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Abstract
We propose a novel gradient-based online opti-
mization framework for solving stochastic pro-
gramming problems that frequently arise in the
context of cyber-physical and robotic systems. We
establish the connection between our algorithms
and the cyber-physical systems through the classic
two-degree-of-freedom control loop. We also in-
corporate an approximate model of the dynamics
as prior knowledge into the learning process, and
characterize the impact of modeling errors in the
system dynamics on the convergence rate of the
algorithms. We show that even rough estimates of
the dynamics can significantly improve the con-
vergence of our algorithms. Finally, we evaluate
our algorithms in simulations of a flexible beam
and a four-legged walking robot.12

1. Introduction
The increasing availability of sensors across various do-
mains has led to the generation of vast volumes of data, ideal
for analysis and training. However, a significant challenge
arises from the traditional “Sampling-Training-Deployment”
mode of machine learning algorithms. Once trained, most
models remain static during deployment, unable to benefit
from the continuous influx of new data. This limitation
means that models risk becoming outdated as the environ-
ment evolves and new information emerges, leaving a sub-
stantial amount of potentially valuable data unused. This
not only hinders improvements in performance but also falls
short of enabling systems to continuously learn, adapt, and
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improve. Moreover, retraining models from scratch with
new data is neither an economical nor a long-term solu-
tion. This issue is particularly prevalent in robotics, where
deployed models struggle to adapt to ever-changing envi-
ronments and continuous streams of new information and
data.

In the field of machine learning, a strategy that incorporates
streaming data is known as online leaning, which aims to
minimize the expected regret as follows (Bubeck, 2012;
Neu, 2015):

Regret (A) = E

[
T∑

t=1

f (ωt; ζt)

]

−min
ω∈Ω

E

[
T∑

t=1

f (ω; ζt)

]
, ζt

i.i.d.∼ D, (1)

where A denotes the specific online optimization algorithm
that is used to minimize the regret and f are stochastic loss
functions, where the random variable ζt is independently
and identically sampled from the unknown distribution D.
The expectation is taken with respect to the loss functions
and the decision variables ωt ∈ Ω. The decision variables
ωt are generated by the algorithm A from a closed and con-
vex set Ω ⊆ Rnω , where nω ∈ N+ denotes the number
of decision variables ω. In addition, T denotes the total
number of iterations. Intuitively, we claim that an online
optimization algorithm A performs well if the regret in-
duced by this algorithm is sub-linear as a function of T (i.e,
Regret (A) = o (T )), since this implies that on average, the
algorithm performs as well as the best fixed decision vari-
ables ω⋆ = argminω∈Ω E

[∑T
t=1 f (ω; ζt)

]
in hindsight.

Therefore, when T is large enough or tends to infinity, on-
line learning can cope with continually growing streams of
data at the algorithm level, so that the decision variables ωt

continuously improve performance.

The loss functions f are typically assumed to be convex
and bounded (Hazan, 2022; Shalev-Shwartz, 2012; Hall &
Willett, 2015). However, one of the primary objectives of
this article is to bridge the gap between theory and prac-
tice, enabling online learning algorithms to be deployed on
cyber-physical systems. Therefore, in this article, we aban-
don the convexity assumption and instead rely on a more
general smoothness assumption. Furthermore, we connect
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our proposed algorithms with cyber-physical systems and
provide a quantitaive analysis of their performance.

1.1. Related Work

The most typical algorithm for solving stochastic optimiza-
tion problems is Stochastic Gradient Descent (SGD) (Rob-
bins & Monro, 1951). In the context of large-scale ma-
chine learning, SGD is favored over batch algorithms for
several reasons: SGD has a lower computational cost per
iteration (Bottou et al., 2018), and SGD achieves a faster
initial decline (Bertsekas, 2015). Current research is fo-
cused on how to reduce the noise in the gradient to enhance
the convergence rate of SGD. This concept is evident in
algorithms like the Stochastic Variance Reduced Gradient
(SVRG) (Johnson & Zhang, 2013), the Stochastic Average
Gradient (SAG) (Schmidt et al., 2017), and the Stochastic
Average Gradient Accelerated-Descent (SAGA) (Defazio
et al., 2014), which reduce the noise in the gradient obtained
at each iteration through gradient aggregation without sig-
nificantly increasing computational effort. The first two
methods can achieve a linear convergence rate provided that
the loss functions are strongly convex. The latter has been
improved upon this basis, enabling it to reach a better con-
vergence rate, still under the condition of strongly convex
loss functions. However, these methods typically require
traversing all or part of the data set, which is not feasible in
the online learning setting.

There is little literature on deploying online learning algo-
rithms on cyber-physical systems. Crespi & Ijspeert (2008)
used a locomotion controller together with Powell’s method,
a gradient-free online optimization method, to optimize the
gaits of an amphibious snake robot. The gradient-free online
optimization enables fast optimization of the gaits in differ-
ent media and takes only a few iterations to converge. Cheng
& Chen (2014) developed an online parameter optimization
method utilizing Gaussian process regression to approxi-
mate the relationship between the process parameters and
system performance. The proposed online parameter opti-
mization adapts to variations and satisfies the performance
requirements. It also demonstrates higher efficiency and
accuracy compared to existing methods. Wang et al. (2018)
developed an approach based on online optimization for
a robot to plan its actions in human-robot collaborations,
enabling interactions with complex environments.

Different online optimization algorithms, such as online
gradient descent, the online Newton algorithm and online
mirror descent (Hazan, 2022; Bubeck, 2011) have been
proposed and convergence results have been established.
However, these theoretical proofs rely on the assumption
of convexity. This is why, in the control community, there
has been a nascent trend under the rubric of feedback opti-
mization (Colombino et al., 2020; Hauswirth et al., 2017;

Bernstein et al., 2019; He et al., 2024), where the steady-
state of a cyber-physical system is optimized in an online
manner. While the formulation does not measure and charac-
terize regret in the sense of online learning and departs from
convexity, it constrains the rate at which the underlying dy-
namics can change (Colombino et al., 2020) or restricts the
interactions of the system with the environment (Hauswirth
et al., 2017).

