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Abstract

We test whether family-level separation in protein language model (pLM) embed-
dings persists after controlling for amino-acid composition. For six Pfam fam-
ilies and four models (ESM-2, ProtBERT, ProtXLNet, ProteinBERT), we com-
pute layer-wise within-family (In) and between-family (Out) cosine similarities
for true sequences and composition-preserving shuffles. We report a ratio-based
fidelity (In/Out) and a difference metric A = In — Out, and visualize the geometry
with t-SNE against a pooled negative bank. Across families and models, shuffled
curves closely track true curves in both fidelity and A, and frequently match or ex-
ceed them. ProtXLNet’s fidelity rises with depth but the shuffled curve is typically
comparable or higher; ProtBERT’s mid-layer spike is mirrored by shuffles; ESM-
2 and ProteinBERT are weak overall. t-SNE strips show compact clusters for both
true and shuffled sequences with negatives separated. These results indicate that
amino-acid composition accounts for much of the apparent family fidelity in cur-
rent embeddings, highlighting the need for composition-controlled baselines and
biologically meaningful evaluation metrics.

1 Introduction

Protein language models (pLMs) trained on large sequence corpora are widely used for annotation
and prediction tasks [Elnaggar et al., 2021, Lin et al., 2023, Brandes et al., 2022, Rao et al., 2019,
Meier et al., 2021].They have achieved success in secondary-structure prediction, mutational effect
modeling, and structure generation. However, despite their empirical performance, there remains
limited understanding of what biological signals they actually capture. Proteins are strings over a
20-letter alphabet, and related proteins are grouped into families in Pfam based on conserved do-
mains and alignments [Finn et al., 2016, Mistry et al., 2021]. Because many applications touch
these families, it is important to clarify what aspects of family structure are reflected in pLM repre-
sentations.

To separate overall amino-acid composition from residue order, we use a composition-preserving
shuffle that keeps length and amino-acid counts fixed while randomizing order [Jiang et al., 2008],
in the spirit of probing analyses used in NLP embeddings [Alain and Bengio, 2017, Hewitt and
Manning, 2019]. We then compare true sequences and their shuffles across layers of several pLMs.
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Our evaluation covers six diverse Pfam families and four representative models (ESM-2, Prot-
BERT, ProtXLNet, ProteinBERT). For each family and layer we compute within-family (/) and to-
negative-bank (Out) cosine similarities, summarize separation using a ratio we call fidelity (In/Out)
and a difference A = In — Out, and visualize the embeddings with t-SNE[van der Maaten and Hin-
ton, 2008]. This provides a straightforward, composition-controlled setup for examining how family
structure appears in current pLM embeddings without training task-specific classifiers.

2 Methods

2.1 Dataset

We use six Pfam families as positives: C2H2 zinc finger (PF00096, n=159); EF-hand (PF00036,
n=>560); protein kinase domain (PF00069, n=38); ubiquitin (PF00240, n=59); SH3 domain
(PF00018, n=55); and class A GPCR (PF00001, n=63). These families were chosen to reflect
functional and structural diversity: DNA binding (zinc finger), calcium signaling (EF-hand), catal-
ysis (kinase), post-translational modification (ubiquitin), protein—protein interaction (SH3), and
membrane signaling (GPCR). They also vary in sequence length and family size, from compact
folds with tens of sequences (ubiquitin, kinase domain) to large repeat-containing or membrane-
associated families with hundreds of sequences (EF-hand, GPCR). This diversity helps ensure that
observed composition effects are not restricted to a single function, fold type, or dataset size. As a
pooled negative bank we include non-target families (e.g., PFO0005, PF00072, PF00076, PFO0013)
to provide a broad background and avoid cherry-picking. For each positive sequence we also create
a composition-preserving shuffle by permuting residues while keeping length and the amino-acid
histogram fixed (per-sequence shuffle), ensuring that residue order is fully randomized while com-
position is preserved.

2.2 Models and embeddings

We evaluate four representative pLMs that differ in scale, architecture, and training objective. ESM-
2 (33-layer encoder; masked language modeling) [Lin et al., 2023] is among the largest transformer
encoders trained directly on protein corpora, and serves as a strong high-capacity baseline. Prot-
BERT (30-layer BERT-style encoder; masked language modeling) [Elnaggar et al., 2021, Devlin
et al., 2019] adapts the BERT design from NLP, providing a widely used bidirectional context model
for proteins. ProtXLNet (36-layer XLNet-style encoder; permutation language modeling with au-
toregressive factorization) [Elnaggar et al., 2021, Yang et al., 2019] differs in pretraining paradigm,
using permutation objectives intended to capture longer-range dependencies. ProteinBERT (6-layer
compact encoder with global tokens) [Brandes et al., 2022] is far smaller in depth and parameter
count but includes global tokens that efficiently summarize the whole sequence.

