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Abstract

Image super-resolution (SR) with generative ad-
versarial networks (GAN) has achieved great suc-
cess in restoring realistic details. However, it
is notorious that GAN-based SR models will in-
evitably produce unpleasant and undesirable ar-
tifacts, especially in practical scenarios. Previ-
ous works typically suppress artifacts with an ex-
tra loss penalty in the training phase. They only
work for in-distribution artifact types generated
during training. When applied in real-world sce-
narios, we observe that those improved methods
still generate obviously annoying artifacts during
inference. In this paper, we analyze the cause
and characteristics of the GAN artifacts produced
in unseen test data without ground-truths. We
then develop a novel method, namely, DeSRA,
to Detect and then “Delete” those SR Artifacts
in practice. Specifically, we propose to measure
a relative local variance distance from MSE-SR
results and GAN-SR results, and locate the prob-
lematic areas based on the above distance and
semantic-aware thresholds. After detecting the
artifact regions, we develop a finetune procedure
to improve GAN-based SR models with a few
samples, so that they can deal with similar types
of artifacts in more unseen real data. Equipped
with our DeSRA, we can successfully eliminate
artifacts from inference and improve the ability
of SR models to be applied in real-world sce-
narios. The code will be available at https:
//github.com/TencentARC/DeSRA.
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Figure 1. Visualization of GAN-SR artifacts, artifact detection re-
sults, and improved GAN-SR results by our proposed DeSRA.
Since these GAN-inference artifacts appear on unseen real test
data, existing methods that deal with GAN-SR artifacts by improv-
ing the training like LDL (Liang et al., 2022b) would still suffer
from these artifacts. Our DeSRA can effectively detect the artifact
regions and then improve the SR model to eliminate those artifacts
and restore visually-pleasant results. Zoom in for best view

1. Introduction
Single image super-resolution (SISR) aims to reconstruct
high-resolution (HR) images from their low-resolution(LR)
observations. Since the pioneering work of SRCNN (Dong
et al., 2014), numerous approaches (Lim et al., 2017; Zhang
et al., 2018b; Liang et al., 2021) have been developed and
made great strides in this field. Among them, GAN-based
methods (Ledig et al., 2017; Wang et al., 2018b) have
achieved great success in generating realistic SR results
with detailed textures. Recently, BSRGAN (Zhang et al.,
2021) and Real-ESRGAN (Wang et al., 2021c) extend GAN-
based models to real-world applications and obtain promis-
ing results, demonstrating their immense potential to restore
textures for real-world images. However, it is notorious that
GAN-SR methods often generate perceptually unpleasant
artifacts, which would seriously affect the user experience.
This problem is exacerbated in real-world scenarios, due to
the unknown and complex degradation of LR images.

Several works (Ma et al., 2020; Liang et al., 2022b) have
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Figure 2. MSE-SR and GAN-SR results of some practical samples. GAN-SR results with artifacts have even worse visual quality than
MSE-SR results. The artifacts are complicated with different types and characteristics, and are diverse for different image contents.
Regions with red circles are GT of the detection mask.

been proposed to deal with the artifacts generated by GAN-
SR models. Typically, LDL (Liang et al., 2022b) proposes to
construct a pixel-wise map indicating the probability of each
pixel being an artifact by analyzing the type of texture, and
then penalizes the artifacts by adding loss during training.
Although it indeed improves GAN-SR results, we can still
observe obvious visual artifacts when inferencing real-world
testing data, as shown in Fig. 1. It is hard to solve these
artifacts only by improving the training on existing data
pairs, since such artifacts probably do not appear during the
training of GAN-SR models.

To better illustrate this problem, we attempt to classify the
GAN-SR artifacts according to the different stages they
appear. 1) GAN-training artifacts usually arise in the train-
ing phase, mainly due to the unstable optimization (Liang
et al., 2022b) and the ill-posed property of SR in the in-
distribution data. With the presence of ground-truth images,
those artifacts could be monitored during training and thus
can be mitigated by improving the training, as LDL (Liang
et al., 2022b) does. 2) There is another kind of artifacts that
often appears in the real-world unseen data during inference,
which we term as GAN-inference artifacts. Those artifacts
are typically out of training distribution and do not appear
in the training phase. Thus, those methods that focus on syn-
thetic images and improve the training procedure (, LDL)
cannot solve those artifacts.

Dealing with GAN-inference artifacts is a new and chal-
lenging task. There is no ground-truth for real-world testing
data with GAN-inference artifacts. Besides, it is hard to
simulate these artifacts since they may seldom or even never
appear in the training set. In other words, these artifacts
are unseen and out of distribution to the models. However,
solving this problem is the key to applying GAN-SR models
for real-world scenarios, which has great practical value.

There are two steps to resolve the artifacts. The first step
is to detect the artifact regions. In actual training of the

GAN-SR model, we usually finetune it from the MSE-SR
model with GAN training strategy, aiming to add fine details.
Since there is no ground-truth of the inference results, we
adopt the MSE-based results as the reference, which are
easily accessible even for real-world data. We then design
a quantitative indicator that calculates the local variance to
measure the texture difference between results generated
by MSE-based and GAN-based models. After obtaining
a pixel-wise distance map, we further introduce semantic-
aware adjustment to enlarge the difference in perceptually
artifact-sensitive regions (, building, sea) while suppressing
the difference in textured regions (, foliage, animal fur). We
then filter out detection noises and perform morphological
manipulations to generate the final artifact mask.

Based on the detected artifact regions, the second step is
to make the pseudo GT and finetune the GAN-SR model.
Firstly, we collect a small amount of GAN-based results
with artifacts and replace the artifact regions with the MSE-
based results according to the binarized detection masks.
Then we use the combined results as the pseudo GT to
construct training pairs to finetune the model for a very
short period of iterations. Experimental results show that
our fine-tuning strategy can significantly alleviate GAN-
inference artifacts and restore visually-pleasant results on
other unseen real-world data.