1.2. Structure

This article follows the structure outlined below: In Sec-
tion 2, we will establish the connection between our algo-
rithms and real-world cyber-physical systems through the
classic two-degrees-of-freedom control loop, and provide
a detailed formulation of the stochastic programming prob-
lem addressed in this article. Subsequently, in Section 3
we will propose an algorithmic framework to solve this
problem, and derive the update schemes for our gradient de-
scent algorithm in both open-loop and closed-loop systems.
In Section 4, we will discuss the assumptions required for
proving the convergence results, and characterize conver-
gence rates in the presence of modeling errors. In Section 5,
our algorithms are applied to various cyber-physical and
robotic systems, including a flexible beam and a four-legged
walking robot. The article concludes with a summary in
Section 6.

2. Problem Formulation
We start with the classic two-degree-of-freedom control
loop as shown in Figure 1, which has extensive applica-
tions in machine learning within the context of robotics.
We can contrast our approach of learning feedforward and

Feedback
Controller πfb

Feedforward
Controller πff

nd

Cyber-Physical
System

States

Noise
(Non-repeatable)

yref

uff

ufb u y

Figure 1. The figure shows the classic two-degree-of-freedom con-
trol loop, which includes a feedforward controller and a feedback
controller. The variable nd denotes a disturbance, which will sub-
sequently be used to obtain an approximate gradient G (ut).

feedback controllers to reinforcement learning (RL), where
the objective is to learn a feedback controller (policy) that
minimizes a designated reward function (Sutton & Barto,
2018; Li, 2018). In contrast to RL, which is often based on
approximately solving the Bellman equation, we do not use
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any dynamic programming strategy in our approach.

We consider a specific form of (1), which is tailored to cyber-
physical and robotic systems. We incorporate the system
dynamics through the mapping G and parameterize actions
(or control input) ut via the function π, which include feed-
forward and feedback actions in the classic control loop.
Our aim is to optimize performance by choosing the vari-
able ω that parameterizes the function π and determines the
actions. The dynamics G and the action parameterization π
are both incorporated as constraints to establish the connec-
tion between our algorithms and the cyber-physical systems.
Consequently, (1) is reformulated as follows:

Eζt

[
T∑

t=1

l (yt; ζt)

]
−min

ω∈Ω
Eζt

[
T∑

t=1

l (y⋆t ; ζt)

]
s.t. yt = G (s0, ut; ζt) , y

⋆
t = G (s0, u

⋆
t ; ζt)

ut = π (ωt, yt; ζt) , u
⋆
t = π (ω, y⋆t ; ζt) ,

ζt
i.i.d.∼ pζ ,

(2)

where the constraints implicitly define yt as a function
of ωt, s0 and ζt, the superscript (·)⋆ denotes the optimal
value. The implicit equation arises due to the fact that
feedback loops may potentially be present, and we assume
that yt exists and is well defined. The initial state of the
cyber-physical system is denoted by s0 ∈ S ⊂ Rns . The
vectors ut = (ut,1, . . . , ut,q) and yt = (yt,1, . . . , yt,q) de-
note the input and output sequences of the system, where
ut,i ∈ U ⊂ Rm and yt,i ∈ Y ⊂ Rn, i = 1, . . . , q
represent the input and output at a certain time point i
and at iteration t of the learning process. The mapping
G (·, ·; ζ) : S × Uq → Yq transforms a sequence of inputs
into a sequence of outputs and represents the input-output
behavior of the cyber-physical system. The input-output
behavior is not necessarily deterministic, due to process,
measurement, and actuation uncertainty, which is modeled
with the random variable ζt. In practice, the mapping G is
typically unknown and may exhibit a high degree of non-
linearity, for example due to friction in the joints of a robot.
The mapping π (·, yt; ζ) : Ω → Uq describes how the de-
cision variables ωt affect the controls ut. The feasible set
Ω ⊂ Rnω is assumed to be closed and convex.

In (2), the function l (·; ζ) : Yq → R describes the stochas-
tic loss function, for example, tracking error, execution time,
energy consumption, etc. To simplify the subsequent deriva-
tions and without loss of generality, we consider a specific
form of l that models a trajectory tracking task:

l (yt; yref,t) :=
1

2
|G (s0, ut; yref,t)− yref,t|2 ,

yref,t
i.i.d.∼ pyref , t = 1, . . . , T. (3)

where the random variable ζ denotes the reference trajec-
tory yref ∈ Yq that the system is required to track. This

Algorithm 1 Online-Quasi Newton Method

Input: initial parameters ω1, constant ϵ and α, iterations
T , step length {ηt}Tt=1

for t = 1 to T do
Sampling: ζ ∼ pζ → ζt
Implementation: G (s0, π (ωt, yt; ζt) ; ζt) → yt
Evaluation: l (yt; ζt)
Approximation: Lt ≈ ∂yt/∂ωt

Hessian Calculation: Λt = 1
ϵLT

t∇2
yl (yt; ζt)Lt +

α
ϵ ∇ωπ (ωt, yt; ζt)∇ωπ (ωt, yt; ζt)

T
+ I;

At =
1
t

∑t
k=1 Λk

Update: ωt+1 = ωt − ηtA
†
tLT

t∇yl (yt; ζt)
end for

notation inherently suggests that the reference trajectory yref
evolves in correspondence with the progression of iterations.
Concurrently, at each iteration, the reference trajectory is
randomly sampled from a fixed yet unknown distribution
pyref . For example, in the context of training a robot for
table tennis, pyref is determined by the trajectories experi-
enced by the end-effector during ball interception (Ma et al.,
2022; 2023; Tobuschat et al., 2023). This implies that when
solving (2) we have identified a nonlinear feedforward and
feedback controller that yields accurate trajectory tracking
for any yref ∼ pyref . For simplification and without com-
promising generality (we could extend the function π to
also account for s0), we assume that the system consistently
initializes from an identical state prior to each iteration t
of the learning process. As such, the initial state s0 can be
fixed and omitted. For example, in the experiments with
the ping-pong robot we drive the robot back to a rest posi-
tion after each iteration of the online learning with a simple
proportional-integral-derivative (PID) controller.

