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Abstract

Personality detection from text aims to infer an individual’s personality traits based
on linguistic patterns. However, existing machine learning approaches often struggle to
capture contextual information spanning multiple posts and tend to fall short in extracting
representative and robust features in semantically sparse environments. This paper presents
HIPPD, a brain-inspired framework for personality detection that emulates the hierarchical
information processing of the human brain. HIPPD utilises a large language model to
simulate the cerebral cortex, enabling global semantic reasoning and deep feature abstraction.
A dynamic memory module, modelled after the prefrontal cortex, performs adaptive gating
and selective retention of critical features, with all adjustments driven by dopaminergic
prediction error feedback. Subsequently, a set of specialised lightweight models, emulating the
basal ganglia, are dynamically routed via a strict winner-takes-all mechanism to capture the
personality-related patterns they are most proficient at recognising. Extensive experiments
on the Kaggle and Pandora datasets demonstrate that HIPPD consistently outperforms
state-of-the-art baselines.

Keywords: Personality Detection; Brain-Inspired Modelling; Hierarchical Processing;
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1. Introduction

Personality can be likened to a fingerprint: distinct to each individual, yet displaying common
patterns. Although various theories on personality exist, they commonly concur that it
is shaped by a complex mix of genetic, environmental, and experiential factors (Kozlova
et al., 2024). Among these, the Myers-Briggs Type Indicator (MBTI) (Myers et al., 1962) is
a widely used and effective personality assessment tool. It categorises individuals into 16
different personality types based on four dimensions: Introversion vs. Extraversion (I/E),
Sensing vs. Intuition (S/N), Thinking vs. Feeling (T/F), and Judging vs. Perceiving (P/J).

Recent detection approaches, such as EERPD (Li et al., 2024), integrate emotion
regulation with emotional features, leveraging few-shot examples and chain reasoning.
However, they may have high requirements for the quality and diversity of emotional data.
The PsyAttention model (Zhang et al., 2023) improves personality detection accuracy by
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effectively encoding psychological features and reducing the number of features. However,
during feature selection, some details crucial for specific application scenarios may be lost,
potentially affecting the model’s adaptability across different contexts. In Hu et al. (2024),
the authors propose a method that utilises large language models (LLMs) to generate
augmented textual data and explanations of personality labels from raw posts, focusing
on semantic, emotional, and linguistic aspects. While AI-generated data can provide rich
information, it may also introduce more severe challenges (Shen et al., 2025b), such as
causing hallucinations and amplifying biases.

Figure 1: The visualization shows the co-occurrence matrix of the top 10 most frequent
words in the real texts from the Kaggle (left) and Pandora (right) datasets.

A central issue highlighted in this work is that a key limitation shared by existing
methods lies in their difficulty handling complex reasoning and multi-round language style
modelling (Shahnazari and Ayyoubzadeh, 2025). Personality detection goes beyond surface-
level semantic analysis; it often relies on context-dependent psycholinguistic cues. For
example, as shown in Figure 1, words like “best” may carry limited explanatory power when
viewed in isolation. However, analysing their contextual associations, such as interactions
with surrounding words, co-occurrence patterns, and distributional structures, can reveal
deeper personality-related signals. This is because users’ lexical choices, expression styles,
and affective tones are typically distributed across multiple posts (Shen et al., 2025d), making
it challenging for conventional models to accurately interpret how context influences the
expression of personality traits. This observation forms the core intuition behind our design:
effective personality modelling requires structured, hierarchical processing mechanisms that
can dynamically identify, select, and integrate relevant contextual information dispersed
throughout a user’s posts.

However, personality datasets often exhibit severe class imbalance, as shown in Table 1.
This is typically due to two fundamental factors. First, certain personality types are
inherently less common in the general population, leading to an uneven distribution of
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labelled data. For example, types such as INFJ and INTJ account for less than 2% of
the population (Amirhosseini and Kazemian, 2020), resulting in their significant under-
representation. Second, different personality types vary in their levels of social media activity
and self-disclosure (Teng et al., 2022). Extroverted individuals, for instance, are more
likely to post frequently and openly, while introverted users may post less often or express
themselves more subtly. As a result, extroverts tend to be over-represented in collected
datasets, further amplifying the original distributional imbalance. In addition, social media
posts are typically short, which exacerbates the challenge of extracting sufficient features for
accurate modelling.

