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Abstract001

The success of large language models (LLMs)002
has prompted efforts to integrate speech and003
audio data, aiming to create general foundation004
models capable of processing both textual and005
non-textual inputs. Recent advances, such as006
GPT-4o, highlight the potential for end-to-end007
speech LLMs, which preserves non-semantic008
information and world knowledge for deeper009
speech understanding. To guide the develop-010
ment of speech LLMs, we propose a five-level011
roadmap, ranging from basic automatic speech012
recognition (ASR) to advanced superhuman013
models capable of integrating non-semantic in-014
formation with abstract acoustic knowledge for015
complex tasks. Moreover, we design a bench-016
mark, Roadmap Bechmark, that standardizes017
critical aspects across various tasks in these five018
levels, uncovering challenges in using abstract019
acoustic knowledge and completeness of ca-020
pability. Our findings reveal gaps in handling021
paralinguistic cues and abstract acoustic knowl-022
edge, and we offer future directions. This paper023
outlines a roadmap for advancing speech LLMs,024
introduces a benchmark for evaluation, and pro-025
vides key insights into their current limitations026
and potential. 1027

1 Introduction028

Paradigms to process language have been reshaped029

thanks to LLMs and its scaling law. Given the suc-030

cess of LLMs, one may expect to integrate exten-031

sive data in speech and audio modality into LLMs032

(similar to visual language models (Liu et al., 2023;033

Li et al., 2023) 2), resulting in a more general foun-034

dation model. Towards this path, the exploration on035

speech foundation models recently brings new re-036

search insights from the perspectives of multi-task037

1The source code for this project is available at Anonymous
GitHub

2There exists lighweight solutions for adapting language
models to process data beyond text (e.g., visual or auditory),
such as: 1) using a lightweight encoder and alignment pro-
cess, and 2) discretizing data into tokens, which supports the
autoregressive objectives of LLMs.

and multi-lingual processing (Radford et al., 2023; 038

Bapna et al., 2021; Zhang et al., 2023c; Seamless 039

Communication et al., 2023; Pratap et al., 2024). A 040

remarkable event is the release of GPT-4o, which 041

is notable for its ability in open-ended speech-to- 042

speech dialogue. Its performance in speech under- 043

standing, speech synthesis, and system latency has 044

reached new levels, leading to a wave of studies 045

on speech LLMs. The next question is, where are 046

we now and where should we go? To answer this, 047

we begin by introducing the benefits and poten- 048

tial advancements of using LLMs to understand 049

speech. 050

Processing Speech using LLMs Compared 051

to the traditional approach of feeding ASR- 052

transcribed text (Radford et al., 2023) into text-only 053

language models, unified speech-language models 054

process raw audio or speech directly in an end- 055

to-end fashion. The benefits for using LLMs to 056

process speech are mainly two-fold. 057

I) Preservation of non-semantic information: 058

Processing raw speech directly through language 059

models allows for the preservation of paralinguistic 060

information (Schuller et al., 2013) , such as empha- 061

sis, speaker identity, background sounds, emotions, 062

and feelings, to the greatest extent possible. At the 063

same time, it becomes easier to perceive the sur- 064

rounding environment (Hu et al., 2020) and events 065

happening nearby, such as alarm sounds, the hustle 066

and bustle of an airport terminal, or other diverse 067

forms of information that are difficult to enumer- 068

ate exhaustively. For clarity, we classify these two 069

types of information, which cannot be captured 070

through ASR-transcribed text, as non-semantic in- 071

formation. 072

II) Acoustic Knowledge Retention: LLMs 073

store vast amounts of world knowledge compared 074

to traditional models. (Roberts et al., 2020; Li et al., 075

2021; Srivastava et al., 2022) Therefore, starting 076

with an LLM as the foundation for speech pro- 077

cessing allows the model to have greater potential 078

1

https://anonymous.4open.science/r/Roadmap-Benchmark-DBB2/
https://anonymous.4open.science/r/Roadmap-Benchmark-DBB2/


Figure 1: Levels of speech understanding using LLMs.

to achieve abstraction of expert speech/acoustic079

knowledge (e.g., inferring from cough and melody080

in some applications).081

Five-level Speech Understanding The two082

benefits highlight the potential of speech LLMs,083

achieving of which requires the models to perceive084

complete speech information and achieve abstrac-085

tion of expert speech/acoustic knowledge (e.g., in-086

ferring from cough and melody in some applica-087

tions). To this regards, we define five levels (see088

Fig. 1.) as below:089

• Basic Level At the most basic level (Level090

1), Speech LLMs should be able to recognize091

speech as text. The rationale for defining auto-092

matic speech recognition as the foundational093

level is that it serves as the basis for directly094

interacting with LLMs through speech. How-095

ever, these capabilities at the basic level (e.g.,096

speech recognition) offer limited additional097

benefits for ASR-equipped cascade model to098

understand human speech as it is somehow099

equivalent to a combination with a ASR model100

and a text-only LLM.101

• Non-semantic Information Perception Lev-102

els More advanced models (at Level 2 and103

Level 3) are expected to directly perceive ba-104

sic paralinguistic information such as tone,105

pitch, and loudness, and further enable com-106

prehension of paralinguistic cues like emo-107

tions (e.g., sarcasm) and other types of non-108

semantic information, such as the surrounding109

environment.110

• Abstract Acoustic Knowledge Levels At a111

higher level (at Level 4), models can integrate112

speech with expert speech/audio knowledge 113

to perform specialized tasks, such as medical 114

assessments. At the final level (Level 5), the 115

ultimate goal is not just limited to one type of 116

abstract acoustic knowledge. And this broad 117

knowledge helps Speech LLMs achieve even 118

superhuman speech understanding. 119

The Benchmark However, these levels remain 120

insufficiently intuitive. Therefore, we have prelim- 121

inarily developed a benchmark to concretize and 122

exemplify these capability levels. We designed the 123

Roadmap Benchmark to evaluate speech LLMs 124

across various tasks that typically represent the 125

characteristics of each level. 126

The benchmark covers a wide range of tasks, in- 127

cluding speech recognition, language distinction, 128

volume perception, emotion recognition, and more, 129

with each task corresponds to a specific level of 130

capability within speech LLMs. The reliability of 131

these evaluation sets was verified using human test, 132

open-source and custom-trained models, demon- 133

strating that the tasks are feasible and can be accom- 134

plished. The benchmark aims to comprehensive, 135

tiered evaluate speech LLMs’ capabilities, and ex- 136

ploration of their ability to apply abstract acoustic 137

knowledge. 138

Findings In the experiment, we found the fol- 139

lowing: Human was generally strong in tasks from 140

Level 1 to 3. However, at higher levels, human 141

performance was limited due to a lack of abstract 142

acoustic knowledge, which speech LLMs may start 143

to outperform in certain tasks.The current speech 144

LLMs, though capable of surpassing human perfor- 145

mance in a few areas, still fall short in terms of task 146

diversity and comprehensiveness. Most models 147

struggle with even basic paralinguistic information 148
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processing, highlighting the need for further im-149

provement. We analyzed four reasons for the150

performance deficiency of Speech LLMs : 1)151

limited types of training data, 2) inability to com-152

prehensively perceive acoustic information, 3) in-153

adequate instruction following, and 4) weak LLM154

backbones.155

The contributions of this paper are as follows:156

We propose a roadmap to Advanced human-level157

speech understanding, outlining five distinct levels158

to better characterize the current state of speech159

language models. Additionally, we design a bench-160

mark aligned with this roadmap, supplementing161

existing benchmarks with a variety of tasks. Fi-162

nally, we present key findings from the benchmark,163

based on evaluations of both speech LLMs and hu-164

mans, and conduct a comprehensive analysis of165

the factors behind their suboptimal performance,166

offering insights and guidance for future model and167

architecture development.168

2 Roadmap towards Understanding169

Speech170

To design a roadmap for future speech LLMs, we171

first analyzed the development process of speech172

LLMs in the past (in Sec. 2.1). Following that, we173

present our philosophy of the roadmap in Sec. 2.2.174

2.1 The Background175

Current speech LLMs are mainly divided into two176

types: the Cascade Paradigm and the End-to-End177

Paradigm. Below, we will focus on analyzing these178

two approaches.179
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Figure 2: Cascade and End-to-end paradigms.

Cascade Paradigm A straightforward approach180

to understanding speech using LLMs is to feed181

speech transcriptions (in text format) into LLMs.182

This is known as the cascade paradigm (see the183

left in Fig. 2). While this method allows for ba-184

sic speech understanding, it lacks the ability to185

perceive non-semantic information (e.g., emotion, 186

stress) within LLMs. This hinders a deeper under- 187

standing of the spoken content as its non-semantic 188

information is often crucial for fully grasping the 189

intent or nuances in speech. 190

End-to-end Paradigm In contrast, an end-to- 191

end speech LLM can process both semantic and 192

non-semantic information simultaneously within a 193

single model. This approach not only retains more 194

detailed information within the LLM but also al- 195

lows the world knowledge embedded in the LLM 196

to interact directly with speech data. Note that 197

this end-to-end speech paradigm introduces addi- 198

tional complexity, as it requires LLMs to handle 199

raw speech data, which operates at a lower level 200

compared to textual inputs. 201

In summary, the end-to-end solution enables 202

LLMs to directly handle non-semantic information, 203

such as emotions. Additionally, due to its stronger 204

perceptual capabilities, it holds greater potential 205

for understanding and applying abstract acoustic 206

knowledge. As a result, end-to-end solution can be 207

considered the future direction for the development 208

of speech LLMs. 209

2.2 The Philosophy of the Roadmap 210

With the rise of large language models (LLMs), 211

there is an increasing demand to understand in- 212

formation beyond text, particularly speech. The 213

core idea is that speech conveys richer informa- 214

tion than text alone, positioning ASR (Automatic 215

Speech Recognition) as a foundational level. End- 216

to-end speech LLMs can begin with ASR capa- 217

bilities to directly leverage the capabilities of text 218

LLMs. And then, it progressively incorporate more 219

advanced comprehension of non-semantic features. 220

Finally it contains the ability to retain and apply 221

abstract acoustic knowledge. This progress can be 222

described as evolving through the following five 223

levels: 224

Level 1. Speech Recognition Level At the most 225

basic level, a speech language model should be 226

capable of recognizing text. 227

These tasks form the most fundamental require- 228

ments for interacting with large models using 229

speech. However, even at Level 1, the model of- 230

fers limited advantages over a traditional cascade 231

approach (e.g., feeding ASR-transcribed text into 232

LLMs). The real benefits of speech LLMs begin 233

to emerge at the next level, with the ability to cap- 234

ture non-semantic features such as paralinguistic 235
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Table 1: Levels of speech understanding using LLMs

Level Semantic Non-Semantic Abstract Acoustic RemarkInformation Information Knowledge

- Pure LLM - - - Without speech input.

L1 Basic ASR ✓ ✗ ✗ Recognizing Speech as texts.

