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ABSTRACT

Posterior sampling allows exploitation of prior knowledge on the environment’s
transition dynamics to improve the sample efficiency of reinforcement learning.
The prior is typically specified as a class of parametric distributions, the design of
which can be cumbersome in practice, often resulting in the choice of uninforma-
tive priors. In this work, we propose a novel posterior sampling approach in which
the prior is given as a (partial) causal graph over the environment’s variables. The
latter is often more natural to design, such as listing known causal dependencies
between biometric features in a medical treatment study. Specifically, we propose
a hierarchical Bayesian procedure, called C-PSRL, simultaneously learning the
full causal graph at the higher level and the parameters of the resulting factored
dynamics at the lower level. We provide an analysis of the Bayesian regret of C-
PSRL that explicitly connects the regret rate with the degree of prior knowledge.
Our numerical evaluation conducted in illustrative domains confirms that C-PSRL
strongly improves the efficiency of posterior sampling with an uninformative prior
while performing close to posterior sampling with the full causal graph.

1 INTRODUCTION

Posterior sampling (Thompson, 1933), a.k.a. Thompson sampling, is a powerful alternative to clas-
sic optimistic methods for Reinforcement Learning (RL, Sutton & Barto, 2018) as it guarantees
outstanding sample efficiency (Osband et al., 2013) through an explicit model of the epistemic un-
certainty that allows exploiting prior knowledge over the environment’s dynamics. Specifically, Pos-
terior Sampling for Reinforcement Learning (PSRL, Strens, 2000; Osband et al., 2013) implements
a Bayesian procedure in which, at every episode k, (1) a model of the environment’s dynamics is
sampled from a parametric prior distribution Pk, (2) an optimal policy πk is computed (e.g., through
value iteration (Bellman, 1957)) according to the sampled model, (3) a posterior update is performed
on the prior parameters to incorporate in Pk+1 the evidence collected by running πk in the true en-
vironment. Under the assumption that the true environment’s dynamics are sampled with positive
probability from the prior P0, the latter procedure is provably efficient as it showcases a Bayesian
regret that scales with O(

√
K) being K the total number of episodes (Osband & Van Roy, 2017).

Although posterior sampling has been also praised for its empirical prowess (Chapelle & Li, 2011),
specifying the prior through a class of parametric distributions, a crucial requirement of PSRL, can
be cumbersome in practice. Let us take a Dynamic Treatment Regime (DTR, Murphy, 2003) as an
illustrative application. Here, we aim to overcome a patient’s disease by choosing, at each stage, a
treatment based on the patient’s evolving conditions and previously administered treatments. The
goal is to identify the best treatment for the specific patient quickly. Medicine provides plenty of
prior knowledge to help solve the DTR problem. However, it is not easy to translate this knowledge
into a parametric prior distribution that is general enough to include the model of any patient while
being sufficiently narrow to foster efficiency. Instead, it is remarkably easy to list some known causal
relationships between patient’s state variables, such as heart rate and blood pressure, or diabetes and
glucose level. Those causal edges might come from experts’ knowledge (e.g., physicians) or previ-
ous clinical studies. A prior in the form of a causal graph is more natural to specify for practitioners,
∗Work done while the author was at Politecnico di Milano. †Joint senior-authorship.
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who might be unaware of the intricacies of Bayesian statistics. Posterior sampling does not currently
support the specification of the prior through a causal graph, which limits its applicability.

This paper proposes a novel posterior sampling methodology that can exploit a prior specified
through a partial causal graph over the environment’s variables. Notably, a complete causal graph
allows for a factorization of the environment’s dynamics, which can be then expressed as a Fac-
tored Markov Decision Process (FMDP, Boutilier et al., 2000). PSRL can be applied to FMDPs, as
demonstrated by previous work (Osband & Van Roy, 2014), where the authors assume to know the
complete causal graph. However, this assumption is often unreasonable in practical applications.1

Instead, we assume to have partial knowledge of the causal graph, which leads to considering a set
of plausible FMDPs. Taking inspiration from (Hong et al., 2020; 2022b;a; Kveton et al., 2021), we
design a hierarchical Bayesian procedure, called Causal PSRL (C-PSRL), extending PSRL to the
setting where the true model lies within a set of FMDPs (induced by the causal graph prior). At
each episode, C-PSRL first samples a factorization consistent with the causal graph prior. Then,
it samples the model of the FMDP from a lower-level prior that is conditioned on the sampled
factorization. After that, the algorithm proceeds similarly to PSRL on the sampled FMDP.

Having introduced C-PSRL, we study the Bayesian regret it induces on the footsteps of previous
analyses for PSRL in FMDPs (Osband & Van Roy, 2014) and hierarchical posterior sampling (Hong
et al., 2022b). Our analysis shows that C-PSRL takes the best of both worlds by avoiding a direct
dependence on the number of states in the regret (as in FMDPs) and without requiring a full causal
graph prior (as in hierarchical posterior sampling). Moreover, we can analytically capture the de-
pendency of the Bayesian regret on the number of causal edges known a priori and encoded in the
(partial) causal graph prior. Finally, we empirically validate C-PSRL against two relevant baselines:
PSRL with an uninformative prior, i.e., that does not model potential factorizations in the dynamics,
and PSRL equipped with the full knowledge of the causal graph (an oracle prior). We carry out
the comparison in simple yet illustrative domains, which show that exploiting a causal graph prior
improves efficiency over uninformative priors while being only slightly inferior to the oracle prior.

In summary, the main contributions of this paper include the following:
• A novel problem formulation that links PSRL with a prior expressed as a partial causal graph to

the problem of learning an FMDP with unknown factorization (Section 2);
• A methodology (C-PSRL) that extends PSRL to exploit a partial causal graph prior (Section 3);
• The analysis of the Bayesian regret of C-PSRL, which is Õ(

√
K/2η)2 whereK is the total number

of episodes and η is the degree of prior knowledge (Section 4);
• An ancillary result on causal discovery that shows how a (sparse) super-graph of the true causal

graph can be extracted from a run of C-PSRL as a byproduct (Section 5);
• An experimental evaluation of the performance of C-PSRL against PSRL with uninformative or

oracle priors in illustrative domains (Section 6).

Finally, the aim of this work is to enable the use of posterior sampling for RL in relevant applications
through a causal perspective on prior specification. We believe this contribution can help to close
the gap between PSRL research and actual adoption of PSRL methods in real-world problems.

2 PROBLEM FORMULATION

In this section, we first provide preliminary background on graphical causal models (Section 2.1)
and Markov decision processes (Section 2.2). Then, we explain how a causal graph on the variables
of a Markov decision process induces a factorization of its dynamics (Section 2.3). Finally, we
formalize the reinforcement learning problem in the presence of a causal graph prior (Section 2.4).

Notation. With few exceptions, we will denote a set or space as A, their elements as a ∈ A,
constants or random variables with A, and functions as f . We denote ∆(A) the probability simplex
over A, and [A] the set of integers {1, . . . , A}. For a d-dimensional vector x, we define the scope
operator x[I] :=

⊗
i∈I xi for any set I ⊆ [d]. When I = {i} is a singleton, we use x[i] as a shortcut

for x[{i}]. A recap of the notation, which is admittedly involved, can be found in Appendix A.

1DTR is an example, where several causal relations affecting patient’s conditions remain a mystery.
2We report regret rates with the common “Big-O” notation, in which Õ hides logarithmic factors. Note that

the rate here is simplified to highlight the most relevant factors. A complete rate can be found in Theorem 4.1.
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2.1 CAUSAL GRAPHS

Let X = {Xj}dXj=1 and Y = {Yj}dYj=1 be sets of random variables taking values xj , yj ∈ [N ]

respectively, and let p : X → ∆(Y) a strictly positive probability density. Further, let G = (X ,Y, z)
be a bipartite Directed Acyclic Graph (DAG), or bigraph, having left variables X , right variables
Y , and a set of edges z ⊆ X × Y . We denote as zj the parents of the variable Yj ∈ Y , such as
zj = {i ∈ [dX ] | (Xi, Yj) ∈ z} and z =

⋃
j∈[dY ]

⋃
i∈zj{(Xi, Yj)}. We say that G is Z-sparse if

maxj∈[dY ] |zj | ≤ Z ≤ dX , and we call Z the degree of sparseness of G.

The tuple (p,G) is called a graphical causal model (Pearl, 2009) if p fulfills the Markov factorization
property with respect to G, that is p(X ,Y) = p(X )p(Y|X ) = p(X )

∏
j∈[dY ] pj(y[j]|x[zj ]) and all

interventional distributions are well defined.3 Note that the causal model that we consider in this
paper does not admit confounding. Further, we can exclude “vertical” edges in Y × Y and directed
edges Y × X . Finally, we call causal graph the component G of a graphical causal model.