To summarize, 1) We make the first attempt to analyze
GAN-inference artifacts that usually appear on unseen test
data without ground-truth during inference. 2) Based on
our analysis, we design a method to effectively detect re-
gions with GAN-inference artifacts. 3) We further propose a
fine-tuning strategy that only requires a small number of ar-
tifact images to eliminate the same kinds of artifacts, which
bridges the gap of applying SR algorithms to practical sce-
narios. 4) Compared to previous work, our method is able
to detect unseen artifacts more accurately and alleviate the
artifacts produced by the GAN-SR model in real-world test
data more effectively.
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2. Related Work
MSE-based Super-Resolution. SR methods in this cate-
gory aim to restore high-fidelity results by minimizing the
pixel-wise distance between SR outputs and HR ground-
truth like l1 and l2 distance. Since SRCNN (Dong et al.,
2014) successfully applies deep convolution neural net-
works (CNNs) to the image SR task, numerous deep net-
works (Dong et al., 2015; 2016; Zhang et al., 2018b; Dai
et al., 2019; Niu et al., 2020; Chen et al., 2021; Liang et al.,
2021; Li et al., 2021; Chen et al., 2023; Wang et al., 2022)
have been proposed to further improve the reconstruction
quality. For instance, many methods apply more elaborate
convolution module designs, such as residual block (Ledig
et al., 2017; Lim et al., 2017) and dense block (Wang et al.,
2018b; Zhang et al., 2018c). At the same time, many works
have been proposed for the Blind SR task (Zhang et al.,
2018a; Gu et al., 2019; Huang et al., 2020; Wang et al.,
2021a; Xie et al., 2021b) and video SR task (Huang et al.,
2017; Chan et al., 2021; 2022a; Liang et al., 2022a; Shi et al.,
2022; Lin et al., 2022). Recently, several Transformer-based
networks (Liang et al., 2021; Chen et al., 2023) are proposed
and refresh the state-of-the-art performance. However, due
to the ill-posedness of the SR problem, optimizing the pixel-
wise distance unavoidably results in smooth reconstructions
that lack fine details.

GAN-based Super-Resolution. To improve the perceptual
quality of SR results, GAN-based methods are proposed to
introduce generative adversarial learning for SR task (Ledig
et al., 2017; Wang et al., 2018b;a; Zhang et al., 2019; Fuoli
et al., 2021; Rad et al., 2019; Ma et al., 2020; Zhang et al.,
2020; Mou et al., 2022). SRGAN uses SRResNet genera-
tor and perceptual loss (Johnson et al., 2016) to train the
network. ESRGAN further improves the visual quality by
adopting Residual-in-Residual Dense Block as the backbone
to enhance the generator. To extend the GAN-SR model
to real-world applications, BSRGAN (Zhang et al., 2021)
and Real-ESRGAN (Wang et al., 2021c) design practical
degradation models. For real-world video scenarios, Real-
BasicVSR (Chan et al., 2022b) and FastRealVSR (Xie et al.,
2022) also incorporate practical degradation models. De-
spite the success, GAN-SR models often suffer from severe
perceptually-unpleasant artifacts. SPSR (Ma et al., 2020)
proposes to alleviate the structural distortion by introduc-
ing a gradient guidance branch. LDL (Liang et al., 2022b)
constructs a pixel-wise map that represents the probability
of each pixel being artifact and penalizes the artifacts by
introducing extra loss during training. Nonetheless, these
methods would still result in artifacts in actual inference.

3. Methodology
Preliminary: GAN-SR models aim to learn a generative
network G parameterized by θGAN that estimates a high-

resolution image ŷ for a given low-resolution x image as:

ŷ = G(x; θGAN ). (1)

To optimize the network parameters, a weighted combina-
tion of three sorts of losses is adopted in most GAN-SR
methods (Ledig et al., 2017; Wang et al., 2018b; 2021c) as
the loss function:

LGAN = λ1Lrecons + λ2Lpercep + λ3Ladv, (2)

where Lrecons represents the pixel-wise reconstruction loss
such as l1 or l2 distance, Lpercep is the perceptual loss (John-
son et al., 2016) calculating the feature distance and Ladv

denotes the adversarial loss (Ledig et al., 2017). Due to
the instability GAN training, in the training of a GAN-SR
model, a MSE-SR model is generally trained first only using
Lrecons to obtain θMSE , and then the GAN-SR model is
finetuned based on the pretrained θMSE using LGAN to get
the final θGAN .

3.1. Analyze GAN Artifacts Introduced in Inference

Unlike MSE-based optimizations that naturally tend to pro-
duce over-smooth reconstruction results, GAN-based mod-
els can generate fine details benefiting from adversarial
training. However, GAN-SR models often introduce severe
perceptually-unpleasant artifacts that seriously affect the
visual quality of restored images, especially in real-world
scenarios. In some cases, the GAN-SR artifacts would make
the results even worse than those generated by the MSE-
based model, as shown in Fig. 2. Besides, these artifacts are
complicated, with many types and characteristics, and are
diverse for different image content.

Essentially, methods for dealing with GAN-SR artifacts are
all aimed at improving the results obtained in the inference
stage. Nevertheless, the types of artifacts that can be ad-
dressed are limited for existing methods, since they deal
with the artifacts only by improving the training process.
For instance, LDL (Liang et al., 2022b) processes the GAN-
SR artifacts by adding penalty loss to problematic regions
and improving the learning strategy. It works for artifact
types generated during the training phase, which exist in
the in-distribution data of the training set. We name those
artifacts as GAN-training artifacts. However, some cases
of artifacts generated during the inference phase are out-
of-distribution, namely, GAN-inference artifacts. They
usually appear in unseen data without reference. Dealing
with GAN-training artifacts would lead to better recovery
of training data, but the capability of the model to process
out-of-distribution data can only rely on its limited gener-
alization ability. For real-world applications, how to solve
more general GAN-inference artifacts is much more impor-
tant. These artifacts are hard to synthesize during training,
and thus can not be resolved by only improving the training.
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Figure 3. Observations about GAN-inference artifacts. a) Adding
imperceptible Gaussian noise or b) slightly rescaling the image
can alleviate the artifacts. c) Models of different iterations result
in artifacts with different severity. Zoom in for best view

In this work, we focus on processing the GAN-inference
artifacts, as those artifacts have a largely negative impact on
real-world applications, and solving them has great practical
value. Due to the complexity and diversity of these kinds
of artifacts, it is challenging to address all of them at once.
We, therefore, deal with GAN-inference artifacts with the
following two characteristics. 1) The artifacts do not appear
in the pretrained MSE-SR model (i.e., the generator G with
parameters θMSE). 2) The artifacts are obvious and have a
large area, which can be observed at the first glance. Some
practical examples containing such artifacts are shown in
Fig. 2. For the former characteristic, we want to ensure that
the artifacts are caused by GANs while the corresponding
MSE-SR results are good references for test data to distin-
guish the artifacts. For the latter feature, we want to address
those artifacts that have a great impact on visual quality.