Table 1: Kaggle and Pandora datasets information in terms of the class distribution.
Kaggle Pandora

Types Train Validation Test Train Validation Test

I/E 1194 / 4011 409 / 1326 396 / 1339 1162 / 4278 386 / 1427 377 / 1437
S/N 610 / 4478 222 / 1513 248 / 1487 727 / 4830 208 / 1605 210 / 1604
T/F 2410 / 2795 791 / 944 780 / 955 3549 / 1891 1120 / 693 1182 / 632
P/J 2109 / 3096 672 / 1063 653 / 1082 2229 / 3211 770 / 1043 758 / 1056
Posts 246794 82642 82152 523534 173005 174080

Cognitive science offers valuable insights into similar problems. Human social cognition,
such as personality perception, is a highly complex process involving hierarchical information
processing in the brain, integrating both deliberate reasoning and intuitive pattern recognition.
The cerebral cortex plays a pivotal role in deep cognitive processing (Zhang et al., 2025),
enabling individuals to comprehend intricate social contexts, infer social attributes, and
construct long-term behavioural patterns. This global reasoning capability allows humans
to integrate diverse information sources when forming judgments. However, cognition is not
solely dependent on higher-order reasoning. The basal ganglia, together with their associated
neural circuits, contribute to fast, automatic pattern recognition (Maalej et al., 2024),
allowing the brain to detect familiar cues and make rapid, experience-based classifications.
Within these circuits, dopaminergic signals play a crucial role by encoding prediction errors
and reinforcing adaptive responses (Lerner et al., 2021), thereby modulating learning and
decision-making. Another essential component of social cognition is working memory,
supported by the prefrontal cortex (Shirdel et al., 2024). For example, when reading a
lengthy article, individuals do not retain every word but extract key information; similarly,
during conversation, attention is directed toward the main content rather than peripheral
details. Working memory enables the selective maintenance and manipulation of task-relevant
information, supporting flexible and goal-directed behaviour. This coordinated interplay
among different brain regions ensures the efficient allocation of cognitive resources (Liao
et al., 2024) and underlies the adaptability of human social perception.

In this paper, we present a hierarchical information processing framework for personality
detection, HIPPD, inspired by human cognitive mechanisms. Specifically, HIPPD leverages
LLMs to emulate the deep cognition of the cerebral cortex, enabling comprehensive semantic
understanding and capturing long-range dependencies within textual data. However, as in
human cognition, not all extracted information is equally relevant (Shen et al., 2025c). To
address this, we introduce a dynamic memory module inspired by the prefrontal cortex,
functioning as a working memory system. This module retains essential task-related fea-
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tures and dynamically updates memory content, selectively prioritising the most relevant
information. The refined memory representations are then processed by a specialised set of
lightweight models that mimic the function of the basal ganglia. A strict winner-takes-all
selection mechanism is employed to dynamically route each input through only the most
suitable specialised model, ensuring efficient and focused pattern recognition for personality-
related traits. Furthermore, dopaminergic-like prediction error signals are employed to
adaptively regulate both memory updating and the model selection process, reinforcing
effective information processing and enhancing the system’s overall adaptability.

Main Contributions: We propose HIPPD, a hierarchical framework for personality
detection that draws inspiration from the human brain’s architecture. HIPPD integrates a
global semantic encoder, a dynamic working memory module, and a specialist model routing
layer with a strict winner-takes-all strategy. It uniquely incorporates prediction error feedback
to adaptively regulate memory and routing, enabling robust, context-sensitive information
processing. These mechanisms together address challenges such as class imbalance and short
text, and generalize well to other feature-scarce tasks. Extensive experiments on two public
benchmarks show that HIPPD consistently outperforms state-of-the-art baselines.

2. Related Work

Deep Learning Methods: Transformer and LSTM architectures have demonstrated strong
performance in personality recognition tasks. For example, a study (Naz et al., 2024) focused
on the identification of extraversion-related features by combining BERT and BiLSTM.
Another approach introduced a label prompting method to enhance a language model’s
understanding of specific personality traits (Chen et al., 2023). In addition, researchers have
explored combining semantic features with word embedding techniques (Serrano-Guerrero
et al., 2024). Other work fine-tuned RoBERTa on unlabeled Telegram conversations,
demonstrating its transferability in unstructured settings (Shahnazari and Ayyoubzadeh,
2025). Furthermore, some studies have utilized knowledge graph techniques to enhance the
model’s capability in personality recognition (Ramezani et al., 2022; Zhu et al., 2022).
Data-Efficient Learning Methods: Efficient and generalisable learning strategies are
becoming a focus of this topic. For example, multi-task learning (Shen et al., 2025a) has
been shown to capture both emotion and personality signals in a shared representation
space for collaborative training, effectively mitigating the problems of feature redundancy
(Li et al., 2022). Researchers have used data rebalancing strategies to increase the weight of
minority class samples, combined dynamic balancing strategies with difficult example mining
(Jiang et al., 2024). Federated learning has also been applied to personality recognition,
where privacy-preserving mechanisms such as sentiment and topic preference modelling help
enhance performance under distributed data settings without access to raw data (Zhao et al.,
2023). Furthermore, generative models combined with active learning can synthesise or
select representative samples without increasing the annotation cost (Meng et al., 2024).

