features (Eq. 4). Specifically, we use zero-padding and learnable mask token
to play the role of teacher’s feature in the masked position. The results show that no teacher-provided
prior knowledge leads to worse performance, as it aggravates the burden of feature mimicking from
students to teachers. This strongly confirms the effectiveness of offering students the prior knowledge
from teachers via feature masking and stitching.

Transformation module. For feature-based distillation methods, the feature transformation modules
Ts and Tt are required to convert the features into an easy-to-transfer form. We take FitNets (Romero
et al., 2015) as baseline, which does not reduce the dimension of teacher’s feature map and use a
1×1 convolutional layer to transform the feature dimension of the student to that of the teacher. In
our method, we adopt the ViT-based encoder-decoder as the default transformation module. For
further investigation, we also remove the encoder, and use a MLP layer to align the feature dimension
(MLP-Decoder). Besides, the convolution-based encoder-decoder structure is also explored (Conv).
More implementation details for these modules are deferred in the Appendix A.2. Table 8 shows the
results, and we can observe that encoder-decoder reaches the best performance.

Loss. In the training phase, we apply the mean squared error (MSE) loss between the hybrid student
features and teacher features in Eq. 4, while the loss can be on only the non-masked regions of student
features, namely non-masked, or full feature maps, namely full. Table 9 shows the ablation
results for these two settings. As can be seen, computing the loss on the full features performs better.

3.4 VISUALIZATIONS

In this part, we present some visualizations to show that our DPK does bridge the teacher-student gap
in the feature-level. In particular, we visualize the feature similarity between ResNet18 and ResNet34
in Fig. 5. We can find that our DPK significantly improves the feature similarity (measured by CKA)
between the student and the teacher. ICKD gets a lower similarity than the baseline, probably due
to the fact that it models the feature relationships, instead of the features themselves. More related
visualizations can be found in Appendix A.8, including other teacher-student combinations, the CKA
curve in the training phase, and similarity maps measured by other metrics.

Figure 5: CKA similarity between ResNet18 and ResNet34. We visualize the CKA similarity
between the original models (left), the models trained by ICKD (middle), and the models trained by
our DPK (right). The experiments are conducted on the sampled ImageNet validation set (12,800
samples). We compute CKA with a batch size of 32 for the last stage, so these are 400 CKA values
for each experiment. For better presentation, we rank these values and organize them as the heatmap
representation. The larger the value, the more similar the features are.
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4 RELATED WORK

Knowledge distillation. Existing studies on knowledge distillation (KD) can be roughly categorized
into two groups: logits-based distillation and feature-based distillation. The former, pioneered
by Hinton et al. (2015), is known as the classic KD, aiming to learn a compact student by mimicking
the softmax outputs (logits) of an over-parameterized teacher. This line of work focuses on proposing
effective regularization and optimization techniques (Zhang et al., 2018). Recently, DKD (Zhao et al.,
2022) proposes to decouple the classical KD loss into two parts, i.e., target class KD and non-target
KD. Besides, several works (Phuong & Lampert, 2019; Cheng et al., 2020) also attempt to interpret
the classical KD. The latter, represented by FitNet (Romero et al., 2015), encourages students
to mimic the intermediate-level features from the hidden layers of teacher models. Since features
are more informative than logits, feature-based distillation methods usually perform better than
logits-based ones in the tasks that involve the localization information, such as object detection (Li
et al., 2017; Wang et al., 2019; Dai et al., 2021; Guo et al., 2021; Yang et al., 2022a). This line of
work mainly investigates what kinds of intermediate representations of features should be. These
representations include singular value decomposition (Lee et al., 2018), attention maps (Zagoruyko
& Komodakis, 2017), Gramian matrices (Yim et al., 2017a), gradients (Srinivas & Fleuret, 2018),
pre-activations (Heo et al., 2019b), similarities and dissimilarities (Tung & Mori, 2019), instance
relationships (Liu et al., 2019b; Park et al., 2019), inter-channel correlations (Liu et al., 2021a).
A noteworthy work similar to DPK is AGNL (Zhang & Ma, 2020). In particular, AGNL has two
attractive properties: i) attention-guided distillation, letting students’ learning focus on the foreground
objects and suppresses students’ learning on the background pixels; and ii) non-local distillation,
transferring the relation between different pixels from teachers to students. At a high level, both
DPK and AGNL apply the masking strategy (random mask and attention-guided mask) and non-local
relation modeling module (transformer and a self-designed non-local module).The key difference is
that DPK integrates features of students and teachers with a dynamic mechanism.