L2 Paralinguistic
Perception ✓ only paralinguistic ✗

Perceiving direct paralinguistic
information like tone, pitch,
loudness, rhythm, and speech rate.

L3 Non-semantic
Comprehension ✓ ✓ ✗

Comprehending non-semantic
information like speaker identity,
gender, age, emotional state, and
environmental sounds.

L4 Speech
Specialist ✓ ✓ specialist Understanding speech with specific

acoustic knowledge.

L5 Speech
Generalist ✓ ✓ generalist Understanding speech with general

acoustic knowledge.

information.236

Level 2. Basic Paralinguistic Perception Level At237

this level, Speech LLMs gain the ability to perceive238

basic paralinguistic features in speech, such as239

tone, pitch, volume, rhythm, and speech rate.240

Banse and Scherer (1996), Shafran et al. (2003),241

Schuller et al. (2013), and Wang et al. (2015) high-242

light the importance of basic paralinguistic fea-243

tures, such as volume changes, pitch, and speech244

rate, in identifying emotions, age, gender, and ac-245

cent. These features serve as the foundation for246

higher-level paralinguistic information and provide247

distinct advantages over pure text-based models (or248

Speech LLMs at Level 1). While this lays the foun-249

dation for more advanced capabilities, the insights250

derived at this level are still relatively shallow. For251

a deeper understanding, we must move to Level252

3, where a model comprehends a broader range of253

non-semantic information.254

Level 3. Non-semantic Comprehension Level At255

this stage, the Speech LLM extends beyond ba-256

sic paralinguistic features and is capable of com-257

prehending and interpreting more complex non-258

semantic information, such as emotions, sarcasm,259

and heightened states like pride.260

For example, emotions are higher-level human261

experiences that involve cognitive functions, distin-262

guishing them from basic paralinguistic informa-263

tion. Interestingly, even some higher animals, like264

pet dogs, can perceive these types of non-semantic265

information. To fundamentally distinguish humans266

from animals, we designed Level 4 by leverag-267

ing the human strengths in higher-level cognitive 268

capabilities. 269

Level 4. Speech Specialist Level At this advanced 270

level, Speech LLMs integrate expert-level abstract 271

acoustic knowledge to handle a few specific, com- 272

plex tasks. 273

This requires integrating abstract acoustic knowl- 274

edge which are advanced knowledge derived from 275

acoustic information. This goes beyond mere 276

recognition and comprehension at Level 1 and 277

Level 2, requiring the model to apply higher-order 278

thinking skills (such as analysis, evaluation, and 279

creation) based on acoustic information 3, accord- 280

ing to Bloom’s cognitive taxonomy (Krathwohl, 281

2002). Despite these abilities, the model at this 282

level remains domain-specific, which leads to the 283

need for a fully generalized Speech LLM, as de- 284

fined by Level 5. 285

Level 5. Speech Generalist level The ultimate 286

level, Speech Generalist, represents a comprehen- 287

sive speech model that functions as a generalist. 288

It can integrate knowledge from various domains 289

and perform both general and specialized tasks, 290

potentially surpassing human experts. 291

This vision of Speech Generalist represents the 292

culmination of speech understanding, combining 293

domain expertise, adaptability, and the capacity to 294

3This capability benefits a range of tasks, such as: 1)
using cough sounds to identify the type and origin of the
cough, 2) pronunciation correction, 3) music appreciation, 4)
stethoscope auscultation, 5) early screening for depression
and Parkinson’s disease, and 6) understanding animal vocal-
izations.
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exceed human performance in speech-based tasks.295

Speech Generalist’s potential to outperform hu-296

mans probably stems from its ability to scale learn-297

ing time and superior memory retention compared298

to humans. Due to time constraints, humans can299

typically only specialize in a narrow domain, as300

illustrated by ‘The 10,000-Hour Rule’ in Gladwell301

(2008). In contrast, LLMs can easily scale their302

learning time by leveraging larger computing re-303

sources. Furthermore, LLMs generally possess304

longer memory, whether explicit or implicit, than305

humans, enhancing their ability to retain and apply306

vast amounts of information.307

3 Benchmarking308

3.1 The New Benchmark: Roadmap309

To implement the roadmap (Sec.2), we aim to build310

a comprehensive benchmark to concretes these lev-311

els. Though previous benchmarks for speech LLMs312

have contributed significantly, they focus mainly313

on the first three levels, neglecting abstract acoustic314

knowledge and broader Speech LLM applications315

(App.A). Additionally, current benchmarks lack the316

depth needed for full speech LLM development,317

particularly in foundational tasks like pitch and vol-318

ume perception. To address these gaps, we propose319

a new benchmark, detailed in the following section.320

Philosophy of Benchmark The Roadmap321

Benchmark is structured to align with the five levels322

of speech understanding4, and the overview of the323

benchmark is shown in Tab. 8. The tasks are orga-324

nized into five levels: Level 1 focuses on testing the325

recognition capabilities of speech LLMs, includ-326

ing ASR, lyrics transcription, and term recognition327

tasks. Level 2 evaluates foundational perception328

abilities, such as pitch and volume perception for329

tasks like age, gender, and emotion recognition.330

Level 3 assesses non-semantic comprehension,331

incorporating tasks like emotion-integrated transla-332

tion, environment perception, and emotional inten-333

sity recognition. Level 4 explores the application334

of abstract acoustic knowledge, specifically fo-335

cusing on medical-related contexts. Finally, Level336

5 represents a Speech Generalist with multidisci-337

plinary knowledge, capable of fostering creativity338

and diverse thinking, such as appreciating artwork.339

This level’s foundation is built upon the earlier lev-340

els.341

4The types of tasks for Level 4 and 5 are not yet complete
in the current version; we are working on adding more diverse
tasks.

3.2 Benchmarked Objects 342

Humans To conduct an initial evaluation of hu- 343

man performance, we created evaluation subsets 344

by randomly selecting 80 samples per label for 345

the objective multiple-choice tasks, and 80 sam- 346

ples in total for the other tasks. Four students (two 347

males and two females) with strong English profi- 348

ciency completed the assessments. The results are 349

recorded in Tab. 2. The participant information and 350

consistency test is in App. C.1. 351

Speech LLMs There are four types of speech 352

LLMs, see more details in Sec. 5. We selected 353

an open-source model for each type, except for 354

video LLMs, where the performance on audio-only 355

tasks is not stable. For speech-related models, we 356

chose Qwen2-Audio for its strong performance. 357

We selected Mu-llama for the music model and 358

GAMA for the audio model. Additionally, we 359

tested SALMONN as a mixed audio and speech 360

model. We further test GPT-4o advanced speech 361

mode. Because only some models supports the 362

speech instruction, we utilize the text instruction to 363

ensure fair comparison. 364

For more details on model replication and evalu- 365

ation settings, please refer to App. C.2. 366

3.3 Benchmarking Results 367

Humans As seen in Tab. 2, human performs gen- 368

erally well from Level 1 to 3. However, it becomes 369

worse at higher levels due to a lack of acoustic 370

knowledge. On the other side, speech understand- 371

ing for humans are generally better than speech 372

language models. 373

Take-away 1. Human performance: Human gen- 374

erally performs well in speech understanding from 375

Level 1 to 3, but fails to reach a high level due to a 376

lack of abstract acoustic knowledge. 377

Speech LLMs As shown in Tab. 2, speech 378

LLMs exhibit a significant weakness in Level 2 379

which consists of basic listening abilities of the 380

human. These models are currently focused on 381

directly addressing high-level tasks while neglect- 382

ing basic paralinguistic information perception, 383

thereby the model fails to shows generalization 384

at higher level. Furthermore, most models do 385

not fully satisfy the requirements at any given 386

level, highlighting a lack of consideration for both 387

task diversity and comprehensiveness. Notably, 388

Qwen2-Audio has outperformed humans in tasks 389

like emotion recognition. This suggests that speech 390

LLMs have the potential to detect subtle changes 391
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Table 2: Performance of Speech LLMs on Roadmap Benchmark.

Level Task Human
Baseline

Models

GPT-4o MuLLaMA GAMA SALMONN Qwen2-Audio

L1

Language Identification × 88.50% 8.48% × 35.17% 96.44%
Auto-Speech Recognition 15.49∗ 10.24∗ × × 5.45∗ 4.63∗

ASR for Legal Terms 98.50% 26.47% × × × 81.04%
ASR for Medical Terms 97.50% 41.87% × × × 53.86%
Auto-Lyrics Transcription 26.88∗ × × × 77.12∗ 32.48∗

- Hallucination Rate 3.00% × × × 29.26% 38.21%

L2

Volume Perception 100.00% × 50.00% 11.98% 53.22% 48.96%
Pitch Perception 96.25% 29.33% 33.78% 41.50% 50.00% 50.00%
Binaural Effect Perception 100.00% 41.38% × × 49.88% ×
Loudness Assessment 85.63% × 49.77% × × 50.13%
Speech Rate Assessment 76.25% × 50.00% × × 44.93%
Speech Pause Detection 91.88% × 50.00% 49.97% × 51.70%

L3

Ambient Noise Detection 91.88% 45.27% 50.00% 60.17% 49.88% 50.00%
Acoustic Scene Classification 90.28% 16.36% 5.07% 12.05% 20.74% 27.67%
Speaker’s Age Prediction 52.59% 13.43% 33.60% × 36.87% 38.55%
Speaker’s Gender Recognition 97.50% × 50.00% × 48.12% 79.60%
Speech Emotion Recognition 50.71% 16.77% 9.20% 3.68% 10.93% 79.51%
Cappella Emotion Recognition 62.25% 21.50% 12.42% 7.08% 14.62% 62.38%
Emotion Intensity Perception 97.50% 72.67% 50.00% 50.00% 49.29% 50.00%
Emotion Translation† 3.68 0.32 × × 0.27 0.31
Singing Detection 99.38% 53.11% 50.00% 64.82% 56.47% 50.22%

L4

COVID-19 Risk Detection 60.63% × × × 50.00% 14.17%
Cough Type Classification 52.50% 40.33% 50.16% 44.17% 49.17% 43.39%
Cough Origin Diagnosis 32.19% × × × 4.01% 25.65%
Cough Severity Assessment 45.42% 24.12% 30.85% 28.50% 38.24% 33.86%
Lung Risk Screening 49.38% × 47.62% × × 50.16%

L5 Spoken English Coach† 1.39 0.15 1.29 0.44 0.48 0.54
Voice Detective† 1.20 × 0.84 0.83 0.86 1.24

“×” indicates that the model fails to follow the instruction. “*” denotes that the metric is Word Error Rate (WER) and similar
metrics, for which lower values indicate better performance. “†” indicates that the task is evaluated by GPT-4, with a score
ranging from 1 to 4.

in speech, even beyond human capabilities.392

Take-away 2. Speech LLMs: Speech LLMs still393

struggle with non-semantic perception and compre-394

hension from Level 1 to Level 3, despite excelling395

in some tasks, limiting their performance on more396

complex tasks at higher levels.397

GPT-4o The results indicate that GPT-4o tends398

to reject audio-related tasks. Compared to other399

models, GPT-4o shows merit in emotion-related400

tasks but fails to demonstrate overwhelming ad-401

vantages in understanding ability. We suppose its402

strength lies in its interaction capability. Therefore,403

we tested its ability to follow speech instructions,404

which directly evaluates its interaction skills. We405

also tested Qwen2-Audio, one of the few models406

that support speech instructions.407

The performance is detailed in Tab. 3. Com-408

pared to the results with text instructions, GPT-409

4o performs better with speech instructions, while410

Qwen2-Audio loses most of its capabilities. How-411

ever, there remains a significant gap compared to 412

the best results achieved using text instructions. 413

Take-away 3. GPT-4o: GPT-4o demonstrates 414

clear advantages in following speech instructions, 415

but there is still significant room for improvement. 416

Future Prospects We observe that abstract 417

acoustic knowledge presents a common bottleneck 418

for both humans and speech LLMs in reaching 419

higher performance levels. Given superior capabili- 420

ties of LLMs in knowledge acquisition, meanwhile, 421

the deficiencies in diversity and completeness of 422

capabilities can be ameliorated by incorporating 423

additional training data. we contend: 424

Take-away 4. Speech LLMs have the potential 425

to exceed human capabilities, yet they currently 426

fall short in addressing the full scope of tasks and 427

integrating abstract acoustic knowledge. 428
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Table 3: Comparison of performance based on text instructions and speech instructions.