Before introducing the methods for addressing the artifacts,
we first give a glimpse of the causes of GAN-inference
artifacts. We found that manipulations that would slightly
change the degradations, such as adding imperceptible Gaus-
sian noise or rescaling the image, could eliminate the arti-
facts. As shown in Fig. 3, by modulating the adding noise
from σ = 0 to σ = 12/255, the artifacts are alleviated grad-
ually. A similar phenomenon appears when we rescale the
input by setting the upscaling factor from ×0.9 to ×1.2. We
conjecture that these operations can change the distribution
of the original image, and may make the degradation of the

Figure 4. (a) For patches with similar semantics, too large texture
difference d from MSE-SR results usually indicates GAN artifacts.
(b) Patches with similar d have different visual quality due to their
different underlying semantics. Tree regions do not have artifacts
while building regions have. Thus, it is hard to measure texture
differences with absolute distance. Zoom in for best view

real image close to the simulated degradations. Besides,
models of different training iterations also result in artifacts
with different severity, as shown in Fig. 3. It reflects that the
unstable training of GAN is also the cause of these artifacts.

3.2. Automatically Detect GAN-inference Artifacts

At first, we want to automatically detect the regions with
obvious artifacts according to some quantitative values in
the inference phase before processing these artifacts. Due
to the lack of ground-truth images, we choose the MSE-SR
results as the reference to evaluate the artifacts generated by
the GAN-SR model. Its rationale lies in that the presentation
of GAN artifacts is usually caused by too many unwanted
high-frequency ‘details’. In other words, we introduce GAN
training to generate fine details, but we do not want the
generated content by GAN to deviate too much from MSE-
SR results. Note that MSE-SR results are easy to access
even for unseen test data, as we usually finetune the MSE-
SR models to obtain GAN-SR models.

Relative difference of local variance between MSE-SR
and GAN-SR patches. Based on the above analysis, we
propose to design a quantitative indicator to measure the
difference between patches from MSE-SR and GAN-SR
results as a basis for judging the artifacts. We adopt the
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Figure 5. Visualization on the artifact detection pipeline. 172 MSE-SR results. 173 GAN-SR results. 174 Results of directly applying
texture difference d. 175 Results of D can roughly indicate artifacts but with some noises. 176 Segmentation map. 177 Semantic-adjusted
D with suppressed detection noise. 178 Final detection map. Zoom in for best view

standard deviation of pixel intensities within a local region
P to indicate the complexity of local texture as:

σ(i, j) = sd(P (i−n− 1

2
: i+

n− 1

2
, j−n− 1

2
: j+

n− 1

2
)),

(3)
where σ(i, j) indicates the local standard deviation at (i, j),
sd(·) represents the standard deviation operator, and n de-
notes the local window size and is set to 11. Then we
calculate the difference between standard deviations of two
patches to measure the texture difference d as:

d(x, y) = (σx − σy)
2. (4)

In our case, x refers to GAN-SR patches, while y denotes
MSE-SR patches. As shown in Fig. 4 (a), for patches with
similar semantics, too large texture difference d from MSE-
SR results usually indicates GAN artifacts. However, d
measures the absolute difference between patches, which is
also related to the texture complexity itself. As depicted in
Fig. 4 (b), patches with similar d have different visual quality
due to their different underlying semantics. Tree regions
do not have artifacts while building regions have. Thus, we
want the texture difference indicator to be a relative value
independent of their original texture variation (, the scale of
σ), so we further divide d by the product of σx and σy as:

d′(x, y) =
(σx − σy)

2

2σxσy
. (5)

To facilitate subsequent operations for the distance map,
we hope to normalize the distance d′ in the range of [0, 1].

Inspired by SSIM (Wang et al., 2004), we adopt a similar
transformation:

d′′(x, y) =
1

1 +
(σx−σy)2

2σxσy

=
2σxσy

σ2
x + σ2

y

. (6)

A constant C is introduced to stabilize the division with a
weak denominator. The final quantitative indicator can be
written as:

D =
2σxσy

σ2
x + σ2

y + C
. (7)

We derive this formula step by step according to our actual
needs in artifact detection, and each step has its practical
meaning in our GAN-inference artifact detection. As shown
in 3rd and 4th column of Fig. 5, we can observe that the
generated map based on d covers most of the regions with
high-frequency difference between MSE-SR and GAN-SR
results, but cannot distinguish these artifacts. The relative
and normalized texture difference D is successfully used to
produce the artifacts map.

Semantic-aware adjustment. After obtaining the distance
map, we can exploit it to determine the regions that need
to be addressed. However, it is not enough to only use the
difference in texture complexity as a basis for judgment,
because the perceptual tolerance rate of different semantic
regions is different. For example, fine details in areas with
complicated textures are difficult to perceive as artifacts
like foliage, hair, and etc, while large pixel-wise differences
in areas with smooth or regular textures, such as sea, sky,
and buildings, are sensitive to human perception and easy
to be seen as artifacts, as shown in 1st and 2nd column of
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Fig. 5. Hence, it is required to adjust the artifact map D
based on the underlying semantics. We choose the Seg-
Former (Xie et al., 2021a) as the segmentation model to
distinguish different regions. Specifically, the SegFormer
is trained on ADE20K, which covers most semantic con-
cepts of the world. To determine the reasonable adjustment
weight for each class, we calculate pixel-wise D values in
each class of all images in the training set. For each class,
we sort all the D values in descending order and set the D
value in the 85% percentile as the adjustment weight:

Ak = P85(Dk), k ∈ {1, 2, ...,K}, (8)

where Ak is the adjustment weight for the kth class, Dk is
the D value of all pixels identified as the kth class, and P85

is the 85th percentile operation. The value of K is 150. For
each image, the refined detected map based on segmentation
M is computed as:

M(i, j) =

{
0, D(i, j)/Ak ≥ threshold;

1, D(i, j)/Ak < threshold.
(9)

where D(i, j) is the D value of pixel (i, j) and threshold
is a hyper-parameter to control whether the current pixel is
artifact or not. We empirically set the threshold to 0.7.