2.2 MARKOV DECISION PROCESSES

A finite episodic Markov Decision Process (MDP, Puterman, 2014) is defined throug the tupleM :=
(S,A, p, r, µ,H), where S is a state space of size S, A is an action space of size A, p : S × A →
∆(S) is a Markovian transition model such that p(s′|s, a) denotes the conditional probability of the
next state s′ given the state s and action a, r : S × A → ∆([0, 1]) is a reward function such that
the reward collected performing action a in state s is distributed as r(s, a) with mean R(s, a) =
E[r(s, a)], µ ∈ ∆(S) is the initial state distribution, H <∞ is the episode horizon.

An agent interacts with the MDP as follows. First, the initial state is drawn s1 ∼ µ. For each step
h < H , the agent selects an action ah ∈ A. Then, they collect a reward rh ∼ r(sh, ah) while the
state transitions to sh+1 ∼ p(·|sh, ah). The episode ends when sH is reached.

The strategy from which the agent selects an action at each step is defined through a non-stationary,
stochastic policy π = {πh}h∈[H] ∈ Π, where each πh : S → ∆(A) is a function such that πh(a|s)
denotes the conditional probability of selecting action a in state s at step h, and Π is the policy
space. A policy π ∈ Π can be evaluated through its value function V πh : S → [0, H], which is the
expected sum of rewards collected under π starting from state s at step h, i.e.,

V πh (s) := E
π

[
H∑

h′=h

R(sh′ , ah′)
∣∣∣sh = s

]
, ∀s ∈ S, h ∈ [H].

We further define the value function of π in the MDPM under µ as VM(π) := Es∼µ[V π1 (s)].

2.3 CAUSAL STRUCTURE INDUCES FACTORIZATION

In the previous section, we formulated the MDP in a tabular representation, where each state (action)
is identified by a unique symbol s ∈ S (a ∈ A). However, in relevant real-world applications, the
states and actions may be represented through a finite number of features, say dS and dA features
respectively. The DTR problem is an example, where state features can be, e.g., blood pressure and
glucose level, action features can be indicators on whether a particular medication is administered.

Let those state and action features be modeled by random variables in the interaction between an
agent and the MDP, we can consider additional structure in the process by considering the causal
graph of its variables, such that the value of a variable only depends on the values of its causal
parents. Looking back to DTR, we might know that the value of the blood pressure at step h + 1
only depends on its value at step h and whether a particular medication has been administered.

Formally, we can show that combining an MDPM = (S,A, p, r, µ,H) with a causal graph over its
variables, which we denote as GM = (X ,Y, z), gives a factored MDP (Boutilier et al., 2000)

F = ({Xj}dXj=1, {Yj , zj , pj , rj}dYj=1, µ,H,Z,N),

3Both assumptions come naturally with factored MDPs (see Section 2.3). Informally, an intervention on a
node Yj ∈ Y (or in X ) assigns y[j] to a constant c, i.e., pj(y[j] = c) = 1. All mechanisms pi, where i is not
intervened on, remain invariant. For more details on the causal notation we refer to (Pearl, 2009, Chapter 1).
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Figure 1: (Left) Illustrative causal graph prior G0 with dX = 4, dY = 2 features, degree of sparse-
ness Z = 3. The hidden true graph GF∗ includes all the edges in G0 plus the red-dashed edge (3, 1).
(Right) Visualization of Z , the set of factorizations consistent with G0, which is the support of the
hyper-prior P0. The factorization z∗ of the true FMDP F∗ is highlighted in red.

where X = S ×A = X1 × . . .×XdX is a factored state-action space with dX = dS + dA discrete
variables, Y = S = Y1 × . . . × YdY is a factored state space with dY = dS variables, and zj are
the causal parents of each state variable, which are obtained from the edges z of GM. Then, p is
a factored transition model specified as p(y|x) =

∏dY
j=1 pj(y[j] | x[zj ]),∀y ∈ Y, x ∈ X , and r is

a factored reward function r(x) =
∑dY
j=1 r(x[zj ]), with mean R(x) =

∑dY
j=1R(x[zj ]),∀x ∈ X .

Finally, µ ∈ ∆(Y) and H are the initial state distribution and episode horizon as specified inM, Z
is the degree of sparseness of GM, N is a constant such that all the variables are supported in [N ].

The interaction between an agent and the FMDP can be described exactly as we did in Section 2.2
for a tabular MDP, and the policies with their corresponding value functions are analogously de-
fined. With the latter formalization of the FMDP induced by a causal graph, we now have all the
components to introduce our learning problem in the next section.

2.4 REINFORCEMENT LEARNING WITH PARTIAL CAUSAL GRAPH PRIORS

In the previous section, we show how the prior knowledge of a causal graph over the MDP variables
can be exploited to obtain an FMDP representation of the problem, which is well-known to allow for
more efficient reinforcement learning thanks to the factorization of the transition model and reward
function (Osband & Van Roy, 2014; Xu & Tewari, 2020; Tian et al., 2020; Chen et al., 2020; Talebi
et al., 2021; Rosenberg & Mansour, 2021). However, in several applications is unreasonable to as-
sume prior knowledge of the full causal graph, and causal identification is costly in general (Gillispie
& Perlman, 2001; Shah & Peters, 2020). Nonetheless, some prior knowledge of the causal graph,
i.e., a portion of the edges, may be easily available. For instance, in a DTR problem some edges of
the causal graph on patient’s variables are commonly known, whereas several others are elusive.

In this paper, we study the reinforcement learning problem when a partial causal graph prior G0 ⊆
GM on the MDPM is available.4 We formulate the learning problem in a Bayesian sense, in which
the instance F∗ is sampled from a prior distribution PG0 consistent with the causal graph prior G0.5
In Figure 1 (left), we illustrate both the causal graph prior G0 and the (hidden) true graph GF∗ of the
true instance F∗. Analogously to previous works on Bayesian RL formulations, e.g., (Osband et al.,
2013), we evaluate the performance of a learning algorithm in terms of its induced Bayesian regret.
Definition 1 (Bayesian Regret). Let A a learning algorithm and let PG0 a prior distribution on
FMDPs consistent with the partial causal graph prior G0. The K-episodes Bayesian regret of A is

BR(K) := E
F∗∼PG0

[
K∑
k=1

V∗(π∗)− V∗(πk)

]
,

where V∗(π) = VF∗(π) is the value of the policy π in F∗ under µ, π∗ ∈ arg maxπ∈Π V∗(π) is the
optimal policy in F∗, and πk is the policy played by algorithm A at step k ∈ [K].

The Bayesian regret allows to evaluate a learning algorithm on average over multiple instances.
This is particularly suitable in some domains, such as DTR, in which it is crucial to achieve a good
performance of the treatment policy on different patients. In the next section, we introduce an
algorithm that achieves a Bayesian regret rate that is sublinear in the number of episodes K.

4For two bigraphs G? = (X ,Y, z?) and G• = (X ,Y, z•), we let G? ⊆ G• if z? ⊆ z•.
5We will specify in the next Section 3 how the prior PG0 can be constructed.
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3 CAUSAL PSRL

To face the learning problem described in the previous section, we cannot naïvely apply the PSRL
algorithm for FMDPs (Osband & Van Roy, 2014), since we cannot access the factorization z∗ of the
true instance F∗, but only a causal graph prior G0 = (X ,Y, z0) such that z0 ⊆ z∗. Moreover, z∗ is
always latent in the interaction process, in which we can only observe state-action-reward realiza-
tions from F∗. The latter can be consistent with several factorizations of the transition dynamics of
F∗, which means we can neither extract z∗ directly from data. This is the common setting of hier-
archical Bayesian methods (Hong et al., 2020; 2022a;b; Kveton et al., 2021), where a latent state is
sampled from a latent hypothesis space on top of the hierarchy, which then conditions the sampling
of the observed state down the hierarchy. In our setting, we can see the latent hypothesis space as
the space of all the possible factorizations that are consistent with G0, whereas the observed states
are the model parameters of the FMDP, from which we observe realizations. The algorithm that we
propose, Causal PSRL (C-PSRL), builds on this intuition to implement a principled hierarchical
posterior sampling procedure to minimize the Bayesian regret exploiting the causal graph prior.