Task
Text instructions Speech instructions

GPT-4o Qwen2-Audio GPT-4o Qwen2-Audio

Language Identification 88.50% 93.01% 91.45% 18.64%
Auto-Speech Recognition 10.24 4.63 14.65 22.39
Speech Emotion Recognition 16.77% 79.51% 23.46% ×
Emotion Intensity Perception 72.67% 50.00% 10.84% ×

We selected tasks in which at least one model performed well under text instruction conditions.
Details about the speech instruction can be found in App. C.4.

4 More Analysis on Performance429

Deficiency430

In this section, we discuss reasons for performance431

deficiency in the benchmark. We first consider432

composition of training data (in Sec. D). Then we433

analyse the model from three perspectives: 1) per-434

ception of acoustic information (in Sec. 4.1), and435

2) capacity of LLM backbone (in Sec. 4.2). At436

the same time, we also noticed that the ability of437

instruction following is problematic (in Sec. E).438

Table 4: Comparison of task-specific model and LLMs.

Task Model Result vs LLMs

Language Identi. Whisper 91.45%vs96.62%
Auto-Speech Recog. Whisper 2.44 vs 4.63
Auto-Lyrics Trans. Whisper 22.10 vs 32.48
ASR for Legal Whisper 33.33%vs81.04%
ASR for Medical Whisper 34.98%vs53.86%

Volume Perception Small model 100.00%vs53.22%

The Small model uses Transformer with 10M parameters.

4.1 Inability to Comprehensively Perceive439

Acoustic Information440

The current end-to-end paradigm universally441

adopts the stacking paradigm. However, the stack-442

ing paradigm may suffer from two types of infor-443

mation loss: 1) the latent representation produced444

by the acoustic encoder does not fully capture or445

convey the necessary information, and 2) the acous-446

tic encoder fails to transfer all the information to447

the downstream LLMs.448

We first investigate whether the representation449

loses information. We compare the speech features450

generated from the same text content, which are451

spoken by different genders and with different emo-452

tions. The results, shown in Fig. 3, indicate that453

there is no significant difference between differ-454

ent speech samples. This suggests that emotion455

and gender information is lost during the acoustic456

encoder process. This could explain why some457

speech LLMs perform poorly on certain tasks.458
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Figure 3: Representation cosine similarity of different
speeches. Each speech pair has the same content but
is spoken in a different style. The representation is
generated by the Whisper encoder.

We then assess whether information is lost dur- 459

ing the transfer from the acoustic encoder to down- 460

stream LLMs. We select cases from the ASR task 461

where the WER is higher than 20%, as shown in 462

Tab. 5. We found that the error types is different 463

between the whisper and speech LLMs. Consid- 464

ering that Qwen2-Audio is built on Whisper, the 465

results confirm that LLMs cannot correct errors 466

from the acoustic model. A notable difference be- 467

tween Whisper and speech LLMs is the tendency 468

of the latter to produce overlong outputs, which is 469

a form of hallucination. 470

Table 5: Two types of recognizing errors. The “trun-
cation” and “over-long” denote the generation is short
and longer than the length of reference more than 20%
separately.

Model Total Truncation Over-long

Whisper 64 3 0
Qwen-Audio 68 5 6
Qwen2-Audio 149 89 3
SALMONN 251 154 5

Another notable phenomenon is that almost 471

60%of errors are due to truncation. Addition- 472

ally, we observed that the speech LLMs sometimes 473

omits the start of a sentence, which does not happen 474

with Whisper. This proves that speech LLMs suffer 475

the loss of information transfer between the LLMs 476

and the acoustic encoder. The current stacked 477
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paradigm often tunes base on LLMs with most478

parameters frozen, which requires the acoustic fea-479

tures to fit the LLMs’ representation space. This480

requirement hinders the seamless transmission of481

acoustic information to the LLMs, leading to pre-482

mature termination of the generation process.483

Take-away 5. LLMs in current solutions fail to484

encode complete acoustic information.485

4.2 Weak LLM Backbones486

Most speech LLMs stack acoustic models with text487

LLMs, requiring the latter to process audio-like488

tokens. This raises the question of whether text489

LLMs can handle cross-modal tasks. We designed490

a direct task of converting a phoneme sequence491

into a complete sentence. The phoneme represents492

pronunciation in text format, thus understanding493

phonemes can demonstrate the model’s potential494

to process audio. We designed three different tasks,495

as shown in Tab. 16.496
Table 6: Results of LLMs processing phonemes

Model Seq. ↓ Token ↓ Token ↓
zero-shot one-shot

GPT-4o 17.5 8.3 8.3
Mixtra-7B 99.5 98.9 97.7
Qwen2-7B 99.3 98.3 95.8
Llama3-7B 97.5 89.6 87.9
Llama3.1-8B 94.0 83.7 78.0
Mixtra 8x7B 98.2 95.1 92.6
Qwen2-72B 93.4 75.4 73.5
Llama3.1-70B 80.5 51.1 46.9

The results are assessed using the WER. In instances where
LLMs generate hallucinations or decline to provide a

response, the WER is recorded as 100%.

We evaluate the most commonly used LLMs for497

building speech LLMs, and the results are shown498

in Tab. 6. We found that the closed-source GPT-499

4o demonstrates a surprising ability to process500

phonemes, proving that it can easily be converted501

into a powerful speech LLM. On the other hand,502

all open-source models fail to show potential in503

handling audio. And increasing model size does504

little to improve performance.505

One explanation is that open-source models over-506

look potential audio-related tasks, which is quite507

unlike GPT-4o. This leads to a significant gap be-508

tween the two types of models. A piece of evidence509

supporting this is that Llama 3.1, which empha-510

sizes multi-modal capabilities (Dubey et al., 2024),511

shows a noticeable improvement in WER in token-512

level tasks and delivers robust performance with513

70B parameters. Overall, open-source foundation514

models still have substantial room for improvement 515

in their ability to handle audio-related tasks. 516

Take-away 6. The used LLM backbone is rela- 517

tively weak for current speech LLMs. 518

5 Related Work 519

Speech language models have seen a surge in de- 520

velopment following the advent of LLMs. These 521

outstanding works can generally be categorized 522

into four main types. 523

Categorization of speech LLMs Some works 524

aim to build universal multi-modal LLMs (Su 525

et al., 2023; Zhan et al., 2024; Wu et al., 2023b; 526

Lyu et al., 2023; Zhang et al., 2023b; Shukor et al., 527

2023). Several studies focus on enhancing mu- 528

sic understanding, an important area that has not 529

yet received enough attention (Deshmukh et al., 530

2023; Zhan et al., 2024; Liu et al., 2024a). Most 531

speech LLMs aim to improve speech-to-text tasks 532

and multi-turn dialogue capabilities (Fathullah 533

et al., 2024; Shu et al., 2023; Wang et al., 2023b; 534

Pan et al., 2023; Rubenstein et al., 2023; Zhang 535

et al., 2023a; Bai et al., 2024; Wu et al., 2023a; 536

Maiti et al., 2024; Wang et al., 2023a; Chu et al., 537

2024; Dubey et al., 2024). Some works utilize 538

audio codec models to enhance audio processing 539

performance (Chen et al., 2023; Kong et al., 2024; 540

Nguyen et al., 2024; Das et al., 2024; Gong et al., 541

2023). Inspired by these efforts, several studies 542

(Tang et al., 2023; Ghosh et al., 2024a; Hu et al., 543

2024) combine acoustic and semantic codecs to 544

integrate audio and speech processing capabilities 545

into a single model. 546

6 Conclusion 547

In this paper, we explored the development of 548

LLMs in speech processing, introducing a five- 549

level roadmap toward advanced speech understand- 550

ing, from basic ASR to advanced models integrat- 551

ing non-semantic information and abstract acoustic 552

knowledge. We designed a benchmark for consis- 553

tent performance evaluation and identified current 554

limitations in speech understanding by humans and 555

LLMs. Our evaluation of GPT-4o’s speech capa- 556

bilities, as well as other recent speech LLMs, high- 557

lights challenges in following speech instructions 558

and structural flaws in existing models, particularly 559

in Acoustic Information Transfer and foundational 560

LLM potential. This work offers a structured evalu- 561

ation approach and valuable insights for advancing 562

speech LLMs. 563
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Limitation564

Artificial intelligence should not be confined to565

overly narrow domains, as such a focus can lead to566

frequent model switching when handling diverse567

tasks.This requires SAGI, a speech AGI, to be a568

powerful assistant capable of completing all kinds569

of tasks. However, during our primary testing, most570

speech LLMs remain at levels 1 and 2, indicating571

there is still a long way to go in terms of under-572

standing speech.573

To advance further, we conclude some impor-574

tant directions for improving speech LLMs toward575

higher level:576

• Requiring more diverse speech data to handle577

complex tasks.578

• Enhancing the ability of text LLMs to process579

speech-related tasks.580

• Ensuring that LLMs can receive complete581

acoustic information.582

We advocate for the development of more powerful583

acoustic models, consideration of cross-domain584

compatibility when constructing datasets, and a585

deepening of expertise in specific research areas.586

This approach will enhance the generalization and587

adaptability of the models.588
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A Existing Benchmark 971

Tab. 7 summarizes the coverage of existing bench- 972

marks across different levels of speech model tasks, 973

highlighting gaps in current evaluation methods. 974

L1 tasks such as Speech ASR, Intent Classification, 975

and Language Identification are well supported by 976

both Dynamic-SUPERB and AIR-Bench, though 977

SD-Eval (Ao et al., 2024) lacks coverage. For 978

Level 2 foundational perception tasks, like Music 979

Pitch and Velocity, only AIR-Bench (Yang et al., 980

2024) provides support. Level 3 tasks related to 981

non-semantic comprehension, such as Emotion, 982

Environment, and Speaker Gender/Age, are cov- 983

ered to varying degrees across all benchmarks, with 984

Dynamic-SUPERB (Huang et al., 2024) offering 985

the most comprehensive support. However, more 986

specialized tasks like Sarcasm, Stress, and Spoof 987

Detection are only covered by Dynamic-SUPERB. 988

Notably, Level 4 (Abstract Knowledge) and Level 5 989

(Speech AGI) remain entirely unsupported across 990

all benchmarks. This underscores the urgent need 991

to build a more comprehensive benchmark that ad- 992

dresses the gaps in Level 2, Level 4, and Level 5, 993

ensuring more robust evaluation across all levels of 994

speech model tasks. 995
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Table 7: Existing benchmarks across Levels. L2, L4 and L5 have not received enough attention yet.