Performance degradation. Prior works (Cho & Hariharan, 2019; Mirzadeh et al., 2020; Hinton
et al., 2015; Liu et al., 2021a) also report that the performance of distilled student degrades when
the gap between students and teachers becomes large. To solve this issue, ESKD (Cho & Hariha-
ran, 2019) stops the teacher training early to make it under convergence and yield more softened
logits. TAKD (Mirzadeh et al., 2020) introduces an extra intermediate-sized network termed teacher
assistant to bridge the gap between teachers and students (more discussion for this method and our
method can be found in Appendix A.3). Different from the above logits-based methods, our method
directly reduces the gap between teachers and students in the feature space, and does not need extra
intermediate models.

Masked image modeling. Emerged with the masked language modeling in NLP community, such
as BERT (Devlin et al., 2018) and GPT (Radford et al., 2019; Brown et al., 2020), masked image
modeling (MIM) (Pathak et al., 2016; Henaff, 2020) has gained increasing attention and shows
promising potentials in representation learning. Particularly, MIM-based approaches generally i)
divide an image or vedio into several non-overlapping patches or discrete visual tokens, ii) mask
random subsets of these patches/tokens, and iii) predict the patches masked visual tokens (Bao et al.,
2022), the feature of the masked regions such as HOG (Wei et al., 2021), or reconstruct the masked
pixels (He et al., 2021; Xie et al., 2021). Most recently, MGD (Yang et al., 2022b) attempts to generate
the entire teacher’s feature map by student’s masked feature map. In contrast to these approaches, our
method operates on feature level and aims to narrow the feature gap between students and teachers.
Besides, our masking ratio is dynamic and knowledge-aware.

5 CONCLUSION

In this paper we demonstrate the potential of masked feature prediction in mining richer knowledge
from teacher networks. Particularly, we design a prior knowledge-based feature distillation method,
named DPK, and use a dynamic mask ratio scheme, achieved by capturing the feature gap between the
teacher-student pairs, to dynamically regulate the training process. The extensive experiments show
that our knowledge distillation method achieves state-of-the-art performances on the commonly used
benchmarks (i.e., CIFAR100, ImageNet, and MS COCO) under various settings. More importantly,
our DPK can make the accuracy of students positively correlated with that of teachers. This feature
further improves the performance of our method, and provides a ‘shortcut’ in teacher model selection.
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A APPENDIX

A.1 DATASETS AND METRICS

CIFAR-100. CIFAR-100 (Krizhevsky et al., 2009) contains 50K images for training and 10K images
for testing, labeled into 100 fine-grained categories. The size of each image is 32×32. We evaluate
the proposed DPK on this dataset with image recognition and report the top-1 accuracy.

ImageNet. ImageNet (Deng et al., 2009) consists of 1.2M images for training and 50K images for
validation, covering 1,000 categories. All images are resized to 224× 224 during training and testing.
We report the top-1 and top-5 accuracy on this dataset for image recognition.

MS COCO. MS COCO (Lin et al., 2014) is the most commonly used object detection benchmark,
which contains 80 categories. We also conduct experiments for object detection to further evaluate
our DPK. In particular, we use train2017 (118K images) for training, and test on val2017 (5K
images). We adopt the standard evaluation protocol introduced by MS COCO, e.g. mAP, AP50,
AP75, etc.