We additionally perform morphological manipulations to
obtain the final detected map, as shown in the 6th column of
Fig. 5. Concretely, we first perform erosion using a 5×5 all-
ones matrix. Then we implement dilation using the matrix
to join disparate regions. Next, we fill the hole in the map by
using a 3× 3 all-ones matrix. Finally, we filter out discrete
small regions as the detection noise.

3.3. Improve GAN-SR Models with Fine-tuning

×

×

+

Figure 6. The procedure of our method to finetune the GAN-SR
model. Zoom in for best view

The detection of GAN-inference artifacts itself is of great
practical value. We hope to further improve the GAN-SR
model based on the detection results. Note that we aim
to solve the GAN-inference artifacts for unseen real data,
so there is no ground-truth for the inference results with
artifacts. In practice, “weak restoration without artifacts is
even better than strong restoration with artifacts”. Thus, we
exploit the MSE-SR results as the restoration reference.

As illustrated in Fig. 6, we use MSE-SR results to replace
the regions where artifacts were detected in GAN-SR results.
The merged images serve as the pseudo GT. This process is
formulated as:

ỹ = M · yMSE + (1−M) · yGAN , (10)

where ỹ indicates the generated pseudo GT, yMSE and
yGAN are MSE-SR and GAN-SR results, (·) represents the
element-wise product, and M is the detected artifact map.
We then use a small amount of data to generate the data pairs
(x, ỹ) from real data to finetune the model, where x repre-
sents the LR data. We only need to finetune the model for a
few iterations (about 1K iterations are enough in our exper-
iments) and the updated model would produce perceptually-
pleasant results without obvious artifacts. Moreover, it does
not influence other fine details in regions without artifacts.
It can effectively suppress similar kinds of artifacts in more
real testing data. The working mechanism behind this ap-
proach is that the finetuning process narrows the gap be-
tween the distribution of synthetic data and real data to
alleviate the GAN-inference artifacts.

4. Experiments
4.1. Experiment Setup
We exploit two state-of-the-art GAN-SR models, Real-
ESRGAN (Wang et al., 2021c) and LDL (Liang et al.,
2022b), to validate the effectiveness of our method. We
use the officially released model for each method to detect
the GAN-inference artifacts. For finetuning, the training
HR patch size is set to 256. The models are trained with
4 NVIDIA A100 GPUs with a total batch size of 48. We
finetune the model only for 1000 iterations and the learning
rate is 1e-4.

Dataset. Although several real-world super-resolution
datasets (Cai et al., 2019; Wang et al., 2021b) are proposed,
they assume camera-specific degradations and is far from
practical scenarios. Therefore, we construct a GAN-SR arti-
facts dataset. Considering the diversity of both image con-
tent and degradations, we use the validation set of ImageNet-
1K (Deng et al., 2009) as the real-world LR data. Then we
choose 200 representative images with GAN-inference ar-
tifacts for each method to construct this GAN-SR artifact
dataset. Since there is no ground-truth map for artifact
regions to evaluate the algorithm, we manually label the
artifact area using labelme (Wada). This is the first dataset
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constructed for GAN-inference artifact detection. For the
finetuning process, we further divide the dataset by using
50 pairs for training and 150 pairs for validation.

Evaluation. Due to the lack of ground-truth for real-world
LR data, the classic metrics such as PSNR, SSIM cannot
be adopted. We also test NIQE (Mittal et al., 2012) and
MANIQA (Yang et al., 2022), and observe that these two
metrics do not always match perceptual visual quality (Lug-
mayr et al., 2020) (see Section A.8). Thus, we consider
three metrics to evaluate the detection results, including
1) Intersection over Union (IoU) of the detected artifact
area and the ground-truth artifact area, 2) Precision of the
detection results and 3) Recall of the detection results.

When using A and B to represent the detected artifact area
and the ground-truth artifact area for a specific region z, IoU
is given by:

IoU =
A ∩B

A ∪B
. (11)

We can calculate IoU for each image, and we use the average
IoU on the validation set to evaluate the detection algorithm.
A higher IoU means better detection accuracy.

We then define the set of regions with detected artifacts as
S and the set of correct samples T is defined as:

T = {z ∈ S | A ∩B

A
> p}. (12)

The metric Precision = NT /NS indicates the number of
correctly detected regions (NT ) out of the total number of
detected regions (NS). We define the set of the ground-truth
regions as G, and the set of detected GT artifact regions R
is computed by:

R = {z ∈ G | A ∩B

B
> p}. (13)

The metric Recall = NR/NG represents the number of de-
tected GT artifact regions (NR) out of the total number of
GT artifact regions (NG). p is a threshold and we empiri-
cally set it to 0.5.

4.2. Artifact Detection Results
We conduct experiments based on Real-ESRGAN (Wang
et al., 2021c) and LDL (Liang et al., 2022b) to validate
GAN-inference artifact detection results. We compare our
DeSRA-det described in Sec. 3.2 with detection based on
NIQE (Mittal et al., 2012), PAL4Inpainting (Zhang et al.,
2022), and the modified detection protocol in LDL (Mittal
et al., 2012).

Since there is no reference image for the unseen data in
the inference phase, we choose the non-reference index
NIQE (Mittal et al., 2012) to detect the artifacts for compar-
ing the detection scheme without using MSE-SR results. A
similar sliding window mechanism is adopted to compute

Input NIQE PAL4Inpainting LDL* DeSRA-det

(a
) R

ea
l-E

SR
G

A
N

(b
) L

D
L

Figure 7. Visual comparison of different methods on artifact de-
tection results. Regions with red circles are GT of detection
mask.Zoom in for best view

Table 1. Artifact detection results based on Real-ESRGAN (Wang
et al., 2021c). LDL∗ represents the modified detection method in
LDL (Liang et al., 2022b).

