
Are High-Degree Representations Really Unnecessary
in Equivariant Graph Neural Networks?

Jiacheng Cen1 2, Anyi Li1 2, Ning Lin1 2, Yuxiang Ren3, Zihe Wang1 2, Wenbing Huang1 2∗
1 Gaoling School of Artificial Intelligence, Renmin University of China

2 Beijing Key Laboratory of Big Data Management and Analysis Methods
3 2012 Laboratories, Huawei Technologies, Shanghai

{jiacc.cn, li_anyi, ninglin00}@outlook.com; renyuxiang1@huawei.com;
wang.zihe@ruc.edu.cn; hwenbing@126.com

Abstract

Equivariant Graph Neural Networks (GNNs) that incorporate the E(3) symmetry
have achieved significant success in various scientific applications. As one of the
most successful models, EGNN [1] leverages a simple scalarization technique
to perform equivariant message passing over only Cartesian vectors (i.e., 1st-
degree steerable vectors), enjoying greater efficiency and efficacy compared to
equivariant GNNs using higher-degree steerable vectors. This success suggests
that higher-degree representations might be unnecessary. In this paper, we disprove
this hypothesis by exploring the expressivity of equivariant GNNs on symmetric
structures, including k-fold rotations and regular polyhedra. We theoretically
demonstrate that equivariant GNNs will always degenerate to a zero function if the
degree of the output representations is fixed to 1 or other specific values. Based
on this theoretical insight, we propose HEGNN, a high-degree version of EGNN
to increase the expressivity by incorporating high-degree steerable vectors while
still maintaining EGNN’s advantage through the scalarization trick. Our extensive
experiments demonstrate that HEGNN not only aligns with our theoretical analyses
on a toy dataset consisting of symmetric structures, but also shows substantial
improvements on other complicated datasets without obvious symmetry, including
N -body and MD17. Our study potentially showcase an effective way of modeling
high-degree representations in equivariant GNNs.

1 Introduction

Molecules, proteins, crystals, and many other scientific data can be effectively modeled and rep-
resented through geometric graphs [2–8]. This type of data structure encapsulates not only node
characteristics and edge information but also a 3D vector (such as position, velocity, etc.) for each
node. To process geometric graphs, equivariant Graph Neural Networks (GNNs) have been developed,
which undergo equivariant message passing over nodes, conforming to the E(3) or SE(3) symmetry
of physical laws. These models have achieved remarkable successes in a lot of scientific tasks, such
as physical dynamics simulation [9–11], molecular generation [12–15] and protein design [16–18].

Pioneer equivariant GNNs [19–22] derive high-degree steerable representations beyond scalars and
3D coordinates with the help of spherical harmonics and conduct equivariant message passing
between representations of different degrees through the Clebsch-Gordan (CG) tensor product. While
these high-degree models are able to approximate any function of fully connected geometric graphs
in theory [23], they usually suffer from expensive computational costs in practice. In contrast,

∗Wenbing Huang is the corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

k-fold (odd) k-fold (even) Tetrahedron Cube (Hexahedron) Octahedron Dodecahedron Icosahedron

1

Figure 1: Common symmetric graphs. Equivariant GNNs on symmetric graphs will degenerate to a
zero function if the degree of their representations is fixed as 1.

EGNN [1] leverages a simple scalarization technique to allow equivariant message passing over
only 3D vectors (i.e. the 1st-degree steerable features). Specifically, the scalarization technique first
encodes 3D vectors into scalars as invariant messages, which are passed as geometric messages after
the multiplication with the 3D vectors to recover the orientation information. Despite its simplicity,
EGNN achieves remarkably better efficacy and efficiency against conventional high-degree models
for a broad range of applications [24; 25]. Such successes suggest that higher-degree representations
might be unnecessary.

In this paper, we challenge and disprove this hypothesis by exploring the expressivity of equivariant
GNNs on symmetric graphs. Fig. 1 illustrates the examples of k-fold rotations and regular polyhedra,
which are invariant to rotations up to certain rotating angles. Taking the cube for example, conducting
90◦ rotation around the axes crossing the center of the two opposite faces keeps its shape and
orientation unchanged. Interestingly, by making use of group theory, we theoretically prove that
any equivariant GNN (after translating the coordinate center to the origin and conducting graph-
level readout) on these symmetric graphs will degenerate to a zero function if the degree of their
representations is fixed to be 1. The direct deduction of this theorem is that EGNN can only output
a zero 3D vector no matter how we rotate the input graph, indicating that EGNN totally loses
the recognition ability of orientation. Additionally, this statement points out the limitation of the
methods that rely on constructing global features for symmetric graphs 2 (e.g. frames in frame
averaging [26; 27], virtual nodes in FastEGNN [28]), equivariant pooling in EGHN [29], and meshes
in Neural P3M [30]), since it is impossible to output another non-collinear 3D vector except the
center coordinate.

Based on the above theoretical insights, we propose a novel equivariant GNN model termed HEGNN3,
which enhances EGNN by incorporating high-degree steerable vectors while inheriting the desired
benefit from EGNN through the scalarization trick. In summary, our contributions are as follows:

• We theoretically investigate the expressivity reduction issue of equivariant GNNs on sym-
metric graphs.

• We propose HEGNN, to further incorporate high-degree steerable representations into
EGNN. Moreover, since the equivariant message passing process between different-degree
representations is conducted via inner products, it shares the same benefit as EGNN, com-
pared to traditional high-degree models.

• Our extensive experiments demonstrate that HEGNN not only aligns with our theoretical
analyses on toy datasets consisting of symmetric graphs, but also shows substantial im-
provements on more complicated datasets without explicit symmetry, such as N -body and
MD17.

2 Related Works

Equivariant GNNs. Equivariant GNNs can be divided into two classes: scalarization-based models
and high-degree steerable models [31]. Scalarization-based models adopt norms or inner products
to convert equivariant 3D vectors into invariant scalars, which are considered as coefficients to
linearly combine 3D vectors for node update. EGNN [1] is the first work falling into this category.
Concurrently, PAINN [32] further enhances the expressive ability of the model by introducing
multi-channel equivariant features. On the contrary, high-degree steerable models (e.g. TFN [19],

2See Appendix A.3 for further discussion.
3Code is available at https://github.com/GLAD-RUC/HEGNN.

2

https://github.com/GLAD-RUC/HEGNN

SEGNN [33] and SE(3)-Transformer) use spherical harmonics to ensure the equivariance of message
passing, and realize interaction between steerable features of different degrees through CG tensor
products. Our HEGNN also uses high-degree steerable features, but it leverages the scalarization trick
for the interaction between steerable features of different degrees, thus leading to more expressivity
than EGNN and less computational cost than other high-degree models.

Expressivity of Equivariant GNNs. The theoretical expressivity of equivariant GNNs is initially
explored by [23], which proves the university of the high-degree steerable model, i.e., TFN [19],
over fully-connected geometric graphs. GemNet [34] further demonstrates that the universality holds
with just spherical representations other than the full SO(3) representations that are required in the
proof of [23]. More recently, the GWL framework [35] extends the Weisfeiler-Lehman (WL) test
into a geometric version [36] to study the expressive power of geometric GNNs operating on sparse
graphs from the perspective of discriminating geometric graphs. Different from all the above works,
our paper investigates the expressivity of equivariant GNNs on symmetric graphs, and demonstrates
the necessity of involving high-degree representations. Although the GWL test paper [35] has
experimentally compared different models on k-fold structures that are allowed to rotate only in the
2D space, the conclusions of this paper are proved both theoretically and experimentally. Moreover,
our discussions cover a full range of examples including k-folds (rotation in 3D space) and regular
polyhedra.

3 Theoretical Analyses

In this section, we first present the necessary preliminaries related to geometric graphs and group
representation. Then, we define and illustrate typical examples of symmetric graphs. Finally, we will
discuss when equivariant GNNs will degenerate to a zero function on symmetric graphs.

3.1 Preliminaries

Geometric graph. A geometric graph of N nodes is defined as G :=
(
H, X⃗;A

)
, where H :=

{hi ∈ RCH}Ni=1 and X⃗ := {x⃗i ∈ R3}Ni=1 are node features and 3D coordinates, respectively;
A ∈ RN×N represents the adjacency matrix and can be assigned with edge features eij if necessary.
Throughout our theoretical analyses in this section, we assume the node features and edge features to
be identical for all.

Transformation of geometric graph. We are interested in the transformations of a geometric
graph G with respect to a group G, which is defined as g · G, for g ∈ G and · denoting the group
action. For instance, g · G can be explained as translation, rotation, or reflection of the coordinates
X⃗ . These transformations form a 3D Euclidean group denoted as E(3), and its subgroup without
translation is called the orthogonality group O(3). With the aid of group representation ρ(g), the
transformation of a coordinate x⃗ is represented as ρ(g)x⃗. For example, orthogonal matrices are the
trivial representations of O(3), that is, the orthogonal transformation of a vector x⃗ is represented by
Ox⃗ with O ∈ R3×3 being an orthogonal matrix. Besides, there are other representations of O(3),
such as the irreducible representations which will be detailed below.

Equivariance. Let X and Y be the input and output vector spaces, respectively. A function
f : X → Y is called equivariant with respect to group G if

∀g ∈ G, f(ρX (g)x⃗) = ρY(g)f(x⃗), (1)

where ρX and ρY are the group representations in the input and output spaces, respectively. Since we
can eliminate the translation effect by simply translating the center of all coordinates to the origin,
we only discuss equivariance with respect to O(3) in this section. In other words, we default that the
center of X⃗ is at the origin.