A.2 IMPLEMENTATIONS

Training details. On CIFAR-100, the batch size and initial learning rate are set to 64 and 0.05. We
train the models for 240 epochs in total with SGD optimizer, and decay the learning rate by 0.1 at 150,
180, and 210 epochs. The weight decay and the momentum are set to 5e-4 and 0.9. On ImageNet,
we adopt the SGD optimizer (with 0.9 momentum) to train the student networks for 100 epochs
with a batch size of 256. The learning rate is set to 0.1, and we decay it by 0.5 every 25 epochs.
We set the weight decay to 0.0001. We also apply the vanilla logits distillation loss (Hinton et al.,
2015) in our method. For the loss weights in Eqn. equation 3, we set α = 0.8 and β = 0.2 for all
experiments. The temperature τ used on the ImageNet dataset is set to 1.0, and the same parameter
on the CIFAR-100 dataset is set to 4.0. The loss weights of each stage is set to 1.0 in the multi-stage
feature distillation setting. Our implementation on MS-COCO for object detection follows the same
setting used in (Yang et al., 2022a). We adopt mean squared error (MSE) as the feature distillation
loss Dfeat. All experiments are conducted on 8 Tesla V100 GPUs, and our implementation is based
on mmdetection framework (Chen et al., 2019).

Transformation modules. To perform feature mimicking, we reshape the original student feature
map F s ∈ RCs×H×W into a sequence of flattened 2D patches , where (H;W) is the resolution of
the original student feature map, C denotes the number of channels, (P;P) is the resolution of each
feature patch, and N=HW/P2 is the resulted number of patches, which also serves as the effective
input sequence length for the Transformer (Vaswani et al., 2017).

The Transformer uses constant latent vector size d through all of its layers, so we flatten the patches
and map to d dimensions with a trainable linear projection. Particularly, we name the output through
this projection the patch embeddings, similar to ViT (Dosovitskiy et al., 2020). We also add position
embeddings to the patch embeddings to retain positional information. We use standard learnable
1D position embeddings, since no significant performance gain has been observed from using more
advanced 2D-aware position embeddings. The resulted sequence of embedding vectors serves as input
to the Transformer encoder. The Transformer encoder (Vaswani et al., 2017) consists of alternating
layers of multi-head self attention and MLP blocks. Layernorm (LN) is applied before every block,
and residual connections after every block. Specifically, the number of encoder layer/block is set to 6
in all experiments.

Same design for the original teacher feature map F t ∈ RCt×H×W is adopted. The output of the
student encoder is referred to as the student tokens Fs∈RN×d, and the output of the teacher encoder
is referred to as the teacher tokens Ft∈RN×d. Notice that Fs and Ft are now dimensionally aligned.
Then we can perform masking on them and eventually construct the so-called hybrid tokens Fh.

The shared decoder is designed to perform the teacher feature prediction task. We send the hybrid
tokens to the shared decoder, which finally produces the output tokens of the same dimension as the
original teacher feature map F t∈RCt×H×W. Feature distillation losses are thus computed between
the output tokens and the original teacher feature map. During inference, all transformation modules
are dropped. Therefore, there is no additional computational cost over the original student network.
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• Conv: consisting of several convolutional layers, a pooling layer and a fully connected
layer.

• Encoder-Decoder: We apply ViT Dosovitskiy et al. (2020)-based encoder/decoder in
our default transformation module. The encoder Vaswani et al. (2017) consists 6 blocks,
and decoder consists of 6 blocks for the single-stage feature distillation and 4 blocks for the
multi-stage feature distillation. Fs and Ft are encoded by their encoders to form hybrid
tokens, and then used as the input of the shared decoder.

• Decoder: Different from encoder-decoder, Fs and Ft do not need to go through their
respective encoder networks, but align their feature dimensions through a layer of simple
MLP, then add position encoding to form hybrid tokens as the input of the decoder network.