3. Stochastic Online Optimization
To address the online optimization problem (2), we pro-
pose Algorithm 1, which depending on the choice of ϵ
represents either an online gradient descent or an online
quasi-Newton method. The Moore–Penrose inverse is de-
noted by (·)†.

We note that in Algorithm 1, the majority of variables can
be obtained through measurement or simple calculations,
except for the gradient of the outputs yt with respect to the
decision variables ωt. The difficulty mainly arises from two
aspects:

1. The dynamic behavior of the system G is unknown.

2. Due to the presence of the feedback loop, yt is defined
as an implicit function. This means that we must con-
sider the effect of the feedback loop during the learning
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process.

The former aspect can be addressed using various tech-
niques such as system identification and finite difference
estimation (Ljung, 2010; Pintelon & Schoukens, 2012; Carè
et al., 2018; Tsiamis & Pappas, 2019; Campi & Weyer,
2002). In this article, we adopt a black-box representation
for G, avoiding any explicit characterization of its inter-
nal dynamics. Although the dynamic characteristics of G
are unknown, we assume that G is differentiable with re-
spect to u. Furthermore, we adopt the following notational
convention: G (ut) represents an approximation of the gra-
dient of the mapping G with respect to u, more precisely,
G (ut) denotes an approximation of ∂G(s0,u;ζ)/∂u|u=ut

. In
Section 5, we will demonstrate that even a rough approx-
imation of ∂G(s0,u;ζ)/∂u|u=ut

can serve as valuable prior
knowledge, significantly improving the convergence rate of
our algorithms. In the following subsection we will focus
on analyzing the impact of the feedback loop in the learning
process, and derive the update scheme.

3.1. Impact of the Feedback Loop

In our approach, we use πff and πfb to represent the param-
eterized feedforward and feedback networks, respectively,
and ωff and ωff to denote their corresponding parameters.
Then, the relation between yt and ut in (2) can be reformu-
lated as follows:

ut = πff (ωff,t; ζt) + πfb (ωfb,t; yt − ζt) ,

yt = G (s0, ut; ζt) , ζt
i.i.d.∼ pζ ,

(4)

that is, the input ut is the combination of a feedforward part
πff that does not depend on yt and a feedback part πfb that
depends on the deviation of yt from the reference trajectory
ζt. Due to the inclusion of feedback πfb, the calculation of
the gradient in Algorithm 1 becomes more complex and less
intuitive compared to the open-loop situation where πfb = 0.
Hence, we will demonstrate the computation of the gradients
∂y/∂ωff and ∂y/∂ωfb in the closed-loop system and discuss
their implications. The critical aspect to note at this point is
that (4) defines an implicit equation for yt and also ut. We
should therefore think of yt and ut as functions of ωff, ωfb
and ζt, that is, u = u (ωff, ωfb; ζ), y = y (ωff, ωfb; ζ). The
gradient of the loss function l with respect to the parameters
can be calculated as follows:

∇ωf (ω; ζ) =
[
∂yT

∂ωff

∂yT

∂ωfb

]
∇yl (y; ζ) .

By combining the two equations in (4) we get a single
implicit equation for y. The differential ∂y/∂ωff can now
be obtained by differentiating the implicit equation with

respect to ωff (implicit function theorem):

∂y

∂ωff
=

∂G (u; ζ)

∂u

∣∣∣∣
u=πff+πfb

∂πff (ωff; ζ)

∂ωff

+
∂G (u; ζ)

∂u

∣∣∣∣
u=πff+πfb

∂πfb (ωfb; ζ
◦)

∂ζ◦

∣∣∣∣
ζ◦=G(u;ζ)−ζ

∂y

∂ωff
.

This can be rearranged to

∂y

∂ωff
=

(
I− ∂G (u; ζ)

∂u

∂πfb (ωfb; ζ
◦)

∂ζ◦

∣∣∣∣
ζ◦=G(u;ζ)−ζ

)†

∂G (u; ζ)

∂u

∂πff (ωff; ζ)

∂ωff
. (5)

The expression ∂y/∂ωfb can be derived with a similar argu-
ment and results in

∂y

∂ωfb
=

(
I− ∂G (u; ζ)

∂u

∂πfb (ωfb; ζ
◦)

∂ζ◦

∣∣∣∣
ζ◦=G(u;ζ)−ζ

)†

∂G (u; ζ)

∂u

∂πfb (ωfb; ζ
◦)

∂ωfb

∣∣∣∣
ζ◦=G(u;ζ)−ζ

. (6)

We observe that the term ∂G(u;ζ)/∂u consistently represents
the gradient of the open-loop system and, as previously
mentioned, can be approximated using the estimate G (u).
This approximation renders the terms ∂y/∂ωff and ∂y/∂ωfb

computable. We also note that the feedback controller may
reduce the effect of estimation errors in G on the resulting
gradient estimates. Indeed, if ∂πfb(ωfb;ζ

◦)/∂ζ◦ is large, both
expressions reduce to

∂πfb (ωfb; ζ
◦)†

∂ζ◦
∂πfb (ωfb; ζ

◦)
∂ωfb

,
∂πfb (ωfb; ζ

◦)†

∂ζ◦
∂πff (ωff; ζ)

∂ωff
,

respectively, which means that ∇f is approximately inde-
pendent of G for large ∂πfb(ωfb;ζ

◦)/∂ζ◦. If the feedback gain
is small, however, ∂y/∂ωff and ∂y/∂ωfb reduce to

∂G (s0, u; ζ)

∂u

πff (ωff; ζ)

∂ωff
,
∂G (s0, u; ζ)

∂u

πfb (ωfb; ζ
◦)

∂ωfb
.