Irreducible representations and steerable features. O(3) consists of rotation and inversion,
implying O(3) = SO(3) × Ci, where SO(3) is the rotation group and Ci = {e, i} denotes the
inverse group. We first discuss the irreducible representations of SO(3). For each rotation r ∈ SO(3),
its irreducible representations are Wigner-D matrices D(l)(r) ∈ R(2l+1)×(2l+1) of different degree
l ∈ N [21; 37]. When l = 1, it becomes the common rotation matrix Rr acting on the 3D
coordinate space. Under the irreducible representations, the equivariant constraint in Eq. (1) turns

3

into f (l)(Rrx⃗) = D(l)(r)f (l)(x⃗), if the output degree is l. According to [38], spherical harmonics
Y (l) = [Y

(l)
m (x⃗)]lm=−l offer a unique and complete set of function bases satisfying the equivariant

constraint. We further define a modulated spherical harmonics as f (l)(x⃗) = φ(∥x⃗∥) · Y (l)(x⃗/∥x⃗∥)
by adding a continuous radial function φ : R+ → R of vector norm ∥ · ∥ for re-scaling. Such a
function f l and its output f l(x⃗) are called type-l steerable function and steerable feature, respectively.
We now deduce the irreducible representations from SO(3) to O(3). Note that spherical harmonics
satisfy Y (l)(−x⃗) = (−1)lY (l)(x⃗); in other words, they are inverse-equivariant when l is odd, but
inverse-invariant when l is even. We thus specify the group representation of O(3) as

ρ(l)(rm) := σ(l)(m)D(l)(r), (2)

where σ(l)(m) = 1 for m = e (the identity) and σ(l)(m) = (−1)l if m = i (the inverse). Readers can
refer to the discussion in e3nn [39] with another representation method by using the concept of parity
and construct this through methods such as Clebsch-Gordan (CG) tensor product [40]. For concision,
the type-l steerable feature is denoted as ṽ(l) with a tilde notation.

3.2 Symmetric Graph

In § 1, we present that k-fold rotations and regular polyhedra exhibit certain symmetries. In this
subsection, we formally describe them via the notion of the symmetric graph.
Definition 3.1 (Symmetric Graph). A geometric graph G is called a symmetric graph, if there exists a
finite and nontrivial subgroup H ≤ O(3),H ̸= {e}, satisfying that ∀h ∈ H, h · G = G. All subgroups
making G symmetric yields a set H(G), and all geometric graphs that are symmetric w.r.t. H constitute
a set denoted as G(H).

Here h · G = G is defined in the graph level. Particularly for the coordinates X⃗ ∈ R3×N , it implies
that ∀O ∈ H, ∃P ∈ SN , OX⃗ = X⃗P and PA = AP , where SN is the permutation group of order
N . Essentially, rotating the coordinates of a symmetric graph leads to a copy of this graph up to a
different permutation of the nodes.

Without considering inversion, the finite subgroups of SO(3) are only cyclic group Cn, dihedral
group Dn, tetrahedral group T , octahedral group O, and Icosahedral group I [41]. We provide
several examples of symmetric graphs as follows.
Example 3.2 (k-folds). On the one hand, for a geometric graph G corresponding to a 2k-fold
with nodes {(cos(i · π/k), sin(i · π/k), 0)}2k−1

i=0 , the inverse group Ci and the dihedral group D2k

(rotation around z-axis with angle π/k, and reflection around the axis connecting the midpoints
of opposite sides or the axis connecting opposite vertices), are symmetric groups on G, namely,
Ci, D2k ∈ H(G). On the other hand, for a geometric graph G corresponding to a (2k + 1)-fold with
nodes {(cos(i · 2π/(2k + 1), sin(i · 2π/(2k + 1)), 0)}2ki=0, H(G) includes the dihedral group D2k+1

but without the inverse group Ci.
Example 3.3 (Regular Polygons). The symmetric groups of regular polygons in the plane and regular
prisms in space include the dihedral group Dn. Regular tetrahedra are symmetric with respect to
three rotation axes of the second order and four axes of the third order, corresponding to 12 group
elements. Regular hexahedra (cubes) and the regular octahedra (which are dual to each other and
share the same symmetric groups) are symmetric about six axes of the second order, four axes of
the third order, and three axes of the fourth order, corresponding to 24 group elements. Regular
dodecahedra and regular icosahedra (which are also dual to each other) are symmetric about six axes
of the fifth order, ten axes of the third order, and fifteen axes of the second order, corresponding
to 60 group elements. Additionally, except tetrahedra, all other four regular polygons are central
symmetric, indicating that Ci is their common symmetric group.

3.3 Equivariant GNNs on symmetric graphs

We now demonstrate that equivariant GNNs on symmetric graphs will encounter the issue of ex-
pressivity degeneration. Here, we assume that the graph functions we explore are invariant to the
permutation of the nodes. This fits the case when we add a readout layer to all nodes globally or just
focus on the message passing process for each node individually.

We first derive a crucial theorem that greatly facilitates our analyses.

4

Theorem 3.4. Suppose that f (l) is an O(3)-equivariant function on geometric graphs, regarding the
group representation ρ(l) defined in Eq. (2). Then, for any symmetric graph G induced by the group
H ≤ O(3), namely, ∀G ∈ G(H), we always have

f (l)(G) = ρ(l)(H)f (l)(G). (3)

Here we have defined group average as ρ(l)(H) := 1
|H|
∑

h∈H ρ(l)(h).

Eq. (3) is interesting and it shows that the function f (l) is symmetric with respect to the group average
ρ(l)(H). More importantly, it indicates an linear equation

(
I2l+1 − ρ(l)(H)

)
f (l)(G) = 0, where

I2l+1 ∈ R(2l+1)×(2l+1) is the identity matrix. We can immediately attain the following conclusion.

Theorem 3.5. If and only if the matrix I2l+1−ρ(l)(H) is non-singular, the O(3)-equivariant function
f (l) is always a zero function on G, namely,

f (l)(G) ≡ 0, ∀G ∈ G(H). (4)

A more general version of Theorem 3.5 is that the output space of f (l) corresponds to the null
space of the matrix I2l+1 − ρ(l)(H), indicating that dim(f (l)) = (2l+ 1)− rank

(
I2l+1 − ρ(l)(H)

)
.

Therefore, even the function f (l)) will not exactly reduce to a zero function when I2l+1 − ρ(l)(H) is
singular, its output space is still limited to a subspace and suffers from diminished expressivity owing
to the symmetry of the input geometric graph.

In practice, it is difficult to determine if the matrix I2l+1 − ρ(l)(H) is singular. This determination
becomes easier if we can show that the group average ρ(l)(H) is equal to the zero matrix. Fortunately,
we have the following property.

Theorem 3.6. For a finite group H with its representation ρ(l), ρ(l)(H) is a zero matrix (i.e., ρ(l)(H) =
0) if and only if tr(ρ(l)(H)) = 0. In this case, f (l)(G) ≡ 0,∀G ∈ G(H).

According to Theorem 3.6, we calculate the trace of the group average for each symmetric graph of
interest and check if the trace is equal to zero. We summarize the conclusions for k-fold structures
and regular polyhedra in Table 1. We find that when l = 1, f (1) ≡ 0 for all cases. In addition,
the function degenerates when l is odd, if the symmetric graph is induced by the inverse group Ci.
We defer more details of the calculations in the Appendix. Compared to the conclusions drawn by
the GWL paper [35] which only experimentally discusses the k-fold structures under 2D rotations,
here we apply rigorous theoretical derivations to analyze more cases besides k-folds, regarding more
symmetric subgroups of O(3).

Table 1: Expressivity degeneration of equivariant GNNs on symmetric graphs.

Symmetric Graph G Symmetry Group H ∈ H(G) l leading to f (l)(G) ≡ 0

2k-fold Ci, D2k l is odd
(2k + 1)-fold D2k+1 l < 2k + 1 and l is odd
Tetrahedron T l ∈ {1, 2, 5}
Cube/Octahedron Ci, O l = 2 or l is odd
Dodecahedron/Icosahedron Ci, I l ∈ {2, 4, 8, 14} or l is odd

4 The Proposed HEGNN

The analyses in the last section imply the necessity of involving the representations with more and
higher degrees in equivariant GNNs. Therefore, we propose HEGNN by further conducting the update
of high-degree steerable features upon EGNN [1]. As illustrated in Fig. 2, HEGNN is composed of
the three key components: initialization of high-degree steerable features, calculation of cross-degree
invariant messages, and aggregation of neighbor messages, the latter two of which are conducted
over multiple layers. We depict each component separately in what follows.

Initialization of high-degree steerable features. Given a geometric graph G
(
H, X⃗;A

)
where

each node contains only type-0 feature hi and type-1 feature x⃗i, we first obtain the initialization

5

hij ∆hi

x⃗ij ∆x⃗i

Concat MLP Agg

Agg

Norm

Scalar
Mult.

x⃗ij x⃗ij

ṽ
(l)
ij ∆ṽ

(l)
ij

Sph Embedding

Tensor Product Agg

hij ∆hi

x⃗ij ∆x⃗i

ṽ
(l)
i ṽ

(l)
j ∆ṽ

(l)
i

Concat MLP Agg

Agg

Norm

Scalar
Mult.

Inner
Product

Tensor
Sub.

Scalar
Mult.

Agg

h 0th Degree x⃗ 1st Degree ṽ(l) Mixed Degrees

Op / Net Operator / Network

(a) EGNN

(b) TFN (c) HEGNN

1

Figure 2: The different architectures of our HEGNN, EGNN [1] and TFN [19]. HEGNN exploits
the scalarization trick inspired by EGNN to enable steerable features to interact between different
degrees, avoiding the high computational cost of using CG tensor products in TFN.

of high-degree steerable features {ṽ(l)
i }Ll=0 by using spherical harmonics on normalized relative

coordinates. In detail, we aggregate spherical harmonics from all neighbors as

ṽ
(l)
i,init =

1

|N (i)|
∑

j∈N (i)

φ
(l)
ṽ,init(mij,init) · Y (l)

(
x⃗i − x⃗j

∥x⃗i − x⃗j∥

)
, (5)

where mij,init = φm,init
(
hi,hj , eij , d

2
ij

)
is an invariant scalar with φm,init being an arbitrary

MultiLayer Perceptron (MLP), and N (i) denotes the neighbors of i4.

Calculation of cross-degree invariant messages. EGNN [1] employs a scalarization trick by
transforming the relative coordinate x⃗i − x⃗j (the usage of relative coordinates is for translation
invariance) into an invariant scalar via the vector norm, which will be used to compute invariant
message for both node features and coordinates. We generalize this scalarization trick to the case of
high-degree steerable features. To be specific, we carry out the inner product between ṽ

(l)
i and ṽ

(l)
j

for each degree l individually, resulting in an invariant scalar z(l)ij . Then, we get the invariant message
between node i and j, namely mij after undergoing an MLP of all invariant quantities. The above
processes are summarized as follows:

dij = ∥x⃗i − x⃗j∥, z
(l)
ij =

〈
ṽ
(l)
i , ṽ

(l)
j

〉
, mij = φm

(
hi,hj , eij , d

2
ij ,

L⊕
l=0

z
(l)
ij

)
, (6)

where
⊕

refers to concatenation. It should be noted that the form of SO3KRATES introduced in the
concurrent work [42] is equivalent to the expression for z(l)ij in Eq. (6). Furthermore, our scalarization
trick simplifies the formulation by bypassing the Clebsch-Gordan coefficients, making it more
straightforward and easier to understand.