Details of ConvNeXt-E. To evaluate the proposed DPK, we conduct experiments (Fig. 4) on the
recently published ConvNeXt (Liu et al., 2022). We take four ConvNeXt variants, ConvNeXt-
T/S/B/L, as teachers, and build a build a smaller ConvNeXt-E to serve as the student by reducing the
blocks/channels in each stage. The other details, such as training strategies, are same as the official
models. The configurations are summarized in Table 10. We also report the numbers of parameters,
FLOPS, and accuracy for reference.

Table 10: Detailed settings of ConvNeXt variants. We also report the parameters, FLOPS and the
performance.

Architecture Channels Blocks #Param. #FLOPS Top-1 Acc. Top-5 Acc.
Student ConvNeXt-E (96,192,384,768) (2,2,4,2) 17.43M 2.6G 77.43% 93.30%

Teacher

ConvNeXt-T (96,192,384,768) (3,3,9,3) 28.59M 4.5G 82.06% 95.85%
CovnNeXt-S (96,192,384,768) (3,3,27,3) 50.22M 8.7G 83.15% 96.43%
ConvNeXt-B (128,256,512,1024) (3,3,27,3) 88.59M 15.4G 86.59% 98.19%
ConvNeXt-L (192,384,768,1536) (3,3,27,3) 197.77M 34.4G 87.40% 98.37%

Details for object detection. We implement Faster RCNN (Ren et al., 2015) and RetinaNet (Lin
et al., 2017b) with different backbones. To integrate the multi-scale features, FPN (Lin et al., 2017a)
is adopted for all experiments. We take FGD (Yang et al., 2022a) (recently published on CVPR’22)
as the baseline model, and build our method on it. In particular, the feature distillation loss in FGD
can be formulated as follows:

Lfeat = wfMASAC(Ft − f(Fs))2 +wb(1−M)ASAC(Ft − f(Fs))2, (8)

where Fs, Ft denotes the feature map from student detector and teacher detector, respectively. f is
the adaption layer to reshape the Fs to the same dimension as Ft. M is the binary mask, indicating
the foreground and background regions, derived from the ground truth. AS , AC denote the learnable
spatial attention map and channel attention map used in FGD. Besides, wf and wb are the hyper-
parameters to balance the losses for foreground and background regions. To combine our model with
FGD, we replace the feature mimicking part with Eq. 4, and we have:

Lfeat = wfMASACDfeat(F
t,Fh) +wb(1−M)ASACDfeat(F

t,Fh), (9)

where Fh denotes the hybrid features, whose construction process is stated in the main paper. As for
the hyper-parameters, such as wf and wb in Eq. 9, we follow the settings in FGD and fine-tune them
on each training fold. Specifically, we adopt the hyper-parameters {wf =5E−5, wb=2.5E−5} for
all the two-stage detectors, and {wf =2E−3, wb= 5E−4} for all the one-stage detectors. We train
all the detectors for 24 epochs with SGD optimizer, with the momentum as 0.9 and the weight decay
as 0.0001.

A.3 COMPARISON WITH TAKD

TAKD (Mirzadeh et al., 2020) introduces intermediate models as teacher assistants (TAs) to bridge the
capacity gap between the teacher models and the student models. This work shares similar motivation
with DPK, and we provide additional experiments to compare these two works. In particular, we
report the performance of TAKD with one TA (official setting), here we compare our method and
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TAKD with more TAs. The experiments are based on the ResNet, and we use ResNet-101 as the
teacher and ResNet-18 as the student. For TAKD, we adopt ResNet-50 and ResNet-34 as TAs, and
then train the TAs and students one by one. For DPK, we directly train the student under the teacher’s
guidance. The results are summarized in Table 11. We can find that our DPK surpasses TAKD in
performance (e.g. 73.00 v.s. 71.41). Also, note DPK does not need multiple training.

Table 11: Comparison of DPK and TAKD on ImageNet. We use ResNet-18 as the student model.
For our DPK, we train the student model under the guidance of ResNet-101. For TAKD, we use
ResNet-101 as the teacher model, and use ResNet-50 and ResNet-35 as TAs.