Algorithm 1 Causal PSRL (C-PSRL)

1: input: causal graph prior G0 ⊆ GF∗ , degree of sparseness Z
2: Compute the set of consistent factorizations

Z = Z1 × . . .×ZdY =
{
z = {zj}j∈[dY ]

∣∣∣ |zj | < Z and z0,j ⊆ zj ∀j ∈ [dY ]
}

3: Build the hyper-prior P0 and the prior P0(·|z) for each z ∈ Z
4: for episode k = 0, 1, . . . ,K − 1 do
5: Sample z ∼ Pk and p ∼ Pk(·|z) to build the FMDP Fk
6: Compute the policy πk ← arg maxπ∈Π VFk(π) collect an episode with πk in F∗
7: Compute the posteriors Pk+1 and Pk+1(·|z) with the collected data
8: end for

First, C-PSRL computes the set Z , illustrated in Figure 1 (right), of the factorizations consistent
with G0, i.e., which are both Z-sparse and include all of the edges in z0 (line 2). Then, it specifies
a parametric distribution P0, called hyper-prior, over the latent hypothesis space Z , and, for each
z ∈ Z , a further parametric distribution P0(·|z), which is a prior on the model parameters, i.e.,
transition probabilities, conditioned on the latent state z (line 3). The former represents the agent’s
belief over the factorization of the true instance F∗, the latter on the factored transition model p∗.6

Having translated the causal graph prior G0 into proper parametric prior distributions, C-PSRL ex-
ecutes a hierarchical posterior sampling procedure (lines 4-8). For each episode k, the algorithm
sample a factorization z from the current hyper-prior Pk, and a transition model p from the prior
Pk(·|z), such that p is factored according to z (line 5). With these two, it builds the FMDP Fk (line
5), for which it computes the optimal policy πk solving the corresponding planning problem, which
is deployed on the true instance F∗ for one episode (line 6). Finally, the evidence collected in F∗
serves to compute the closed-form posterior updates of the prior and hyper-prior (line 7).

As we shall see, Algorithm 1 has compelling statistical properties, a regret sublinear inK (Section 4)
with a notion of causal discovery (Section 5), and promising empirical performance (Section 6).

Recipe. Three key ingredients concur to make the algorithm successful. First, C-PSRL links
RL of an FMDP F∗ with unknown factorization to a hierarchical Bayesian learning, in which the
factorization acts as a latent state on top of the hierarchy, and the transition probabilities are the
observed state down the hierarchy. Secondly, C-PSRL exploits the causal graph prior G0 to reduce
the size of the latent hypothesis spaceZ , which is super-exponential in dX , dY in general (Robinson,
1973). Finally, C-PSRL harnesses the specific causal structure of the problem to get a factorization
z (line 5) through independent sampling of the parents zj ∈ Zj for each Yj , which significantly
reduces the number of hyper-prior parameters. Crucially, this can be done as we do not admit
“vertical” edges in Y and edges from Y to X , such that parents’ assignment cannot lead to a cycle.

Degree of sparseness. C-PSRL takes as input (line 1) the degree of sparseness Z of the true FMDP
F∗, which might be unknown in practice. In that case, Z can be seen as an hyper-parameter of the
algorithm, which can be either implied through domain expertise or tuned independently.

6A description of parametric distributions P0 and P0(·|z) and their posterior updates is in Appendix B.
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Planning in FMDPs. C-PSRL requires exact planning in a FMDP (line 6), which is intractable in
general (Mundhenk et al., 2000; Lusena et al., 2001). While we do not address computational issues
in this paper, we note that efficient approximation schemes have been developed (Guestrin et al.,
2003). Moreover, under linear realizability assumptions for the transition model or value functions,
exact planning methods exist (Yang & Wang, 2019; Jin et al., 2020b; Deng et al., 2022).

4 REGRET ANALYSIS OF C-PSRL

In this section, we study the Bayesian regret induced by C-PSRL with a Z-sparse causal graph prior
G0 = (X ,Y, z0). First, we define the degree of prior knowledge η ≤ minj∈[dY ] |z0,j |, which is a
lower bound on the number of causal parents revealed by the prior G0 for each state variable Yj . We
then provide an upper bound on the Bayesian regret of C-PSRL, which we discuss in Section 4.1.
Theorem 4.1. Let G0 be a causal graph prior with degree of sparseness Z and degree of prior
knowledge η. The K-episodes Bayesian regret incurred by C-PSRL is

BR(K) = Õ
((
H5/2N1+Z/2dY +

√
H2dX−η

)√
K
)
.

While we defer the proof of the result to Appendix E, we report a sketch of its main steps below.

Step 1. The first step of our proof bridges the previous analyses of a hierarchical version of PSRL,
which is reported in (Hong et al., 2022b), with the one of PSRL for factored MDPs (Osband &
Van Roy, 2014). In short, we can decompose the Bayesian regret (see Definition 1) as

BR(K) = E

[
K∑
k=1

E
k

[
V∗(π∗)− V k(π∗, Z∗)

]]
+ E

[
K∑
k=1

E
k

[
V k(πk, Zk)− V∗(πk)

]]
where Ek[·] is the conditional expectation given the evidence collected until episode k, and
V k(π, z) = EF∼Pk(·|z) [VF (π)] is the value function of π on average over the posterior Pk(·|z). In-
formally, the first term captures the regret due to the concentration of the posterior Pk(·|z∗) around
the true transition model p∗ having fixed the true factorization z∗. Instead, the second term cap-
tures the regret due to the concentration of the hyper-posterior Pk around the true factorization z∗.
Through a non-trivial adaptation of the analysis in (Hong et al., 2022b) to the FMDP setting, we can
bound each term separately to obtain Õ((H5/2N1+Z/2dY +

√
H|Z|)

√
K).

Step 2. The upper bound of the previous step is close to the final result up to a factor
√
|Z| related

the size of the latent hypothesis space. Since C-PSRL performs local sampling from the product
space Z = Z1 × . . .×ZdY , by combining independent samples zj ∈ Zj for each variable Yj as we
briefly explained in Section 3, we can refine the dependence in |Z| to maxj∈[dY ] |Zj | ≤ |Z|.
Step 3. Finally, to obtain the final rate reported in Theorem 4.1, we have to capture the dependency
in the degree of prior knowledge η in the Bayesian regret by upper bounding maxj∈[dY ] |Zj | as

max
j∈[dY ]

|Zj | =
∑Z−η

i=0

(
dX − η

i

)
≤ 2dX−η.

4.1 DISCUSSION OF THE BAYESIAN REGRET

The regret bound in Theorem 4.1 contains two terms, which informally capture the regret to learn
the transition model having the true factorization (left), and to learn the true factorization (right).

The first term is typical in previous analyses of vanilla posterior sampling. Especially, the best
known rate for the MDP setting is Õ(H

√
SAK) (Osband & Van Roy, 2017). In a FMDP setting with

known factorization, the direct dependencies with the size S,A of the state and action spaces can
be refined to obtain Õ(Hd

3/2
Y NZ/2

√
K) (Osband & Van Roy, 2014). Our rate includes additional

factors of H and N , but a better dependency on the number of state features dY .

The second term of the regret rate is instead unique to hierarchical Bayesian settings, which include
an additional source of randomization in the sampling of the latent state from the hyper-prior. In
Theorem 4.1, we are able to express this term in the degree of prior knowledge η, resulting in a rate
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Õ(
√
K/2η). The latter naturally demonstrates that a richer causal graph prior G0 will benefit the

efficiency of PSRL, bringing the regret rate closer to the one for an FMDP with known factorization.

We believe that the rate in Theorem 4.1 is shedding light on how prior causal knowledge, here
expressed through a partial causal graph, impacts on the efficiency of posterior sampling for RL.

5 C-PSRL EMBEDS A NOTION OF CAUSAL DISCOVERY

In this section, we provide an ancillary result that links Bayesian regret minimization with C-PSRL
to a notion of causal discovery, which we call weak causal discovery. Especially, we show that we
can extract a Z-sparse super-graph of the causal graph GF∗ of the true instance F∗ as a byproduct.

A run of C-PSRL produces a sequence {πk}K−1
k=0 of optimal policies for the FMDPs {Fk}K−1

k=0
drawn from the posteriors. Every FMDP Fk is linked to a corresponding graph (or factorization)
GFk = (X ,Y, zk), where zk ∼ Pk is sampled from the hyper-posterior. Note that the algorithm
does not enforce any causal meaning to the edges zk of GFk . Nonetheless, we aim to show that we
can extract a Z-sparse super-graph of GF∗ from the sequence {Fk}K−1

k=0 with high probability.

First, we need to assume that any misspecification in GFk negatively affects the value function of πk.
Thus, we extend the traditional notion of causal minimality (Spirtes et al., 2000) to value functions.
Definition 2 (ε-Value Minimality). An FMDP F fulfills ε-value minimality, if for any FMDP F ′
encoding a proper subgraph of GF , i.e., GF ′ ⊂ GF , it holds that V ∗F > V ∗F ′ + ε, where V ∗F , V ∗F ′ are
the value functions of the optimal policies in F , F ′ respectively.

Then, as a corollary of Theorem 4.1, we can prove the following result.
Corollary 5.1 (Weak Causal Discovery). Let F∗ be an FMDP in which the transition model p∗
fulfills the causal minimality assumption with respect to GF∗ , and let F∗ fulfill ε-value minimality.
Then, GF∗ ⊆ GFK holds with high probability, where GFK is a Z-sparse graph randomly selected
within the sequence {GFk}K−1

k=0 produced by C-PSRL over K = Õ(H5d2
Y 2dX−η/ε2) episodes.

The latter result shows that C-PSRL discovers the causal relationships between the FMDP variables,
but cannot easily prune the non-causal edges, making GFK a super-graph of GF∗ . In Appendix D,
we report a detailed derivation of the previous result. Interestingly, Corollary 5.1 suggests a direct
link between regret minimization in a FMDP with unknown factorization and a (weak) notion of
causal discovery, which might be further explored in future works.