Unlike previous approaches that primarily rely on pre-trained models and uniform feature
extraction, HIPPD introduces a hierarchical, brain-inspired framework that combines global
reasoning, dynamic memory, and winner-takes-all pattern selection. This enables more
effective identification and integration of salient personality cues across diverse and context-
dependent user data.
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3. Our Novel HIPPD Model

HIPPD is a brain-inspired hierarchical model for personality detection from text. It comprises
three main modules (Figure 2): a global semantic encoder simulating the cerebral cortex
for high-level contextual abstraction; a dynamic working memory module inspired by
the prefrontal cortex for selective feature retention and updating; and a parallel pool of
lightweight specialist models mimicking the basal ganglia, where a strict winner-take-all
routing mechanism activates only the most suitable specialist. Unified dopaminergic feedback
adaptively regulates both memory gating and model selection, forming a closed-loop, self-
optimising information processing system capable of robust operation across diverse contexts.

Figure 2: Overview of the HIPPD architecture. The model simulates three core brain mod-
ules: the cerebral cortex, the prefrontal cortex, and the basal ganglia. Dopaminer-
gic modulation adaptively regulates working memory and specialist selection.

3.1. Global Semantic Encoder

Let X = {x1, x2, . . . , xN} denote the sequence of user-generated text posts, where xi
represents the i-th post in the corpus. We employ an LLM, denoted as fθ and parameterised
by θ, to encode each input sequence into a high-dimensional semantic space. Specifically, for

each user, the model receives the concatenated text sequence Xu = [x
(u)
1 , · · · , x(u)Mu

], where
Mu is the number of posts for user u, allowing the model to compute feature dependencies
within a broader contextual window.

The LLM backbone maps Xu into a contextualised feature matrix Hu = fθ(Xu) ∈ RMu×d,
where d is the hidden dimension and Hu = [h1, · · · ,hMu ] contains the contextual embeddings
of each post. This step simulates the integrative and abstraction function of the cerebral
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cortex1, enabling the model to capture long-range dependencies and nuanced language
patterns across multiple posts. To obtain a global semantic representation for the user, we
aggregate the contextual features via a pooling function P (e.g., mean or attention-based
pooling), i.e., zu = P(Hu) ∈ Rd, where zu encodes the user’s overall linguistic and contextual
information. This global representation zu serves as the input to downstream modules,
supporting dynamic memory operations and specialist pattern recognition in subsequent
stages.

3.2. Dynamic Working Memory Module

Given the global semantic representation zu obtained from the LLM, the dynamic working
memory module is designed to selectively retain, update, and filter information in a task-
adaptive manner, mimicking the working memory2 and gating functions of the prefrontal
cortex3. A central mechanism enabling the prefrontal cortex to perform flexible and
adaptive control is its use of prediction error (PE) signals. Substantial neuroscientific
and computational evidence (Schultz et al., 1997; Lerner et al., 2021) demonstrates that
dopaminergic neurons encode reward prediction error, which the prefrontal cortex exploits
to drive synaptic plasticity, optimise working memory retention, and allocate cognitive
resources to task-relevant information. This predictive modulation allows the brain to
strengthen or suppress information based on feedback, supporting continual adaptation in
dynamic environments. Motivated by this principle, we use prediction error as an analogue
for dopaminergic modulation to regulate the gating dynamics of our working memory layer.

The memory state at time step t is denoted as mt ∈ Rd. For each new input zu, the
memory layer computes gated updates as: it = σ(Wizu +Uimt−1 + bi), ft = σ(Wfzu +
Ufmt−1 + bf ), where it and ft are the input and forget gates, σ(·) is the sigmoid activation,
and Wi,Wf ,Ui,Uf ,bi,bf are trainable parameters. The memory update equation is
defined as:

mt = ft ⊙mt−1 + it ⊙ tanh(Wczu +Ucmt−1 + bc), (1)

where ⊙ denotes element-wise multiplication, and Wc,Uc,bc are learnable parameters. To
introduce adaptive regulation inspired by dopaminergic prediction error, we compute the PE
signal as PEt = ℓ(ŷt, yt), where ŷt is the model’s predicted label at time t, yt is the ground
truth, and ℓ(·, ·) is a suitable loss function (e.g., cross-entropy). The PE signal modulates
the gating parameters by i′t = it + αPEt, f

′
t = ft − β PEt, where α, β > 0 are modulation

coefficients. This adaptive adjustment allows the memory layer to reinforce critical features
when the error is high, and selectively forget less relevant information, achieving continual
memory optimisation. Finally, the updated memory state m′

t (using i′t, f
′
t) is passed to the

downstream specialist model pool for further processing and personality trait inference.

1. The cerebral cortex is the highly folded outer layer of the brain, responsible for complex cognitive processes
such as perception, language, reasoning, and conscious thought.

2. Working memory refers to the brain’s capacity to temporarily store and manipulate information necessary
for complex tasks like reasoning, comprehension, and decision-making. It is primarily supported by the
prefrontal cortex and is essential for adaptive, goal-directed behaviour.