Level Task Dynamic-SUPERB AIR-Bench SD-Eval

L1
Speech ASR ✓ ✓ ✗
Intent Classification ✓ ✓ ✗
Language Identification ✓ ✓ ✗

L2 Music Pitch and Velocity ✗ ✓ ✗

L3

Emotion ✓ ✓ ✓
Environment ✓ ✓ ✓
Accent ✓ ✗ ✓
Speaker Gender/Age ✗ ✓ ✓
Noise Detection ✓ ✗ ✗
Speaker Verification ✓ ✓ ✗
Sarcasm Detection ✓ ✗ ✗
Stress Detection ✓ ✗ ✗
How Far Are You ✓ ✗ ✗
Spoof Detection ✓ ✗ ✗
Synthesized Voice Detection ✗ ✓ ✗

L4 No Related Work ✗ ✗ ✗
L5 No Related Work ✗ ✗ ✗

B Details of Benchmark Construction996

The overall construction principles are provided in997

Sec. B.1. The data and tools used are detailed in998

Sec. B.2. The composition structure of the data is999

outlined in Sec. B.3. Detailed construction details1000

for each task are available in Sec. B.4.The credibil-1001

ity verification of synthesized speech is provided1002

in Sec. B.5.3.1003

B.1 General Principles of Data Construction1004

B.1.1 Question Construction1005

For objective multiple-choice questions, we guide1006

large models by including multiple-choice options1007

within the questions to facilitate the generation of1008

final results. For subjective response questions, we1009

specified the main aspects around which the ques-1010

tions revolve and set suggested answers, although1011

these do not require the model to produce results1012

that are exactly identical, illustrated in Fig. 4.1013

B.1.2 Uniform Sampling Rate1014

Considering the potential introduction of extrane-1015

ous factors due to varying sampling rates of audio1016

data, this paper standardizes all datasets to the one1017

with the lowest sampling rate. Consequently, all1018

test data is downsampled to 16,000 Hz.1019

B.1.3 Uniform number of audio channels1020

To standardize the format of the input audio, we1021

converted all audio files for the tasks into mono1022

channel, except for those in the Binaural Effect1023

Perception task.1024

Figure 4: The method to generate text instructions for
the problems.

B.1.4 Uniform Audio Duration 1025

Most speech LLMs (Chu et al., 2023, 2024; Liu 1026

et al., 2024b; Tang et al., 2023) utilize the encoder 1027

from (Radford et al., 2023), which limits their max- 1028

imum audio processing duration to 30 seconds. To 1029

ensure fairness, we have restricted the lengths of 1030

the audio inputs to a maximum of 30 seconds. 1031

B.1.5 Uniform Option Ratio 1032

For the multiclass classification problem, we per- 1033

formed data balancing. Taking binary classification 1034

tasks as an example, due to some limitations in the 1035

current models, they might always choose one op- 1036

tion in binary classification tasks. If the data were 1037

unbalanced, such as 40% for one option and 60% 1038

for the other, different models that always pick the 1039

same option could yield very different results, even 1040
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Table 8: Overview of the levels and the corresponding tasks.

Level Task Dataset

L1

Language Identification Europarl-ST (Iranzo-Sánchez et al., 2020)
Auto-Speech Recognition LibriSpeech (Panayotov et al., 2015)
ASR for Legal Terms∗ Made of CosyVoice (SpeechTeam, 2024)
ASR for Medical Terms∗ Made of CosyVoice (SpeechTeam, 2024)
Auto-Lyrics Transcription Jam-Lyrics (Durand et al., 2023)

L2

Volume Perception Made of LJSpeech (Ito and Johnson, 2017)
Pitch Perception Made of SpeechAccentArchive (Weinberger, 2013)
Binaural Effect Perception Our proposed method
Loudness Assessment Made of TextrolSpeech (Ji et al., 2024)
Speech Rate Assessment Made of TextrolSpeech (Ji et al., 2024)
Speech Pause Detection Made of TED-LIUM (Hernandez et al., 2018)

L3

Ambient Sound Detection Noisy speech (Valentini-Botinhao et al., 2017)
Acoustic Scene Classification Made of MS-SNSD (Reddy et al., 2019)

Speaker’s Age Prediction Made of AIR-Bench (Yang et al., 2024)
& SpeechAccentArchive (Weinberger, 2013)

Speaker’s Gender Recognition Made of VCTK (Yamagishi et al., 2019)
Speech Emotion Recognition Selected from RAVDESS (Livingstone and Russo, 2018)
Cappella Emotion Recognition Selected from RAVDESS (Livingstone and Russo, 2018)
Emotional Intensity Perception Made of RAVDESS (Livingstone and Russo, 2018)

Emotion Translation∗ Made of RAVDESS (Livingstone and Russo, 2018)
& CosyVoice (SpeechTeam, 2024)

Singing Detection Made of RAVDESS (Livingstone and Russo, 2018)

L4

COVID-19 Risk Detection Made of Virufy (Chaudhari et al., 2020)
Cough Type Classification Made of COUGHVID(Orlandic et al., 2021)
Cough Origin Diagnosis Made of COUGHVID(Orlandic et al., 2021)
Cough Severity Assessment Made of COUGHVID(Orlandic et al., 2021)
Lung Risk Screening Made of Lung Sound(Fraiwan et al., 2021)

L5 Spoken English Coach Made of speechocean762 (Zhang et al., 2021)
Voice Detective Made of SpeechAccentArchive (Weinberger, 2013)

“*” denotes that utterances are synthesized, and the credibility verification is provided in Appendix B.5.3.

though their capabilities are similar. This is not1041

what we want, so we balanced the data for all mul-1042

ticlass classification tasks. Please refer to Tab. 171043

for detailed information.1044

B.2 Datasets and Tools Utilized1045

We used the following 10 datasets. The licenses1046

for these datasets can be found in Table 9. It1047

should be noted that the JamendoLyrics MultiLang1048

dataset and TED-LIUM dataset includes some ND-1049

restricted data, so we won’t provide the related test1050

entries in the open-source release, but will offer the1051

corresponding data processing scripts instead.1052

These datasets include:1053

Europarl-ST (Iranzo-Sánchez et al., 2020) ,1054

LibriSpeech (Panayotov et al., 2015), Jamen-1055

doLyrics MultiLang dataset (Durand et al.,1056

2023), LJSpeech (Ito and Johnson, 2017), Noisy1057

speech (Valentini-Botinhao et al., 2017), SpeechAc-1058

centArchive (Weinberger, 2013) , VCTK (Ya-1059

magishi et al., 2019), RAVDESS( (Livingstone1060

and Russo, 2018), AISHELL-MDSC (Gao et al.,1061

2024), speechocean762 (Zhang et al., 2021), TED-1062

LIUM (Hernandez et al., 2018), TextrolSpeech (Ji 1063

et al., 2024), Lung Sounds (Fraiwan et al., 2021). 1064

We utilized two open-source tools: 1065

cosyVoice (SpeechTeam, 2024) and MS- 1066

SNSD (Reddy et al., 2019). 1067

B.2.1 Datasets and their License Types 1068

The licenses for these datasets can be found in 1069

Table 9 1070

B.3 Data Structure of Benchmark 1071

Data samples are represented as (P, Q, A, D), where 1072

P denotes the audio path, Q represents the question, 1073

A corresponds to the answer, and D provides ad- 1074

ditional explanations to aid researchers in under- 1075

standing the data. 1076

B.4 Details of Each Task 1077

B.4.1 Language Identification 1078

We used Europarl-ST (Iranzo-Sánchez et al., 2020) 1079

to construct our evaluation dataset. Europarl-ST is 1080

a multilingual speech translation corpus containing 1081

paired audio-text samples for speech translation. It 1082
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Table 9: Datasets and their License Types

Dataset License Type

Europarl-ST CC BY-NC 4.0
LibriSpeech CC BY 4.0
JamendoLyrics MultiLang CC BY-NC-SA-ND
LJSpeech Public Domain
Noisy speech CC BY 4.0
SpeechAccentArchive CC BY-NC-SA 2.0
VCTK CC BY 4.0
RAVDESS CC BY-NC-SA 4.0
AISHELL-MDSC CC BY-NC-SA 4.0
speechocean762 CC BY 4.0
TED-LIUM CC BY-NC-ND 3.0
TextrolSpeech CC BY-NC 4.0
Lung Sounds CC BY 4.0