Aggregation of neighbor messages. With the invariant message mij at hand, we then update
hi, x⃗i, ṽ

(l)
i via message aggregation over all neighbors. We define ∆hi,∆x⃗i,∆ṽ

(l)
i as the residues,

which are calculated by:

∆hi = φh

hi,
1

|N (i)|
∑

j∈N (i)

mij

 , ∆x⃗i =
1

|N (i)|
∑

j∈N (i)

φx⃗(mij) · (x⃗i − x⃗j), (7)

∆ṽ
(l)
i =

1

|N (i)|
∑

j∈N (i)

φ
(l)
ṽ (mij) ·

(
ṽ
(l)
i − ṽ

(l)
j

)
, (8)

4Eq. (5) is unable to derive pseudo-vectors such as torque or angular momentum, which are type-1 steerable
features but invariant to reflection. To address this issue, we can further conduct CG tensor product between
ṽ
(l)
i,init and x⃗i − x⃗j to yield the steerable feature of desired symmetry.

6

where φh, φx⃗, φ
(l)
ṽ are different MLPs, and φx⃗, φ

(l)
ṽ both output a 1D scalar. Note that

the application of Eq. (8) for all degrees can be compactly rewritten as
⊕L

l=0 ∆ṽ
(l)
i =

1
|N (i)|

∑
j∈N (i) 1⊗

φṽ(mij)
cg

(⊕L
l=0

(
ṽ
(l)
i − ṽ

(l)
j

))
in the form of CG tensor product with the weights

φṽ(mij) :=
⊕L

l=0 φ
(l)
ṽ . This form can be easily implemented using existing libraries such as

e3nn.o3.FullyConnectedTensorProduct [39]. The resulting residues are used for the update:

hi = hi +∆hi, x⃗i = x⃗i +∆x⃗i, ṽ
(l)
i = ṽ

(l)
i +∆ṽ

(l)
i . (9)

In addition, we can augment the update of x⃗i with 1st-degree feature ṽ
(1)
i , leading to x⃗i = x⃗i +

∆x⃗i+ϕ
(1)
ṽ (hi)ṽ

(1)
i , which yet is not explored in our experiments for the sake of simplicity. The final

output of hi and x⃗i can be used for the node-level invariant prediction and equivariant prediction,
respectively. We can also obtain a graph-level prediction by further adding a readout layer of all
nodes.

We now analyze the expressivity of HEGNN. Apparently, by including high-degree features, HEGNN
is able to avoid the loss of expressive ability even on symmetric graphs. Moreover, when tackling
general geometric graphs, HEGNN is capable of characterizing the complete angle information
of the input graph, if its maximal degree L is sufficiently large. For concision and without losing
the generality, we assume the steerable features ṽ(1)

i are initialized with only spherical harmonics
without the weights φ(l)

ṽ,init in Eq. (5). Let x⃗is = (x⃗i − x⃗s)/∥x⃗i − x⃗s∥, the inner product z(l)ij can
be expanded as follows〈 ∑

s∈N (i)

Y (l) (x⃗is) ,
∑

t∈N (j)

Y (l) (x⃗jt)

〉
=

4π

2l + 1

∑
s∈N (i)

∑
t∈N (j)

P (l) (⟨x⃗is, x⃗jt⟩) , (10)

where P (l) : R → R is Legendre polynomial of degree l, and Eq. (10) is based on the properties
of spherical harmonics that ⟨Y (l)(x⃗), Y (l)(y⃗)⟩ = 4π/(2l + 1) · P (l)(⟨x⃗, y⃗⟩), ∥x⃗∥ = ∥y⃗∥ = 1. We
have the following result.
Theorem 4.1. For any geometric graph, there exists a bijection between the set of in-
ner products {z(l)ij }

|Aij |
l=1 given by Eq. (10) and the set of edge angles Aij = {θis,jt :=

arccos⟨x⃗is, x⃗jt⟩}s∈N (i),t∈N (j).

Theorem 4.1 states that the inner products of full degrees can recover the information of all angles
between each pair of edges, affirming the enhanced expressivity of our HEGNN. The proof is derived
mainly based on the fact that Legendre polynomials are orthogonal polynomial bases which can
injectivly represent the set Aij thanks to Newton’s identities. The details are deferred to the appendix.
Although the upper-bound of the degree in Theorem 4.1 grows rapidly with the graph size, it will
be shown in our experiments that HEGNN with only L ≤ 6 is sufficient to outperform traditional
models like EGNN [1] and TFN [19] in practice.

5 Experiment

5.1 Expressivity on Symmetric Graphs

Design of experiments: To experimentally verify the conclusion we proved above, we design a
more comprehensive experiment based on code5 in [35]. This experiment uses four k-fold structures
(k ∈ {2, 3, 5, 10}) and five convex regular polyhedra shown in Fig. 1 as test objects, and the center of
each is at the origin. In detail, an arbitrary rotation in 3D is acted on such symmetric structures called
G0 which ensures the geometric graph after rotation called G1 does not coincide with the original one.
The goal of our experiments is to check whether different equivariant neural networks can distinguish
G0 and G1.

The models we select include two models that only use Cartesian coordinates: EGNN and GVP-
GNN; and two models that use high-degree steerable features: TFN and MACE. However, TFN and
MACE (denoted as TFN/MACEl≤L) always use all degrees l ∈ {0, . . . , L}, so it is not clear which

5https://github.com/chaitjo/geometric-gnn-dojo.

7

https://github.com/chaitjo/geometric-gnn-dojo

degree(s) of steerable features distinguish the two geometric graphs. In our HEGNN, all steerable
features corresponding to unwanted degrees could be masked during initialization in Eq. (5), and
we let HEGNNl=L be a HEGNN with only lth-degree steerable features. Additionally, to align
with TFN/MACE, we also test the performance of HEGNN with all l ∈ {0, 1, . . . , L} donated as
HEGNNl≤L. Following the settings6 in [35], the output of each graph is the concatenation of invariant
scalars, coordinates, and high-degree steerable features pooling among all nodes. We then map this
spliced vector to a two-dimensional vector and input it into a simple classifier to determine whether
the equivariant graph neural network can distinguish G0 from G1.

Results: The results on k-fold are deferred to Appendix for saving space, and the results on regular
polyhedra are shown in Table 2. From Table 1, we can know steerable features in which degree could
not distinguish specific symmetry structure, and both results on k-fold and regular polyhedra are also
in perfect agreement with our conclusions. Models (EGNN and GVP-GNN) only with Cartesian
vectors cannot distinguish any symmetric graph at all. Taking HEGNNl=5 as an example, since
D(5)(H) = 0,∀H ∈ {T,O, I}, no matter which kind of regular polyhedron, f (5) could only output
0 thus failing to distinguish the structures.

Table 2: Regular polyhedra.

Rotational symmetry
GNN Layer Tetrahedron Cube Octahedron Dodecahedron Icosahedron

C
ar

t. E-GNNl=1 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0

GVP-GNNl=1 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0

Si
ng

le
Ty

pe
Sp

he
ri

ca
l

HEGNNl=1 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0

HEGNNl=2 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0

HEGNNl=3 100.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0

HEGNNl=4 100.0 ± 0.0 90.0 ±30.0 90.0 ±30.0 50.0 ± 0.0 50.0 ± 0.0

HEGNNl=5 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0

HEGNNl=6 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
HEGNNl=7 100.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0

HEGNNl=8 100.0 ± 0.0 90.0 ±30.0 90.0 ±30.0 50.0 ± 0.0 50.0 ± 0.0

HEGNNl=9 100.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0

HEGNNl=10 100.0 ± 0.0 100.0 ± 0.0 95.0 ±15.0 100.0 ± 0.0 100.0 ± 0.0
HEGNNl=11 100.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0

Sp
h.

HEGNN/TFN/MACEl≤2 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0

HEGNN/TFN/MACEl≤3 100.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0

HEGNN/TFN/MACEl≤4 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0

HEGNN/TFN/MACEl≤6 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

5.2 Physical Dynamics Simulation

Datasets: We benchmark our HEGNN in two scenarios, including: N -body system [43] is a dataset
generated from simulations. In our simulations, each system contains N charged particles with
random charge ci ∈ {0, 1}, whose movements are driven by Coulomb forces. To verify the efficiency
and effectiveness of our HEGNN on datasets of different sizes, we select N from {5, 20, 50, 100}.
We use 5000 samples for training, 2000 for validation, and 2000 for testing. The task is to estimate
the positions of the N particles after 1,000 timesteps. MD17 [44] dataset contains trajectory data
for eight molecules generated through molecular dynamics simulations. The goal of this experiment
is to predict the future positions of the atoms based on their current state. We follow the dataset
partitioning scheme from [45], splitting the dataset into 500/2000/2000 frame pairs for training,
validation and testing, respectively. All experiments are run on a single NVIDIA A100-80G GPU.

Baselines: To demonstrate the advantages of our HEGNN over both models with scalarization
techniques and models with high-degree steerable vectors at the same time, our baseline needs to
consider the selection issues of both models simultaneously. Therefore, we select some representative
models as baselines, including the invariant RF [46], the equivariant EGNN [1], TFN [19] and SE(3)-
Tr. [20]. In addition, we select classical models such as Linear dynamics [1], the non-equivariant

6It should be noted here that because only 0 ∼ 11-th-degree spherical harmonics can be used in e3nn [39],
we only measure the models with up to 11th-degree here, and in Appendix B.3, We have given a new verification
method.

8

Message Passing Neural Network (MPNN) [47], the invariant SchNet [48], and the equivariant
GVP-GNN [49] for the N -body experiments. For MD17 experiments, we also select GMN [45].

Metrics: 1. Loss function: We use Mean Squared Error (MSE) to measure the accuracy of the
prediction results in both experiments. 2. Inference time: Given that the N -body system we use
contains data of varying sizes, we test the inference time of each model on this dataset. The inference
time for each model is calculated relative to the benchmark, which is the inference time of EGNN at
the corresponding scale.