6 EXPERIMENTS

In this section, we provide experiments to both support the design of C-PSRL (Section 3) and val-
idate its regret rate (Section 4). We consider two simple yet illustrative domains. The first, which
we call Random FMDP, benchmarks the performance of C-PSRL on randomly generated FMDP
instances, a setting akin to the Bayesian learning problem (see Section 2.4) that we considered in
previous sections. The latter is a traditional Taxi environment (Dietterich, 2000), which is naturally
factored and hints at a potential application. In those domains, we compare C-PSRL against two
natural baselines: PSRL for tabular MDPs (Strens, 2000) and Factored PSRL (F-PSRL), which ex-
tends PSRL to factored MDP settings (Osband & Van Roy, 2014). Note that F-PSRL is equivalent
to an instance of C-PSRL that receives the true causal graph prior as input, i.e., has an oracle prior.

Random FMDPs. An FMDP (relevant parameters are reported in the caption of Figure 2) is
sampled uniformly from the prior specified through a random causal graph, which is Z-sparse with
at least two edges for every state variable (η = 2). Then, the regret is minimized by running PSRL,
F-PSRL, and C-PSRL (η = 2) for 500 episodes. Figure 2a shows that C-PSRL achieves a regret
that is significantly smaller than PSRL, thus outperforming the baseline with an uninformative prior,
while being surprisingly close to F-PSRL, having the oracle prior. Indeed, C-PSRL resulted efficient
in estimating the transition model of the sampled FMDP, as we can see from Figure 2b, which reports
the `1 distance between the true model p∗ and the pk sampled by the algorithm at episode k.

Taxi. For the Taxi domain, we use the common Gym implementation (Brockman et al., 2016). In
this environment, a taxi driver needs to pick up a passenger at a specific location, and then it has to
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Figure 2: (a,b) Regret and model error as a function of the episodes in the Random FMDP domain
with dX = 9, dY = 6, Z = 5, N = 2, H = 100. (c,d) Regret as a function of the episodes in Taxi
3 × 3 with dX = 5, dY = 4, Z = 5, N = [3, 3, 2, 1, 6], H = 10, Taxi 5 × 5 with dX = 5, dY =
4, Z = 5, N = [5, 5, 2, 1, 6], H = 15. The plots report the mean and 95% c.i. over 20 runs.

bring the passenger to their destination. The environment is represented as a grid, with some special
cells identifying the passenger location and destination. As reported in Simão & Spaan (2019),
this domain is inherently factored since the state space is represented by four independent features:
The position of the taxi (row and column), the passenger’s location and whether they are on the
taxi, and the destination. We perform the experiment on two grids with varying size (3 × 3 and
5 × 5 respectively), for which we report the relevant parameters in Figure 2. Here we compare the
proposed algorithm C-PSRL (η = 2) with PSRL, while F-PSRL is omitted as the knowledge of the
oracle prior is not available. Both algorithms converge to a good policy eventually in the smaller
grid (see the regret in Figure 2c). Instead, when the size of the grid increases, PSRL is still suffering
a linear regret after 400 episodes, whereas C-PSRL succeeds in finding a good policy efficiently (see
Figure 2d). Notably, this domain resembles the problem of learning optimal routing in a taxi service,
and our results show that exploiting common knowledge (such as that the location of the taxi and
passenger’s destination) in the form of a causal graph prior can be a game changer.

7 RELATED WORK

We revise here the most relevant related work in posterior sampling, factored MDPs, and causal RL.

Posterior sampling. Thompson sampling (Thompson, 1933) is a well-known Bayesian algorithm
that has been extensively analyzed in both multi-armed bandit problems (Kaufmann et al., 2012;
Agrawal & Goyal, 2012) and RL (Osband et al., 2013). Osband & Van Roy (2017) provides a
regret rate Õ(H

√
SAK) for vanilla Thompson sampling in RL, which is called the PSRL algorithm.

Recently, other works adapted Thompson sampling to hierarchical Bayesian problems (Hong et al.,
2020; 2022a;b; Kveton et al., 2021). Mixture Thompson sampling (Hong et al., 2022b), which is
similar to PSRL but samples the unknown MDP from a mixture prior, is arguably the closest to
our setting. In this paper, we take inspiration from their algorithm to design C-PSRL and derive its
analysis, even though, instead of their tabular setting, we tackle a fundamentally different problem
on factored MDPs resulting from a casual graph prior, which induces unique challenges.

Factored MDPs. Previous works considered RL in FMDPs (Boutilier et al., 2000) with either
known (Osband & Van Roy, 2014; Xu & Tewari, 2020; Talebi et al., 2021; Tian et al., 2020; Chen
et al., 2020) or unknown (Strehl et al., 2007; Vigorito & Barto, 2009; Diuk et al., 2009; Chakraborty
& Stone, 2011; Hallak et al., 2015; Guo & Brunskill, 2017; Rosenberg & Mansour, 2021) factoriza-
tion. The PSRL algorithm has been adapted to both finite-horizon (Osband & Van Roy, 2014) and
infinite-horizon (Xu & Tewari, 2020) FMDPs. The former assumes knowledge of the factorization,
close to our setting with an oracle prior, and provides Bayesian regret of order Õ(Hd

3/2
Y NZ/2

√
K).

Previous works also studied RL in FMDPs in a frequentist sense, either with known (Chen et al.,
2020) or unknown (Rosenberg & Mansour, 2021) factorization. Rosenberg & Mansour (2021) em-
ploy an optimistic method that is orthogonal to ours, whereas they leave as an open problem captur-
ing the effect of prior knowledge, for which we provide answers in a Bayesian setting.

Causal RL. Various works addressed RL with a causal perspective (see Kaddour et al., 2022,
Chapter 7). Causal principles are typically exploited to obtain compact representations of states
and transitions (Tomar et al., 2021; Gasse et al., 2021), or to pursue generalization across tasks and
environments (Zhang et al., 2020; Huang et al., 2022; Feng et al., 2022; Mutti et al., 2023). Closer to
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our setting, Lu et al. (2022) aim to exploit prior causal knowledge to learn in both MDPs and FMDPs.
Our work differs from theirs in two key aspects: We show how to exploit a partial causal graph prior
instead of assuming knowledge of the full causal graph, and we consider a Bayesian formulation
of the problem while they tackle a frequentist setting through optimism principles. Zhang (2020b)
show an interesting application of causal RL for designing treatments in a DTR problem.

Causal bandits. Another research line connecting causal models and sequential decision-making
is the one on causal bandits (Lattimore et al., 2016; Sen et al., 2017; Lee & Bareinboim, 2018;
2019; Lu et al., 2020; 2021; Nair et al., 2021; Xiong & Chen, 2022; Feng & Chen, 2023), in which
the actions of the bandit problem correspond to interventions on variables of a causal graph. There,
the causal model specifies a particular structure on the actions, modelling their dependence with
the rewarding variable, instead of the transition dynamics as in our work. Moreover, they typically
assume the causal model to be known, with the exception of (Lu et al., 2021), and they study the
simple regret in a frequentist sense rather than the Bayesian regret given a partial causal prior.

8 CONCLUSION

In this paper, we presented how to exploit prior knowledge expressed through a partial causal graph
to improve the statistical efficiency of reinforcement learning. Before reporting some concluding
remarks, it is worth commenting on where such a causal graph prior might be originated from.

Exploiting experts’ knowledge. One natural application of our methodology is to exploit domain-
specific knowledge coming from experts. In several domains, e.g., medical or scientific applications,
expert practitioners have some knowledge over the causal relationships between the domain’s vari-
ables. However, they might not have a full picture of the causal structure, especially when they face
complex systems such as the human body or biological processes. Our methodology allows those
practitioners to easily encode their partial knowledge into a graph prior, instead of having to deal
with technically involved Bayesian statistics to specify parametric prior distributions, and then let
C-PSRL figure out a competent decision policy with the given information.

Exploiting causal discovery. Identifying the causal graph over domain’s variables, which is usu-
ally referred as causal discovery, is a main focus of causality (Pearl, 2009, Chapter 3). The literature
provides plenty of methods to perform causal discovery from data (Peters et al., 2017, Chapter 4),
including learning causal variables and their relationships in MDP settings (Zhang et al., 2020; Mutti
et al., 2023). However, learning the full causal graph, even when it is represented with a bigraph as
in MDP settings (Mutti et al., 2023), can be statistically costly or even prohibitive (Gillispie & Perl-
man, 2001; Wadhwa & Dong, 2021). Moreover, not all the causal edges are guaranteed to transfer
across environments (Mutti et al., 2023), which would force to perform causal discovery anew for
any slight variation of the domain (e.g., changing the patient in a DTR setting). Our methodology al-
lows to focus on learning the universal causal relationships (Mutti et al., 2023), which transfer across
environments, e.g., different patients, and then specify the prior through a partial causal graph.