Acc. Baseline (R18) R101→R50→R34→R18 (TAKD) R101→R18 (DPK)

Top-1 69.55 71.41 73.00
Top-5 89.09 90.22 90.95

A.4 MORE EXPERIMENTS FOR HETEROGENEOUS MODELS

VGG13(T)-MobileNetV2(S) ResNet50(T)-MobileNetV2(S) ResNet50(T)-VGG8(S) ResNet32×4(T)-ShuffleNetV1(S) WRN40-2(T)-ShuffleNetV1(S) ResNet32×4(T)-ShuffleNetV2(S)
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Figure 6: Heterogeneous experiments on CIFAR-100. Top-1 accuracy is reported. Best viewed in
color with zoom in. “T” denotes the teacher, and “S” denotes the student. Statistically, DPK ranks
1st for two pairs and 2nd for four pairs.

We report the heterogeneous experiments for some common settings in the main paper. In this section,
we give the experiments on CIFAR-100, and more cases on ImageNet.

Experiments on CIFAR-100. Fig. 6 presents the experimental results on CIFAR-100. According
to these results, we can find our model outperforms all baseline methods across two model pairs,
i.e. ResNet50(T)-VGG8(S) and WRN40-2(T)-ShuffleNetV1(S), and ranks second for the remaining
four model pairs, which demonstrates the effectiveness and robustness of DPK. Besides, we also
observe that CRD (Tian et al., 2020) achieves promising performance on this dataset for heterogeneous
settings. Note that our method significantly performs better than CRD for homogeneous settings on
CIFAR-100 (see Table 1) and ImageNet (see Table 2) and heterogeneous settings on ImageNet (see
Table 3).

Experiments on ImageNet. On ImageNet, we adopt EfficientNet (Tan & Le, 2019) as the teacher
and ResNet18 as the student to conduct heterogeneous experiments. We only distill the features in
the last stage for this experiment. The results shown in Table 12 suggest that DPK also works for
other teacher-student pairs, and can be further improved by applying larger models.

A.5 MORE EXPERIMENTS ON TRANSFORMER-STYLE TEACHER-STUDENT DISTILLATION
PAIRS

Performance on ImageNet. We first validate the effectiveness of the proposed method on different
transformer architectural distillation pairs on ImageNet-1K. The results are shown in Table 13. From
Table 13, we can see that DPK outperforms all the competitors. To be specificl, DPK obtains
6.78% gain over Hard (Touvron et al., 2021) on DeiT-Tiny (77.1 % v.s. 74.5%), which introduces a
hard decision token and a distillation token for distilling the inductive bias from a large pretrained
CNN teacher. When applying to the prevalent Swin-tiny (Liu et al., 2021b), a hierarchical vision
transformer using shifted windows, DPK can still bring a further 1.7% improvement. The results
reval that DPK is not limited to CNN architectures, but also is effective in transformer architectures.
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Table 12: Results for heterogeneous models. We set ResNet18 as the student and networks from
EfficientNet Tan & Le (2019) series as teachers.

Acc. Student EfficientNet-B0 EfficientNet-B1 EfficientNet-B2 EfficientNet-B3 EfficientNet-B4

Top-1 69.55 72.46 73.39 73.81 73.89 74.05
Top-5 89.09 90.56 91.10 91.56 91.63 91.58

Table 13: Comparisons of different transformer-based distillation pairs on ImageNet-1K. KD:
the vanilla KD algorithm popularized by Hinton et al. (Hinton et al., 2015). Hard: similar to
DeiT (Touvron et al., 2021), we introduce a hard decision and a distillation token. Manifold: training
a tiny student model to match a pre-trained teacher model in the patch-level manifold space (Jia et al.,
2021).