Moving forward, we will briefly show that the term(
I− ∂G (u; ζ)

∂u

∂πfb (ωfb; ζ
◦)

∂ζ◦

)†
∂G (u; ζ)

∂u
(7)

is the gradient of the closed-loop system with respect to
the external input nd (see Figure 1). This finding enables
us to directly derive gradient estimation approaches for the
closed-loop system by performing stochastic finite differ-
ence, which will be denoted as G◦ (ωff, ωfb, ζ). We perform
the following calculations (implicit function theorem):

∂y

∂nd
=

∂G (u; ζ)

∂u

∣∣∣∣
u=πff+πfb

+
∂G (u; ζ)

∂u

∣∣∣∣
u=πff+πfb

∂πfb (ωfb; ζ
◦)

∂ζ◦

∣∣∣∣
ζ◦=G(u;ζ)−ζ

∂y

∂nd
,
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which results in

∂y

∂nd
=

(
I− ∂G (u; ζ)

∂u

∂πfb (ωfb; ζ
◦)

∂ζ◦

)†
∂G (u; ζ)

∂u
.

Intuitively, ∂y/∂nd describes the sensitivity of y in closed-
loop to changes in u.

Consequently, the terms ∂y/∂ωff and ∂y/∂ωfb, apart from being
derived from (5) and (6), can also be obtained through the
following more direct approach

∂y

∂ωff
= G◦ (ωff, ωfb, ζ)

∂πff (ωff; ζ)

∂ωff
,

∂y

∂ωfb
= G◦ (ωff, ωfb, ζ)

∂πfb (ωfb; ζ
◦)

∂ωfb
,

thereby allowing for direct computations if G◦ is known.
As we will highlight with experiments in Section 5
G◦ (ωff, ωfb, ζ) can be estimated by performing stochastic
rollouts with different random perturbations nd (stochastic
finite difference).

4. Convergence Guarantees
In this section, we summarize the convergence guarantees
of Algorithm 1 under the following assumptions:
Assumption 4.1 (L-Smoothness). Let the loss functions
f (·; ζ) : Ω → R be L-smooth, that is,

|∇f (v; ζ)−∇f (ω; ζ)| ≤ L |v − ω| ,
for all ω, v ∈ Ω.
Assumption 4.2 (Bounded Variance). There exists a con-
stant H ≥ 0 such that for all ω ∈ Ω the following inequali-
ties hold:

Eζ

[
|∇f (ω; ζ)|2

]
≤ H2, Eζ

[
|F (ω; ζ)|2

]
≤ H2,

where F (ω; ζ) denotes the estimated gradient of f (ω; ζ)
induced by G (u), while ∇f (ω; ζ) denotes the true gradient,
that is,

F (ω; ζ) =
∂l (y; ζ)

∂y

(
I− G (u)

∂π (ω, y; ζ)

∂y

)†

G (u)
∂π (ω, y; ζ)

∂ω
,

∇f (ω; ζ) =
∂l (y; ζ)

∂y

(
I− ∂G (s0, u; ζ)

∂u

∂π (ω, y; ζ)

∂y

)†

∂G (s0, u; ζ)

∂u

∂π (ω, y; ζ)

∂ω
.

Assumption 4.3 (Bounded Hessian). Given a sequence
of single pseudo-Hessians Λt obtained according to Algo-
rithm 1, there exists a constant λ ≥ 1 such that for all
t = 1, . . . , T the following inequalities hold:

1 ≤ λmin (Λt) ≤ λmax (Λt) ≤ λ,

where λmin and λmax denote the minimum and maximum
eigenvalues of a matrix, respectively.

In this work, we abandon the convexity assumption of the ob-
jective function f with respect to ω and employ a more gen-
eral smoothness assumption instead (see Assumption 4.1).
Assumption 4.1 and Assumption 4.2 are standard in non-
convex optimization (Bottou et al., 2018). We note that the
non-convexity of the objective function f arises from the
nonlinear dynamics of the cyber-physical systems, while the
function l (y; ζ) can still be chosen to be convex. Thereby,
all additive terms in Λt in Assumption 4.3 are guaranteed
to be positive semi-definite. Furthermore, the matrix Λt de-
pends on the parameter ϵ, which can always be chosen large
enough, such that Assumption 4.3 is satisfied. Beyond this,
we also make the following assumption on the modeling
errors of our gradient estimate:

Assumption 4.4 (Modeling Error). Let the parameters ωt

evolve according to Algorithm 1. There exists a constant
κ ∈ [0, 1) such that for all t = 1, . . . , T the following
inequality holds:

|Eζ [F (ωt; ζ)|ωt]− Eζ [∇f (ωt; ζ)|ωt]|2

≤ κ2

λ
|Eζ [∇f (ωt; ζ)|ωt]|2 . (8)

In fact, the parameter λ arises from choosing the ℓ2-norm
in (8). If the inequality (8) is expressed in the metric |·|A−1

t
,

the factor 1/λ can be avoided, where | · |A−1
t

denotes the
metric induced by the positive definite matrix A−1

t , that is,

|x|2A−1
t

:= sup
|x|≤1

xTA−1
t x.

Then, we have the subsequent conclusions for Algorithm 1:

Theorem 4.5. Let the loss functions f (·; ζ) : Ω → R
satisfy Assumption 4.1 and Assumption 4.2, and let the
pseudo-Hessian At satisfy Assumption 4.3. Let the estimate
G (ut) satisfy Assumption 4.4, and let the step size be chosen
as

η =

√
2F (ω1)

LH2T
.