Method IoU (↑) Precision Recall
NIQE 2.9 0.0494 0.1054

PAL4Inpainting 8.4 0.0855 0.0992
LDL∗(threshold=0.01) 29.9 0.3504 0.3485

LDL∗(threshold=0.005) 36.2 0.2618 0.5442
LDL∗(threshold=0.001) 35.3 0.1410 0.8391

DeSRA-det (ours) 51.1 0.7055 0.6081

the pixel-wise map for measuring the local texture and we
select the best-performing threshold for filtering the noise to
obtain the final detected map. PAL4Inpainting (Zhang et al.,
2022) is a newly proposed perceptual artifacts localization
method originally for inpainting. We also include it for com-
pleteness. As the artifact detection scheme in LDL (Mittal
et al., 2012) is designed for GAN-training artifacts with
ground-truth images on synthetic data, it cannot be directly
applied to solve GAN-inference artifacts without GT. Thus,
we use MSE-SR results to replace GT and set a group of
threshold {0.001, 0.005, 0.01} for the LDL scheme.

Tab. 1 shows the artifact detection results based on Real-
ESRGAN. Our method obtains the best IoU and Precision
that far outperforms other schemes. Note that LDL with
threshold=0.001 obtains the highest Recall. It is because this
scheme treats most areas as artifacts, and thus such detection
results are almost meaningless. Similar conclusions can be
drawn from Tab. 2 for artifact detection results based on
LDL. The visual comparison is presented in Fig. 7. The
detection results obtained by our approach have significantly
higher accuracy than other schemes.

7



DeSRA: Detect and Delete the Artifacts of GAN-based Real-World Super-Resolution Models

RealESRGAN RealESRGAN-DeSRA LDL LDL-DeSRA

Figure 8. Visual comparison of results generated from original GAN-SR models and the improved GAN-SR models by using our DeSRA.
Artifacts are obviously alleviated for results produced by the improved GAN-SR models. Zoom in for best view

Table 2. Artifact detection results based on LDL (Liang et al.,
2022b). LDL∗ represents the modified detection method in
LDL (Liang et al., 2022b).

Method IoU (↑) Precision Recall
NIQE 2.6 0.0236 0.1770

PAL4Inpainting 8.8 0.0699 0.1337
LDL∗(threshold=0.01) 32.7 0.3070 0.4110
LDL∗(threshold=0.005) 36.7 0.2100 0.5770
LDL∗(threshold=0.001) 31.1 0.1003 0.8659

DeSRA-det(ours) 44.5 0.6087 0.5335

Table 3. Artifact detection results of GAN-SR models with and
without using DeSRA finetuning.

Method IoU (↓) Removal rate Addition rate
Real-ESRGAN 51.1 - -

Real-ESRGAN-DeSRA 12.9 75.43% 0%
LDL 44.5 - -

LDL-DeSRA 13.9 74.97% 0%

4.3. Improved GAN-SR Results

We finetune the model to alleviate the GAN-inference ar-
tifacts based on the detected artifacts map, as described in
Sec. 3.3. Note that this process has a very small training

cost (i.e., 50 training pairs with 1000 iterations). We com-
pare the artifact detection results before and after using our
DeSRA finetuning strategy to verify the effectiveness of
improving the GAN-SR model to alleviate GAN-inference
artifacts. The condition for judging the removal of artifacts
is A ∩ B = 0, and the condition for judging the introduc-
tion of new artifacts is A ∪B > B. As depicted in Tab. 3,
after the application of our DeSRA, IoU decreases from
51.1 to 12.9 on Real-ESRGAN and from 44.5 to 13.9 on
LDL, illustrating that the detected area of artifacts is greatly
reduced. The removal rate is 75.43% and 74.97%, showing
that three-quarters of the artifacts on unseen test data can be
completely removed after finetuning. Besides, our method
does not introduce new additional artifacts, as the addition
rate is 0. We provide the visual comparison between results
with and without using our method to improve GAN-SR
models, as shown in Fig. 8. Results generated by the im-
proved GAN-SR models have greatly better visual quality
without obvious GAN-SR artifacts compared to the original
inference results. All these experimental results demonstrate
the effectiveness of our method for alleviating the artifacts
and improving the GAN-SR model.

4.4. User Study

To further verify the effectiveness of our DeSRA finetun-
ing strategy, we perform two user studies. The first is the
comparison of the results generated by the original GAN-
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Figure 9. The results of user studies, comparing the results gener-
ated by the finetuned GAN-SR models with GAN-SR models and
MSE-SR models. Zoom in for best view

SR models and the finetuned GAN-SR models. For this
experiment, the focus of comparison is on whether there are
obvious artifacts. We produce a total of 20 sets of images,
each containing the output results of the GAN-SR model
and finetuned GAN-SR model. These images are randomly
shuffled. A total of 15 people participate in the user study
and select the image they think has fewer artifacts for each
set. The final statistical results are shown in Fig. 9. 82.23%
of participants think that the results generated by fine-tuned
GAN-SR models have fewer artifacts. It can be seen that
our method largely removes the artifacts generated by the
original model.

The second is the comparison of the results of the finetuned
GAN-SR models and the original MSE-SR models. This
experiment is conducted to compare whether the results
generated by the model have more details. We produce
a total of 20 sets of images, each containing the output
results of the MSE-SR model and finetuned GAN-SR model.
These images are randomly shuffled. A total of 15 people
participate in the user study and select the image they think
has more details for each set. The final statistical results
are shown in Fig. 9. 93% of participants think that the
results generated by fine-tuned GAN-SR models have more
details. It can be seen that the finetuned GAN-SR model still
generates more detailed results than the MSE-SR model.