The latter paragraphs describe two scenarios in which our work enhance the applicability of PSRL,
bridging the gap between how the prior might be specified in practical applications and what previ-
ous methods currently require, i.e., a parametric prior distribution. To summarize our contributions,
we first provided a Bayesian formulation of reinforcement learning with prior knowledge expressed
through a partial causal graph. Then, we presented an algorithm, C-PSRL, tailored for the latter
problem, and we analyzed its regret to obtain a rate that is sublinear in the number of episodes and
shows a direct dependence with the degree of causal knowledge. Finally, we derived an ancillary
result to show that C-PSRL embeds a notion of causal discovery, and we provided an empirical
validation of the algorithm against relevant baselines. C-PSRL resulted nearly competitive with F-
PSRL, which enjoys a richer prior, while clearly outperforming PSRL with an uninformative prior.

Future works may derive a tighter analysis of the Bayesian regret of C-PSRL, as well as a stronger
causal discovery result that allows to recover a minimal causal graph instead of a super-graph. An-
other important aspect is to address computational issues inherent to planning in FMDPs to scale
the implementation of C-PSRL to complex domains. Finally, interesting future directions include
extending our framework to model-free PSRL (Dann et al., 2021; Tiapkin et al., 2023), in which the
prior may specify causal knowledge of the reward or the value function directly, and to study how
prior misspecification (Simchowitz et al., 2021) affects the regret rate.
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A LIST OF SYMBOLS

Basic mathematical objects
A , Set or space
A , Constant or random variable
a , Element of a set
∆(A) , Probability simplex over A
f : A → B , Function from A to B
[A] , Set of integers [A] = {1, . . . , A}
x[I] , Scope operator x[I] :=

⊗
i∈I xi for any set I ⊆ [d], x ∈ Rd

Causal graph
G , Directed acyclic bigraph G = (X ,Y, z)
X , Set of dX random variables {Xj}dXj=1 taking values xj ∈ [N ]

Y , Set of dY random variables {Yj}dYj=1 taking values yj ∈ [N ]

z , Directed edges z ⊆ X × Y
zj , Parents of Yj such that zj = {i | (Xi, Yj) ∈ z}
Z , Degree of sparseness such that |zj | < Z,∀j ∈ [dY ]
N , Size of the support of random variables

MDP
M , Markov decision processM = (S,A, p, r, µ,H)
S , State space
A , Action space
p , Transition model p : S ×A → ∆(S)
r , Reward function r : S ×A → ∆([0, 1])
µ , Initial state distribution µ ∈ ∆(S)
H , Episode horizon H <∞
S , Size of the state space S = |S|
A , Size of the action space A = |A|
s , State s ∈ S
a , Action a ∈ A
R(s, a) , Mean reward E[r(s, a)]

Factored MDP
F , Factored Markov Decision Process

F = ({Xj}dXj=1, {Yj , zj , pj , rj , }dYj=1, µ,H,Z,N)

dX , Number of state-action variables
dY , Number of state variables
X , Factored state-action space X = X1 × . . .×XdX
Y , Factored state space Y = Y1 × . . .× YdY
z , Directed edges z ⊆ X × Y , i.e., a factorization
zj , Parents of Yj such that zj = {i | (Xi, Yj) ∈ z}
p , Factored transition model p(y|x) =

∏dY
j=1 pj(y[j] | x[zj ])

r , Factored reward function r(x) =
∑dY
j=1 rj(x[zj ])

µ , Initial state distribution µ ∈ ∆(Y)
H , Episode horizon H <∞
Z , Degree of sparseness such that |zj | < Z,∀j ∈ [dY ]
N , Size of the support of state and action variables

Learning problem
K , Number of episodes
k , Episode index
h , Step index
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Z , Space of the consistent factorizations Z ⊆ X × Y
Zj , Space of the consistent parents of Yj such that Z = Z1 × . . .ZdY
P0 , Hyper-prior on the factorizations consistent with G0 (supported in Z)
Pk , Posterior of the hyper-prior P0 at episode k ∈ [K]
P0(·|z) , Prior on the FMDPs with factorization z
Pk(·|z) , Posterior of the prior P0(·|z) at episode k ∈ [K]
PG0 , Prior on the FMDPs consistent with G0 such that

PG0(F) = P0(pF |zF )P0(zF )
BR(K) , K-episodes Bayesian regret

Regret analysis
Ω , Set of all the possible assignments of X = {Xi}i∈[dX ], Ω =

⊗
i∈[dX ][N ]

n , Index on the support of random variables, n ∈ [N ]
Hk , History of observations ((xh,l, rh,l))h∈[H],l∈[k−1] until episode k
Zk , Random variable of the global factorization at episode k
Zkj , Random variable of the local factorization at episode k for factor j
Z∗ , Random variable of the true factorization
Zj∗ , Random variable of the true factorization for j-th factor
Ek[·] , Conditional expectation given historyHk, Ek[·] := E[· | Hk]
Pk[·] , Conditional probability given historyHk, Pk[·] := P[· | Hk]
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B PARAMETRIC PRIORS AND POSTERIOR UPDATES

In the following, we detail how the hyper-priors and priors of C-PSRL (Algorithm 1) can be spec-
ified through parametric distributions, and how the corresponding parameters are updated with the
evidence provided by the collected data.

The hyper-prior P0 = {P0,j}dYj=1 is defined through dY distributions over the set of local factor-
izations Z1, . . . ,ZdY resepctively, where each Zj contains the parents assignments for the variable
Yj consistent with the graph prior G0. Let assume any arbitrary ordering of the local factorizations
zi ∈ Zj , such that each zi is indexed by i ∈ [|Zj |]. Then, we can specify the hyper-prior j as a
categorical distribution

P0,j(zi;ω) = Cat(i;ω) =
ωi∑
t ωt

,

where the sum is over t ∈ [|Zj |], and the vector of parameters ω is initialized as ω = (1, . . . , 1).

Then, for each local factorization zi ∈ Zj of the variable Yj , we specify the prior P0,j(·|zi) over the
model parameters of the corresponding transition factor pj . The transition factor pj is an (N |Zj |, N)
stochastic matrix. The prior is specified through a Dirichlet distribution for each row of pj , i.e.,

p0,j(· | zi;α) = Dir(θ1, . . . , θN ;α1, . . . , αN ) =
1

B(α)

N∏
n=1

θαn−1
n ,

where α is a vector of parameters initialized as α = (1, . . . , 1) and B(α) =∏N
n=1 Γ(αn)

/
Γ(
∑
n αn) is a normalizing factor.

Having specified the hyper-prior and prior, we now show how to update them with the new evidence.
Let be θ1, . . . , θN ∼ Pk,j(·|x[zj ];α), and assume to collect the transition (x[zj ], y[j] = i) from the
true FMDP F∗. Then, the posterior is

Pk+1,j(θ1, . . . , θN ) ∝ P (y[j] = i | θ1, . . . , θN )Pk,j(θ1, . . . , θN ;α) ∝ θi
N∏
n=1

θαn−1,

which is still a Dirichlet distribution with parameters Dir(θ1, . . . , θN ;α1, . . . , αi + 1, . . . , αN ).
Then, we can propagate the posterior up the hierarchy to update the hyper-prior as

Pk+1,j(z) ∝ P (y[j] = i | z)Pt,j(z;ω)

∝ Pk,j(z;ω)

∫
P (y[j] = i | θ1, . . . , θN )Pt,j(θ1, . . . , θN | z)d(θ1, . . . , θN ) (1)

∝ Pk,j(z;ω)

∫
θi

1

B(α)

N∏
n=1

θαn−1
n d(θ1, . . . , θN ) (2)

∝ Pk,j(z;ω)
1

B(α)
B(α1, . . . , αi + 1, . . . , αN ) (3)

∝ Pk,j(z;ω)
αi + 1∑
t αt + 1

(4)

where (2) is obtained by plugging the parametric prior in (1), we derive (3) by computing the integral
over the simplex of (θ1, . . . , θN ), and (4) follows from Γ(αi + 1)

∏
t6=i Γ(αt) = (αi + 1)

∏
t Γ(αt)

and Γ(αi + 1 +
∑
t6=i αt) = Γ(

∑
t αt)

∑
t(αt + 1). The resulting posterior is still a categorical

distribution with the parameters ωi ← ωi
αi+1∑
t αt+1 .
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C NOTE ON COMPUTATIONAL COMPLEXITY

As we mentioned in Section 3 (paragraph on “Planning in FMDPs”), the C-PSRL algorithm is not
fully tractable as it requires to solve exact planning in a FMDP (line 6). As we pointed out in the
paper, the computational issue may be overcome through clever approximation schemes (Guestrin
et al., 2003) or exploiting the structure of the specific FMDP instance. E.g., under linear realiz-
ability of the transition model or the value function, which means the transition and value function
can be expressed as linear combinations of a vector of features, tractable exact planning methods
have been developed (Yang & Wang, 2019; Jin et al., 2020b; Deng et al., 2022). Furthermore, this
computational issue is not specific to the C-PSRL algorithm but affects PSRL in FMDPs in general.