Results on N -Body systems: The main results of N -body system simulation are presented in Table 3.
From these results, we observe the following: 1. Overall performance: Our HEGNN significantly
outperforms other models across datasets of all sizes. Although EGNN [1] performs better than
high-degree steerable models like TFN or SE(3)-Transformer in this task, our HEGNN is still better
than EGNN, which show that the method of HEGNN introducing high-degree steerable features is
more effective. 2. Stability: Although the performance of the model (HEGNNl≤6) using high-degree
steerable features declines slightly when the geometric graph is small, overall, HEGNN performs
better than other models. 3. Inference time: Our model’s inference time is significantly faster than
that of high-degree steerable models like TFN, reflecting the simplicity and efficiency of our HEGNN.

Results on MD17: The main results of MD17 experiment are shown in Table 4, with some data
sourced from [45]. From these results, we draw the following insights: 1. Overall performance:
Our HEGNN outperforms other models on six out of eight molecules. The effect on the remaining
two molecules is only not as good as GMN [45] and this is because GMN introduces additional
knowledge such as chemical bonds. 2. Advantage of high-degree vectors: Most of the best results
are obtained on HEGNNl≤6, indicating that the use of high-degree steerable features can enhance
model expression capabilities.

Table 3: MSE and time-consuming ratio with EGNN [1] on N -body system.

5-body 20-body 50-body 100-body
MSE

(×10−2)
Relative

Time
MSE

(×10−2)
Relative

Time
MSE

(×10−2)
Relative

Time
MSE

(×10−2)
Relative

Time

Linear 7.72 0.01 10.12 0.02 11.81 0.02 12.69 0.01
MPNN [47] 1.80 0.49 2.50 0.51 2.96 0.50 3.55 0.45
SchNet [48] 11.31 2.93 17.72 6.24 22.14 31.63 22.14 27.04
RF [46] 1.51 0.54 3.41 0.65 4.75 0.67 5.72 0.49
GVP-GNN [49] 7.26 2.36 5.76 2.38 7.07 2.42 7.55 2.33
EGNN [1] 0.65 1.00 1.01 1.00 1.00 1.00 1.36 1.00

TFNl≤2 1.49 2.69 1.86 3.19 2.20 2.87 3.42 6.58
TFNl≤3 1.76 3.91 1.87 4.54 1.94 4.89 OOM -
SE(3)-Tr.l≤2 3.24 4.94 3.19 5.88 2.54 5.97 2.33 5.15

HEGNNl≤1 0.52 1.77 0.79 1.84 0.88 1.60 1.13 1.45
HEGNNl≤2 0.47 1.88 0.78 1.94 0.90 1.71 0.97 1.55
HEGNNl≤3 0.48 2.11 0.80 2.23 0.84 1.84 0.94 1.61
HEGNNl≤6 0.69 2.14 0.86 2.43 0.96 2.18 0.86 1.90

Table 4: Prediction error (×10−2) on MD17 dataset. Results averaged across 3 runs.

Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

RF 10.94±0.01 103.72±1.29 4.64±0.01 13.93±0.03 0.50±0.01 1.23±0.01 10.93±0.04 0.64±0.01

EGNN 14.41±0.15 62.40±0.53 4.64±0.01 13.64±0.01 0.47±0.02 1.02±0.02 11.78±0.07 0.64±0.01

EGNNReg 13.82±0.19 61.68±0.37 6.06±0.01 13.49±0.06 0.63±0.01 1.68±0.01 11.05±0.01 0.66±0.01

GMN 10.14±0.03 48.12±0.40 4.83±0.01 13.11±0.03 0.40±0.01 0.91±0.01 10.22±0.08 0.59±0.01

TFNl≤2 12.37±0.18 58.48±1.98 4.81±0.04 13.62±0.08 0.49±0.01 1.03±0.02 10.89±0.01 0.84±0.02

SE(3)-Tr.l≤2 11.12±0.06 68.11±0.67 4.74±0.13 13.89±0.02 0.52±0.01 1.13±0.02 10.88±0.06 0.79±0.02

HEGNNl≤1 10.32±0.58 62.53±7.62 4.63±0.01 12.85±0.01 0.38±0.01 0.90±0.05 10.56±0.10 0.56±0.02

HEGNNl≤2 10.04±0.45 61.80±5.92 4.63±0.01 12.85±0.01 0.39±0.01 0.91±0.06 10.56±0.05 0.55±0.01

HEGNNl≤3 10.20±0.23 62.82±4.25 4.63±0.01 12.85±0.02 0.37±0.01 0.94±0.10 10.55±0.16 0.52±0.01

HEGNNl≤6 9.94±0.07 59.93±5.21 4.62±0.01 12.85±0.01 0.37±0.02 0.88±0.02 10.56±0.33 0.54±0.01

9

5.3 Perturbation Experiment

In practical scenarios, slight perturbations (such as molecular vibrations) can disrupt strict symmetry,
potentially mitigating the conclusions outlined in Theorems 3.5 and 3.6. We therefore designed this
perturbation experiment for a simple study and were surprised to find that HEGNN can still bring
better robustness through the introduction of high-degree steerable features.

Design of experiments: We take the tetrahedron as an example and compare the cases of EGNN,
HEGNNl=3, and HEGNNl≤3 when adding noise perturbations with results in Table 5. Here, ε
represents the ratio of noise, and the modulus of the noise obeys N (0, ε · E[∥x⃗− x⃗c∥] · I).

Table 5: Results for perturbation experiment.

ε = 0.01 ε = 0.05 ε = 0.10 ε = 0.50

EGNN 50.0 ± 0.0 45.0 ± 15.0 65.0 ± 22.9 60.0 ± 20.0

HEGNNl=3 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
HEGNNl≤3 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

Results: It can be observed that the performance of EGNN is slightly improved in the presence
of noise (from 50% when ε = 0.01 to 60% when ε = 0.5), while HEGNN demonstrates better
robustness. Even though symmetry-breaking factors will make the geometric graph deviate from
the symmetric state, the deviated graph is still roughly symmetric. In other words, the outputs of
equivariant GNNs on the derivated graphs keep close to zero if the degree value is chosen to be those
in Table 1, which will still lead to defective performance.

6 Conclusion

In this paper, we challenged the prevailing notion that higher-degree steerable vectors are unnecessary
for achieving expressivity in equivariant Graph Neural Networks (GNNs). Through rigorous theo-
retical analysis, we demonstrated that equivariant GNNs constrained to 1st-degree representations
inevitably degenerate to zero functions when applied to symmetric structures, such as k-fold rotations
and regular polyhedra. To address this limitation, we introduced HEGNN, a high-degree extension
of the EGNN model. HEGNN enhances expressivity by integrating higher-degree steerable vectors
while retaining the efficiency of the original model through a scalarization technique. Our extensive
empirical evaluations on various datasets, including the symmetric toy dataset, N -body, and MD17,
validate our theoretical predictions. HEGNN not only adheres to our theoretical insights but also
exhibits significant performance improvements over existing models. These findings underscore the
critical role of higher-degree representations in fully leveraging the potential of equivariant GNNs.

7 Acknowledgment

This work was jointly supported by the following projects: the National Science and Technology
Major Project under Grant 2020AAA0107300, the National Natural Science Foundation of China
(No. 62376276, No. 62172422); Beijing Nova Program (No. 20230484278); Beijing Outstanding
Young Scientist Program (No. BJJWZYJH012019100020098), the Fundamental Research Funds
for the Central Universities, and the Research Funds of Renmin University of China (23XNKJ19);
Public Computing Cloud, Renmin University of China.

References
[1] Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural

networks. In International Conference on Machine Learning, pages 9323–9332. PMLR, 2021.

[2] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges, 2021.

[3] Rui Jiao, Xiangzhe Kong, Ziyang Yu, Wenbing Huang, and Yang Liu. Equivariant pretrained
transformer for unified geometric learning on multi-domain 3d molecules. In ICLR 2024
Workshop on Generative and Experimental Perspectives for Biomolecular Design, 2024.

10

[4] Jun Wu, Xiangzhe Kong, Ningguan Sun, Jing Wei, Sisi Shan, Fuli Feng, Feng Wu, Jian Peng,
Linqi Zhang, Yang Liu, et al. Better prior distribution for antibody design. Available at SSRN
4909414, 2024.

[5] Thorben Frank, Oliver Unke, and Klaus-Robert Müller. So3krates: Equivariant attention for
interactions on arbitrary length-scales in molecular systems. Advances in Neural Information
Processing Systems, 35:29400–29413, 2022.

[6] Yusong Wang, Tong Wang, Shaoning Li, Xinheng He, Mingyu Li, Zun Wang, Nanning Zheng,
Bin Shao, and Tie-Yan Liu. Enhancing geometric representations for molecules with equivariant
vector-scalar interactive message passing. Nature Communications, 15(1):313, 2024.

[7] Runfa Chen, Jiaqi Han, Fuchun Sun, and Wenbing Huang. Subequivariant graph reinforcement
learning in 3d environments. In International Conference on Machine Learning, pages 4545–
4565. PMLR, 2023.

[8] Runfa Chen, Ling Wang, Yu Du, Tianrui Xue, Fuchun Sun, Jianwei Zhang, and Wenbing Huang.
Subequivariant reinforcement learning in 3d multi-entity physical environments. In Forty-first
International Conference on Machine Learning, 2024.

[9] Jiaqi Han, Wenbing Huang, Hengbo Ma, Jiachen Li, Josh Tenenbaum, and Chuang Gan.
Learning physical dynamics with subequivariant graph neural networks. Advances in Neural
Information Processing Systems, 35:26256–26268, 2022.

[10] Liming Wu, Zhichao Hou, Jirui Yuan, Yu Rong, and Wenbing Huang. Equivariant spatio-
temporal attentive graph networks to simulate physical dynamics. Advances in Neural Informa-
tion Processing Systems, 36, 2024.

[11] Jiaqi Han, Minkai Xu, Aaron Lou, Haotian Ye, and Stefano Ermon. Geometric trajectory
diffusion models. arXiv preprint arXiv:2410.13027, 2024.

[12] Yuxuan Song, Jingjing Gong, Hao Zhou, Mingyue Zheng, Jingjing Liu, and Wei-Ying Ma.
Unified generative modeling of 3d molecules with bayesian flow networks. In The Twelfth
International Conference on Learning Representations, 2023.

[13] Minkai Xu, Alexander S Powers, Ron O Dror, Stefano Ermon, and Jure Leskovec. Geometric
latent diffusion models for 3d molecule generation. In International Conference on Machine
Learning, pages 38592–38610. PMLR, 2023.