3. The prefrontal cortex is the foremost region of the frontal lobes, known for its central role in executive
functions, including planning, decision-making, attentional control, and moderating social behaviour.
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3.3. Specialist Model Routing

Biologically inspired by the parallel and competitive action selection circuits of the basal
ganglia 4 We model this stage as a set of K lightweight specialist models. Following the
adaptive working memory update, the processed feature vector m′

t ∈ Rd is fed into these
specialist models, denoted {S1, . . . ,SK}. Each specialist model Sk is parameterised by ϕk

and designed to recognise distinct personality-related patterns.

For a given input, a gating network computes a suitability score for each specialist, i.e.,
sk = w⊤

k m
′
t + bk, k = 1, . . . ,K, where wk ∈ Rd and bk ∈ R are gating parameters. During

training, a differentiable winner-takes-all routing is implemented via the Gumbel-Softmax
estimator (Jang et al., 2016), i.e., p = Gumbel-Softmax(s; τ), where s = [s1, . . . , sK ]⊤

and τ is the temperature parameter. During inference, a strict argmax is applied, i.e.,
k∗ = argmaxk sk, so that only the most suitable specialist is activated for the final prediction.
We adopt this strict winner-takes-all mechanism because it closely mirrors the action selection
dynamics of the biological basal ganglia, which resolve competition among parallel neural
circuits by allowing only the most salient pathway to be expressed while suppressing
alternatives. This competition-driven selection is widely recognised as a key principle for
efficient and non-redundant decision making in both neuroscience and cognitive science
(Frank et al., 2001; Redgrave et al., 1999). The selected specialist receives m′

t as input
and produces the output ŷt = Sk∗(m

′
t;ϕk∗). To maintain biological plausibility and enable

continual specialisation, the PE signal computed in the previous stage is also used to
adaptively modulate the gating network, i.e., s′ = s+η ·PEt, where η ∈ RK is a modulation
vector. This feedback mechanism encourages exploration when errors are high and reinforces
successful routing decisions when errors are low, mirroring dopaminergic action selection
observed in the basal ganglia.

By combining strict competition (winner-takes-all), dynamic gating, and error-driven
adaptation, this module enables efficient and adaptive pattern selection for robust personality
trait inference.

3.4. Personality Classification

HIPPD supports both binary classification along each MBTI dimension and full 16-type
personality classification.

Let ŷt denote the output logit from the selected specialist model for input at time t.
For each MBTI dimension (Introversion/Extraversion, Sensing/Intuition, Thinking/Feeling,
Judging/Perceiving), a separate sigmoid-based classification head is applied, i.e.,

p̂
(d)
t = σ(w

(d)⊤
bin ŷt + b

(d)
bin), d ∈ {1, 2, 3, 4} (2)

where w
(d)
bin and b

(d)
bin are the weights and bias for the d-th dimension, and σ(·) is the sigmoid

function. The prediction for each dimension is given by y
(d)
bin = I[p̂(d)t > 0.5], where I is the

indicator function. For joint prediction of the full MBTI type, we introduce a softmax-based

multi-class head, i.e., p̂
(16)
t = softmax(W16ŷt + b16), where W16 ∈ R16×d and b16 ∈ R16 are

4. The basal ganglia is a group of interconnected brain nuclei responsible for the selection, initiation, and
regulation of actions and behaviours, playing a key role in both motor and cognitive decision-making.
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the weight matrix and bias vector. The final predicted personality type is

y16 = arg max
k∈{1,...,16}

p̂
(16)
t [k]. (3)

During training, the total loss is computed as the sum of the binary cross-entropy loss
for each dimension and the categorical cross-entropy loss for the 16-type prediction, enabling
joint optimisation in both binary and multiclass settings.

4. Experiments and Discussions

4.1. Experimental Setup

Datasets: To ensure a fair comparison with previous work (Yang et al., 2023; Hu et al.,
2024; Zhu et al., 2024b), we selected the same two datasets, i.e., Kaggle5 and Pandora6.
The Kaggle MBTI dataset consists of data from approximately 8,675 users collected via the
PersonalityCafe forum. Each user contributed up to 50 posts along with their self-reported
MBTI labels. The posts are typically short (averaging about 26 words per post), cover a
wide range of topics, and reflect diverse writing styles. In total, the dataset comprises around
430,000 individual text samples. The Pandora dataset is another large-scale benchmark
constructed from Reddit. It contains about 9,067 users, each with dozens to hundreds of
posts. MBTI labels are assigned by extracting type mentions from users’ self-introduction
posts. Compared to the Kaggle dataset, Pandora offers greater linguistic diversity and
contextual depth, as Reddit users tend to participate in a broader range of communities and
topics. Both datasets are regarded as standard benchmarks for evaluating new methods in
text-based MBTI personality computing.