4.5. Ablation Study

We first conduct the ablation study on three key designs of
our artifact detection method, including relative difference
(RD) (i.e., from d to d′), normalization (i.e., from d′ to D)
and semantic-aware threshold. As shown in Tab. 4, without
using the relative difference suffers the lowest Precision and
the full Recall. It is because the detection based on absolute
difference would treat most areas as artifacts. The detec-
tion scheme without normalization also results in low IoU,
Precision, and Recall, since the thresholds for each sample
probably have a different scale. Using the semantic-aware
threshold can improve the artifact detection results, because
the sensitivity of human perception to different semantics is
different. All these results demonstrate the necessity of the

Table 4. Ablation study on the key designs for artifact detection.
RD Normalization Semantics IoU Precision Recall

✓ ✓ 16.1 0.0245 1.0000
✓ ✓ 3.6 0.2247 0.2869
✓ ✓ 46.2 0.6627 0.5496
✓ ✓ ✓ 51.1 0.7055 0.6081

Table 5. Influence of the threshold on the detection results.
Threshold IoU Precision Recall Precision×Recall

0.9 54.3 0.3255 0.9223 0.3002
0.8 56.6 0.5158 0.8123 0.4190
0.7 51.1 0.7055 0.6081 0.4290
0.6 38.4 0.8343 0.3351 0.2796

three designs in our artifact detection method.

We also conduct an ablation study for the threshold to ex-
plore its impact on artifact detection results. The threshold is
used to control whether the pixel is the artifact or not for gen-
erating the detected map, as described in Equ. 14. Usually, a
precision-recall curve shows the trade-off between precision
and recall for different thresholds, and a high area under the
curve represents both high recall and high precision. For
simplicity, we directly use “Precision×Recall” to measure
the performance of detection results to select the best thresh-
old. As depicted in Tab. 5, the highest Precision×Recall is
obtained when the threshold is set to 0.7. Thus, we select
0.7 as the default setting in our methods.

5. Conclusion
In this work, we analyze GAN artifacts introduced in the
inference phase and propose a systematic approach to de-
tect and delete these artifacts. We first measure the relative
local variance distance from MSE-based and GAN-based
results, and then locate the problematic areas based on the
distance map and semantic regions. After detecting the re-
gions with artifacts, we use the MSE-based results as the
pseudo ground-truth to finetune the model. By using only a
small amount of data, the finetuned model can successfully
eliminate artifacts from the inference. Experimental results
show the superiority of our approach for detecting and delet-
ing the artifacts and we significantly improve the ability of
the GAN-SR model in real-world applications.
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A. Appendix
In this appendix, we provide the following materials:

1. More discussions about our work. Refer to Section A.1 in the appendix.

2. More details of GAN-inference artifacts detection pipeline (referring to Section 3.2 in the main paper). Refer to
Section A.2 in the appendix.

3. More visual results of GAN-SR artifacts (referring to Section 3.1 in the main paper). Refer to Section A.3 in the
appendix.

4. Visual results of GT detection mask labeled by labelme (referring to Section 4.1 in the main paper). Refer to Section A.4
in the appendix.

5. More visual comparisons of different methods on artifact detection results (referring to Section 4.2 in the main paper).
Refer to Section A.5 in this supplementary material.

6. Artifact detection results based on SwinIR (referring to Section 4.2 and Section 4.3 in the main paper). Refer to
Section A.6 in the appendix.

7. More visual comparisons of results generated from original GAN-SR models and the improved GAN-SR models by
using our DeSRA (referring to Section 4.2 in the main paper). Refer to Section A.7 in the appendix.

8. The unreliable of NIQE (Mittal et al., 2012) and MANIQA (Yang et al., 2022) metrics on evaluating the performance
of artifacts removal (referring to Tab. 3 in the main paper). Refer to Section A.8 in the appendix.

A.1. More Discussions about Our Work

Discussion 1: why do we introduce the concept of GAN-inference artifacts?

Compared with the previous work, the focus of this work is different and orthogonal. Previous works focus on improving the
realness of SR results or mitigating the artifacts generated in the training phase. In real-world scenarios without ground-truth,
if one algorithm can restore sharp or real textures but may also generate obviously artifacts, this algorithm is still limited
in practical usage since it greatly affects the user experience. For practical application, obviously annoying artifacts are
intolerable and the weak restoration results without artifacts are more acceptable by users than the strong restoration results
with artifacts. Therefore, dealing with the artifacts that are generated during the inference phase, called GAN-inference
artifacts, are of great value for real-world applications. Besides, some cases of artifacts generated during the inference phase
are out-of-distribution, so how to alleviate the GAN-inference artifacts is challenging and needs more attention.

Discussion 2: why do we use MSE-SR results as the reference?

We admit that adopting the MSE-SR results as the reference is not optimal to distinguish the GAN-inference artifacts.
However, 1) For real-world testing data, there is no ground-truth. 2) Detecting the GAN-inference artifacts perfectly is a
challenging task. From our experiments, it can be observed that when we adopt the MSE-SR results as the reference to
detect the artifacts, there are many overlap areas between our detected artifact map and the GT artifact map. The quantitative
and qualitative results illustrate that choosing MSE-SR results as the reference is effective for detecting the GAN-inference
artifacts. Deleting the GAN-inference artifacts is a challenging task and this work is the first attempt. We believe there exist
other better choices and elegant algorithms to distinguish the GAN-inference artifacts, which needs further exploration.

Discussion 3: why do not we adopt PSNR, SSIM, NIQE . . . metrics?

1) The GAN-inference artifacts appear on unseen real test data, in this circumstance, the corresponding ground-truth
images are absent. Therefore, PSNR and SSIM metrics can not be adopted to evaluate the performance. 2) We test some
no-reference metrics (e.g, NIQE and MANIQA), and observe that these no-reference IQA metrics do not always match
perceptual visual quality (Lugmayr et al., 2020) (see Section A.8). 3) The focus of this work is on detecting and alleviating
GAN-inference artifacts. Motivated by the binary classification task, we adopt three metrics (, IOU, precision, and recall) to
evaluate the performance.