[14] Yanru Qu, Keyue Qiu, Yuxuan Song, Jingjing Gong, Jiawei Han, Mingyue Zheng, Hao Zhou,
and Wei-Ying Ma. Molcraft: Structure-based drug design in continuous parameter space. In
Forty-first International Conference on Machine Learning, 2024.

[15] Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A
geometric diffusion model for molecular conformation generation. In International Conference
on Learning Representations, 2022.

[16] Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E
Eisenach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo
design of protein structure and function with rfdiffusion. Nature, 620(7976):1089–1100, 2023.

[17] John B Ingraham, Max Baranov, Zak Costello, Karl W Barber, Wujie Wang, Ahmed Ismail, Vin-
cent Frappier, Dana M Lord, Christopher Ng-Thow-Hing, Erik R Van Vlack, et al. Illuminating
protein space with a programmable generative model. Nature, pages 1–9, 2023.

[18] Ziyang Yu, Wenbing Huang, and Yang Liu. Rigid protein-protein docking via equivariant
elliptic-paraboloid interface prediction. In The Twelfth International Conference on Learning
Representations, 2024.

[19] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point
clouds. arXiv preprint arXiv:1802.08219, 2018.

11

[20] Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. Se (3)-transformers: 3d
roto-translation equivariant attention networks. Advances in Neural Information Processing
Systems, 33:1970–1981, 2020.

[21] Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa, Mordechai
Kornbluth, Nicola Molinari, Tess E Smidt, and Boris Kozinsky. E (3)-equivariant graph
neural networks for data-efficient and accurate interatomic potentials. Nature communications,
13(1):2453, 2022.

[22] Albert Musaelian, Simon Batzner, Anders Johansson, Lixin Sun, Cameron J Owen, Mordechai
Kornbluth, and Boris Kozinsky. Learning local equivariant representations for large-scale
atomistic dynamics. Nature Communications, 14(1):579, 2023.

[23] Nadav Dym and Haggai Maron. On the universality of rotation equivariant point cloud networks.
arXiv preprint arXiv:2010.02449, 2020.

[24] Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant
diffusion for molecule generation in 3d. In International Conference on Machine Learning,
pages 8867–8887. PMLR, 2022.

[25] Minkai Xu, Jiaqi Han, Aaron Lou, Jean Kossaifi, Arvind Ramanathan, Kamyar Azizzadenesheli,
Jure Leskovec, Stefano Ermon, and Anima Anandkumar. Equivariant graph neural operator for
modeling 3d dynamics. arXiv preprint arXiv:2401.11037, 2024.

[26] Omri Puny, Matan Atzmon, Edward J Smith, Ishan Misra, Aditya Grover, Heli Ben-Hamu, and
Yaron Lipman. Frame averaging for invariant and equivariant network design. In International
Conference on Learning Representations, 2021.

[27] Alexandre Agm Duval, Victor Schmidt, Alex Hernandez-Garcia, Santiago Miret, Fragkiskos D
Malliaros, Yoshua Bengio, and David Rolnick. Faenet: Frame averaging equivariant gnn for
materials modeling. In International Conference on Machine Learning, pages 9013–9033.
PMLR, 2023.

[28] Yuelin Zhang, Jiacheng Cen, Jiaqi Han, Zhiqiang Zhang, Jun Zhou, and Wenbing Huang.
Improving equivariant graph neural networks on large geometric graphs via virtual nodes
learning. In Forty-first International Conference on Machine Learning, 2024.

[29] Jiaqi Han, Wenbing Huang, Tingyang Xu, and Yu Rong. Equivariant graph hierarchy-based
neural networks. Advances in Neural Information Processing Systems, 35:9176–9187, 2022.

[30] Yusong Wang, Chaoran Cheng, Shaoning Li, Yuxuan Ren, Bin Shao, Ge Liu, Pheng-Ann Heng,
and Nanning Zheng. Neural p3 m: A long-range interaction modeling enhancer for geometric
gnns. Advances in Neural Information Processing Systems, 2024.

[31] Jiaqi Han, Jiacheng Cen, Liming Wu, Zongzhao Li, Xiangzhe Kong, Rui Jiao, Ziyang Yu,
Tingyang Xu, Fandi Wu, Zihe Wang, et al. A survey of geometric graph neural networks: Data
structures, models and applications. arXiv preprint arXiv:2403.00485, 2024.

[32] Kristof Schütt, Oliver Unke, and Michael Gastegger. Equivariant message passing for the
prediction of tensorial properties and molecular spectra. In International Conference on
Machine Learning, pages 9377–9388. PMLR, 2021.

[33] Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J Bekkers, and Max Welling.
Geometric and physical quantities improve e (3) equivariant message passing. In International
Conference on Learning Representations, 2021.

[34] Johannes Gasteiger, Florian Becker, and Stephan Gunnemann. Gemnet: Universal directional
graph neural networks for molecules. Advances in Neural Information Processing Systems,
34:6790–6802, 2021.

[35] Chaitanya K Joshi, Cristian Bodnar, Simon V Mathis, Taco Cohen, and Pietro Lio. On the
expressive power of geometric graph neural networks. In International Conference on Machine
Learning, pages 15330–15355. PMLR, 2023.

12

[36] Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. nti, Series, 2(9):12–16, 1968.

[37] Ilyes Batatia, David P Kovacs, Gregor Simm, Christoph Ortner, and Gábor Csányi. Mace:
Higher order equivariant message passing neural networks for fast and accurate force fields.
Advances in Neural Information Processing Systems, 35:11423–11436, 2022.

[38] Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco S Cohen. 3d
steerable cnns: Learning rotationally equivariant features in volumetric data. Advances in
Neural Information Processing Systems, 31, 2018.

[39] Mario Geiger and Tess Smidt. e3nn: Euclidean neural networks. arXiv preprint
arXiv:2207.09453, 2022.

[40] David J Griffiths and Darrell F Schroeter. Introduction to quantum mechanics. Cambridge
university press, 2018.

[41] Lev Davidovich Landau and Evgenii Mikhailovich Lifshitz. Quantum mechanics: non-
relativistic theory, volume 3. Elsevier, 2013.

[42] J Thorben Frank, Oliver T Unke, Klaus-Robert Müller, and Stefan Chmiela. A euclidean trans-
former for fast and stable machine learned force fields. Nature Communications, 15(1):6539,
2024.

[43] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural
relational inference for interacting systems. In International Conference on Machine Learning,
pages 2688–2697. PMLR, 2018.

[44] Stefan Chmiela, Alexandre Tkatchenko, Huziel E Sauceda, Igor Poltavsky, Kristof T Schütt,
and Klaus-Robert Müller. Machine learning of accurate energy-conserving molecular force
fields. Science advances, 3(5):e1603015, 2017.

[45] Wenbing Huang, Jiaqi Han, Yu Rong, Tingyang Xu, Fuchun Sun, and Junzhou Huang. Equiv-
ariant graph mechanics networks with constraints. In International Conference on Learning
Representations, 2022.

[46] Jonas Köhler, Leon Klein, and Frank Noé. Equivariant flows: sampling configurations for
multi-body systems with symmetric energies. arXiv preprint arXiv:1910.00753, 2019.

[47] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning,
pages 1263–1272. PMLR, 2017.

[48] Kristof T Schütt, Huziel E Sauceda, P-J Kindermans, Alexandre Tkatchenko, and K-R Müller.
Schnet–a deep learning architecture for molecules and materials. The Journal of Chemical
Physics, 148(24), 2018.

[49] Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael John Lamarre Townshend, and Ron
Dror. Learning from protein structure with geometric vector perceptrons. In International
Conference on Learning Representations, 2020.

[50] Weitao Du, He Zhang, Yuanqi Du, Qi Meng, Wei Chen, Nanning Zheng, Bin Shao, and Tie-Yan
Liu. Se (3) equivariant graph neural networks with complete local frames. In International
Conference on Machine Learning, pages 5583–5608. PMLR, 2022.

[51] James F Epperson. An introduction to numerical methods and analysis. John Wiley & Sons,
2013.

[52] Michael Engel. Point group analysis in particle simulation data. arXiv preprint
arXiv:2106.14846, 2021.

[53] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. Advances in Neural Information Processing Systems, 30,
2017.

13

[54] Hannah Lawrence, Vasco Portilheiro, Yan Zhang, and Sékou-Oumar Kaba. Improving equiv-
ariant networks with probabilistic symmetry breaking. In ICML 2024 Workshop on Geometry-
grounded Representation Learning and Generative Modeling, 2024.

[55] Limei Wang, Yi Liu, Yuchao Lin, Haoran Liu, and Shuiwang Ji. Comenet: Towards complete
and efficient message passing for 3d molecular graphs. Advances in Neural Information
Processing Systems, 35:650–664, 2022.

[56] Kelin Xia and Guo-Wei Wei. Persistent homology analysis of protein structure, flexibility, and
folding. International journal for numerical methods in biomedical engineering, 30(8):814–844,
2014.

[57] Floor Eijkelboom, Rob Hesselink, and Erik J Bekkers. E(n) equivariant message passing
simplicial networks. In International Conference on Machine Learning, pages 9071–9081.
PMLR, 2023.

[58] Claudio Battiloro, Ege Karaismailoğlu, Mauricio Tec, George Dasoulas, Michelle Audirac,
and Francesca Dominici. E (n) equivariant topological neural networks. arXiv preprint
arXiv:2405.15429, 2024.

[59] Ralf Drautz. Atomic cluster expansion for accurate and transferable interatomic potentials.
Physical Review B, 99(1):014104, 2019.

[60] Genevieve Dusson, Markus Bachmayr, Gábor Csányi, Ralf Drautz, Simon Etter, Cas van
Der Oord, and Christoph Ortner. Atomic cluster expansion: Completeness, efficiency and
stability. Journal of Computational Physics, 454:110946, 2022.

[61] Xiangzhe Kong, Wenbing Huang, Zhixing Tan, and Yang Liu. Molecule generation by principal
subgraph mining and assembling. Advances in Neural Information Processing Systems, 35:2550–
2563, 2022.

[62] Xiangzhe Kong, Wenbing Huang, and Yang Liu. Generalist equivariant transformer towards 3d
molecular interaction learning. In Forty-first International Conference on Machine Learning,
2023.