was constructed using debates held in the European1083

Parliament between 2008 and 2012. We selected1084

five commonly used languages: German, English,1085

French, Spanish, and Italian. The task was set as:1086

“What language is spoken in this audio segment?1087

Please choose from the German, English, French,1088

Spanish and Italian options."1089

B.4.2 Automatic Speech Recognition1090

We constructed our evaluation dataset based on1091

LibriSpeech (Panayotov et al., 2015). Inspired by1092

(Radford et al., 2023), we used the test-clean and1093

test-other splits as our test sets, comprising a total1094

of 2791 data entries. Since we addressed specific1095

aspects within our metric C.3.1, we did not perform1096

any additional processing when constructing the1097

dataset. The task was set as: “What does the person1098

say? Please answer with ‘The person says: xxxx’."1099

B.4.3 ASR for Legal Terms1100

We selected 27 offenses defined under Chinese1101

criminal law and combined them with four tem-1102

plates to generate 108 sentences, which were syn-1103

thesized using cosyVoice (SpeechTeam, 2024). Af-1104

ter manual screening (detailed in Sec. B.5.4), 1021105

utterances remained. The task was set as: “What1106

does the person say? Please answer with ‘The1107

person says: xxxx’." This approach is consistent1108

with ASR, as we believe that this ability should be1109

demonstrated automatically during the ASR pro-1110

cess without the need for additional prompts.1111

B.4.4 ASR for Medical Terms1112

We selected 62 medical terms referring to specific1113

locations and combined them with four templates to1114

generate 248 sentences, which were synthesized us- 1115

ing cosyVoice (SpeechTeam, 2024). After manual 1116

screening (detailed in Sec. B.5.4), 203 utterances 1117

remained. The task was set as: “What does the 1118

person say? Please answer with ‘The person says: 1119

xxxx’." This approach is consistent with ASR, as 1120

we believe that this ability should be demonstrated 1121

automatically during the ASR process without the 1122

need for additional prompts. 1123

B.4.5 Automatic Lyrics Transcription 1124

We utilized the JamendoLyrics MultiLang dataset 1125

(Durand et al., 2023) for our research. We acknowl- 1126

edge that a revised version of this dataset has been 1127

released as the Jam-Alt dataset (Cífka et al., 2023). 1128

However, in accordance with the constraints out- 1129

lined in Sec. B.1.4, we were required to resegment 1130

the audio files. Given that the Jam-Alt dataset, as 1131

described by its authors, exhibits certain deviations 1132

in its timestamps, we elected to employ the Jamen- 1133

doLyrics MultiLang dataset as our primary dataset 1134

for construction purposes. During the construction 1135

process, we manually selected the segmentation 1136

points and employed code to segment the audio 1137

files, thereby obtaining our final dataset.The task 1138

was set as: “Please transcribe the lyrics of this 1139

audio segment.Please answer with: ‘The lyrics is: 1140

xxxx’." 1141

B.4.6 Volume Perception 1142

We constructed our evaluation dataset based on 1143

LJSpeech (Ito and Johnson, 2017). Following the 1144

data split of (Chien et al., 2021), we used 512 test 1145

samples. We set up two scenarios: one where the 1146

volume gradually increases from 0 to its original 1147

level, and another where it decreases from the orig- 1148

inal level to 0. We tasked the model with determin- 1149

ing whether the volume is increasing or decreasing. 1150

The task was set as: “Is the volume of this audio 1151

segment gradually increasing or decreasing?" 1152

B.4.7 Pitch Perception 1153

We used the SpeechAccentArchive (Weinberger, 1154

2013) dataset to construct our test set. During this 1155

process, we first identified the frequency ranges 1156

with the highest proportion of fundamental fre- 1157

quency (F0). Ultimately, we selected the ranges 1158

(80, 150) Hz and (180, 250) Hz for our experiments. 1159

We framed the problem as follows: “In the follow- 1160

ing audio segment, into which range does more 1161

than 70% of the fundamental frequency content 1162

fall? Please choose from the following two ranges: 1163
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(80, 150) Hz and (180, 250) Hz." We calculated the1164

proportion of F0 content falling within these two1165

ranges for each audio segment and selected the cor-1166

responding data. During the process, we ranked all1167

the data, prioritizing those segments with a higher1168

proportion.1169

B.4.8 Binaural Effect Perception1170

We generated random sounds using four methods:1171

sine wave, square wave, triangle wave, and noise.1172

These sounds are heard only in the left ear or the1173

right ear. For more details, please refer to our pub-1174

lic code. The model is used to determine which ear1175

hears these sounds. The task was set as: “In this1176

audio segment, does the sound appear in the left1177

ear or the right ear? Please answer with ‘left’ or1178

‘right’."1179

B.4.9 Loudness Assessment1180

We constructed our data set using TextrolSpeech (Ji1181

et al., 2024). In the original data set, the loudness1182

was classified into three classes: loud, soft, and1183

normal. To make the distinction more pronounced,1184

we selected only the loud and soft categories, en-1185

suring an equal gender ratio during the selection1186

process. We frame the problem as follows: “Please1187

determine whether the following audio clip has a1188

loud or soft sound. Please respond with ’loud’ or1189

’soft’."1190

B.4.10 Speech Rate Assessment1191

We constructed our data set using TextrolSpeech (Ji1192

et al., 2024). In the original data set, the speech rate1193

was classified into three classes: rapid, slow, and1194

normal. To make the distinction more pronounced,1195

we selected only the rapid and slow categories,1196

ensuring an equal gender ratio during the selection1197

process. We frame the problem as follows: “How1198

do you feel about the current pace of the speech?1199

Please respond with ’rapid’ or ’slow’."1200

B.4.11 Speech Pause Detection1201

We use Python code to determine the durations of1202

the pause and the number of pauses based on the1203

energy signals of the speech. Since the TED-LIUM1204

dataset (Hernandez et al., 2018) inherently includes1205

pause annotations, it allows for secondary verifi-1206

cation, making it an ideal choice for constructing1207

our benchmark dataset. We frame the problem as1208

follows: “Please determine if there are noticeable1209

pauses in this audio. Answer with ’yes’ or ’no.’"1210

B.4.12 Ambient Noise Detection 1211

We constructed the evaluation dataset using Noisy 1212

speech (Valentini-Botinhao et al., 2017). The Noisy 1213

speech dataset contains the corresponding pairs of 1214

clean and noisy data. The purpose of the data set 1215

is to explore methods for speech enhancement.We 1216

selected the entire test set from this dataset, which 1217

includes 824 clean audio clips and 824 audio clips 1218

with ambient noise. We used all of these data and 1219

the task was set as: “Is there any ambient noise 1220

in this audio segment, in addition to the speaker 1221

voice? Please answer with yes or no." 1222

B.4.13 Acoustic Scene Classification 1223

We used MS-SNSD (Reddy et al., 2019) to syn- 1224

thesize these test datasets.MS-SNSD is a tool to 1225

synthesize speech with environmental noise, aimed 1226

at advancing research in speech enhancement. We 1227

selected 51 environmental noise samples from its 1228

test set to synthesize 6,105 test samples, and the 1229

task was set as: “What is the ambient noise of 1230

this audio segment? Please choose from the [’Bab- 1231

ble’, ’CopyMachine’, ’Neighbor’, ’ShuttingDoor’, 1232

’AirportAnnouncements’, ’Munching’, ’Typing’, 1233

’AirConditioner’, ’VacuumCleaner’] options?" 1234

B.4.14 Speaker’s Age Prediction 1235

We have observed that there are relatively few 1236

datasets specifically aimed at speaker age recogni- 1237

tion. We noted that the AIR Bench (Yang et al., 1238

2024) has done an excellent job in addressing this 1239

task,We followed their approach of categorizing 1240

age into four groups but noticed that their data dis- 1241

tribution was not balanced, specifically: teens to 1242

twenties: 653, thirties to forties: 268, fifties to six- 1243

ties: 64, seventies to eighties: 15. Therefore, we 1244

used the SpeechAccentArchive (Weinberger, 2013) 1245

to balance the age distribution. Unfortunately, we 1246

found it difficult to obtain sufficient data for the 1247

seventies to eighties category, so we retained only 1248

three categories: teens to twenties, thirties to for- 1249

ties, and fifties to sixties. And the task was set as: 1250

“Which age range do you believe best matches the 1251

speaker’s voice? Please choose from the [‘teens 1252

to twenties’, ‘thirties to forties’, ‘fifties to sixties’] 1253

options?" 1254

B.4.15 Speaker’s Gender Recognition 1255

We constructed the evaluation dataset using 1256

VCTK (Yamagishi et al., 2019).To balance the num- 1257

ber of males and females in the benchmark, con- 1258

sidering there are 61 female speakers and 47 male 1259
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speakers in the VCTK dataset, we selected the top1260

47 female speakers along with all the male speak-1261

ers. For each speaker, we chose the first 30 audio1262

recordings. The task was set as: “Is the speaker in1263

this audio segment male or female?Please answer1264

with ‘male’ or ‘female’."1265

B.4.16 Speech Emotion Recognition1266

In a genuine sense, understanding emotions in mod-1267

els should not solely depend on interpreting text.1268

Emotions do not have a one-to-one correspondence1269

with sentences; the same sentence can express var-1270

ious emotional tones depending on the speaker’s1271

emotional state. Therefore, it is crucial to advo-1272

cate for models to move beyond mere textual con-1273

tent of sentences when inferring emotions and to1274

delve into the non-textual information within the1275

speech. Accordingly, in the evaluation set for emo-1276

tion recognition, we employed a dataset unrelated1277

to both the emotions and the sentence content—the1278

RAVDESS dataset (Livingstone and Russo, 2018).1279

The task is then defined as: “What emotion does1280

this audio clip convey? Please answer by single1281

word select from [‘neutral’, ‘happy’, ‘sad’, ‘angry’,1282

‘fearful’, ‘disgust’, ‘surprised’]."1283

To demonstrate that the emotions in our con-1284

structed dataset are independent of the textual con-1285

tent, we used a combination of the whisper-v3-large1286

(Radford et al., 2023) model and the gpt-4-o (Ope-1287

nAI, 2023) model to predict the emotions in the1288

audio files of the dataset. The experimental results1289

can be found in the Tab. 101290

B.4.17 Cappella Emotion Recognition1291

We also used RAVDESS (Livingstone and Russo,1292

2018) to construct the evaluation set for singing1293

emotion detection.The task is then defined as:1294

“What emotion does this audio clip convey? Please1295

answer by single word select from [‘neutral’,1296

‘happy’, ‘sad’, ‘angry’, ‘fearful’, ‘disgust’, ‘sur-1297

prised’]."1298

B.4.18 Emotional Intensity Perception1299

We used the RAVDESS (Livingstone and Russo,1300

2018) dataset to construct the evaluation set for1301

Emotional Intensity Perception. Since most mod-1302

els accept only a single audio input, we merged1303

two audio segments and tasked the model with ana-1304

lyzing which part of the combined audio segment1305

exhibits stronger emotional intensity. Specifically,1306

we defined the problem as follows: “In this audio1307

segment, a sentence is repeated twice. Is the emo-1308

tion in the ‘former’ stronger or the ‘latter’ stronger?1309

Please answer with ‘former’ or ‘latter’." To bal- 1310

ance the proportion between the two options, we 1311

alternated the placement of the stronger emotion, 1312

sometimes positioning it at the former and other 1313

times at the latter when synthesizing the data. 1314

B.4.19 Emotion Translation 1315

We believe that translations should reflect differ- 1316

ent expressions based on the emotional context. 1317

For example, the phrase “What are you doing?" 1318

can convey various meanings depending on the 1319

emotion—whether it’s anger, surprise, sadness, or 1320

neutrality. In an angry context, it expresses strong 1321

disapproval or questioning of the person’s actions; 1322

in a surprised context, it conveys disbelief about 1323

what the other person is doing; and in a sad context, 1324

it should reflect disappointment. Therefore, trans- 1325

lations should be adjusted accordingly to better 1326

capture these nuances. 1327

We observed that cosyVoice (SpeechTeam, 1328

2024) demonstrates excellent zero-shot capabilities, 1329

effectively mimicking the tone and style of the in- 1330

put speech prompt. Therefore, we used cosyVoice 1331

to emulate the sentences with strong emotions from 1332

the RAVDESS (Livingstone and Russo, 2018) 1333

dataset to generate speech with corresponding emo- 1334

tions. After synthesis, we had five native speakers 1335

review the generated speech. If any of the native 1336

speakers felt that the synthesized speech did not 1337

convey the intended emotion, that segment was dis- 1338

carded. Ultimately, we obtained xxx valid speech 1339

samples. The task was set as: “Please translate 1340

the following sentence into the most appropriate 1341

Chinese, based on the emotion and content of this 1342

audio segment." 1343

B.4.20 Singing Detection 1344

We aim for singing detection to go beyond simply 1345

identifying background music or relying on lyrics 1346

to determine whether singing is occurring. Instead, 1347

we seek to differentiate singing from normal speech 1348

by recognizing the distinct rhythm and melody 1349

of singing. To achieve this, we constructed our 1350

singing detection dataset using RAVDESS ( (Liv- 1351

ingstone and Russo, 2018)), which consists entirely 1352

of a cappella performances where the context is un- 1353

related to the singing. The task is then defined as: 1354

“Is there singing in this audio clip?Please answer 1355

by yes or no.". 1356

B.4.21 COVID-19 Risk Detection 1357

We use the Virufy COVID-19 Open Cough Dataset 1358

(Chaudhari et al., 2020) to construct our evalua- 1359
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Table 10: emotion detection evaluation set Supplementary experiments