Discussion 4: why do we assume that GAN-Artifact is usually a large area?
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The GAN-inference artifacts are complicated and diverse, which appear in both large areas and small areas. Previous works
focus on dealing with GAN-training artifacts and ignore the GAN-inference artifacts. When applied in real-world scenarios,
those methods still generate obviously annoying artifacts during inference. Dealing with GAN-inference artifacts is a
challenging task and there need several steps to resolve this problem. This work is the first attempt, and we only consider
the artifacts that are obvious and have a large area, since this kind of artifact has a great impact on human perception. We
hope that more researchers will pay attention to solving the GAN-inference artifacts, and the following works can deal with
the GAN-inference artifacts that have a small area.

Discussion 5: semantic segmentation.

We admit that the detection results based on semantic segmentation are not entirely accurate, while it can get roughly
accurate results to help distinguish artifacts and guide us for further processing of these artifacts, and the lost precision has a
limited impact on practical applications.

Discussion 6: online continual learning.

Our method can provide a new paradigm combined with continual learning (De Lange et al., 2021) to address the artifacts
that appear in the inference stage online. For example, for an online SR system that processes real-world data, we can use
our detection pipeline to detect whether the results have GAN-inference artifacts. We can then use the images with detected
artifacts to quickly finetune the SR model, so that it can deal with similar kinds of artifacts until the system encounter a new
kind of GAN-inference artifacts. Continual learning is widely studied on high-level vision tasks, but has not been applied to
SR. Our approach and application scenes naturally introduce continual learning to SR. We hope to investigate this problem
in the future, since it can greatly advance the application of GAN-SR methods in practical scenarios.

A.2. Details of GAN-inference artifacts detection pipeline

In this section, we first describe the details of GAN-inference artifacts detection pipeline. Then, we provide more details
about calculating the adjustment weights.

Overall pipeline of detecting GAN-inference artifacts. The pipeline of detecting GAN-inference artifacts is shown in
Fig. 10 (a). For a GAN-SR and MSE-SR result, we first calculate the indicator D according to equation 7 in the main paper.
Then we generate the segmentation map of MSE-SR result by adopting SegFormer. The segmentation map will be converted
into semantic-aware adjustment weight A according to the calculated adjustment weights of each semantic class (Fig. 10
(b)). By combining A, D and setting threshold, we can obtain the refined detected map M :

M(i, j) =

{
0, D(i, j)/Ak ≥ threshold;

1, D(i, j)/Ak < threshold,
(14)

where D(i, j) is the D value of pixel (i, j) and threshold is empirically set to 0.7. At last, we perform morphological
manipulations to obtain the final detected map. Concretely, we first perform erosion using a 5× 5 all-ones matrix. Then we
implement dilation using the matrix to join disparate regions. Next, we fill the hole in the map by using a 3× 3 all-ones
matrix. Finally, we filter out discrete small regions as the detection noise.

Note that the visualization results of indicator D and Drefine in Fig. 10 (a) are different from Fig. 5 in the main paper. Here
we show their original values. In the main paper, for better understanding, we show their corresponding binary maps by
comparing their original values with the threshold 0.7. Values that are smaller than the threshold 0.7 are set to 1.

Details of calculating adjustment weights. The calculation of adjustment weights for each semantic class is illustrated
in Fig. 10 (b). We first generate the corresponding low-resolution version by adopting the degradation model used in the
training phase on the DIV2K training dataset. Then, we generate the MSE-SR and GAN-SR results for each distorted
image. After that, we calculate pixel-wise indicator D between the MSE-SR and GAN-SR results. To distinguish D of
each semantic class, we choose SegFormer (Xie et al., 2021a) as the segmentation model, and obtain the segmentation map
of MSE-SR results. By incorporating the segmentation map and indicator D, we get pixel-wise D values in each class
of DIV2K. For each class, we sort all the D values in descending order and set the D value in the 85% percentile as the
adjustment weight:

Ak = P85(Dk), k ∈ {1, 2, ...,K}, (15)

where Ak is the adjustment weight for the kth class, Dk denotes the D value of all pixels identified as the kth class, and P85

is the 85th percentile operation. For example, the values of Asky, Atree and Abuilding are 1, 0.75 and 0.80, respectively.
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(b) Calculation of adjustment weights for each semantic class
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Figure 10. The overall pipeline of detecting GAN-inference artifacts and the calculation of adjustment weights. Note that to meet the
max size requirement for the camera-ready version, we applied some compression to the image, which might have affected the quality
displayed in the original picture. For a better understanding of our paper, please refer to the images in our arXiv paper.
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A.3. More Visual Results of GAN-SR Artifacts

In real-world scenarios, GAN-SR models often introduce severe perceptually-unpleasant artifacts that seriously affect the
visual quality of restored images. As depicted in Fig. 11, in some cases, the GAN-SR artifacts would make the results even
worse than those generated by the MSE-based model.
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Figure 11. MSE-SR and GAN-SR results of some practical samples. GAN-SR results with artifacts have even worse visual quality than
MSE-SR results. The artifacts are complicated with different types and characteristics, and are diverse for different image contents.
Regions with red circles are GT of the detection mask. Note that to meet the max size requirement for the camera-ready version, we apply
some compression to the image, which might have affected the quality displayed in the original picture. For a better understanding of our
paper, please refer to the images in our arXiv paper.
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A.4. Visual Results of GT Detection Mask

For Real-ESRGAN (Wang et al., 2021c), LDL (Liang et al., 2022b) and SwinIR (Liang et al., 2021), we construct their
independent GAN-SR artifacts datasets. Each dataset contains 200 representative images with GAN-inference artifacts.
Since there is no ground-truth map for artifact regions to evaluate the algorithm, we manually label the artifact areas using
labelme (Wada) and generate a binary map to indicate the artifact region, as shown in Fig. 12.
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Figure 12. Visualization of GT artifact map. For GAN-SR results with artifacts, we manually generate their corresponding binary artifact
map with labelme. The white regions of GT artifact map indicate the artifact regions in GAN-SR results. Note that to meet the max size
requirement for the camera-ready version, we apply some compression to the image, which might have affected the quality displayed in
the original picture. For a better understanding of our paper, please refer to the images in our arXiv paper.
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A.5. More Visual Comparisons of Different Methods on Artifact Detection Results