Distillation Method Teacher Top-1 Acc. (%) Student Top-1 Acc. (%)

Vanilla Student 72.2
KD (Hinton et al., 2015) 73.0

Hard (Touvron et al., 2021)
CaiT-S24 83.4 DeiT-Tiny

74.5
Manifold (Jia et al., 2021) 76.5

Ours 77.1
Vanilla Student 79.9

KD (Hinton et al., 2015) 80.0
Hard (Touvron et al., 2021)

CaiT-S24 83.4 DeiT-Small
81.3

Manifold (Jia et al., 2021) 82.2
Ours 82.5

Vanilla Student 81.2
KD (Hinton et al., 2015) 81.7

Hard (Touvron et al., 2021)
Swin-Small 83.2 Swin-Tiny

81.7
Manifold (Jia et al., 2021) 82.2

Ours 82.6

Table 14: Distillation results of gradually increasing teacher capacity on ImageNet-1K.

Teacher Models #Param. Teacher Acc.
Top-1 (%)

Student Acc.
Top-1 (%)

Student ViT-Tiny 5.01M – 72.2

Teacher
ViT-small 22.05M 79.9 73.8
ViT-base 86.57M 81.8 74.0
CaiT-S24 46.92M 83.4 76.1

Student Swin-tiny 29M – 81.2

Teacher
Swin-small 49.61M 83.2 82.6
Swin-base 87.78M 85.2 82.7
Swin-large 196.53M 86.3 82.9

Bigger Model, Better Teacher. Recall that DPK performs well for varying-sized CNN-based teacher-
student transfer pairs. We thus conlude that students can consistently benefit from teachers with higher
capacity using DPK. Here, we see whether this conclusion holds for transformer-style transfer pairs
by progressively using larger teachers. Perhaps not surprisingly, as listed in Table 14, the accuracy
of the student distilled by our method is continuously improved by progressively replacing larger
teacher models, while the students guilded by other algorithms fluctuates in performance, reaffirming
our conclusion.
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Table 15: ResNet-18 trained with varying teacher models. We report the top-1 and top-5 accuracy
on ImageNet. All teacher models are re-trained by us to adjust their final performances.

Models #Param. Teacher Acc. (%) Student Acc. (%)
Top-1 Top-5 Top-1 Top-5

Student ResNet18 11.69M – – 69.55 89.09

Teacher

ResNet34_v1 21.80M 73.31 91.42 70.68 90.16
ResNet34_v2 21.80M 74.37 91.90 71.36 90.08
ResNet34_v3 21.80M 75.81 92.70 71.60 90.19
ResNet34_v4 21.80M 76.27 92.96 71.41 90.22

ResNet34_v3 21.80M 75.81 92.70 71.60 90.19
ResNet50_v1 25.56M 75.86 92.88 71.63 90.16
ResNet101_v1 44.55M 75.97 92.73 71.32 89.95
ResNet152_v1 60.19M 76.24 92.80 71.21 89.89

A.6 FACTORS AFFECTING THE EFFECTIVENESS OF KD

In the main paper, we suppose there are two main factors affecting students’ performance: (i) the
capacity of the teacher model, and (ii) the performance of the teacher model. We conduct a toy
experiment to support these two assumptions in this part.

Performance of the teacher model. First, we train ResNet-34 with different teacher models using
the vanilla KD (Hinton et al., 2015) to get several ResNet-34 with different performance. Then we use
ResNet-18 as student model, ResNet-34 (with different accuracy) as teachers to explore the relation
of student’s accuracy and teacher’s accuracy. As shown in Table 15, we can find better teachers
generally lead to better students when the teachers share the same CNN model.

Capacity of the teacher model. Similarly, we also select some different distilled ResNet models and
keep their performance at a similar level to explore the impact of capacity difference on student’s
final accuracy. The results in Table 15 suggest that larger teachers generally degrade the students
when the teachers have similar performance.

The above two factors make the choice of the teacher models become a special ‘trade-off’ between
accuracy and capacity, and our DPK alleviates this issue by reducing the capacity gap in feature-level.