First repetition Second repetition Third repetition
Accuracy 10.53% 9.33% 9.73%

tion set. We classify the samples with positive test1360

results as COVID-19 at risk, while those with nega-1361

tive results are classified as not at risk. And the task1362

was set as: “Please listen to the following cough1363

sound and determine whether the person is at risk1364

of having a COVID-19 infection. Respond with1365

yes or no."1366

B.4.22 Cough Type Classification1367

We use the COUGHVID (Orlandic et al., 2021)1368

dataset to construct our evaluation set. We only1369

utilize the data that has been assessed by experts,1370

which falls into two categories: evaluations by four1371

experts and evaluations by one expert. We priori-1372

tize samples where three out of four experts agree,1373

and then we use samples rated as "good" by the1374

single expert. In this task, we ask the model to dis-1375

tinguish whether the cough is a wet cough or a dry1376

cough. And the task was set as: “Please help me1377

determine whether the cough in this audio segment1378

is a dry cough or a wet cough. Please respond with1379

‘wet’ or ‘dry’."1380

B.4.23 Cough Origin Diagnosis1381

We use the COUGHVID (Orlandic et al., 2021)1382

dataset to construct our evaluation set. We only1383

utilize the data that has been assessed by experts,1384

which falls into two categories: evaluations by four1385

experts and evaluations by one expert. We priori-1386

tize samples where three out of four experts agree,1387

and then we use samples rated as "good" by the1388

single expert. In this task,The origins we tested1389

include‘COVID-19’, ‘healthy cough’, ‘lower infec-1390

tion’, or ‘upper infection’. And the task was set1391

as: “Please help me determine the infection ori-1392

gin of the cough in the following audio segment.1393

Choose from ‘COVID-19’, ‘healthy cough’, ‘lower1394

infection’, or ‘upper infection’."1395

B.4.24 Cough Severity Assessment1396

We use the COUGHVID (Orlandic et al., 2021)1397

dataset to construct our evaluation set. We only1398

utilize the data that has been assessed by experts,1399

which falls into two categories: evaluations by four1400

experts and evaluations by one expert. We priori-1401

tize samples where three out of four experts agree,1402

and then we use samples rated as "good" by the1403

single expert. In this task, the severity levels we 1404

tested include: ‘pseudocough’, ‘mild’, or ‘severe’. 1405

And the task was set as: “Please help me assess the 1406

severity of the cough in the audio segment. Choose 1407

from ‘pseudocough’, ‘mild’, or ‘severe’." 1408

B.4.25 Spoken English Coach 1409

We used speechocean762 (Zhang et al., 2021) to 1410

construct our evaluation set.In selecting our eval- 1411

uation set, we aimed to include a wide variety of 1412

pronunciation errors by prioritizing sentences with 1413

poorer pronunciation quality. Here is how we built 1414

our sentence collection: We started by selecting 1415

207 sentences based on word stress errors (score 1416

== 5). Next, we chose 6 sentences with incom- 1417

plete sentences or error-containing words (score < 1418

10). Then, we selected 332 sentences with poor 1419

fluency (score <= 5). Following that, we picked 85 1420

sentences with poor rhythm (score <= 5). Subse- 1421

quently, we chose 179 sentences with low accuracy 1422

(score <= 5). Finally, we selected 40 sentences 1423

from each accuracy score level where the scores 1424

were higher. This process resulted in a final set 1425

of 1009 sentences. When constructing the ground 1426

truth for the answer output, we adopted the de- 1427

scriptions used in the original project for dataset 1428

scoring, and by concatenating these descriptions, 1429

we formed the final answer. 1430

B.4.26 Voice Detective 1431

When constructing the Voice Detective evaluation 1432

set, we used the SpeechAccentArchive dataset 1433

(Weinberger, 2013). The primary reason for choos- 1434

ing this dataset is the difficulty in obtaining a large 1435

amount of similar data, which significantly reduces 1436

the risk of data leakage. This constraint also com- 1437

pels researchers to focus more on factors such as 1438

the age and background of the users within the 1439

dataset. 1440

B.5 Credibility Verification 1441

B.5.1 Instructions Given To Participants 1442

All participants were informed to select data from 1443

the current set that did not meet the expected 1444

question-answer criteria or lacked natural fluency. 1445

18



B.5.2 Recruitment And Payment1446

We provided all participants with a one-time re-1447

search stipend of 500 RMB, which is more than1448

sufficient for the region they are located in.1449

B.5.3 Data Consent1450

We explicitly informed these participants that we1451

would use their evaluation results as a quality check1452

for our data and that their data would not be used1453

for any other purposes.1454

These participants have authorized us to use their1455

data for research purposes. As the data has not been1456

authorized for public release, we will not make it1457

publicly available.1458

B.5.4 ASR for Legal Term1459

Since the legal vocabulary we selected, can be1460

found in open-source code, is not complex, we in-1461

troduced only one evaluator with a background in1462

legal education, who is a native Mandarin speaker.1463

The remaining three evaluators are regular native1464

Mandarin speakers, making a total of four evalua-1465

tors. If any one of the evaluators deems the speech1466

quality insufficient, the corresponding speech will1467

be discarded. The specific details of the evaluators1468

are as follows:1469

Evaluator 1: 24 years old, male, graduated with1470

a bachelor’s degree from China University of Po-1471

litical Science and Law and is currently a master1472

student at China University of Political Science and1473

Law. Native Mandarin speaker.1474

Evaluator 2: 20 years old, female, currently an1475

undergraduate student at Hubei University of Tech-1476

nology. Native Mandarin speaker.1477

Evaluator 3: 20 years old, female, currently an1478

undergraduate student at Wuchang Shouyi Univer-1479

sity. Native Mandarin speaker.1480

Evaluator 4: 26 years old, male, high school1481

graduate. Native Mandarin speaker.1482

B.5.5 ASR for Legal Medical1483

Due to the involvement of some medical termi-1484

nology, this paper selected two evaluators with a1485

medical background, along with two additional1486

evaluators without a medical background. All of1487

them are native Mandarin speakers. Similarly, if1488

any one of the evaluators finds an abnormality in1489

the speech, it will be discarded. The specific details1490

of the evaluators are as follows:1491

Evaluator 1: 33 years old, female, graduated1492

with a bachelor’s degree from Hebei Medical Uni-1493

versity and has since been working in a medical- 1494

related field. Native Mandarin speaker. 1495

Evaluator 2: 26 years old, female, completed an 1496

eight-year integrated program (continuously pur- 1497

sued both bachelor’s and master’s degrees) at Hebei 1498

Medical University and continues to work in a 1499

medical-related field. Native Mandarin speaker. 1500

Evaluator 3: 25 years old, male, graduated with a 1501

bachelor’s degree from Beijing Forestry University 1502

and is currently a graduate student at Beijing Uni- 1503

versity of Posts and Telecommunications. Native 1504

Mandarin speaker. 1505

Evaluator 4: 54 years old, male, graduated from 1506

a technical secondary school. Native Mandarin 1507

speaker. 1508

B.5.6 Emotion Translation 1509

We selected four evaluators and recorded their En- 1510

glish proficiency. Similarly, if any one of the evalu- 1511

ators finds an abnormality in the speech, it will be 1512

discarded. The specific details of the evaluators are 1513

as follows: 1514

Evaluator 1: 25 years old, female, graduated 1515

with a bachelor’s degree from China Jiliang Univer- 1516

sity and a master’s degree from Beijing University 1517

of Posts and Telecommunications. English profi- 1518

ciency: CET-6. 1519

Evaluator 2: 25 years old, female, graduated 1520

with both a bachelor’s and a master’s degree from 1521

Beijing University of Posts and Telecommunica- 1522

tions. English proficiency: CET-6. 1523

Evaluator 3: 23 years old, male, graduated with a 1524

bachelor’s degree from Beijing Institute of Technol- 1525

ogy and is currently a PhD student at The Chinese 1526

University of Hong Kong, Shenzhen. English pro- 1527

ficiency: IELTS Academic score: 6.5. 1528

Evaluator 4: 28 years old, male, graduated with a 1529

bachelor’s degree from Beijing University of Posts 1530

and Telecommunications and is a PhD student at 1531

Beijing University of Posts and Telecommunica- 1532

tions. English proficiency: CET-6. 1533

C Experiment Details 1534

Below, we will divide the experiment details into 1535

four parts: details of human evaluation in Sec. C.1, 1536

details of model evaluation in Sec. C.2, and metric 1537

details in Sec. C.3. 1538

C.1 Humans Evaluation Details 1539

In this section, we will introduce the participant in- 1540

formation of our humans performance evaluation in 1541
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Sec. C.1.4 and present the results of the consistency1542

test for the result in Sec. C.1.5.1543

C.1.1 Instructions Given To Participants1544

We informed the participants to select the answer1545

they deemed correct based on their first impression1546

of the question displayed on the webpage and the1547

audio they heard.1548

To clearly demonstrate our testing process, we1549

present the details of our web-based testing in Fig 5.1550

It should be noted that each webpage contains only1551

one type of task for testing, and I am using Loud-1552

ness Assessment as an example here.1553

Figure 5: Website for human testing.