Then the following inequality holds:

1

T

T∑
t=1

Eζ1:T

[
|∇F (ωt)|2A−1

t

]
≤
√

2LH2F (ω1)

(1− κ)
2
T

+
λH2 (lnT + 2)

(1− κ)T
, (9)

where ω⋆ := argminω∈Ω F (ω) denotes the global opti-
mum and F (ω) := Eζ [f (ω; ζ)].
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From the above conclusion, it is evident that even when
using approximate gradients and avoiding convexity as-
sumptions, the expected value of the average of the squared
gradients still converges at a rate comparable to many popu-
lar stochastic optimization algorithms (Bottou et al., 2018).
We note that, due to the unavailability of ∂G(s0,u;ζ)/∂u in
practical scenarios, the convergence rate of Algorithm 1
needs to be characterized using the modeling error modulus
κ, and the convergence rate is governed by 1/1−κ. If the
modeling error modulus κ reaches one, the results become
trivial since the right-hand side in (9) becomes arbitrar-
ily large. When the modeling error modulus κ is zero, it
implies that the estimate G (u) has no bias. The intuitive
representation of Assumption 4.4 in two-dimensional space
is illustrated in Figure 2. The expectation of the gradient
estimate Eζ [F (ωt; ζ)|ωt] lies within the open ball with
center Eζ [∇f (ωt; ζ)|ωt] and radius |Eζ [∇f(ωt;ζ)|ωt]|/

√
λ.

This implies that Assumption 4.4 constrains the estimate
Eζ [F (ωt; ζ)|ωt] both in magnitude and direction. There-
fore, the parameter κ provides a reference for evaluating the
quality of the obtained estimates.

ωx

ωy

Eζ [∇f (ωt; ζ)|ωt]

|Eζ [∇f(ωt;ζ)|ωt]|√
λ

|Eζ [∇f (ωt; ζ)|ωt]|

Eζ [F (ωt; ζ)|ωt]

Figure 2. This figure illustrates the geometric meaning of the mod-
eling error modulus κ in two-dimensional space. The expectation
of the gradient estimate Eζ [F (ωt; ζ)|ωt] lies within the open ball
with center Eζ [∇f (ωt; ζ)|ωt] and radius |Eζ [∇f(ωt;ζ)|ωt]|/√λ.

We observe that by selecting a sufficiently large ϵ, the upper
bound λ approaches one, thereby transforming Algorithm 1
from a Newton method to a gradient descent method. This
suggests that by adjusting the value of ϵ, we can enable the
algorithm to switch between Newton and gradient descent
methodologies, leading to the following corollary:

Corollary 4.6. Let the assumptions of Theorem 4.5 be sat-
isfied and let ϵ → +∞. Then, the following inequality

holds:

1

T

T∑
t=1

Eζ1:T

[
|∇F (ωt)|2

]
≤
√

2LH2F (ω1)

(1− κ)
2
T

+
H2 (lnT + 2)

(1− κ)T
.

Next, we will reveal the connection between online learn-
ing (1) and stochastic optimization (2), and provide the
corresponding convergence guarantee. Prior to this, we
make the following additional assumption:

Assumption 4.7 (Polyak-Łojasiewicz Inequality). There
exists a constant µ > 0 such that for all ω ∈ Ω, the Polyak-
Łojasiewicz (PL) inequality holds:

|∇F (ω)|2 ≥ 2µ (F (ω)− F (ω⋆)) , (10)

where ω⋆ = argminω∈Ω F (ω) denotes the global opti-
mum.

Following this assumption, we have the conclusion:

Corollary 4.8. Let the assumptions in Theorem 4.5 be sat-
isfied, and let Assumption 4.7 hold. Then, for any ϵ > 0, the
expected regret satisfies the following inequality:

Eζ1:T

[
T∑

t=1

f (ωt; ζt)

]
−min

ω∈Ω
Eζ1:T

[
T∑

t=1

f (ω; ζt)

]

≤ ℏ1
√
T + ℏ2 lnT + ℏ3

2µ
,

where

ℏ1 =
λ
√

2LH2F (ω1)

1− κ
, ℏ2 =

λH2

1− κ
, ℏ3 =

2λH2

1− κ
.

For a detailed proof of Theorem 4.5 and Corollary 4.8,
please refer to Ma et al. (2024).

5. Experiments
In this section, we will demonstrate the effectiveness of
our algorithms through experiments conducted on various
cyber-physical systems. We highlight that even shallow
networks work well with our algorithms. Depending on
different scenarios, we will employ an appropriate method
to obtain gradient estimates G (u) or G◦.

5.1. Cantilever Beam

We consider a flexible cantilever beam illustrated in Figure 3,
where the left end of the beam is hinged to a joint, and the
active torque τ is applied only at the left end. The total
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d

l

τ

Figure 3. Deformation of the cantilever beam under the active
torque and an external disturbance d, where the dashed line repre-
sents the position of the cantilever beam when at rest.

length of the entire cantilever beam in a rest configuration
is denoted by l. The aim of this experiment is to utilize Al-
gorithm 1 to learn the parameters of networks πff and πfb
in an online manner, in order to minimize the tracking er-
ror of the end-effector |y − yref| for reference trajectories
sampled from the unknown distribution pyref . The outputs of
the parameterized networks yield the active torque τ . The
output y describes the distance in y-direction between the
tip of the beam and the horizontal plane. We note that cur-
rent reinforcement learning algorithms have difficulties in
dealing with continuous state and action spaces exceeding
two dozen states, while the example illustrates how our ap-
proach can easily handle dynamical systems with a large
number of hidden states (here 100). The cantilever model
and the following experiments are implemented in Matlab
and Simulink. We intentionally increase the nonlinearity
of the cantilever beam deformation, complemented by 100
hidden states in the discrete model in Simulink, making
this task highly challenging.