Nonetheless, C-PSRL actually induces an additional computational cost over the standard F-PSRL
algorithm. This is the burn-in cost of computing the set of consistent factorizations Z in line 2 of
Algorithm 1. Notably, our method allows to build the set of consistent parents for each variable Yj
independently (see Section 3 “Recipe”), which means the process can be parallelized on dY workers.
For each worker, we need to build a set of

∑Z−η
i=0

(
dX−η
i

)
elements, which we can do recursively by

calling the base function at most O(2dX−η) times. The latter result gracefully characterize how the
degree of prior knowledge η impacts the statistical (see Theorem 4.1) and computational complexity
in a similar way.

While we underline again that this is not the computational bottleneck of C-PSRL, understanding
how to avoid the computational burn-in (e.g., not pre-computing the whole set of factorizations but
building it incrementally) is a nice direction for future works.
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D WEAK CAUSAL DISCOVERY

In the following, we show that we can extract, under a relatively mild causal minimality assumption,
a Z-sparse super-DAG of the true causal graph GF∗ as a byproduct of a run of Algorithm 1. We
call this result weak causal discovery, to make a clear distinction between discovering a sparse
super-DAG of a causal graph and true causal discovery, in which the minimal graph is discovered.

As required for any causal discovery algorithm, we need to state an assumption that connects the
causal graph GF∗ with the distribution p∗ (i.e., the transition model) from which our observations
are sampled in an i.i.d. manner (Spirtes et al., 2000). Typically, in causal discovery, it is assumed
that p∗ fulfills the faithfulness assumption with regard to GF∗ , i.e., every independence in p∗ implies
a d-separation (see Definition 4 below) in GF∗ . Faithfulness, however, is a rather strong assumption
which can be violated by path cancellations or xor-type dependencies, and weaker assumptions have
been proposed (Spirtes et al., 2000; Pearl, 2009; Marx et al., 2021). In this work, we build upon a
strictly weaker assumption than faithfulness: causal minimality (Spirtes et al., 2000).7

Definition 3 (Causal Minimality). A distribution P satisfies causal minimality with respect to a
DAG G if P fulfills the Markov factorization property with respect to G, but not with respect to any
proper subgraph of G.

Intuition. More intuitively, a distribution is minimal with respect to G if and only if there is no
node that is conditionally independent of any of its parents, given the remaining parents (Peters
et al., 2017). There are two important points in this statement: i) none of the parents of a node is
redundant, and ii) the dependence to a parent may only be detected given the remaining parents.
Aspect ii) is a strictly weaker statement than required by faithfulness, which can be illustrated with a
simple example. Consider the causal structureX → Y ← Z, where all random variables are binary.
If we generate X and Z via an unbiased coin and assign Y as Y := X xor Z, Y will be marginally
independent of X , as well as marginally independent of Z. However, Y is not independent of
X (resp. Z) when we condition on its second parent Z (resp. X). Such an example violates
faithfulness, i.e., there is a causal edge that is not matched by a dependence, but it does not violate
causal minimality. For a more detailed discussion on such triples, we refer to (Marx et al., 2021).

In our context, Algorithm 1 has a positive probability of sampling all parents jointly (or a superset
of them), and does not rely on checking pairs individually. Therefore, we can build upon the weaker
assumption, causal minimality. Beyond identifiability in the limit, we are interested in the finite
sample behaviour of our approach. Therefore, we propose a slightly stronger assumption for the
value function, which is inspired by causal minimality.
Definition 2 (ε-Value Minimality). An FMDP F fulfills ε-value minimality, if for any FMDP F ′
encoding a proper subgraph of GF , i.e., GF ′ ⊂ GF , it holds that V ∗F > V ∗F ′ + ε, where V ∗F , V ∗F ′ are
the value functions of the optimal policies in F , F ′ respectively.

Intuitively, ε-value minimality ensures that if we were to miss a true parent, the resulting optimal
value function would be at most ε-optimal compared to the optimal value function evaluated on a
graph that contains all true parents. Based on this rather lightweight assumption, we can extract
from Algorithm 1 a graph GFK that is guaranteed to be either the true DAG GF∗ , or a Z-sparse
super-DAG of GF∗ with high probability.
Corollary 5.1 (Weak Causal Discovery). Let F∗ be an FMDP in which the transition model p∗
fulfills the causal minimality assumption with respect to GF∗ , and let F∗ fulfill ε-value minimality.
Then, GF∗ ⊆ GFK holds with high probability, where GFK is a Z-sparse graph randomly selected
within the sequence {GFk}K−1

k=0 produced by C-PSRL over K = Õ(H5d2
Y 2dX−η/ε2) episodes.

Proof. From Theorem 4.1, we have that the K-episodes Bayesian regret of Algorithm 1 is

E

[
K−1∑
k=0

V∗(π∗)− V∗(πt)
]
≤ C1

√
H5d2

Y 2dX−η ·
√
K,

7The definition refers SGS-minimality proposed by Spirtes et al. (2000). There exists an alternative defini-
tion called P-minimality, proposed by Pearl (2009). In our setting, both assumptions are equivalent, since they
only differ on graphs that violate triangle faithfulness (Zhang, 2020a; Zhang & Spirtes, 2008). Since no nodes
within X or within Y are allowed to be adjacent, such triangle structures cannot occur within our assumptions.
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with high probability for some constant C1 that does not depend on K. Through a standard regret-
to-pac argument (Jin et al., 2018), it follows

E [V∗(π∗)− V∗(πK)] ≤ C2

√
H5d2

Y 2dX−η · 1√
K

(5)

with high probability for some constant C2 that does not depend on K, and for a policy πK
that is randomly selected within the sequence of policies {πk}K−1

k=0 produced by Algorithm 1.
By noting that πK can be ε-optimal in the true FMDP F∗ only if GF∗ ⊆ GFK through the ε-
value minimality assumption (Definition 2), we let E [V∗(π∗)− V∗(πK)] = ε in (5), which gives
K ≥ C2H

5d2
Y 2dX−η/ε2 and concludes the proof.

d-Separation. For the reader’s convenience, here we report a brief definition of d-separation.
More details can be found in (Peters et al., 2017).
Definition 4 (d-Separation). A path 〈X, . . . , Y 〉 between two vertices X,Y in a DAG is d-
connecting given a set Z, if

1. every collider8 on the path is an ancestor of Z, and

2. every non-collider on the path is not in Z.

If there is no path d-connecting X and Y given Z, then X and Y are d-separated given Z. SetsX
and Y are d-separated given Z, if for every pair X,Y , with X ∈ X and Y ∈ Y , X and Y are
d-separated given Z.

8A collider C on a path 〈. . . , Q,C,W, . . . 〉 is a node with two arrowhead pointing towards it, i.e.→ C ←.

20



Published as a conference paper at ICLR 2024

E REGRET ANALYSIS

In this section, we provide the full derivation of the following result.
Theorem 4.1. Let G0 be a causal graph prior with degree of sparseness Z and degree of prior
knowledge η. The K-episodes Bayesian regret incurred by C-PSRL is

BR(K) = Õ
((
H5/2N1+Z/2dY +

√
H2dX−η

)√
K
)
.

On a high level, the proof is made up of two parts. The first part (presented in Section E.1) consists of
decomposing the Bayesian regret into two components and then upper bounding the two expressions
separately. This leads to the intermediate regret bound for a general latent hypothesis space, i.e.,
where the hypothesis space is not necessarily a product space, reported in Section E.1. The second
part of the proof refines the analysis by considering a product latent hypothesis space (Section E.2)
and the degree of prior knowledge (Section E.3), ultimately reaching the theorem statement.

We define the set Ω =
⊗

i∈[dX ][N ] of all the possible assignments of X = {Xi}i∈[dX ]. For the
sake of concision, we will denote pk (y[j] | x[zj ]) as pk (x[zj ]) where it will not lead to ambiguity.
Moreover, we denote Ek[·] := E[· | Hk] and Pk[·] := P[· | Hk] the conditional expectation and
probability given the history of observationsHk = ((xh,l, rh,l))h∈[H],l∈[k−1] collected until episode
k. Auxiliary results and lemmas mentioned alongside the analysis are reported in the Sections E.4
and E.5.

E.1 ANALYSIS FOR A GENERAL LATENT HYPOTHESIS SPACE

We first report a decomposition of the Bayesian regret and then proceeds to bound each component
separately, which are then combined in a single regret rate.