Implementation Details: We adopt Qwen3-14B (Yang et al., 2025) as the frozen global
semantic encoder. To align input lengths across Kaggle and Pandora, each user sequence is
standardised to the median of 2048 tokens. The working-memory module is a single-layer
gated memory network: input and forget gates are MLPs with sigmoid activations and width
4096 to match the LLM embedding; parameters use Xavier initialisation; state updates use
tanh. Positional modulation uses a coefficient of 0.1, with the positional signal normalised
and clipped to [−1, 1] for stability. A memory dropout of 0.2 is applied after each update, and
the updated memory vector is optionally linearly projected to match downstream input sizes.
The specialist pool comprises five parallel lightweight models (CNN, LSTM, GCN, SVM,
XGBoost); the CNN has 128 channels; the LSTM uses a hidden size of 512 with dropout
0.2; XGBoost and SVM use the same features but are trained post hoc; no parameters
are shared across models. Training employs Gumbel-Softmax routing with temperature
linearly decayed from 1.0 to 0.1 over the first 20 epochs; inference uses strict argmax for
winner-take-all selection. The prediction error is the cross-entropy between predicted and
true labels at each step, normalised to [0, 1] by mini-batch min–max rescaling; high error
flattens gating logits to encourage exploration, while low error sharpens them to reinforce
consistent selection. The modulation step size is 0.1. Experiments run on three NVIDIA H20
GPUs using the Adam optimiser with a learning rate of 1× 10−4. To prevent information

5. https://www.kaggle.com/datasnaek/mbti-type
6. https://psy.takelab.fer.hr/datasets/all

https://www.kaggle.com/datasnaek/mbti-type
https://psy.takelab.fer.hr/datasets/all
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leakage, tokens directly matching personality labels are removed during preprocessing. Data
splits are 60%/20%/20% for training/validation/test, and results are averaged over ten runs.

Evaluation Metrics: We employ the Macro-F1 as our metric, which has been utilised in
previous studies (Yang et al., 2023; Hu et al., 2024; Zhu et al., 2024b). Additionally, we used
accuracy (ACC), precision (P), and recall (R) in various evaluation scenarios to provide a
more comprehensive assessment.

Comparative Models: We first selected several popular classification baselines, including
SVM (Cui and Qi, 2017), XGBoost (Tadesse et al., 2018), LSTM (Tandera et al., 2017),
and BERT (Keh et al., 2019). We then evaluated the zero-shot and chain-of-thought (CoT)
capabilities of advanced LLMs, including GPT-4o (Achiam et al., 2023) and DeepSeek-V3
(Liu et al., 2024). We also incorporated diverse fine-tuned architectures. AttRCNN (Xue
et al., 2018) integrates attention into an RCNN structure with a CNN-Inception module for
robust feature extraction. SN+Attn (Lynn et al., 2020) uses a Sequence Network with dual
attention at message and word levels to enhance signal relevance. Transformer-MD (Yang
et al., 2021a) employs Transformer-XL and memory mechanisms for disorder-agnostic post-
integration with dimension-specific attention. PQ-Net (Yang et al., 2021b) fuses psychological
questionnaires and user text via cross-attention to capture personality cues. TrigNet (Yang
et al., 2021c) constructs a heterogeneous tripartite graph with flow graph attention (GAT)
for psycholinguistic integration. D-DGCN (Yang et al., 2023) dynamically builds graph
structures, integrating multiple posts disorder-agnostically. DEN (Zhu et al., 2024a) models
long-term personality traits with GCN, short-term states with BERT, and enhances both
via bidirectional interaction. MvP (Zhu et al., 2024b) introduces a multi-view mixture-
of-experts (MoE) architecture that automatically models and integrates user posts from
multiple perspectives. TAE (Hu et al., 2024) leverages LLM-generated text augmentation and
label explanations, applying contrastive learning to improve psycholinguistic representation.

4.2. Overall Results

Macro F1: As shown in Table 2, our HIPPD achieves an average Macro-F1 score of 78.97%
on the Kaggle dataset, and 68.98% on the Pandora dataset, surpassing the previous state-
of-the-art model TAE by 6.90% and 5.93%, respectively. In addition, HIPPD consistently
delivers substantial improvements on each individual dimension, demonstrating robust and
comprehensive advantages across all evaluation aspects.

Specifically, compared with both meticulously tuned traditional machine learning models,
such as SVM, XGBoost, and LSTM, as well as deep learning architectures incorporating
complex modules like CNNs, GCNs and Transformers, HIPPD exhibits significant perfor-
mance gains. Moreover, even when faced with LLMs renowned for their strong language
understanding capabilities, such as GPT-4o and DeepSeek-V3, HIPPD maintains superior
competitiveness. Notably, introducing CoT reasoning into LLMs does not bring additional
benefits; on the contrary, it slightly degrades performance on this task. This observation
suggests that the current general-purpose reasoning mechanisms in LLMs are unable to
effectively identify and integrate the subtle personality cues distributed across multiple social
media posts, and may even introduce irrelevant noise or hallucination.