All reference trajectories used in the experiment arise from
sampling an unknown but fixed distribution. At each itera-
tion, we randomly generate the reference trajectory accord-
ing to the method described in Appendix A.1. We observe
that the range of the trajectory is extensive and is not limited
to small deformations. In the subsequent experiments, we
will see that the parameterized networks trained by our algo-
rithms effectively generalize well across the entire support
of pyref .

In this experiment, we employ system identification in
the frequency domain to obtain a rough linear estimate of
∂G(s0,u;ζ)/∂u (Pintelon & Schoukens, 2012). It is impor-
tant to emphasize that in this case the gradient estimate G
is static, meaning that it does not change as a function of
u. Additionally, we estimate the closed-loop system gradi-
ent G◦ (ωff, ωfb, ζ) using (7). More information about the
gradient estimation can be found in Appendix A.2.

We employ the strategies described in Appendix A.3 to
parameterize the feedforward network πff. One is a linear
network, denoted as π1

ff. The other is a nonlinear network,
represented by π2

ff, which is a fully-connected network with

a single hidden layer. The ReLU function is used as the
activation function for the hidden layer, and no activation
function is applied to the output layer. We consistently use
a linear feedback network πfb.

The experimental setups and results can be found in Ap-
pendix A.4. In a noise-free environment, trajectory track-
ing can be viewed as a purely feedforward control task.
Therefore, in Experiments 1-4, we employ only the feed-
forward network πff and adjust the parameter ϵ, allowing
Algorithm 1 to transition between gradient descent (ϵ → ∞)
and the quasi-Newton method (ϵ < ∞). Through these ex-
periments, we explore the convergence rates of different net-
works and investigate the influence of different algorithms
on convergence as well as their robustness to the selection of
hyper-parameters. Subsequently, we intentionally introduce
noise nd to the inputs of the system (see Figure 1), rendering
the pure feedforward network ineffective for the task at hand
(see Experiment 5). Experiment 6 demonstrates the ability
of the combined feedforward and feedback control (πff and
πfb) to resist noise in online learning. We evaluate the per-
formance of all the obtained parameterized networks trained
in different experiments on a newly generated test data set
previously unseen by our algorithms (see the average loss in
Table 2), in order to investigate the generalization capability
of the networks. Although we only utilize shallow networks
and a linear static gradient estimate G (which, unsurpris-
ingly, is a very poor estimate), the algorithms still perform
well using either gradient descent method or quasi-Newton
method, reflecting its strong robustness to modeling errors.

5.2. Four-Legged Robot

In this experiment, we adopt the ant model (Schulman
et al., 2018) frequently used to demonstrate reinforcement
learning algorithms to evaluate the effectiveness of our al-
gorithms. We choose Isaac Gym (Makoviychuk et al.,
2021) as our simulation environment for its ability to sup-
port large-scale parallel simulations, which enables us to
rapidly estimate system gradients using a stochastic finite
difference method. It is important to emphasize that the tra-
ditional reinforcement learning task on this model focuses
on enabling the ant to move forward as quickly as possible.
However, in our experiment, our aim is to enable the ant to
track any reference trajectory of the center of the mass of
the torso. It should be noted that in this experiment, we do
not artificially introduce system noise, thus the trajectory
tracking task can be considered a purely feedforward control
task. Therefore, we only employ a feedforward model πff,
which implies that πfb = 0.

In this experiment, we can only measure and observe the
information about the torso, which includes the position of
the torso, its orientation represented by a quaternion, and
the translational and angular velocities of the torso. The
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ant moves on a rough and infinitely flat plane, therefore the
reference trajectories contain only three components: the
planar position of the torso, i.e., the x and y coordinates,
and the yaw, which is the rotation of the torso around the
z-axis. The method for generating the reference trajectories
can be found in Appendix B.1.

In the context of the ant model, which is a system char-
acterized by contacts and non- smooth motion, employing
system identification methods as described in Section 5.1 is
not applicable. Fortunately, the powerful parallel simulation
capability of the Isaac Gym environment allows us to eas-
ily estimate the system gradient G (ut) using a stochastic
finite difference method (see Appendix B.2).

We recognize that the learning of the motion of the ant,
without any prior knowledge, is a challenging task. Com-
pared to the experiments in Section 5.1, the learning of the
motion present the following differences and difficulties:
First, due to the contacts and interactions between the ant
and the environment, the motion of the ant is non-smooth,
and accordingly, its gradients are discontinuous (though still
assumed to be bounded). Second, the states of the ant are
not fully observable. In fact, in this experiment only the
information about the torso is assumed to be measurable and
observable, including its positions, orientations, and corre-
sponding velocities and angular velocities. This means that
changes in control inputs do not necessarily cause changes
in the outputs. For instance, when one of the legs is not
in contact with the ground, the positional change of this
leg caused by input variation will not affect the posture of
the torso. Third, walking, as a periodic behavior, should
follow specific gaits and frequencies. Training a network
model from scratch may lead to the ant exhibiting anoma-
lous behaviors. Based on the aforementioned perspectives,
we make adjustments to the network structure and use a
pre-trained linear model to provide prior knowledge of ant
motion patterns. For more detailed information, please refer
to Appendix B.3.

The experimental setups and results can be found in Ap-
pendix B.4. We note that the loss of both algorithms eventu-
ally converges to the same level with the same rate. However,
it is important to emphasize that to ensure the convergence
of the gradient descent method, its step size ηt must be
carefully designed. In contrast, the quasi-Newton method
demonstrates much stronger robustness to the step size se-
lection. Finally, through this experiment, we demonstrate
that in such complex cyber-physical system, even with a
poor gradient estimate, our algorithms still ensure conver-
gence and exhibit high robustness to modeling errors. It is
important to emphasize that, unlike RL, which optimizes a
feedback policy to enable the ant to move forward as fast as
possible, our algorithms learn a feedforward model πff that
allows the ant to track any reference trajectories sampled

from the distribution pyref , thereby truly enabling it to learn
the skill of walking. Additionally, our algorithms are ca-
pable of continuously improving the tracking performance
of the feedforward network through online learning during
deployment.