These models were chosen to span both large-scale transformers trained on billions of residues
(ESM-2, ProtBERT, ProtXLNet) and a compact architecture designed for efficiency (ProteinBERT).
This coverage allows us to test whether composition-driven effects are consistent across different
capacities and objectives rather than being tied to one model family. At each layer ¢, token em-
beddings are mean-pooled across residues and then L2-normalized [Bepler and Berger, 2019, Etha-
yarajh, 2019]. Mean-pooling provides a simple, comparable sequence representation across variable
lengths, and normalization ensures that cosine similarities are stable and comparable across models
of different scales.

2.3 In/Out similarities and metrics

For family F' and layer ¢,

In(F,¢) = ‘—Ilpl Z cos(xf,x?), Out(F,¢) = I—Jbl Z cos(zf, 2,
(i,7)€EP (i,k)EN

where P are pairs within F' and IV are pairs between F' and the pooled negatives. We summarize
separation with fidelity = In/Out (ratio) and A = In — Out (difference). In addition to point
estimates, we quantify uncertainty via nonparametric sequence-level bootstrapping: for each family
we resample sequences with replacement and recompute metrics to obtain 95% confidence intervals.
This provides a statistically grounded view of model behavior that avoids over-interpreting single
point estimates.



2.4 Evaluation design

We systematically analyze every combination of model, family, and layer for both true and shuffled
sequences. This exhaustive design ensures that the reported patterns are not artifacts of a particular
model depth or family size. By computing metrics layer by layer, we capture the dynamics of how
representations evolve across the network, which is critical for architectures such as BERT, XLNet,
and ESM-2 where depth plays a central role in shaping the learned features. Both fidelity and A are
evaluated under identical conditions, allowing direct comparisons across models and controls. This
uniform setup provides a consistent basis for assessing whether composition-preserving shuffles
diverge from true sequences in a statistically meaningful way. The main text reports multi-panel
figures for A and fidelity and one representative t-SNE strip; the Appendix contains full t-SNE
panels (all families X models) and per-family In vs. Out curves.

3 Results

A separation (moved to Appendix): Detailed A = In — Out panels for all families and models
are provided in Appendix A.2. The qualitative pattern closely parallels both the fidelity ratios and
the raw In/Out similarities described below. Across families and depths, shuffled curves often match
or exceed their true counterparts.

Fidelity ratios: Figure 1 reports fidelity (In/Out) across families and models. ESM-2 shows a
gradual increase across depth but never departs far from unity, and the shuffled controls shadow the
true curve closely, occasionally surpassing it at later layers. ProtBERT exhibits a distinct spike
around layer ~10; however, the shuffled sequences reproduce the same behavior, indicating that
the enrichment arises largely from composition rather than sequence order. ProtXLNet produces
steadily rising fidelities with depth, but the shuffled curves remain comparable and in many cases
higher than the true values—there is no robust true>shuffled advantage. ProteinBERT peaks early
before declining with depth; in this case, true and shuffled sequences remain close throughout, with
only small family-specific gaps. Taken together, these comparisons highlight that the fidelity metric
provides no consistent evidence of true sequences outperforming their shuffled counterparts.

Uncertainty quantification: Because pairwise similarities are not independent, we assessed ro-
bustness for the fidelity metric using sequence-level bootstrap resampling. Figure 1 shows shaded
95% confidence intervals around the fidelity curves. Across all models and families these in-
tervals were narrow and closely followed the point estimates, confirming that the qualitative
trends—shuffled curves shadowing or exceeding true curves—are statistically stable rather than ar-
tifacts of sampling. .

Raw In vs Out (PF00096). Figure 2 shows the underlying within-family (In) and to-negatives
(Out) cosine similarities for PF00096. This view complements the fidelity ratio by showing the
raw components separately. Across layers, the shuffied control follows the true In and Out curves
remarkably closely, with only minor deviations, which is, consistent with the fidelity trends. The
depth-dependent trends in PFO0096 are not unique to this family; additional examples for the other
five Pfams are provided in Appendix A.1, where the same pattern of close correspondence between
true and shuffled sequences can be observed.

t-SNE visualization: Figure 3 illustrates a geometric view of the embeddings using PF00096 with
ESM-2 as an example. From approximately layer 10 onward, both true (red) and shuffled (pink)
sequences form compact clusters in the two-dimensional projection, while the pooled negatives
(gray) remain well separated. The modest displacement between the true and shuffled clusters is
small compared to the tightness of each cluster itself, underscoring the difficulty of distinguishing
them based on order information. This visualization therefore echoes the message of the fidelity
and In/Out analyses: clustering behavior attributed to family structure can be largely reproduced
by shuffled controls. Full t-SNE panels for all families and models are included in Appendix A.3,
which confirm that this observation generalizes across architectures and sequence classes.