Accuracy: We further report accuracy as an auxiliary metric to comprehensively demon-
strate the effectiveness of HIPPD. For consistency, we employ the similar set of baselines
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Table 2: Comparison of HIPPD with state-of-the-art baselines in terms of the Macro-F1 (%)
scores across the four dimensions and their overall average (Avg).

Methods
Kaggle Pandora

I/E S/N T/F P/J Avg I/E S/N T/F P/J Avg

SVM 53.34 47.75 76.72 63.03 60.21 44.74 46.92 64.62 56.32 53.15
XGBoost 56.67 52.85 75.42 65.94 62.72 45.99 48.93 63.51 55.55 53.50
LSTM 57.82 57.87 69.97 57.01 60.67 48.01 52.01 63.48 56.21 54.91
BERT 58.33 57.12 77.95 65.25 66.24 56.60 48.71 64.70 56.07 56.52
AttRCNN 59.74 64.08 78.77 66.44 67.25 48.55 56.19 64.39 57.26 56.60
SN+Attn 65.43 62.15 78.05 63.92 67.39 56.98 54.78 60.95 54.81 56.88
Transformer-MD 66.08 69.10 79.19 67.50 70.47 55.26 58.77 69.26 60.90 61.05
PQ-Net 68.94 67.65 79.12 69.57 71.32 57.07 55.26 65.64 58.74 59.18
TrigNet 69.54 67.17 79.06 67.69 70.86 56.69 55.57 66.38 57.27 58.98
D-DGCN 69.52 67.19 80.53 68.16 71.35 59.98 55.52 70.53 59.56 61.40
DEN 69.95 66.39 80.65 69.02 71.50 60.86 57.74 71.64 59.17 62.35
MvP 67.68 69.89 80.99 68.32 71.72 60.08 56.99 69.12 61.19 61.85
GPT-4o (Zero-shot) 68.94 54.74 80.19 67.01 67.72 57.43 51.55 71.81 62.34 60.78
GPT-4o (CoT) 66.71 61.92 77.31 60.88 66.71 61.02 57.23 66.48 57.00 60.43
DeepSeek-V3 (Zero-shot) 69.76 58.61 75.71 64.37 67.11 61.39 54.31 68.05 58.17 60.48
DeepSeek-V3 (CoT) 68.59 61.47 74.56 61.21 66.46 58.23 56.15 67.94 55.01 59.33
TAE 70.90 66.21 81.17 70.20 72.07 62.57 61.01 69.28 59.34 63.05

HIPPD 73.28 77.84 85.17 79.60 78.97 65.98 63.27 77.69 68.97 68.98

as in the Macro-F1 evaluation, including widely used text classification models as well as
state-of-the-art architectures specifically designed for MBTI personality detection.

As shown in Table 3, HIPPD achieves an average accuracy of 86.08%, outperforming
GPT-4o by 7.05%. For the four specific MBTI dimensions, HIPPD again achieves substantial
improvements across the board, and notably, it surpasses 90% accuracy on S/N for the first
time, and breaks through the 80% threshold on both T/F and P/J. These results further
validate the significant contributions of our proposed design to this task.

16-type Evaluation: We further adopt a novel 16-type evaluation framework to assess the
generalization and adaptability of HIPPD across different practical scenarios. In this setting,
the model is required to directly classify all 16 MBTI personality types. In contrast to the
conventional four-dimensional binary classification, which often requires expert psychological
knowledge, the 16-type framework offers a more intuitive and user-friendly experience for the
general public. This approach also better aligns with the common preference for obtaining
personalized “badges” rather than relying on complex psychological profiles.

As shown in Table 4, we selected a range of advanced models that demonstrated strong
performance in previous evaluations as baselines. We observed that under the 16-type setting,
all models experienced a significant drop in performance, with some baseline scores even falling
to single digits. This highlights the inherent difficulty of direct 16-type MBTI classification.
These results emphasize that simply stacking features or increasing model capacity is
insufficient to capture the subtle, context-dependent signals that underpin fine-grained
personality expression in real-world social media. Notably, HIPPD maintains a significant
performance advantage and exhibits a much smaller decline than all competing baselines.
This points to a promising direction for future multi-class user modelling tasks. Specifically,
mechanisms such as dynamic context selection, continual feedback-driven adaptation, and
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Table 3: Comparison of HIPPD and state-
of-the-art baselines on the Kaggle
dataset in terms of accuracy.