[63] Xiangzhe Kong, Wenbing Huang, and Yang Liu. Full-atom peptide design with geometric latent
diffusion. Advances in Neural Information Processing Systems, 2024.

[64] Miltiadis Kofinas, Naveen Nagaraja, and Efstratios Gavves. Roto-translated local coordinate
frames for interacting dynamical systems. Advances in Neural Information Processing Systems,
34:6417–6429, 2021.

[65] Yi-Lun Liao, Brandon M Wood, Abhishek Das, and Tess Smidt. Equiformerv2: Improved
equivariant transformer for scaling to higher-degree representations. In The Twelfth International
Conference on Learning Representations, 2024.

[66] Ziqiao Meng, Liang Zeng, Zixing Song, Tingyang Xu, Peilin Zhao, and Irwin King. Towards
geometric normalization techniques in se(3) equivariant graph neural networks for physical
dynamics simulations. In Proceedings of the Thirty-Third International Joint Conference on
Artificial Intelligence (IJCAI), pages 5981–5989, 2024.

[67] Zian Li, Xiyuan Wang, Yinan Huang, and Muhan Zhang. Is distance matrix enough for
geometric deep learning? Advances in Neural Information Processing Systems, 36, 2024.

[68] Gengmo Zhou, Zhifeng Gao, Qiankun Ding, Hang Zheng, Hongteng Xu, Zhewei Wei, Linfeng
Zhang, and Guolin Ke. Uni-mol: A universal 3d molecular representation learning framework.
In The Eleventh International Conference on Learning Representations, 2023.

[69] Weiliang Luo, Gengmo Zhou, Zhengdan Zhu, Yannan Yuan, Guolin Ke, Zhewei Wei, Zhifeng
Gao, and Hang Zheng. Bridging machine learning and thermodynamics for accurate p k a
prediction. JACS Au, 2024.

[70] Gengmo Zhou, Zhen Wang, Feng Yu, Guolin Ke, Zhewei Wei, and Zhifeng Gao. S-molsearch:
3d semi-supervised contrastive learning for bioactive molecule search. In The Thirty-eighth
Annual Conference on Neural Information Processing Systems, 2024.

14

[71] Fanmeng Wang, Hongteng Xu, Xi Chen, Shuqi Lu, Yuqing Deng, and Wenbing Huang. Mper-
former: An se (3) transformer-based molecular perceptron. In Proceedings of the 32nd ACM
International Conference on Information and Knowledge Management, pages 2512–2522, 2023.

[72] Fanmeng Wang, Wentao Guo, Minjie Cheng, Shen Yuan, Hongteng Xu, and Zhifeng Gao.
Mmpolymer: A multimodal multitask pretraining framework for polymer property prediction.
In Proceedings of the 33rd ACM International Conference on Information and Knowledge
Management, CIKM ’24, 2024.

[73] Johannes Klicpera, Janek Groß, and Stephan Günnemann. Directional message passing for
molecular graphs. In International Conference on Learning Representations, 2020.

[74] Angxiao Yue, Dixin Luo, and Hongteng Xu. A plug-and-play quaternion message-passing
module for molecular conformation representation. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 16633–16641, 2024.

[75] Yang Zhang, Wenbing Huang, Zhewei Wei, Ye Yuan, and Zhaohan Ding. Equipocket: an e
(3)-equivariant geometric graph neural network for ligand binding site prediction. In Forty-first
International Conference on Machine Learning, 2024.

[76] Rui Jiao, Jiaqi Han, Wenbing Huang, Yu Rong, and Yang Liu. Energy-motivated equivariant
pretraining for 3d molecular graphs. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 8096–8104, 2023.

[77] Ziyang Yu, Wenbing Huang, and Yang Liu. Force-guided bridge matching for full-atom
time-coarsened dynamics of peptides. arXiv preprint arXiv:2408.15126, 2024.

[78] Qi Li, Rui Jiao, Liming Wu, Tiannian Zhu, Wenbing Huang, Shifeng Jin, Yang Liu, Hongming
Weng, and Xiaolong Chen. Powder diffraction crystal structure determination using generative
models. arXiv preprint arXiv:2409.04727, 2024.

[79] Rui Jiao, Wenbing Huang, Peijia Lin, Jiaqi Han, Pin Chen, Yutong Lu, and Yang Liu. Crystal
structure prediction by joint equivariant diffusion. Advances in Neural Information Processing
Systems, 36, 2024.

[80] Rui jiao, Xiangzhe Kong, Wenbing Huang, and Yang Liu. 3d structure prediction of atomic
systems with flow-based direct preference optimization. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024.

[81] Xiangzhe Kong, Wenbing Huang, and Yang Liu. Conditional antibody design as 3d equivariant
graph translation. In The Eleventh International Conference on Learning Representations, 2022.

[82] Xiangzhe Kong, Wenbing Huang, and Yang Liu. End-to-end full-atom antibody design. In
Proceedings of the 40th International Conference on Machine Learning, pages 17409–17429,
2023.

[83] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J.
van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W.
Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261–272, 2020.

15

A Theoretical Details

A.1 Equivariance/Invariance of HEGNN

In this section, we demonstrate the equivariance of our HEGNN. In order to further illustrate the
connection between our HEGNN, EGNN, and TFN, a general proof is given here.

Table 6: Comparison between our HEGNN and the scalarization-based model representing EGNN [1],
and the high-degree steerable model representing TFN [19]. HEGNN combines the scalarization
trick of EGNN that only uses invariant scalars (0th degree steerable features) to interact between
steerable features corresponding to different degrees, avoiding the high computational cost of using
CG tensor products in TFN.

EGNN [1] TFN [19] HEGNN (Ours)

Msg
mij = ϕm(hi,hj , eij , d

2
ij)

m⃗ij = φx⃗(mij) · (x⃗i − x⃗j)
m̃

(L)
ij = ṽ

(L)
i ⊗W (dij)

cg Y (L)
(

x⃗ij

∥x⃗ij∥

) mij = φm(hi,hj , eij , d
2
ij ,
⊕

l∈L z
(l)
ij)

m⃗ij = φx⃗(mij) · (x⃗i − x⃗j)

v⃗
(l)
ij = φ

(l)
ṽ (mij) · (ṽ(l)

i − ṽ
(l)
j)

Agg
mi = αi

∑
j∈N (i) mij

m⃗i = αi

∑
j∈N (i) m⃗ij

m̃
(L)
i = αi

∑
j∈N (i) m̃

(L)
ij

mi = αi

∑
j∈N (i) mij

m⃗i = αi

∑
j∈N (i) m⃗ij

m̃
(l)
i = αi

∑
j∈N (i) m̃

(l)
ij

Upd
∆hi = φh(hi,mi)

∆x⃗i = m⃗i
∆v

(L)
i = m

(L)
i

∆hi = φh(hi,mi)

∆x⃗i = m⃗i

∆ṽ
(l)
i = m̃

(l)
i

Theorem A.1 (Equivariance/Invariance of HEGNN). hi, ṽ
(0)
i in HEGNN is E(3) invariant, x⃗i is

E(3) equivariant. In addition, all ṽ(l)
i are O(3) equivariant and translation invariant when l is odd;

all ṽ(l)
i is SO(3) equivariant and inversion/translation invariant to when l even.

Proof. Consider a sequence composed of functions {φi : X (i−1) → X (i)}Ni=1 equivariant to a same
group H, the equivariance lead to an interesting property that

φN ◦ · · · ◦ φi+1 ◦ ρX (i)(h)φi ◦ · · · ◦ φ1 = φN ◦ · · · ◦ φj+1 ◦ ρX (j)(h)φj ◦ · · · ◦ φ1,

holds for all i, j ∈ {1, 2, . . . , N} and h ∈ H, which means that the group elements h can be freely
exchanged in the composite sequence of equivariant functions. In particular, if one of the equivariant
functions (e.g. φk) is replaced by an invariant function, the group element h will be absorbed, which
means

φN ◦ · · · ◦ φk ◦ · · · ◦ φi+1 ◦ ρX (i)(h)φi ◦ · · · ◦ φ1 = φN ◦ · · · ◦ φ1.

holds for all h ∈ H but only i ∈ {1, 2, . . . , k}. Although φN ◦ · · · ◦ φk is still equivariant, because
the group elements must be input starting from φ1, the overall φN ◦ · · · ◦ φ1 is still an invariant
function. That is to say, to conclude that the entire HEGNN is equivariant, we only need to prove that
HEGNN is equivariant in initialization and each layer.

The initialization of HEGNN is based on spherical harmonics, which is similar to TFN. Spherical
harmonics are inherently equivariant, that is,

Y (l)(Rrx⃗) = D(l)(r)Y (l)(x⃗).

Note that variables participating in the coefficient in Eq. (5) are all invariant scalars, so the initialization
of HEGNN is consistent with the spherical harmonic function. Note that for Cartesian vectors, they
can be aligned by arranging the spherical harmonics of 1st degree [19], that is,

x⃗ ∝ Y (1)(x⃗).

From this perspective, EGNN can also be considered to be initialized using spherical harmonics, but
this step is omitted because the value is proportional to the input Cartesian vector.

It is worth explaining that spherical harmonics are inversion invariant when l is even, that is,

Y (l)(mx⃗) = Y (l)(x⃗).

16

Equivariant ones are not necessarily better than invariant ones. When we need to predict pseudovectors
(such as moments), we need to inversion invariant 1st-degree steerable features, because pseudovectors
are inversion invariant. This is why introducing the cross product x⃗ × y⃗ (the result is inversion
invariant) into a linear combination can only build a SE(3) equivariant network, but not a E(3)
network [50].

In fact, inversion equivariant/invariant high degree steerable features can be obtained by calculating
the CG tensor product of spherical harmonics and inversion equivariant Cartesian vectors like
x⃗i− x⃗c [39]. Moreover, the equivariance at each layer is also easy to prove and the internal Wigner-D
matrix can be extracted through the CG tensor product [31].

D(l)(h)ṽ(l) =
[(

D(l1)(h)ṽ(l1)
)
⊗W

cg

(
D(l2)(h)ṽ(l2)

)](l)
.

When the output result is an invariant scalar, the Wigner-D matrix degenerates into a trivial repre-
sentation 1. Norm and inner product are all special cases of this type, so equivariance is established.
From this perspective, EGNN and HEGNN are equivalent to using only the weight coefficients of
(l, l) → 0 and (0, l) → l. Similar ideas include the steerable MLPs in [33] .