Bayesian regret decomposition. For episode k, we define V k(π, z) = EF∼Pk(·|z) [VF (π)] as
the expected value of policy π according to the posterior conditioned on the latent factorization
z ∼ Pk and historyHk. As shown in (Russo & Van Roy, 2014, Proposition 1) for the bandit setting
and in (Hong et al., 2022b, Section 5.1, Equation 6) for the reinforcement learning setting, we can
decompose the Bayesian regret as

BR(n) = E

[
K∑
k=1

E
k

[
V∗(π∗)− V k(π∗, Z∗)

]]
+ E

[
K∑
k=1

E
k

[
V k(πk, Zk)− V∗(πk)

]]
(6)

by adding and subtracting V k(π∗, Z∗) and noticing that π∗, Z∗ are identically distributed to πk, Zk
given Hk. Notice that Zk and Z∗ indicate random variables, while we will indicate with the low-
ercase counterpart specific values of these random variables. The first term represents the regret
incurred due to the concentration of the posteriors of the reward and transition models given the true
factorization, while the second term captures the cost to identify the true latent factorization. We
will bound each term of (6) separately.

Upper bounding the first term of (6). For episode k, we define the event

Ek =

{
∀ j ∈ [dY ],∀ x[zj ] ∈ Ω :

∣∣RFk(x[zj ])− r̄k(x[zkj ])
∣∣ ≤ ck(x[zkj ])

and ‖pFk(x[zj ])− p̄k(x[zkj ])‖1 ≤ φ(x[zkj ])

}
where the quantities are defined as follows. Fk denotes the FMDP sampled at episode k hav-
ing mean reward RFk(x[zj ]) and transition model pFk(x[zj ]) for all x[zj ] ∈ Ω. The expression
r̄k(x[zj ]) = EF∼Pk(·|z)[RF (x[zj ])] denotes the posterior mean of RFk(x[zj ]), while p̄k(x[zj ]) =
(p̄k(y[j] = n | x[zj ]))n∈[N ] with p̄k(y[j] = n | x[zj ]) = EF∼Pk(·|z) [pF (y[j] = n | x[zj ])] denotes
the posterior mean transition probability vector of size N for the j-th factor given a factorization
z. With ck(x[zkj ]) and φ(x[zkj ]) we denote high-probability confidence widths for the j-th factor of
the mean reward and transition model respectively. A detailed derivation of such confidence widths
can be found in Section E.4. Informally, the event Ek expresses how close the mean rewards and
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transition models sampled at the episode k are to their posterior means. We refer with Ēk to the
complementary event of Ek.

Now, by reminding that π∗, Z∗ are identically distributed to πk, Zk given Hk, we can rewrite each
element of the sum within the first term of (6) as

E
k

[
VFk(πk)− V k(πk, Zk)

]
(1)
= E

k

[
E

F∼Pk(·|Zk)

[
VFk(πk)− VF (πk)

]]
(2)
≤ E

k

[ H∑
h=1

(
RFk(Sk,h, Ak,h)− r̄k(Sk,h, Ak,h, Zk)

)
+H‖pFk(Sk,h, Ak,h)− p̄k(Sk,h, Ak,h, Zk)‖1

]
(3)
≤ E

k

[ H∑
h=1

dY∑
j=1

(
RFk(Xk,h[Zj ])− r̄k(Xk,h[Zkj ])

)
+H

dY∑
j=1

‖pFk(Xk,h[Zj ])− p̄k(Xk,h[Zkj ])‖1
]

≤ E
k

[
H

H∑
h=1

dY∑
j=1

(
RFk(Xk,h[Zj ])− r̄k(Xk,h[Zkj ])

)
+ ‖pFk(Xk,h[Zj ])− p̄k(Xk,h[Zkj ])‖1

]
(4)
≤ E

k

[
H

H∑
h=1

dY∑
j=1

(
RFk(Xk,h[Zj ])− r̄k(Xk,h[Zkj ]) + ‖pFk(Xk,h[Zj ])− p̄k(Xk,h[Zkj ])‖1

)
1{Ēk}

]

+ E
k

[
H

H∑
h=1

dY∑
j=1

(
ck(Xk,h[Zkj ]) + φk(Xk,h[Zkj ])

)
1{Ek}

]
(7)

where we have used the definition of V k(πk, Zk) in step (1), Lemma E.3 in step (2), Lemma E.4 in
step (3), and the definition of Ek in step (4).

By defining βk(Xk,h[Zkj ]) := ck(Xk,h[Zkj ]) +φk(Xk,h[Zkj ]) as the sum of both confidence widths,
we can bound the second term of (7) by using Lemma E.5, while we bound the first term of the same
equation by showing that Ēk conditioned onHk is unlikely. We rewrite the first term of (6) as

H

H∑
h=1

dY∑
j=1

(
E
k

[(
RFk(Xk,h[Zj ])− r̄k(Xk,h[Zkj ])

)
1{Ēk}

]

+ E
k

[
‖pFk(Xk,h[Zj ])− p̄k(Xk,h[Zkj ])‖11{Ēk}

])
(8)

where we have distributed the indicator function. For the first term within the sums of (8), we have

E
k

[(
RFk(Xk,h[Zj ])− r̄k(Xk,h[Zkj ])

)
1{Ēk}

]
(9)

≤
∑

x[Zj ]∈Ω

∫ ∞
r=ck(Xk,h[Zkj ])

r Pk
(
(RFk(x[Zj ])− r̄k(x[Zkj ])) = r

)
dr (10)

≤
∑

x[Zj ]∈Ω

Pk(RFk(x[Zj ])− r̄k(x[Zkj ]) ≥ ck(x[Zkj ])) (11)

(1)
≤

∑
x[Zj ]∈Ω

exp

(
−

ck(x[Zkj ])2

2/4(‖αRk (x[Zkj ])‖1+1)

)
(12)

(2)
=

∑
x[Zj ]∈Ω

exp

− log(2KdYN
Z)

2(‖αRk (x[Zkj ])‖1+1)
2/4(‖αRk (x[Zkj ])‖1+1)

 (13)

=
∑

x[Zj ]∈Ω

exp
(
− log(2KdYN

Z)
)

=
1

2KdY
(14)

22



Published as a conference paper at ICLR 2024

In step (1) we have used Lemma E.2 and E.1, and in step (2) we have plugged-in the definition of
ck(x[Zkj ]) from (plugged-in σ2 of R∆), where αRk (x[Zkj ]) represents the parameters of the posterior
over the mean reward for the j-th factor at episode k given factorization Zkj . For the second term
within the sums of (8), we have

E
k

[
‖pFk(Xk,h[Zj ])− p̄k(Xk,h[Zkj ])‖11{Ēk}

]
(1)
≤ N E

k

[
max
n∈[N ]

|pFk(Xk,h[Zj ], n)− p̄k(Xk,h[Zkj ], n)|1{Ēk}
]

(2)
≤

∑
x[Zj ]∈Ω

∑
n∈[N ]

∫ ∞
p=φk(Xk,h[Zkj ])/

√
N

pPk(|pFk(Xk,h[Zj ], n)− p̄k(Xk,h[Zkj ], n)| = p) dp

≤ 2Pk

(
|pFk(Xk,h[Zj ], n)− p̄k(Xk,h[Zkj ], n)| ≥

φk(x[Zkj ])√
N

)
(3)
≤

∑
x[Zj ]∈Ω

∑
n∈[N ]

2 exp

(
−

φk(x[Zkj ])2

2N/4(‖αPk (x[Zkj ])‖1+1)

)

=
N

KdY
(15)

The steps are analogous to the ones for upper bounding the first term of (8). Specifically, in step (1)
we use a trivial upper bound on the l1-norm and in step (2) we divide the confidence width by the
square root of the vector length

√
N according to lemma (Lattimore & Szepesvári, 2020, Theorem

5.4.c). The parameters αPk (x[Zkj ]) introduced in step (3) represent the parameters of the posterior
over the transition model for the j-th factor at episode k given factorization Zkj .

By plugging (14) and (15) into (8) and then (8) into (7), we can bound the first term of (6) as

E

[
K∑
k=1

E
k

[
V∗(π∗)− V k(π∗, Z∗)

]]
≤ NH2 +H

K∑
k=1

H∑
h=1

dY∑
j=1

E
k

[
βk(Xk,h[Zkj ])

]
(16)

where we recall that βk(Xk,h[Zkj ]) := ck(Xk,h[Zkj ]) + φk(Xk,h[Zkj ]).

Upper bounding the second term of (6). Since there is no fundamental distinction between latent
states in the tabular and factored MDP settings, our analysis in this section is aligned with (Hong
et al., 2022b, Appendix B.3, step 2) and aims at effectively translating it into the factored MDPs
notation.

In order to bound the second term of (6), we first need to define confidence sets over latent factoriza-
tions. For each episode k, we define a set of factorizations Ck so that Z∗ ∈ Ck with high probability.
Since the latent factorization is unobserved, we can only exploit a proxy statistic for how well the
model parameter posterior of each latent factorization predicts the rewards. We start defining a
counting function Nk(z) =

∑k−1
l=1 1{Zl = z} as the number of times the factorization z has been

sampled until episode k. Next, we define the following statistic associated with a factorization z and
episode k,

Gk(z) =

k−1∑
l=1

1{Zl = z}

V l(πl, z)−H√2

H∑
h=1

dY∑
j=1

βl(Xl,h[zj ])−
H−1∑
h=0

dY∑
j=1

Rl,h[j]


The latter represents the total under-estimation of observed returns, as it expresses the difference
between the lower confidence bound on the returns and the observed ones, assuming that z is the
true latent factorization. Now we can define Ck = {z ∈ Z : Gk(z) ≤

√
HNk(z) logK} as the

set of latent factorizations with at most
√
HNk(z) logK excess. In the following, we show that

Z∗ ∈ Ck holds with high probability for any episode.