Kaggle

Method I/E S/N T/F P/J Avg

SVM+TF-IDF 71.00 79.50 75.00 61.50 71.75
XGBoost 78.17 86.06 71.78 65.70 75.43
RNN 67.66 62.08 77.86 63.75 67.84
LSTM+Glove 72.58 80.53 74.06 62.59 72.44
LSTM+RMSprop 77.42 86.36 72.94 66.33 75.76
BERT+MLP 77.30 84.90 78.30 69.50 77.50
BERT+SVM 79.06 86.04 74.29 65.42 76.20
BERT+CNN 78.47 78.57 77.58 71.41 76.51
RoBERTa 77.10 86.50 79.60 70.60 78.45
Transformer-MD 76.75 86.47 78.29 68.05 77.39
TrigNet 77.84 85.09 78.77 73.33 78.76
D-DGCN 78.16 84.48 79.32 73.39 78.84
DeepSeek-V3 79.85 85.62 77.69 68.14 77.83
GPT-4o 80.27 86.61 78.25 70.97 79.03

HIPPD 85.41 91.99 85.34 81.59 86.08

Table 4: Performance comparison within the
16-type evaluation framework.

Dataset Method Acc P R F1

Kaggle

SVM 21.44 11.29 10.92 11.08
XGBoost 23.17 11.61 9.89 10.73
LSTM 24.9 5.45 8.93 6.07
BERT 34.64 16.29 14.43 15.87

D-DGCN 40.58 27.30 23.28 24.23
DeepSeek-V3 51.74 45.41 39.94 41.07

GPT-4o 54.12 49.84 42.35 45.16
HIPPD 73.02 86.77 61.44 69.03

Pandora

SVM 20.23 11.06 7.56 9.80
XGBoost 25.30 7.34 8.16 7.91
LSTM 23.65 2.69 6.04 3.39
BERT 27.40 5.03 8.49 5.65

D-DGCN 32.52 12.67 11.68 10.99
DeepSeek-V3 38.70 46.01 25.36 30.91

GPT-4o 41.82 48.89 28.77 34.25
HIPPD 58.21 67.17 29.34 38.26

specialized pattern recognition should be incorporated, as these are especially critical for
maintaining robustness and generalization under extreme class imbalance and distributed
weak signals.

Table 5: Ablation results of HIPPD with different component configurations. The tests
were conducted on Kaggle and Pandora datasets in terms of the evaluation metric
Macro-F1 (%) scores across the four dimensions and their average (Avg).

Components
Kaggle Pandora

I/E S/N T/F P/J Avg I/E S/N T/F P/J Avg

Vallina Qwen3-14B 64.75 62.31 71.40 62.62 65.27 56.82 52.62 65.73 55.70 57.72
Replace Qwen3 with BERT 73.21 69.78 80.34 69.25 73.15 62.33 59.17 70.77 61.81 63.52
Replace Qwen3 with GPT-4o 73.61 77.25 84.98 79.33 78.79 65.62 62.91 77.32 68.65 68.63
Replace Attention Pooling with Mean Pooling 73.20 77.81 84.99 79.35 78.84 65.72 63.02 77.50 68.72 68.74
w/o Working Memory 70.05 71.02 82.62 72.27 73.99 61.15 58.88 74.13 63.09 64.31
Replace Gated Memory with MLP 71.39 71.58 82.95 74.29 75.05 62.24 58.03 74.81 64.30 64.85
w/o PE Signal 72.40 74.66 83.11 77.03 76.80 63.28 60.69 76.40 65.93 66.58
Replace Winner-Takes-All with Soft Routing 72.58 75.28 84.57 77.91 77.59 64.07 62.13 76.88 67.53 67.65
Replace Gating Network with Random Routing 73.83 71.32 81.94 69.87 74.25 62.39 59.65 71.52 60.30 63.47

HIPPD 73.28 77.84 85.17 79.60 78.97 65.98 63.27 77.69 68.97 68.98

4.3. Ablation Study

We conducted a detailed ablation study to confirm the contribution of each key component
to our overall design, as shown in Table 5.

Global Semantic Encoder: We first focused on the global semantic encoder, including
the vanilla Qwen3-14B model, and versions in which Qwen3 is replaced by BERT or GPT-4o.
The vanilla Qwen3-14B configuration does not contain any hierarchical or memory-based
modules. Under this setting, the Macro-F1 scores drop substantially to 65.27% on Kaggle
and 57.72% on Pandora, representing decreases of 13.70% and 11.26% respectively compared
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to the full HIPPD. This performance gap highlights that real-world social media data, which
is characterized by more dispersed linguistic features and weaker personality signals, benefits
substantially from structured information processing. When the backbone model is replaced
with BERT, Macro-F1 decreases by 5.82% on Kaggle and 5.46% on Pandora. Although
BERT remains a strong language model, its ability to capture long-range dependencies and
subtle linguistic cues is somewhat inferior to advanced LLMs like Qwen3. This underscores
the importance of high-capacity semantic modelling in complex and noisy environments.
When Qwen3 is replaced by GPT-4o, the overall performance of both HIPPD variants
becomes very close, with each achieving slightly better results on some individual dimensions.
This result demonstrates that the HIPPD architecture is robust and generalizes well to
different large language model backbones. The advantages brought by the carefully designed
HIPPD outweigh the marginal differences between top-tier LLMs.