A.2 Other Proofs

Theorem A.2 (Theorem 3.4). Suppose that f (l) is an O(3)-equivariant function on geometric graphs,
regarding the group representation ρ(l) defined in Eq. (2). Then, for any symmetric graph G induced
by the group H ≤ O(3), namely, ∀G ∈ G(H), we always have

f (l)(G) = ρ(l)(H)f (l)(G). (11)

Here we have defined group average as ρ(l)(H) := 1
|H|
∑

h∈H ρ(l)(h).

Proof. If f (l) is O(3)-equivariant, then it is also a H-equivariant, thus

f (l)(G) = 1

|H|
∑
h∈H

f (l)(h · G) = 1

|H|
∑
h∈H

ρ(h)f (l)(G) =

 1

|H|
∑
h∈H

ρ(h)

 f (l)(G) = ρ(H)f (l)(G).

Theorem A.3 (Theorem 3.5). If and only if the matrix I2l+1 − ρ(l)(H) is non-singular, the O(3)-
equivariant function f (l) is always a zero function on G, namely,

f (l)(G) ≡ 0, ∀G ∈ G(H). (12)

Proof. From Theorem 3.4, we know that

f (l)(G) = ρ(H)f (l)(G) ⇐⇒
(
I2l+1 − ρ(l)(H)

)
f (l)(G) = 0,

and the theorem holds for basic knowledge of linear algebra.

Theorem A.4 (Theorem 3.6). For a finite group H with its representation ρ(l), ρ(l)(H) is a zero
matrix (i.e., ρ(l)(H) = 0) if and only if tr(ρ(l)(H)) = 0. In this case, f (l)(G) ≡ 0,∀G ∈ G(H).

Proof. It is obvious that ρ(l)(H) = 0 =⇒ tr(ρ(l)(H)) = 0 since all elements are zero not to
mention the main diagonal, and we only to prove tr(ρ(l)(H)) = 0 =⇒ ρ(l)(H) = 0.

A basic fact is h · H = H, thereby

ρ(l)(h)ρ(l)(H) = ρ(l)(H).

Now we can use group average and get(
ρ(l)(H)

)2
= ρ(l)(H)

17

Such operation can be repeated many times, so that(
ρ(l)(H)

)k
= ρ(l)(H), ∀k ∈ N+.

Now we calculate the trace for each matrix and find

tr

((
ρ(l)(H)

)k)
= tr

(
ρ(l)(H)

)
= 0, ∀k ∈ N+.

By Newton’s identity [51], all eigenvalues of the matrix ρ(H) are 0, that is, the matrix is a zero
matrix.

Table 7: The traces of symmetric groups based on [52]. Trace for polyhedral groups can be calculated
by D(l)(H) = ⌊l/r⌋ + b[lmod r] with repeat length r, where b is a string only with 0 or 1. For
exmaple, for Tetrahedral group T , D(5)(T) = ⌊5/6⌋+ b[5mod 6] = 0 + 0 = 0.

Group Notation Data for Wigner-D matrix traces D(l)(H)

Reflection group Ci (2l + 1) · δlmod 2,0

Cyclic group Cn 2⌊l/n⌋+ 1
Dihedral group Dn ⌊l/n⌋+ δlmod 2,0

Tetrahedral group T r = 6 b = 100110
Octahedral group O r = 12 b = 100010101110
Icosahedral group I r = 30 b = 100000100010100110101110111110

Theorem A.5 (Theorem 4.1). For any geometric graph, there exists a bijection between the
set of inner products {z(l)ij }

|Aij |
l=1 given by Eq. (10) and the set of edge angles Aij = {θis,jt :=

⟨x⃗is, x⃗jt⟩}s∈N (i),t∈N (j).

Proof. Note that the Legendre polynomial is a set of orthogonal polynomial bases, and there is a
bijection to the power function polynomial space, that is

span

|Aij |∑
n=1

P (l) (cos θn)

M

l=0

= span

|Aij |∑
n=1

cosα θn

M

α=0

,

where M is any non-negative integer represents the degree of the polynomial space. Moreover,
from the knowledge of Newton’s identities, the space of power sums can be converted to space of
elementary symmetric polynomials as

span

|Aij |∑
n=1

cosα θn

M

α=0

= span

 ∑
1≤n1<n2<...nm≤|Aij |

(
k∏

ν=1

cos θnk

)
M

α=0

From Vieta’s formulas, when M = |Aij |, with the M + 1 polynomial in the space of elementary
symmetric polynomials being coefficients, we can build a |Aij |-degree polynomial with {cos θ | θ ∈
Aij} as its all roots7. Since all angles are in [0, π), the cosine uniquely determines the angle value,
and the proposition is established.

A.3 Further Discussion

Our theory in fact shows that the degeneration of global features of a certain degree (in Table 1) are
inevitable on symmetric geometric graphs. This raises two points worth discussing:

1. The degree not indicated to degenerate not necessarily produce a non-zero representation,
which may still be affected by the model form and the edge situation.

2. There are some tricks to get around this degeneration: for example, making the output a set
or relaxing equivariance constraints (e.g. probabilistic symmetry breaking [54]).

7The trick comes from Lemma 6 in DeepSet [53].

18

It is worth mentioning that outputting a set can solve most problems, although such operators may be
quite intractable to implement in computer systems. The failure cases of frame averaging [26; 27]
and Neural P3M [30] which depend on singular value decomposition or eigenvalue decomposition, is
caused by the non-unique matrix decomposition. Some other examples include ComENet [55], which
uses the scatter_min() operator in PyTorch to extract the nearest neighbors, making it intractable
to handle the situation where multiple neighbors are simultaneously closest, which is quite common
in chemical molecules (e.g. -CH3, -NH2).

Moreover, from Theorem 4.1, we show the expressivity of our HEGNN, which is able to recover the
information of all angles between each pair of edge. However, it should be noted that |Aij | may be
an extremely large number, which is unacceptable in practical applications to achieve completeness.
The same problem also arises in discussions based on CG tensor product models (e.g. TFN [19]),
such as discussions based on D-spanning [23], because a sufficiently high-degree D is unacceptable.
However, in terms of actual results, the performance of both our HEGNN and TFN is remarkable.
From this perspective, how to bridge the gap between completeness and actual performance with
features of limited channels and degrees is a question worth considering.

To get the ball rolling, we raise an interesting question here. Is there a performance gap between this
type of purely mathematical representation and other features based on physical and biochemical
prior knowledge?

• Purely mathematical representation: topological characteristics [56–58], cluster expansion
basis [59; 60], subgraph blocks [61–63], frames [26; 27; 64], normalization operators [65;
66];

• Features based on physical and biochemical prior knowledge: distance matrix [67–72],
chemical bond length, angle and dihedral angle [55; 73–75], force [76; 77], fractional
coordinates [78–80], canonical ordering [81; 82].

In fact, some of these features are directly related (e.g. frames and fractional coordinates). How to
construct effective and interpretable pure mathematical features based on those with prior knowledge
will become a key point in network design, and we will consider further exploration in future work.

B More Experimental Details and Results

B.1 Comparison of parameters between models

Like EGNN [1], different features use different numbers of channels, so the inference time does not
obviously reflect the time complexity of O(L2). We list the details of our HEGNN of different degree
in Table 8. Intuitively, we add one of each steerable feature on the basis of EGNN (using 64 invariant
scalars and 2 Cartesian vectors, i.e. coordinate and velocity).

Table 8: Channels for steerable features of different degrees and total dimensions of HEGNN of
different degrees.

HEGNNl≤1 HEGNNl≤2 HEGNNl≤3 HEGNNl≤6

Channel for ṽ(0) 65 65 65 65
Channel for ṽ(1) 3 3 3 3
Channel for ṽ(2) – 1 1 1
Channel for ṽ(3) – – 1 1
Channel for ṽ(4) – – – 1
Channel for ṽ(5) – – – 1
Channel for ṽ(6) – – – 1

Total dimensions 74 79 86 119

Table 9 shows the number of parameters and inference time of different models.

19

Table 9: Parameters and inference time (on 100-body dataset) of EGNN and other high-degree
models.

Parameters

l ≤ 1 l ≤ 2 l ≤ 3 l ≤ 6

EGNN 134.1k – – –
HEGNN 160.3k 160.9k 161.5k 163.2k
TFN 3.7M 9.6M 19.5M 86.6M
SEGNN 228.1k 244.1k 254.9k 288.1k
MACE 14.8M 38.0M 77.0M 342.5M

Inference Time (10−2s)

l ≤ 1 l ≤ 2 l ≤ 3 l ≤ 6
EGNN 0.57 – – –
HEGNN 0.82 0.88 0.91 1.08
TFN – 3.75 2.66 OOM
SEGNN 1.33 1.7 1.98 22.33
MACE 22.10 125.87 261.11 OOM

B.2 Experiment on k-fold Structure.

The results on the k-fold structure are completely consistent with the conclusion of Table 1. The few
results that cannot reach 100% are due to the small number of training epochs, so the classifier fails to
perform perfect classification. In fact, the accuracy of models can achieve 100.00± 0.0 after increasing
the number of training rounds of the model like 500 epochs. Since from 2nd-degree steerable features
can distinguish G0 and G1, and HEGNN/TFN/MACEl≤L contain 2nd-degree steerable features when
l ≥ 3, the extra results are hidden but all their values are 100.00± 0.0.

Table 10: k-fold symmetric structures.