For the GAN-inference artifacts generated by Real-ESRGAN (Wang et al., 2021c), LDL (Liang et al., 2022b) and
SwinIR (Liang et al., 2021), we compare different methods on artifact detection results. The visual comparison is presented
in Fig. 13. The detection results obtained by our approach have significantly higher accuracy than other schemes.
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Figure 13. Visual comparison of different methods on artifact detection results. Regions with red circles are GT of the detection mask.
Note that to meet the max size requirement for the camera-ready version, we apply some compression to the image, which might have
affected the quality displayed in the original picture. For a better understanding of our paper, please refer to the images in our arXiv paper.
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A.6. Artifact Detection Results based on SwinIR

To validate the effectiveness of our proposed GAN-inference artifact detection algorithm and fine-tuning strategy, we further
conduct experiments based on SwinIR. Due to the lack of the official-released pretrained weight of the discriminator, we
retrain SwinIR using the officially released codes1 in real setting and obtain the corresponding MSE-SR and GAN-SR
models. For the GAN-inference artifacts generated by SwinIR, the artifact detection results are shown in Tab. 6. We can
observe that our method obtains the best IoU and Precision that far outperforms other schemes.

After obtaining the detected artifacts map, we finetune SwinIR with 1000 iterations to alleviate the GAN-inference artifacts.
As depicted in Tab. 7, after the application of our DeSRA, IoU decreases from 57.9 to 21.8, illustrating that the detected area
of artifacts is greatly reduced. The removal rate is 61.35%, showing that three-fifths of the artifacts on unseen test data can
be completely removed after fine-tuning. Besides, our method does not introduce new additional artifacts, as the addition
rate is 0.

Table 6. Artifact detection results based on SwinIR (Liang et al., 2021). LDL∗ represents the modified detection method in LDL (Liang
et al., 2022b).

Method IoU (↑) Precision Recall
NIQE (Mittal et al., 2012) 2.3 0.0227 0.0668

PAL4Inpainting (Zhang et al., 2022) 6.3 0.0547 0.1277
LDL∗(threshold=0.01) (Liang et al., 2022b) 11.0 0.3039 0.1176

LDL∗(threshold=0.005) 19.4 0.2377 0.2647
LDL∗(threshold=0.001) 29.2 0.1473 0.7380

LDL∗(threshold=0.0001) 29.2 0.1473 0.7380
DeSRA-det (ours) 57.9 0.7600 0.7412

Table 7. Artifact detection results of SwinIR (Liang et al., 2021) with and without using DeSRA finetuning.
Method IoU (↓) Removal rate Addition rate

SwinIR (Liang et al., 2021) 57.9 - -
SwinIR-DeSRA 21.8 61.35% 0%

A.7. More Visual Comparisons between the Original GAN-SR Models and the Improved GAN-SR Models with
DeSRA

We provide the visual comparison between results with and without using our method to improve GAN-SR models, as shown
in Fig. 14, Fig. 15 and Fig. 16. We can observe that results generated by the improved GAN-SR models have greatly better
visual quality without obvious GAN-SR artifacts compared to the original inference results. All these experimental results
demonstrate the effectiveness of our method for alleviating the artifacts and improving the GAN-SR model (Real-ESRGAN,
LDL, and SwinIR).

1https://github.com/JingyunLiang/SwinIR

19



DeSRA: Detect and Delete the Artifacts of GAN-based Real-World Super-Resolution Models

RealESRGAN RealESRGAN-DeSRA RealESRGAN RealESRGAN-DeSRA

Figure 14. Visual comparison of results generated from RealESRGAN and RealESRGAN-DeSRA. Artifacts are obviously alleviated for
results produced by RealESRGAN-DeSRA. Note that to meet the max size requirement for the camera-ready version, we apply some
compression to the image, which might have affected the quality displayed in the original picture. For a better understanding of our paper,
please refer to the images in our arXiv paper.
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LDL LDL-DeSRA LDL LDL-DeSRA

Figure 15. Visual comparison of results generated from LDL and LDL-DeSRA. Artifacts are obviously alleviated for results produced by
LDL-DeSRA. Note that to meet the max size requirement for the camera-ready version, we apply some compression to the image, which
might have affected the quality displayed in the original picture. For a better understanding of our paper, please refer to the images in our
arXiv paper.
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SwinIR SwinIR-DeSRA SwinIR SwinIR-DeSRA

Figure 16. Visual comparison of results generated from SwinIR and SwinIR-DeSRA. Artifacts are obviously alleviated for results produced
by SwinIR-DeSRA. Note that to meet the max size requirement for the camera-ready version, we apply some compression to the image,
which might have affected the quality displayed in the original picture. For a better understanding of our paper, please refer to the images
in our arXiv paper.
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A.8. Unrealiable of NIQE and MANIQA Metrics

In Tab. 3 of the main paper and Tab. 7 in this supplementary material, we adopt IoU, Removal rate, and Addition rate
metrics to evaluate the performance of improved GAN-SR models with DeSRA. Although NIQE (Mittal et al., 2012) is the
commonly-used metric in GAN-SR works, we observe that this metric cannot well reflect the performance of the improved
GAN-SR models. As illustrated in Fig. 17, it can be obviously observed that the images in the second column have better
visual results with fewer artifacts than the images in the first column. However, the values of NIQE (lower is better) and
MANIQA (Yang et al., 2022) (higher is better) show the opposite results. MANIQA is the champion of the NTIRE 2022
Perceptual Image Quality Assessment Challenge. Therefore, we do not adopt these two metrics to evaluate the performance.

With obvious artifacts Without obvious artifacts

NIQE=3.4862

MANNA=0.4654

NIQE=4.8273

MANNA=0.3639

NIQE=5.1698

MANNA=0.4879

NIQE=3.6576

MANNA=0.6268

Figure 17. Evaluation of images with or without obvious artifacts on NIQE and MANNA metrics. Both of these two metrics cannot reflect
the effects of artifact removal. Note that to meet the max size requirement for the camera-ready version, we apply some compression to
the image, which might have affected the quality displayed in the original picture. For a better understanding of our paper, please refer to
the images in our arXiv paper.
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