C.1.2 Recruitment And Payment1554

We provided all participants with a research stipend1555

of 1000 RMB, which is more than sufficient for the1556

region they are located in.1557

C.1.3 Data Consent1558

We have explicitly informed all participants that1559

their evaluation data will be used in our research,1560

including but not limited to reflecting the accuracy1561

of human performance on our benchmark.1562

All participants have given informed consent,1563

acknowledging that their data may be used for aca-1564

demic research purposes and potentially published.1565

However, this data will only be used for academic1566

research purposes.1567

C.1.4 Participant Information 1568

Evaluator 1: Female, 28 years old, graduated with 1569

a bachelor’s degree from East China Normal Uni- 1570

versity, PhD from the Institute of Physics CAS. 1571

Evaluator 2: Female, 26 years old, graduated 1572

with a bachelor’s degree from Beijing Normal Uni- 1573

versity, master’s degree from Shanghai Jiao Tong 1574

University. 1575

Evaluator 3: Male, 29 years old, graduated with 1576

a bachelor’s degree from Beijing University of 1577

Chemical Technology, PhD from Beijing Univer- 1578

sity of Posts and Telecommunications. 1579

Evaluator 4: Male, 27 years old, graduated with 1580

a bachelor’s degree from Xidian University, cur- 1581

rently pursuing a PhD at Singapore University of 1582

Technology and Design. 1583

C.1.5 Consistency Test 1584

To verify the consistency of the humans evaluation, 1585

We focus on objective multiple-choice questions. 1586

we calculated the proportion of questions where all 1587

three volunteers selected the same option, as well 1588

as the proportion where all four volunteers chose 1589

the same option, relative to the total number of 1590

questions. These proportions are shown in Tab. 11. 1591

It is also important to note that, since our testers 1592

are only proficient in English, they were unable to 1593

complete the Language Identification task. 1594

C.1.6 Deficiency in Humans Evaluation. 1595

During the Humans Evaluation process, we were 1596

unable to find a native English speaker, but all par- 1597

ticipants involved in the evaluation are proficient 1598

English users. We also could not find individuals 1599

who are proficient in multiple languages, which 1600

made it difficult to conduct a Humans Evaluation 1601

for the Language Identification task. 1602

C.2 Models Evaluation Details 1603

We divide our experimental details into two sec- 1604

tions: the model replication platform in Sec. C.2.1, 1605

and the model replication details in Sec. C.2.2. 1606

C.2.1 Experimental Platform 1607

In this paper’s experiments, all servers used are 1608

equipped with an Intel® Xeon® Platinum 8358 1609

CPU @ 2.60GHz as the core processor. Each server 1610

is loaded with eight NVIDIA A800-SXM4-80GB 1611

graphics cards, and each model runs with exclusive 1612

use of one A800 card. 1613
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Table 11: Consistency for Humans Evaluation

Task Accuracy Num of Questions Proportion Proportion
(3 Evaluators Same) (4 Evaluators Same)

Volume Perception 100.00% 160 100.00% 100.00%
Pitch Perception 96.25% 160 100.00% 95.00%
Binaural Effect Perception 100.00% 160 100.00% 100.00%
Ambient Noise Detection 91.88% 160 100.00% 87.50%
Acoustic Scene Classification 90.28% 720 97.22% 93.89%
Speaker’s Age Prediction 52.59% 240 76.67% 46.67%
Speaker’s Gender Recognition 97.50% 160 100.00% 100.00%
Speech Emotion Recognition 50.71% 560 94.29% 85.71%
Cappella Emotion Recognition 62.25% 400 92.00% 68.00%
Emotion Intensity Perception 97.50% 160 100.00% 95.00%
Singing Detection 98.13% 160 100.00% 97.50%
COVID-19 Risk Detection 60.63% 160 70.00% 17.50%
Cough Type Classification 52.50% 160 77.50% 22.50%
Cough Origin Diagnosis 32.19% 320 28.75% 2.50%
Cough Severity Assessment 45.42% 240 45.00% 11.67%

Table 12: Gap Between Professionals and Non-Professionals

Task Non-Professionals Accuracy Professionals Accuracy

COVID-19 Risk Detection 60.63% c
Cough Type Classification 52.50% d
Cough Origin Diagnosis 32.19% a
Cough Severity Assessment 45.42% b

C.2.2 Models Replication Details1614

In this paper, we aim to select the 7B-level versions1615

of various models wherever possible. However,1616

due to the differences between various models, it1617

is difficult to ensure that their parameter counts are1618

exactly the same.1619

GPT-4o For the GPT-4o model, we reproduced1620

the model by calling its API.1621

Mu-LLaMA In the process of implementing1622

the model Mu-LLaMA (Liu et al., 2024b) , this1623

paper used the LLama2-7B-chat (Touvron et al.,1624

2023) checkpoint to maintain consistency with the1625

original paper, and utilized the open-source MU-1626

LLaMA checkpoint provided.1627

GAMA Since the primary focus of this paper is1628

to test the audio understanding capabilities of the1629

GAMA model (Ghosh et al., 2024b), we consulted1630

with the authors and selected the ‘state4epoch2’1631

checkpoint over the ‘state5epoch2’ checkpoint, as1632

it has superior audio comprehension abilities1633

SALMONN For the SALMONN model (Tang1634

et al., 2023), we tested the model using its open-1635

source code.1636

Qwen2-Audio For the Qwen2-Audio model1637

(Chu et al., 2024), we reproduced the model us-1638

ing the 7B version of its open-source code.1639

C.3 Matrix 1640

We have designed three metrics: WER, the accu- 1641

racy for objective multiple-choice questions, and 1642

GPT-4o scoring, specifically targeting ASR tasks, 1643

objective multiple-choice questions, and subjective 1644

responses. This section will provide detailed ex- 1645

planations. For an overview, please refer to the 1646

following Tab. 13. 1647

C.3.1 WER for ASR 1648

The Word Error Rate (WER), a key metric for gaug- 1649

ing the effectiveness of Automatic Speech Recog- 1650

nition (ASR) systems, quantifies the divergence 1651

between an ASR system’s output and a reference 1652

transcript. It assesses the total error rate by tallying 1653

the number of insertion, deletion, and substitution 1654

operations needed to align the ASR output with the 1655

true reference text. 1656

While computing the WER, certain variances 1657

in word usage, like "I am" compared to "I’m," 1658

may be seen as semantically equivalent by human 1659

standards but are flagged as errors by computa- 1660

tional algorithms. Thus, a standardization process 1661

is essential prior to WER calculation to make both 1662

texts directly comparable. The methodology for 1663

this standardization, akin to what is employed in 1664

the Whisper (Radford et al., 2023) framework, has 1665

been detailed in a related research paper. It has 1666
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Table 13: Metrics for Each task

Task Metric

Language Identification 5-Categories Acc
Speech ASR WER
Song ASR WER
Volume Perception 2-Categories Acc
Binaural Effect Perception 2-Categories Acc
Ambient Noise Detection 2-Categories Acc
Speaker’s Age 3-Categories Acc
Speaker’s Gender 2-Categories Acc
Sound Event Classification 9-Categories Acc
Singing Detection 2-Categories Acc
Speech Emotion Recognition 7-Categories Acc
Song Emotion Recognition 5-Categories Acc
Emotion Intensity Perception 2-Categories Acc
Disorder Detection 2-Categories Acc
Speech Disorders Detection 2-Categories Acc
COVID-19 Risk Detection 2-Categories Acc
ALS Detection 2-Categories Acc
Accent Detection 11-Categories Acc
Emotion Translation GPT Score
Spoken English Coach GPT Score
Voice Detective GPT Score

been demonstrated that this approach exerts negligi-1667

ble influence on the assessment of WER outcomes1668

when tested against the LibriSpeech (Panayotov1669

et al., 2015) dataset, which was utilized in our pa-1670

per.1671

For cases where the error rate exceeds 100% (i.e.,1672

WER is over 1), we mark them in our experimen-1673

tal records as having significant recognition errors.1674

Such data will not be included in the calculation of1675

the final average WER. In the final record of the1676

experiment, we will focus on two key metrics: first,1677

the ASR completion rate, which is the percentage1678

of data with a WER less than 1; second, the mean1679

WER of the completed portion, which is the av-1680

erage WER of data with a WER less than 1. If1681

the mean WER of the completed portion does not1682

decrease to below 0.8, we will conclude that the1683

model lacks effective automatic speech recognition1684

(ASR) capabilities and document this finding in1685

detail in the experimental results.1686

The implementation details regarding WER1687

(Word Error Rate) can be found in our publicly1688

available code.1689

C.3.2 Accuracy for objective multiple-choice 1690

questions 1691

A selection is considered correct only if the model 1692

chooses the correct answer and no other options. If 1693

the model selects two or more options, even if the 1694

correct one is included, it will be deemed incorrect. 1695

C.3.3 Accuracy for ASR on Terms 1696

Since in these tasks we primarily assess the ability 1697

of speech LLMs to transcribe terms, we consider 1698

a response correct as long as the correct term is in- 1699

cluded in the speech transcription, without focusing 1700

on the accuracy of other parts of the sentence. 1701

C.3.4 Scoring for Subjective Response 1702

Questions 1703

In our experiments, we used GPT-4o to assist in 1704

evaluating the results. The specific prompt used is 1705

as follows. 1706

Prompt for Emotion Translation 1707

I currently need your assistance in evaluating 1708

some translations. The most suitable translations 1709

should incorporate the corresponding emotions ap- 1710

propriately. The scoring ranges from 0 to 4. I will 1711

provide you with the original English sentence, the 1712

associated emotional label, and the suggested trans- 1713

lation, allowing you to score them based on the 1714

context. 1715

Here are some examples: 1716

[Here are some scoring examples. Due to space 1717

limitations, we have omitted them in this section. 1718

You can find the details in the code we have made 1719

available.] 1720

Now Answer:[ANSWER] 1721

Label:The original sentence is: <emo- 1722

tion>[SENTENCE] The suggested translation is: 1723

[SUGGESTION]. 1724

Please provide your score. Prompt for Spoken 1725

English Coach 1726

I now need you to help me evaluate some An- 1727

swers for accuracy. You need to evaluate and 1728

score in the order of overall pronunciation, fluency, 1729

prosody, words that are mispronounced, and words 1730

that have incorrect stress. The score ranges from 0 1731

to 4. Here are the specific scoring rules: You need 1732

to first check if the evaluation of overall pronunci- 1733

ation in the Answer matches the Label. If they do 1734

not match, give a score of 0 and continue with the 1735

evaluation; if there is no relevant description, also 1736

give a score of 0 and continue with the evaluation; 1737

if it is correct, add 1 point and continue with the 1738

evaluation. 1739
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Figure 6: Distribution of three types of training data used by various models