Rotational symmetry
GNN Layer 2 fold 3 fold 5 fold 10 fold

C
ar

t. E-GNNl=1 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0

GVP-GNNl=1 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0

Si
ng

le
Ty

pe
Sp

he
ri

ca
l

HEGNNl=1 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0

HEGNNl=2 95.0 ±15.0 95.0 ±15.0 95.0 ±15.0 95.0 ±15.0

HEGNNl=3 50.0 ± 0.0 75.0 ±40.31 50.0 ± 0.0 50.0 ± 0.0

HEGNNl=4 100.0 ± 0.0 95.0 ±15.0 95.0 ±15.0 95.0 ±15.0

HEGNNl=5 50.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 50.0 ± 0.0

HEGNNl=6 100.0 ± 0.0 95.0 ±15.0 100.0 ± 0.0 95.0 ±15.0

HEGNNl=7 50.0 ± 0.0 95.0 ±15.0 90.0 ±30.0 50.0 ± 0.0

HEGNNl=8 100.0 ± 0.0 90.0 ±30.0 85.0 ±32.02 85.0 ±32.02

HEGNNl=9 50.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 50.0 ± 0.0

HEGNNl=10 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
HEGNNl=11 50.0 ± 0.0 100.0 ± 0.0 95.0 ±15.0 50.0 ± 0.0

Sp
h. HEGNN/TFN/MACEl≤1 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0

HEGNN/TFN/MACEl≤2 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

B.3 Further Verification on Regular Polyhedra

Implementation details: Since the e3nn [39] library only implements spherical harmonics up to
the 11th-degree, we verified the expressivity of our HEGNN in disguise. In this experiment, we
measure the expressivity of our HEGNN by calculating whether the high-degree feature ṽ

(l)
i updates

on regular polyhedra. Namely, if ∆ṽ
(L)
i = 0, then HEGNNl=L loses the expressivity. This judgment

is necessary and sufficient. We calculated the sum of all degree vectors from L = 1 to 30, which

20

covers the maximum repeat length r in Table 7. We implemented the calculation of the high-degree
features based on scipy [83] library.

Results: Our calculation results are shown in Table 11 which is completely consistent with the
theoretical results in Table 7. The simple experiment shows that the sum of spherical harmonics∑

i Y
(l)(x⃗i − x⃗c), as a function on graph, will actually vanish on regular polyhedra for some integer

degree l.

Table 11: Expressivity analysis of HEGNN using sums of spherical harmonics. Here, "True"
indicates that our HEGNN can distinguish the orientations, meaning the norm of the sum of
spherical harmonics is greater than 1. "False" in the table means that no distinction can be made,
with the norm of the corresponding spherical harmonic being less than 10−3.

Rotational symmetry
L Tetrahedron Cube Octahedron Dodecahedron Icosahedron

1 False False False False False
2 False False False False False
3 True False False False False
4 True True True False False
5 False False False False False
6 True True True True True
7 True False False False False
8 True True True False False
9 True False False False False
10 True True True True True
11 True False False False False
12 True True True True True
13 True False False False False
14 True True True False False
15 True False False False False
16 True True True True True
17 True False False False False
18 True True True True True
19 True False False False False
20 True True True True True
21 True False False False False
22 True True True True True
23 True False False False False
24 True True True True True
25 True False False False False
26 True True True True True
27 True False False False False
28 True True True True True
29 True False False False False
30 True True True True True

B.4 Results on other dataset settings

The N -body dataset setting of this paper refers to FastEGNN [28]8, that is, 5,000 samples are used
as the training set (instead of 3,000). We tested the situation of using different data segmentation
in Table 12. We also add ClofNet [50], a local frame based scalarization method and SEGNN [33]
(select l = 1 according to the optimal situation in the paper) and MACE [37] (l = 2), two classic
high-degree steerable models for comparison.

8https://github.com/GLAD-RUC/FastEGNN.

21

https://github.com/GLAD-RUC/FastEGNN

Table 12: Results of N -body dataset under two partitions.

N -body(×10−2) 5-body 20-body 50-body 100-body

train/valid/test=3k/2k/2k

EGNN 0.71 1.08 1.16 1.29
ClofNet 0.89 1.79 2.40 2.94
ClofNet-vel 0.84 1.50 2.28 2.67
GMN 0.67 1.21 1.18 2.55
MACE 1.43 1.93 2.20 2.51
SEGNN 1.81 2.67 3.44 NaN
HEGNNl≤1 0.64 0.84 0.92 1.04
HEGNNl≤2 0.69 0.89 1.13 0.94
HEGNNl≤3 0.58 1.04 0.92 1.04
HEGNNl≤6 0.77 1.06 1.02 1.18

train/valid/test=5k/2k/2k

ClofNet 0.80 1.49 2.28 2.77
ClofNet-vel 0.78 1.45 2.22 2.77
GMN 0.52 0.98 1.04 1.21
MACE 1.13 1.60 2.41 3.38
SEGNN 1.68 2.63 3.30 NaN
HEGNNl≤1 0.52 0.79 0.88 1.13
HEGNNl≤2 0.47 0.78 0.90 0.97
HEGNNl≤3 0.48 0.80 0.84 0.94
HEGNNl≤6 0.69 0.86 0.96 0.86

Note that SEGNN in Table 12 does not show the effect in the original paper. We also tried to
reproduce the dataset in the original paper [33], and the effect of SEGNN on 5-body dataset can be
reproduced. However, see Table 13, it is also shown that SEGNN performs poorly on larger datasets.

Table 13: Comparison between EGNN, SEGNN and HEGNN on N -body from [33]

N -body(×10−2) 5-body 20-body 50-body 100-body

EGNN 0.71 1.04 1.15 1.31
SEGNN 0.50 6.61 9.34 13.46
HEGNNl≤1 0.71 0.97 0.93 1.22
HEGNNl≤2 0.65 0.91 1.05 1.14
HEGNNl≤3 0.63 0.99 1.05 1.27
HEGNNl≤6 0.72 1.05 1.11 1.28

We found that the GMN-L method proposed in [29] generally performs the best on MD17 dataset, but
our HEGNN-6 also achieves comparable performance to GMN-L in most cases. Given that GMN-L
requires careful handcrafting of constraints for chemical bonds into the model design, our model’s
ability to derive promising results without such enhancements supports its competitive performance.

22

Table 14: Prediction error (×10−2) on MD17 dataset. Results averaged across 3 runs.

Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

RF 10.94±0.01 103.72±1.29 4.64±0.01 13.93±0.03 0.50±0.01 1.23±0.01 10.93±0.04 0.64±0.01

EGNN 14.41±0.15 62.40±0.53 4.64±0.01 13.64±0.01 0.47±0.02 1.02±0.02 11.78±0.07 0.64±0.01

EGNNReg 13.82±0.19 61.68±0.37 6.06±0.01 13.49±0.06 0.63±0.01 1.68±0.01 11.05±0.01 0.66±0.01

GMN 10.14±0.03 48.12±0.40 4.83±0.01 13.11±0.03 0.40±0.01 0.91±0.01 10.22±0.08 0.59±0.01

GMN-L 9.76±0.11 54.17±0.69 4.63±0.01 12.82±0.03 0.41±0.01 0.88±0.01 10.45±0.04 0.59±0.01

TFNl≤2 12.37±0.18 58.48±1.98 4.81±0.04 13.62±0.08 0.49±0.01 1.03±0.02 10.89±0.01 0.84±0.02

SE(3)-Tr.l≤2 11.12±0.06 68.11±0.67 4.74±0.13 13.89±0.02 0.52±0.01 1.13±0.02 10.88±0.06 0.79±0.02

HEGNNl≤1 10.32±0.58 62.53±7.62 4.63±0.01 12.85±0.01 0.38±0.01 0.90±0.05 10.56±0.10 0.56±0.02

HEGNNl≤2 10.04±0.45 61.80±5.92 4.63±0.01 12.85±0.01 0.39±0.01 0.91±0.06 10.56±0.05 0.55±0.01

HEGNNl≤3 10.20±0.23 62.82±4.25 4.63±0.01 12.85±0.02 0.37±0.01 0.94±0.10 10.55±0.16 0.52±0.01

HEGNNl≤6 9.94±0.07 59.93±5.21 4.62±0.01 12.85±0.01 0.37±0.02 0.88±0.02 10.56±0.33 0.54±0.01

B.5 Expressiveness of initialization layer

Note that both EGNN [1] and HEGNNl≤1 only use Cartesian vectors. However, in Table 3, the effect
of the latter is greatly improved. We speculate that there are two possible factors for this improvement:
1) the extra layer of message passing brought in by Eq. (5); 2) the multi-channel of Cartesian vectors
(see Table 8). Therefore, we tested the effect of HEGNNl≤1-3layers, and the results are shown in
Table 15. From the improvement, the first factor contributes more.

Table 15: Comparison between EGNN and HEGNN on N -body.

N -body(×10−2) 5-body 20-body 50-body 100-body

EGNN-4layers 0.65 1.01 1.00 1.36
HEGNNl≤1-3layers 0.63 0.98 0.96 1.31
HEGNNl≤1-4layers 0.52 0.79 0.88 1.13

C Limitation

Our current experiments are mainly limited to testing on small molecules and have not been verified
on large-scale molecules or large-scale physical systems. Whether our HEGNN is effective on
large-scale geometric graph data sets remains to be verified.

D Broader Impact

Our research belongs to the field of AI for Science. The HEGNN proposed in this article is expected
to better model scientific problems, thereby promoting the development of higher-precision and
efficient AI scientific models.

23

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction nicely summarize the theoretical contributions
mentioned in § 3, the model design mentioned in § 4, and the experimental results mentioned
in § 5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Our current experiments are mainly limited to testing on small molecules and
have not been verified on large-scale molecules or large-scale physical systems. Whether
our HEGNN is effective on large-scale geometric graph data sets remains to be verified.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

24

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Our main theoretical results are given in § 3 and the proofs are given in
Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The details of our experimental results are in "Design of experiments" in § 5.1
and "Datasets" in § 5.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

25

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: https://github.com/GLAD-RUC/HEGNN.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the training and test details have listed in "Design of experiments" in § 5.1
and "Datasets" in § 5.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the variance of the model runs in Table 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

26

https://github.com/GLAD-RUC/HEGNN
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We use NVIDIA A100-80G, which has written in § 5.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our research belongs to the field of AI for Science. The HEGNN proposed in
this article is expected to better model scientific problems, thereby promoting the develop-
ment of higher-precision and efficient AI scientific models.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

27

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All existing assets used in our paper have used with citation.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

28

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: https://github.com/GLAD-RUC/HEGNN.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29

 https://github.com/GLAD-RUC/HEGNN

	Introduction
	Related Works
	Theoretical Analyses
	Preliminaries
	Symmetric Graph
	Equivariant GNNs on symmetric graphs

	The Proposed HEGNN
	Experiment
	Expressivity on Symmetric Graphs
	Physical Dynamics Simulation
	Perturbation Experiment

	Conclusion
	Acknowledgment
	Theoretical Details
	Equivariance/Invariance of HEGNN
	Other Proofs
	Further Discussion

	More Experimental Details and Results
	Comparison of parameters between models
	Experiment on k-fold Structure.
	Further Verification on Regular Polyhedra
	Results on other dataset settings
	Expressiveness of initialization layer

	Limitation
	Broader Impact