Cross-family and architectural trends. When comparing across the six Pfam fami-
lies—spanning DNA-binding, signaling, catalysis, modification, interaction, and membrane recep-
tor functions—the same qualitative trend emerges. In nearly every setting, shuffled curves track the
true curves closely and frequently exceed them. Architectural differences primarily affect the depth



at which separation peaks appear: ProtBERT displays a sharp mid-layer spike that is mirrored by
the shuffled sequences, ProtXLNet exhibits a gradual rise in later layers where the shuffled con-
trol often matches or surpasses the true sequences, and ProteinBERT peaks early before declining.
ESM-2, by contrast, shows relatively weak overall separation. Despite these architectural idiosyn-
crasies, none of the models demonstrate a consistent true>shuffled advantage across families. This
repeated pattern suggests that the composition effect is robust to both family choice and model de-
sign, reinforcing the central observation that composition-preserving shuffles closely match the true
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Figure 1: Fidelity (In/Out) across six Pfam families and four models. Solid = true,

dashed =

shuffled. Shaded regions = 95% bootstrap confidence intervals.




In vs Out — PFO0096
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Figure 2: Raw within- vs between-family cosine similarities (PF00096). Red circles = In (True),
blue squares = Out (True), pink dashed circles = In (Shuffled), light-blue dashed squares = Out
(Shuffled). Composition-preserving shuffles closely track the true family across layers.
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Figure 3: t-SNE for PF00096 with ESM-2 at selected layers (5, 10, 15, 20, 30). True = red circles,
Shuffled = pink triangles, Negative bank = gray dots.

4 Conclusion

Protein language models often appear to separate protein families, but our analysis shows that much
of this separability arises from amino-acid composition rather than conserved order-dependent mo-
tifs. Across six families and four models, composition-preserving shuffles closely track—and often
exceed—the fidelity and A values of true sequences. Architecture influences the layer depth and
scale of these effects (ProtBERT’s mid-layer spike, ProtXLNet’s gradual rise, ProteinBERT’s early
peak), but none of the models shows a consistent true > shuffled advantage. These findings caution
against interpreting family-level clustering as direct evidence of motif learning. They also raise an
open question: is it desirable that pLMs cluster together sequences that are biologically irrelevant
but compositionally similar? Addressing this will be key for developing composition-controlled
baselines and biologically meaningful benchmarks in future protein language models.

5 Future Work

Our analysis shows that composition accounts for much of the apparent family structure in current
protein language models. A natural next step is to design training objectives that make models
less sensitive to simple composition statistics and more attentive to order-dependent motifs. One
possible direction comes from recent work in nucleotide modeling Refahi et al. [2025],where they
proposed a transition-matrix regularization loss (CARMANIA) to discourage models from relying
only on base composition. Exploring similar ideas for protein sequences could reveal whether such
regularization helps recover deeper functional signals beyond composition.



Code Availability

Code and data of the experiments are available here : https://github.com/Sohel016/PLM_
Fidelity.
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A Additional Figures

A.1 Raw In vs Out (All Families)

The following panels report raw within-family (In) and to-negatives (Out) cosine similarities across
layers for each positive family and model. Curves for shuffled controls are overlaid (dashed).
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Figure 4: In vs Out for PF00096 (C2H2 zinc finger). Red circles = In (True), blue squares = Out
(True), pink dashed circles = In (Shuffled), light-blue dashed squares = Out (Shuffled).



In vs Out — PF00036
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Figure 5: In vs Out for PF00036 (EF-hand). See Fig. 4 for legend mapping.
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Figure 6: In vs Out for PFO0001 (Class A GPCR).




In vs Out — PF00018
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Figure 8: In vs Out for PFO0069 (Protein kinase domain).

A.2 A panels (All Families)

Figures below report A = In — Out across all six families and four models.




In vs Out — PF00240
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Figure 9: In vs Out for PF00240 (Ubiquitin).
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Figure 11: t-SNE for C2H2 zinc finger (PF00096) across models. Each strip shows selected layers

A3

left-to-right. True = red circles, Shuffled = pink triangles, Negatives = gray dots.
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Figure 12: t-SNE for EF-hand (PF00036) across models. Each strip shows selected layers
left-to-right. True = red circles, Shuffled = pink triangles, Negatives = gray dots.
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Figure 13: t-SNE for Class A GPCR (PF00001) across models. Each strip shows selected layers
left-to-right. True = red circles, Shuffled = pink triangles, Negatives = gray dots.
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Figure 14: t-SNE for SH3 domain (PF00018) across models. Each strip shows selected layers
left-to-right. True = red circles, Shuffled = pink triangles, Negatives = gray dots.
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Figure 15: t-SNE for Protein kinase (PF00069) across models. Each strip shows selected layers
left-to-right. True = red circles, Shuffled = pink triangles, Negatives = gray dots.
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Figure 16: t-SNE for Ubiquitin (PF00240) across models. Each strip shows selected layers
left-to-right. True = red circles, Shuffled = pink triangles, Negatives = gray dots.
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