For fluency and prosody in the Answer com-1740

pared to the Label, award up to 1 point for each1741

if completely correct, a partial score for partially1742

correct, and no points if there is no relevant expres-1743

sion. Finally, check the descriptions in the Answer1744

and Label regarding words that are mispronounced1745

and words that have incorrect stress. Award 1 point1746

only if all are correct. If part of the descriptions1747

are correct, you can give a partial score, such as1748

0.33 points for one out of three correct descriptions.1749

Here are some examples:1750

[Here are some scoring examples. Due to space1751

limitations, we have omitted them in this section.1752

You can find the details in the code we have made1753

available.]1754

Now Answer:[ANSWER]1755

Label:[LABEL]1756

Please provide your score.1757

C.3.5 Prompt for Voice Detective1758

I now need you to help me evaluate some Answers1759

for accuracy. You should focus on whether the1760

information about gender, place of birth, age, and1761

native language in the Answer matches the Label,1762

and provide a final rating. Award 1 point for each1763

correct piece of information, with no points for1764

incorrect information. Please give your score on a1765

scale of 0 to 4. Here are some examples:1766

[Here are some scoring examples. Due to space1767

limitations, we have omitted them in this section.1768

You can find the details in the code we have made1769

available.]1770

Now Answer:[ANSWER]1771

Label:[LABEL]1772

Please provide your score.1773

C.4 Speech Instruction1774

When adopting the speech instruction, we use1775

Google Translate’s text-to-speech tool to convert1776

the text instruction into speech, which is then1777

merged with the original audio segment and fed1778

into the speech LLMs.1779

D Now Speech LLM Limited Types of 1780

Training Data 1781

We observed in Tab. 2 that certain tasks, partic- 1782

ularly those in Level 2, are easy for humans but 1783

challenging for speech LLMs. We first analyzed 1784

the composition of the training data for speech 1785

LLMs, as shown in Fig. 6. We found that most 1786

speech LLMs tend to disregard audio data except 1787

for GAMA, whereas GAMA focuses primarily on 1788

audio. This indicates distinct data biases among 1789

different speech LLMs, leading to variations in task 1790

preferences. 1791

To further examine the influence of task pref- 1792

erence, we compared the performance of vari- 1793

ous speech LLMs with Whisper V3 (trained with 1794

∼5,000k hours), as shown in Tab. 4. We found 1795

that Whisper still outperforms other models on the 1796

Lyrics Transcription task due to its the massive 1797

training data. On the other hand, with the help 1798

of the learned knowledge, speech LLMs perform 1799

significantly better at recognizing certain terms. 1800

This demonstrates that speech LLMs have great 1801

potential compared to traditional speech models. 1802

Notably, we also tested a Small model trained ex- 1803

clusively on an audio dataset. This Small model 1804

achieved 100% accuracy, while speech LLMs strug- 1805

gled with the task. 1806

Take-away 7. Current insufficient diversity and 1807

completeness of training data could not help 1808

speech LLMs reach a higher level. 1809

E Now Speech LLM Inadequate 1810

Instruction Following 1811

We observed that some models exhibit poor instruc- 1812

tion following in Tab. 2. Two reasons can lead to 1813

these results: 1) the models do not understand the 1814

instructions, and 2) the instruction fails to help the 1815

models comprehend the speech. 1816

We classify the cause by observing changes in 1817

performance after perturbing the prompt. If the 1818

model is insensitive to different perturbed prompts, 1819

it indicates that the model cannot understand the 1820

prompt. On the other hand, if the models show 1821
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Figure 7: Performance of speech LLMs with different
instructions on speaker age task (left) and scene classi-
fication task (right). Gray line shows random selection
accuracy. Details about the instructions and results are
shown in App. E.1.

significantly better performance with a properly1822

structured prompt, it suggests that the model could1823

understand the task, while requires the specific in-1824

struction. We choose the two Level 3 tasks (Age1825

prediction and Ambient Noise Detection) where1826

the instruction following ability is crucial, and the1827

results shown in Fig. 7.1828

For the result of Fig. 7, we can find the Mullama1829

is not sensitive about the instruction. This prove1830

the model can not figure out this task. Further, the1831

performance of most speech LLMs highly related1832

with the specific prompt, this shows models are1833

sensitive with the format of instruction. Comparing1834

with the text LLMs which are robust with diverse1835

instruction, the speech LLMs need much effect to1836

guarantee instruction following.1837

Take-away 8. Current speech LLMs follow in-1838

structions poorly.1839

E.1 Instruction Follow Experiment1840

E.2 Speaker’s Age Prediction1841

The instructions used in the experiment are as fol-1842

lows:1843

• Instruction variation I In which age group1844

do you think the speaker’s voice belongs?1845

• Instruction variation II What age category1846

do you believe the speaker’s voice fits into1847

best?1848

• Instruction variation III Which age bracket1849

do you feel corresponds to the speaker’s1850

voice?1851

• Instruction variation IV How old do you1852

think the speaker sounds, based on their1853

voice?1854

• Instruction variation V Which age range1855

would you assign to the speaker’s voice?1856

• Instruction variation VI What age range do 1857

you associate with the speaker’s voice? 1858

• Instruction variation VII Which age group 1859

do you think best describes the speaker’s vocal 1860

characteristics? 1861

• Instruction variation VIII What do you be- 1862

lieve is the age range of the speaker judging 1863

by their voice? 1864

The experimental results are recorded in Tab. 14. 1865

E.3 Acoustic Scene Classification 1866

• Instruction variation I How would you de- 1867

tect the background sound in this audio clip? 1868

• Instruction variation II What kind of ambi- 1869

ent noise can be heard in this segment? 1870

• Instruction variation III Can you describe 1871

the environmental sounds present in this au- 1872

dio? 1873

• Instruction variation IV What background 1874

audio elements are featured in this segment? 1875

• Instruction variation V What atmosphere is 1876

created by the sounds in this audio segment? 1877

• Instruction variation VI Can you identify 1878

the ambient sound in this clip? 1879

• Instruction variation VII What noises are 1880

occurring in the background of this audio? 1881

• Instruction variation VIII What type of sur- 1882

rounding sound is present in this recording? 1883

The experimental results are recorded in Tab. 15. 1884

F Phonemic Processing Ability 1885

Experiment 1886

The specific details of the experimental tasks are 1887

presented in Tab. 16. 1888

G Other conditions or Additional notes 1889

G.1 Potential Risks 1890

Our research includes human evaluation data, and 1891

if released, this data may pose uncontrolled privacy 1892

and preference leakage risks. Therefore, we will 1893

carefully consider various ethical and moral risks 1894

before deciding whether to release the details of 1895

this human evaluation data. 1896
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Table 14: The impact of different prompts on age detection

Prompt Qwen-Audio Qwen2-Audio MuLLama GAMA
Our benchmark instruction 29.29% 38.55% 33.60% 0.2%
Instruction variation I 23.03% 36.36% 35.45% 0.4%
Instruction variation II 31.82% 36.97% 35.45% 4.85%
Instruction variation III 12.83% 38.38% 34.75% 0.0%
Instruction variation IV 4.44% 43.03% 31.31% 0.2%
Instruction variation V 28.89% 37.37% 33.03% 0.1%
Instruction variation VI 19.90% 37.27% 34.14% 0.0%
Instruction variation VII 6.57% 36.77% 30.81% 0.3%
Instruction variation VIII 26.77% 41.11% 28.67% 0.4%

Table 15: The impact of different prompts on acoustic scene classification

Prompt Qwen-Audio Qwen2-Audio MuLLama GAMA
Our benchmark instruction 18.84% 27.67% 5.07% 12.05%
Instruction variation I 13.05% 35.68% 1.91% 0.00%
Instruction variation II 8.97% 13.73% 5.91% 0.36%
Instruction variation III 4.29% 9.66% 0.00% 0.94%
Instruction variation IV 5.43% 9.95% 0.00% 1.87%
Instruction variation V 13.95% 28.29% 1.87% 0.54%
Instruction variation VI 15.32% 21.87% 2.02% 0.25%
Instruction variation VII 5.37% 5.23% 1.8% 0.00%
Instruction variation VIII 9.62% 18.92% 6.31% 4.32%

G.2 Artifact Use Consistent With Intended1897

Use1898

We only used these data in the research, including1899

appropriate human-annotated data and data pro-1900

cessed using Speech LLM models, and did not use1901

the data for any other purposes.1902

We only used the tools to construct our bench-1903

mark data and did not use them for any other pur-1904

poses.1905

G.3 Data Contains Personally Identifying Info1906

Or Offensive Content1907

G.3.1 Privacy protection during the data1908

collection process1909

All the data we collected come from publicly avail-1910

able datasets and strictly comply with the relevant1911

privacy protection protocols.1912

G.3.2 Privacy protection during the data1913

acquisition process1914

We did not collect any real human speech data, only1915

synthesizing some data using TTS tools, and the1916

synthesis process strictly adhered to the relevant1917

privacy protocols.1918

G.3.3 Privacy protection of volunteers1919

We discuss our participants anonymously in both1920

Appendix Section B.5 and Appendix Section C.1.1.1921

G.4 Documentation Of Artifacts 1922

G.4.1 The use of our benchmark 1923

Our benchmark is used to assess the level of under- 1924

standing that speech LLMs have of speech, eval- 1925

uate their performance, and help related research 1926

identify their issues and shortcomings. 1927

G.4.2 Languages involved 1928

Our research primarily focuses on English, with a 1929

small amount of Chinese included. 1930

G.5 Information About Use Of AI Assistants 1931

We used AI models for grammar checking and in a 1932

few instances for code writing. 1933

25



Table 16: Three tasks for assessing phonemic processing ability

Task Prompt

Sequence-level Given a phone sequence, “M AA0 R K IH0 Z ...”, what sentence does it represent?

Token-level Given a tokenized phone sequence, “[M AA0 R K] [IH0 Z] ...”, what sentence
does it represent?

Token-level
with one shot

Given a tokenized phone sequence, “[M AA0 R K] [IH0 Z] ...”, what sentence
does it represent? For example, if the phone sequence is “[F AO0 R] [F AY0 V],
[S IH0 K S] [S EH1 V N] [EY0 T]” the sentence can be: “four five six seven eight nine”.

Table 17: Utterances for Each Task

Task Utterances

Language Identification German: 500, Spanish: 500, English: 500,
French: 500, Italian: 500

Auto-Speech Recognition English:2791
ASR for Legal Terms Chinese:102
ASR for Medical Terms Chinese:203
Auto-Lyrics Transcription English: 868
Volume Perception Increasing: 512, Decreasing: 512
Pitch Perception (80-150)Hz: 300, (180-250)Hz: 300
Binaural Effect Perception Left ear: 400, Right ear: 400
Loudness Assessment loud: 500, soft: 500
Speech Rate Assessment rapid: 500, slow: 500
Speech Pause Detection Yes: 500, No: 500
Ambient Noise Detection Yes: 824, No: 824
Acoustic Scene Classification Babble: 310, Copy Machine: 310, Neighbor:

310, Shutting Door: 315, Airport Announce-
ments: 305, Munching: 300, Typing: 310,
Air-Conditioner: 305, Vacuum Cleaner: 310

Speaker’s Age Teens to Twenties: 330, Thirties to Forties:
330, Fifties to Sixties: 330

Speaker’s Gender Female: 1410, Male: 1410
Speech Emotion Recognition Happy: 200, Disgust: 200, Fearful: 200, Sad:

200, Surprised: 200, Angry: 200, Neutral: 100
Cappella Emotion Recognition Angry: 184, Sad: 184, Happy: 184, Fearful:

184, Neutral: 92
Emotion Intensity Perception Former: 143, Latter: 143
Emotion Translation English: 325
Singing Detection Singing: 1012, Speech: 1012
COVID-19 Risk Detection Yes:56, No:64
Cough Type Classification Wet: 300 , Dry: 300
Cough Origin Diagnosis COVID-19: 198, Healthy Cough: 200, Lower

Infection: 200,Upper Infection: 200
Cough Severity Assessment Pseudocough: 170, Mild: 170, Severe: 170
Spoken English Coach English: 1009
Voice Detective English: 2134
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