We further examined the impact of different pooling strategies on the global semantic
encoder. Replacing attention pooling with mean pooling had only a negligible effect on
performance, and the model still maintained very strong results. This similar outcome
validates our design, which encodes rich contextual dependencies and global semantic signals,
ensuring that the overall representation remains highly effective regardless of the pooling
strategy employed.

Dynamic Working Memory: We next ablated the memory components in our model to
evaluate their individual contributions. Removing the working memory module deprives
HIPPD of the ability to highlight and update important features within user posts, which
severely limits its capacity to aggregate distributed personality signals from fragmented
data. When the gated memory mechanism is replaced with a simple MLP, performance
also declines, although the impact is less severe than that of removing working memory
entirely. This is because the memory structure remains, but the absence of gating eliminates
the module’s ability to dynamically control which information is remembered or forgotten,
thereby reducing the model’s flexibility in handling noisy or context-dependent signals.

We also examined the impact of the prediction error (PE) signal on the memory and
routing modules. After removing the PE signal, the Macro-F1 drops to 76.80% on Kaggle
and 66.58% on Pandora. This is because the PE signal enables the model to dynamically
adjust memory updates and specialist routing based on recent prediction errors. Without
this task-focused feedback mechanism, the model loses its ability for continual self-correction
and adaptive information selection, which is especially detrimental on the more complex
Pandora dataset.

Specialist Model Routing: To verify the importance of the strict winner-takes-all selection
mechanism, we modified the routing strategy in two different ways. First, we implemented
soft routing, in which all specialist models are combined using a softmax-weighted aggregation,
instead of activating only the most suitable expert for each input as in the original design.
This soft assignment weakens the competition among experts and allows every specialist
to contribute partially to the final prediction. Second, we replaced the learned gating
network with random routing. In this setting, for each input, one specialist model is
assigned completely at random, without considering the suitability score or any data-driven
criteria. Both ablation approaches lead to reduced model performance. The soft routing
method causes a slight decrease in Macro-F1 (dropping to 77.59% on Kaggle and 67.65% on
Pandora), indicating that allowing all specialist models to participate partially, rather than
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selecting only the most appropriate expert, reduces the clarity of pattern recognition. In
contrast, random routing results in a much larger decline (dropping to 74.25% on Kaggle
and 63.47% on Pandora), confirming that data-driven expert assignment is critical for robust
and accurate personality detection, especially in the presence of noisy and heterogeneous
social media data.

5. Qualitative Analysis

Figure 3: The visualization shows the mutual information between the top 10 most frequent
words and all MBTI types in the Kaggle (left) and Pandora (right) datasets.

As shown in Figure 3, we use bar charts to visualise the mutual information (MI) between
the ten most frequent words and all MBTI types in both the Kaggle (left) and Pandora
(right) datasets. MI is a metric that measures the degree of dependency between two random
variables; higher MI values indicate stronger associations and greater shared information.
We leverage MI to assess the contribution of each frequent word to the MBTI types.

In the Kaggle dataset, although the INFJ type has the highest MI value, it is only around
0.012. The MI values for INTJ, ENFP, and other types decrease progressively, indicating
that the associations between these personality types and the most frequent words are
generally weak. In contrast, the Pandora dataset demonstrates overall lower MI values, with
the peak remaining below 0.006 for any type. This reflects even weaker direct associations
between frequent words and MBTI types in natural social media language.

These findings further highlight the need for hierarchical and structured modelling
approaches, such as our HIPPD, which can move beyond surface-level word statistics
to capture subtle, distributed, and context-dependent signals of personality expression.
Moreover, the limited benefits of individual words or local features, especially in more diverse
and ecologically valid datasets like Pandora, underscore the importance of integrating global
dependencies, multi-level representations, and relational structures, as realised by HIPPD.

6. Conclusion

This paper proposes HIPPD, a brain-inspired hierarchical framework for personality detection.
By modelling the division of labour among the cerebral cortex, prefrontal cortex, and basal
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ganglia, HIPPD achieves powerful global reasoning, dynamic memory selection, and context-
sensitive pattern recognition. The unified dopaminergic feedback mechanism enables adaptive
regulation of both working memory and specialist selection, forming a closed-loop, self-
optimising system. Extensive experiments on two benchmark datasets demonstrate that
HIPPD outperforms state-of-the-art baselines across multiple evaluation settings, while
ablation studies confirm the critical contributions of all key components. In future work, we
plan to extend this framework to other psychological and cognitive modelling tasks and to
further explore continual adaptation in real-world dynamic environments.
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