A.7 REPRESENTATION TRANSFERABILITY.

Following previous works in (Zhao et al., 2022; Tian et al., 2020), we evaluate the generalization
ability of learned representations by transferring them to unseen datasets. Specifically, we adopt a
WRN-16-2 student distilled from a WRN-40-2 teacher as a frozen representation extractor (layers
before logits) trained on CIFAR 100. We then train a single linear layer classifier on top of the frozen
representations perform 10-way (for STL-10 Coates et al. (2011)) and 200-way (for TinyImageNet2)
classification. To better quantify the transferability of the representations, we keep the representations
fixed and only update the linear probing heads. Table 16 compares several baseline methods. From
Table 16, we note that, when transferring the representations learned from CIFAR-100 to STL-10
and TinyImageNet, our method outperforms all baselines, confirming its superiority in improving the
transferability of representations.

Table 16: Comparison of Top-1 accuracy of different distillation methods on transferring representations learned
from CIFAR-100 to STL-10 or TinyImageNet (TinyIN), where WRN-16-2 is taken as the student and WRN-40-2
as the teacher. ‘Baseline’ means that no distillation method is applied and the student WRN-16-2 is trained from
scratch on CIFAR-100.

Baseline KD AT FitNet CRD CRD+KD ReviewKD DKD Ours

STL-10 69.7 70.9 70.7 70.3 71.6 72.2 72.4 72.9 73.2
TinyIN 33.7 33.9 34.2 33.5 35.6 35.5 36.6 37.1 37.8

2https://www.kaggle.com/c/tiny-imagenet
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A.8 VISUALIZATIONS

CKA curve in training. To qualitatively analyze the proposed DPK, we take ResNet-18 as the
student model, and visualize the CKA similarities trained with four teacher models in the training
phase. As shown in Fig. 7, we can find the following two observations: (i) the CKA values increase
with training, which demonstrates that our DPK does narrow the gap of teacher-student models at
feature level, and (ii) the CKA for the lager teacher is significantly lower than that for small teacher,
which suggests the necessity of our dynamic design (observation (i) also support this conclusion).
We also visualize the dynamic mask ratios in Fig. 8 for reference.
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Figure 7: CKA curves in the training phase. We visualize the CKA similarities in the training for
four teacher-student pairs. The CKA values are computed at the batch-level, and we average them
at the epoch-level for better presentation. The corresponding mask ratios to these CKA values are
visualized in Fig. 8.

Feature similarity before/after distillation. Here we give more visualizations to show the feature
similarity between students and teachers before/after distillation. The feature similarities measured
by CKA are shown in Fig. 9 and the features similarities measured by Cosine are shown in Fig. 10.
These results qualitatively show the effectiveness of our DPK.

A.9 COMPLEXITY ANALYSIS,

Here we provide the complexity analysis in Table 17, which may be helpful to the potential users of
the proposed model. Particularly, we report the parameters, FLOPS, and corresponding performance
(top-1 accuracy on ImageNet) for some baseline models and several variants of DPK. The parameters
and FLOPS are only counted for the transformation modules, and the corresponding numbers for
ResNet-34 are 21.8M and 3.6G respectively. As shown in Table 17, we can see that it is optional to use
several convolution layers or a lightweight decoder to realize teacher/student feature transformation.
Furthermore, compared with some previous feature-based KD methods such as OFD (Heo et al.,
2019a), TOFD (Zhang et al., 2020), VID (Ahn et al., 2019) and ReviewKD (Chen et al., 2021),
DPK has a comparable computational overhead but always shows superior distillation results when
using the same feature transformation. From these results, we can also find that a lightweight ViT-
style encoder-decoder (1-1) can achieve a top-1 accuracy of 72.43, which surpasses all counterparts
(including those with heavier transformation modules such as ReviewKD). These results also suggest
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Figure 8: Dynamic mask ratios. We visualize the mask ratios dynamically adjusted according to
CKA. The mask ratios are adjusted at the batch-level, and we average them at the epoch-level for
better presentation. The corresponding CKA curves are visualized in Fig. 7

the performance can be further improved with stronger transformation modules, and the potential
users can choose different modules accordingly.