6. Conclusion
In this article, we propose a novel gradient-based online
learning framework operating under the assumptions that
the loss functions are smooth but not necessarily convex.
Thanks to gradient information that is incorporated within
the algorithm, we obtain a sample efficient online learning
approach that is applicable to cyber-physical and robotic
systems. The framework presented in this article includes a
stochastic optimization algorithm, various designs for neural
networks and input structures for feedforward and feedback
control scenarios. We have not only theoretically proven the
convergence of the algorithm without relying on convexity,
but also evaluated the effectiveness of our proposed frame-
work through simulation experiments. These experiments
highlight fast convergence of our algorithms and robust-
ness against modeling errors. Furthermore, they provide
empirical evidence that this algorithm can be deployed in
real-world applications in the future.
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Table 1. Summary of the parameters used for generating reference trajectories.

PARAMETER DISTRIBUTION UNIT

ta UNIFORM(1.2, 1.8) s
tb UNIFORM(2.9, 3.5) s

ya , yb UNIFORM(−0.2, 0.2) m
va , vb UNIFORM(−2.0, 2.0) m/s

A. Cantilever Beam
A.1. Reference Trajectory

We randomly generate the reference trajectory based on the following principles: 1. Over a time span of Tsim seconds, the
trajectory starts from rest and eventually returns to its initial position, and remains still for an additional 0.5 s. 2. Apart
from the starting and ending points (y0 and yT ), two other time points, ta and tb, will be randomly selected within the time
duration Tsim. The displacements (ya and yb) and velocities (va and vb) at these moments will also be randomly generated,
with the accelerations being set to zero. 3. The four points are connected using trajectories that minimize jerk3 (Geering,
2007; Piazzi & Visioli, 1997). The values of the various parameters are summarized in Table 1.

Figure 4 illustrates the sampling procedure for the reference trajectories along with 400 samples. The total duration is set to
Tsim = 5.5 s. The red dashed boxes indicate the spatial and temporal distribution range of the points ya and yb, respectively.
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Figure 4. The figure illustrates the range of reference trajectories used for training, where the gray lines are composed of 400 randomly
sampled reference trajectories. The red dashed boxes indicate the spatial and temporal distribution range of the points ya and yb,
respectively.

A.2. Gradient Estimate

To estimate the gradient of the system G with respect to the inputs u, we first excite the model in Simulink with an
excitation signal ranging from 0Hz to 4Hz, with an interval of 0.1Hz to get a linear transfer function. The resulting system
response in the frequency domain and the estimated linear transfer function are shown in Figure 5. Then, we use the obtained
transfer function to construct a linear approximation of ∂G(s0,u;ζ)/∂u, which is denoted by G. For the specific construction
method, please refer to Ma et al. (2022; 2023).

A.3. Model Structure

The structure of the networks is illustrated in Figure 6. The policy network πff takes in a horizon of h1 steps in the past
and h2 steps in the future to produce the input uk,ff at time k (see Figure 6a), while πfb takes only h1 steps in the past to
produce uk,fb(see Figure 6b). In instances where the horizon surpasses the range of the reference trajectory, we employ a

3Jerk is defined as the derivative of acceleration of the third derivative of displacement.
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Figure 5. The figure displays the amplitude diagram (left) and phase diagram (right) of the system response in the frequency domain.
Crosses represent the measured data obtained through system identification in frequency domain, while the solid line represents the fitted
transfer function. The nonlinearity system is denoted by circles in the amplitude diagram.
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...
...

yk−h1

ref

yk+h2

ref

...

...

ykref uk
ff

Input
Layer

Hidden
Layer

Output
Layer

(a) structure of input, output and network for πff
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Figure 6. The figure illustrates the input, output, and network structures of both πff and πfb. The feedforward network πff, which is a
fully connected network, utilizes the reference trajectory at time k, as well as the reference trajectories for the horizons of h1 and h2

before and after this time, as its input. The output is the corresponding feedforward input uk,ff at time k. On the other hand, the feedback
network πfb, a linear network, employs the trajectory difference for a horizon of h1 units leading up to time k as its input. The output is
the respective feedback input uk,fb at time k. The trajectory difference is defined as the difference between the output trajectory and the
reference trajectory.

A.4. Results

The overview of different experiments is presented in Table 2. In each experiment, we train the parameterized networks for
1000 iterations. The average loss δt is given by

δt =
1

t

t∑
k=1

l (yk; yref,k) , t = 1, . . . , T.

The convergence results of Experiments 1 and 3 are illustrated in Figure 7a, while the results of Experiments 2 and 4 are
shown in Figure 7b. In Experiment 5, we artificially introduce noise nd to render the purely feedforward control ineffective

12



Online Optimization of Closed-Loop Control Systems

Table 2. Overview of parameters, network configurations, and experimental results.

NO. MODEL(S) NOISE h1 h2
HIDDEN

NEURONS
ϵ α η

AVERAGE
LOSS

1 π1
ff × 100 100 - +∞ - 0.1 6.90× 10−3

2 π1
ff × 100 100 - 1.0 0.1 15.0 6.30× 10−3

3 π2
ff × 100 100 40 +∞ - 0.1 8.27× 10−4

4 π2
ff × 100 100 40 1.0 0.1 15.0 3.19× 10−4

5 π2
ff

√
100 100 40 1.0 0.1 15.0 1.10× 10−3

6 π2
ff

πfb

√ 100
25

100
-

40
- 1.0 0.1 15 4.65× 10−4
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(a) results of exp. 1 and 3
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Figure 7. This figure depicts the convergence results δt, t = 1, . . . , 1000 of different experiments.

in trajectory tracking and introduce a feedback controller in Experiment 6 to reject noise, with the convergence results
shown in Figure 7c.

B. Four-Legged Robot
B.1. Reference Trajectory

Figure 8 displays the distribution of the reference trajectories used for tracking. We take one of the sampled trajectories as
an example to illustrate the general rules for generating reference trajectories. The trajectories are generated over a time
duration of Tsim = 4 s. The starting point p0 is fixed at the point [0, 0]T in the x-y plane at time t0 = 0 s, and the initial
velocity v0 is also fixed at 1m s−1 directed along the positive x-axis. Next, we uniformly generate the point p1 within a
disk centered around p0 with radii of 2m and 2.5m, and an angular span of ±60◦ centered around v0 (see the red dashed
disk). The velocity v1 at p1 is also set to 1m s−1, in the direction of the line from p0 to p1. The time t1 for generating p1
is uniformly within a range of ±0.3 s centered around t = 2 s. Based on the point p1, the point p2 and its corresponding
velocity v2 are generated in the same manner, with the time point t2 = 4 s being fixed for p2. The acceleration at each point
is set to zero. Finally, we connect these three points using a trajectory that minimizes jerk.

B.2. Gradient Estimate

At each iteration, we run nenv (here nenv = 2000) identical environments in parallel in addition to the nominal environment.
The nominal input ut, t = 1, . . . , T , is fed into the nominal environment, yielding the corresponding nominal output yt. For
the remaining parallel environments, normally distributed noise nd with a mean of zero and a variance of one is added to
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Figure 8. The left subfigure shows the area generated by 500 randomly sampled reference trajectories used for tracking (depicted as
grey lines), along with an example reference trajectory to illustrate the rules for generating trajectories (shown as a black line). The red
dashed disks represent the distribution range for the position of the next point in the x-y plane, assuming the previous point is determined.
The radial gap of the disk is 0.5m, with an angular span ± 60◦ centered around the tangent direction at the previous point. The right
subfigure illustrates the temporal evolution of the example reference trajectory, showing its x, y, and yaw components. The time points
for generating points p0 and p2 are fixed. The grey areas in the right subfigures represent the time range for point p1, which is centered
around t = 2 s with a permissible deviation of ±0.3 s.

the nominal input ut (see Figure 1), denoted as ũt,i, i = 1, . . . , nenv, resulting in the respective outputs ỹt,i. Finally, we
estimate the system gradient G (ut) using least squares4:

G (ut)
T
=


(ũt,1 − ut)

T

(ũt,2 − ut)
T

...
(ũt,nenv − ut)

T


† 

(ỹt,1 − yt)
T

(ỹt,2 − yt)
T

...
(ỹt,nenv − yt)

T

 ,

where we stack all inputs and outputs by columns respectively.

B.3. Neural Network with Pre-Trained Motion Patterns

In order to enable online learning with the ant model, we parameterize our networks as follows:

πff (ωff; ζ) = Uϕ
(
ωff;V

Tζ
)
, πfb = 0,

where the matrices U ∈ Rmq×nσ and V ∈ Rnq×nσ represent linear transformation to a lower dimensional latent space and
ϕ : Rnωff × Rnσ → Rmq is a neural network comprising one hidden layer.

4In the experiment, only the ants that remain upright until the end are considered for estimating the gradient.

14



Online Optimization of Closed-Loop Control Systems

The matrices U and V are obtained through the singular value decomposition of the matrix R:

R = Udiag (σ)V T,

where the matrix R is derived by solving the following ridge regression:

min
R∈Rmq×nq

1

2

nILC∑
i=1

|uref,i −Ryref,i|2 +
ρ

2
∥R∥2F ,

where ρ is a positive constant, and ∥·∥F denotes the Frobenius norm. The ideal input uref represents the input required for
accurately tracking a given reference trajectory yref. The ideal input is unknown, and we therefore employ iterative learning
control (ILC) to approximate it (Ma et al., 2022; Hofer et al., 2019; Zughaibi et al., 2021; Mueller et al., 2012; Schoellig
et al., 2012; Zughaibi et al., 2024). The variable nILC denotes the number of pre-trained trajectories using ILC. In this
experiment, we sample 50 reference trajectories and get their corresponding ideal inputs using ILC, and each reference
trajectory takes 200 to 300 iterations to obtain the ideal inputs. We then use 45 trajectories (90%) along with their ideal
inputs to perform ridge regression. Figure 9 displays the distribution composed of all 50 reference trajectories used for
pre-training in the left subfigure, whereas the right subfigure showcases the final training result of ILC for one reference
trajectory as an example. The right subfigures illustrate the tracking performance of the corresponding x, y, and yaw
components of this trajectory. We note that the tracking of the x and y components by the ILC is very effective; however,
due to the presence of collisions, the tracking of the yaw component is slightly less accurate. Nevertheless, we consider this
as a sufficiently good ideal input for tracking the given reference trajectory, which is able to capture the motion patterns.
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Figure 9. The left subfigure shows the distribution of 50 randomly sampled reference trajectories used for pre-training (represented by
gray lines), and illustrates the tracking performance of ILC with one of these trajectories (depicted as a black line). The right subfigures
demonstrate the tracking performance of the ILC for the particular trajectory in the x, y, and yaw components.
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Table 3. Parameters for training the ant model.

NO. MODEL nσ
HIDDEN

NEURONS
ϵ α η

1 πff 90 45 +∞ - DIMINISHING
2 πff 45 20 0.1 0.5 0.1

B.4. Results

In this experiment, we use a fully connected network with only one hidden layer containing 20 neurons. The hidden layer
employs the ReLU activation function, while the output layer does not have an activation function. We employ different
methods to train the network, and the parameters are shown in Table 3.

The two experiments were conducted with over 1500 and 3500 iterations, respectively, and their convergence results are
shown in Figure 10.
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Figure 10. The figure shows the convergence results of the gradient descent and quasi-Newton method. The gray line represents the
average loss of the gradient descent method, and the black line indicates the average loss of the quasi-Newton method.
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