Methods Teacher Transform Student Transform Top-1 Acc. #params FLOPs

FitNet (Romero et al., 2015) None 1x1 conv 70.81 5M 0.9G

AT (Zagoruyko & Komodakis, 2017) Attention Attention 70.63 9.3M 1.7G

AB (Heo et al., 2019b) Binarization 1x1 conv 70.76 6.1M 1.4G

OFD (Heo et al., 2019a) Margin ReLU 1x1 conv 71.34 13.3M 2.5G

TOFD (Zhang et al., 2020) 1x1 conv 1x1 conv 70.29 22.9M 3.2G

ReviewKD (Chen et al., 2021) 1x1 conv 1x1 conv 71.61 24.2M 2.8G

VID (Ahn et al., 2019) 4x4 transposed conv 1x1 conv 70.43 18.8M 2.2G

DPK 1x1 conv 1x1 conv 71.39 17.2M 2.4G

DPK None MLP-Decoder 72.37 18.3M 2.5G

DPK None Enc.-Dec. (1-1) 72.43 10.5M 1.6G

DPK None Enc.-Dec. (2-2) 72.31 20.0M 2.7G

DPK None Enc.-Dec. (4-2) 72.46 32.6M 4.5G

DPK None Enc.-Dec. (4-4) 72.48 38.9M 4.8G

DPK None Enc.-Dec. (6-4) 72.46 51.5M 5.9G

Table 17: Settings: ResNet34 as student and ResNet18 as student. All experiments are conducted
on eight Tesla V100 GPUs using the same image augmentations, batch size. The symbols (i − j)
indicates that the encoder contains i layers and the decoder contains j layers.
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Figure 9: Feature similarity measured by CKA. We visualize the CKA similarities for teacher-
student pairs before/after distillation. We adopt the same setting used in Fig. 5 for better presentation.
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Figure 10: Feature similarity measured by Cosine distance. We visualize the cosine similarities
for teacher-student pairs before/after distillation. We adopt the same setting used in Fig. 5 for better
presentation.

A.10 LIMITATIONS AND DISCUSSIONS

Limitations. The Fig. 1, 3, 4 and Table 4, 12 report that the proposed DPK can continue to benefit
from larger teacher models. However, we also observe some outliers. In particular, when the teachers
of different size belong to different model architectures, the student trained with best teacher may not
perform best. For example, the ResNet-18 trained with ConvNeXt-T achieves 71.80 top-1 accuracy
on ImageNet (see Figure 4), and then it can achieve 72.51 top-1 accuracy under the guidance of
ResNet-34 (see Table 2). Although ConvNeXt-T performs better than ResNet-34, but it provides less
guidance to the students. Note that this does not always happen, and we argue that the better teachers
still give better results when they belong to the same network family.

Future work. This paper investigates a new paradigm for feature distillation, i.e. introducing the
teacher’s feature to the student as prior knowledge before conducting feature distillation. We show the
effectiveness of this idea, meanwhile, this idea can be further explored in future work. For example,
we randomly mask the student’s features and fill them with the teacher’s feature. A possible solution
is to actively choose the prior knowledge according to some rules, such as the discriminability (Zhou
et al., 2016) or uncertainty (Kendall & Gal, 2017). Furthermore, different tasks may require different
kinds of prior knowledge, e.g. object detection may focus more on the foreground features than
background features. We hope the idea of this work and the relevant discussions can provide insights
to the community.

A.11 POTENTIAL IMPACTS.

DPK aims to learn more powerful representations for the student model, and theoretically, it can
be applied to most CNN-based models and tasks, including these may have negative impacts on
the society (e.g. face recognition). Besides, same as other data-driven methods, DPK may also give
biased results if the models are trained from biased data.
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