Fix Z∗ = z. Let Tk,z = {l < k : Zl = z} the set of episodes where z has been sampled until
episode k. We will first upper bound Gk(z) by a martingale with respect to the history, then bound
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the martingale using Azuma-Hoeffding’s inequality. We define the event

Ek,h,j =

{ ∣∣RFk(Xk,h[Zj ])− r̄k(Xk,h[Zkj ])
∣∣ ≤ √2ck(Xk,h[Zkj ])

and ‖pFk(Xk,h[Zj ])− p̄k(Xk,h[Zkj ])‖1 ≤
√

2φk(Xk,h[Zkj ])

}
in which the sampled reward and transition probabilities for factor j in step h of episode k are close
to their posterior means. Let E = ∪Kk=1∪Hh=1∪dYj=1Ek,h,j be the event that this holds for every factor,
step, and episode. By union bound we have that

Pk(Ēk,h,j) ≤ Pk(
∣∣RFk(Xk,h[Zj ])− r̄k(Xk,h[Zkj ])

∣∣ ≥ √2ck(Xk,h[Zkj ]))

+ Pk(‖pFk(Xk,h[Zj ])− p̄k(Xk,h[Zkj ])‖1 ≥
√

2φk(Xk,h[Zkj ]))

(1)
≤ exp

(
2ck(Xk,h[Zkj ])2

σ2

)
+ exp

(
2φk(Xk,h[Zkj ])2

Nσ2

)
≤ (KdYN

dX )−2

where we have used Lemmas E.2 and E.1 in step (1) and Ēk,h,j is the complementary event of Ek,h,j .
Hence, for Ē = ∪Kk=1 ∪Hh=1 ∪dYj=1Ēk,h,j , we have

P(Ē) =

K∑
k=1

H∑
h=1

∑
z∈Z

dY∑
j=1

∑
x[Zj ]∈Ω

Pk(Ēk,h,j) ≤
K∑
k=1

H∑
h=1

∑
z∈Z

dY∑
j=1

∑
x[Zj ]∈Ω

(KdYN
dX )−2 ≤ H|Z|K−1

For episode l ∈ Tk,z , let ∆l = V∗(πl) −
∑H
h=1

∑dY
j=1Rl,h[j]. Since El[∆l] = 0, (∆l)l∈Tk,z is a

martingale difference sequence with respect to the histories (Hl)l∈Tk,z . Following exactly the same
steps as in (Hong et al., 2022b, Proof of Lemma 7), we derive an upper bound on the probability of
Z∗ not being in the factorizations set Ck, namely:

P(Z∗ /∈ Ck) ≤ 2|Z|HK−1 (17)

We can now decompose the second term of (6) according to whether the sampled latent factorization
is in Ck or not. Formally, we have

E

[
K∑
k=1

E
k

[
V k(πk, Zk)− V∗(πk)

]]
≤ E

[ K∑
k=1

(
V k(πk, Zk)− V∗(πk)

)
1{Zk ∈ Ck}

]

+H

K∑
k=1

P(Z∗ /∈ Ck) (18)

From the previous steps, using (17), we have that the second term of (18) is upper bounded by
2|Z|H2, while in the following we derive an upper bound for the first term of (18) as in (Hong et al.,
2022b, Appendix B.3, step 4). We have

E
[ K∑
k=1

(
V k(πk, Zk)− V∗(πk)

)
1{Zk ∈ Ck}

]

= H
√

2E

 K∑
k=1

H∑
h=1

dY∑
j=1

βk(Xk,h[Zkj ])


+ E

 K∑
k=1

V k(πk, Zk)−H
√

2

H∑
h=1

dY∑
j=1

βk(Xk,h[Zkj ])−
H∑
h=1

dY∑
j=1

Rk,h[j]

1{Zk ∈ Ck}


(1)
≤ H
√

2E

 K∑
k=1

H∑
h=1

dY∑
j=1

βk(Xk,h[Zkj ])

+ E

[∑
z∈Z

GK+1(z) + |Z|H
]
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(2)
≤ H
√

2E

 K∑
k=1

H∑
h=1

dY∑
j=1

βk(Xk,h[Zkj ])

+
√
|Z|KH logK + |Z|H

where in step (1) we use the definition ofGK+1(z) and in step (2) we upper bound the same quantity.

Bayesian regret for a general latent hypothesis space. Combining the upper bounds of the two
terms of (6), we get

BR(K) ≤ NH2 +H

K∑
k=1

H∑
h=1

dY∑
j=1

E
k

[
βk(Xk,h[Zkj ])

]
+H
√

2E

 K∑
k=1

H∑
h=1

dY∑
j=1

βk(Xk,h[Zkj ])


+
√
|Z|KH logK + |Z|H + 2|Z|H2

(1)
≤ NH2 + 3H2dYN

dX + 3H2dYN

√
NdXKH log(4KdYNdX ) log

(
1 +

KH

2NdXΛ0,z

)
+
√
|Z|KH logK + 3|Z|H2

where in step (1) we have used Lemma E.5, and we denote

Λ0,z = min

{
min
j,x[zj ]

‖αR0 (x[zj ])‖1, min
j,x[zj ]

‖αP0 (x[zj ])‖1
}

Due to the Z-sparseness assumption, we can rewrite the Bayesian regret as

BR(K) ≤ NH2 + 3H2dYN
Z + 3H2dYN

√
NZKH log(4KdYNZ)log

(
1 +

KH

2NZΛ0,z

)
+
√
|Z|KH logK + 3|Z|H2

= Õ
(
H2dYN

Z +H
5
2 dYN

1+Z
2

√
K +

√
|Z|KH + |Z|H2

)
Notably, this rate is sublinear in the number of episodes K and latent factorization |Z|, exponential
in the degree of sparseness Z.

E.2 REFINEMENT 1: PRODUCT LATENT HYPOTHESIS SPACES

As we briefly explained in Section 3, C-PSRL samples the factorization z from the product space
Z = Z1 × . . .×ZdY by combining independent samples zj ∈ Zj for each variable Yj . This allows
us to refine the dependence in |Z| to C := maxj∈[dY ] |Zj | ≤ |Z|. We can replicate the same steps
of the previous section in order to derive the Bayesian regret for the setting with a product latent
hypothesis space. For the sake of clarity, we report here the main steps highlighting the difference
with the previous section.

For an episode k ∈ [K], we define Cjk =

{
zj ∈ Zj : Gjk(z̄) ≤

√
HN j

k(zj) logK

}
where

Gjk(zj) =

k−1∑
l=1

1{Zlj = zj}H
H∑
h=1

((
r̄l(Xl,h[zj ])−Rl,h[j]

)
+ ‖p̄k(Xl,h[zj ])− p∗(Xl,h[zj∗])‖1 −

√
2βk(Xl,h[zj ])

)
and N j

k(zj) =
∑k−1
l=1 1{Zlj = zj}. While Gjk(zj) captures the under-estimation of the observed

returns at the level of a single factor, N j
k(zj) counts the number of times that the local factorization

zj has been sampled for node j until episode k. Next, we define T jk,zj = {l < k : Zlj = zj} as the
set of episodes where zj has been sampled for node j.

First, we can derive an upper bound of P(Ē) depending on C by noticing that the inner-most sum
depends only on the local factorization hence we can swap the two preceding sums over Z and dY
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as shown in step (1) of the following:

P(Ē) =

K∑
k=1

H∑
h=1

∑
z∈Z

dY∑
j=1

∑
x[zj ]∈Ω

Pk(Ēk,h,j)

≤
K∑
k=1

H∑
h=1

∑
z∈Z

dY∑
j=1

∑
x[zj ]∈Ω

(KdYN
dX )−2

=
(1)
≤

K∑
k=1

H∑
h=1

dY∑
j=1

∑
zj∈Zj

∑
x[zj ]∈Ω

(KdYN
dX )−2

≤ HCK−1

Now, we wish to upper bound P(Zj∗ /∈ Cjk). For episode l ∈ T jk,zj let ∆j
l =

∑H
h=1R∗(Xl,h[Zj∗])−∑H

h=1Rl,h[j]. Since El[∆j
l ] = 0 we have that (∆j

l )l∈T jt,zj
is a martingale difference sequence with

respect to the histories (Hl)l∈T jt,zj .

By following the same steps as in Hong et al. (2022b), we get

Gjk(zj)1{E} =
∑

l∈T jt,zj

H

H∑
h=1

((
r̄l(Xl,h[zj ])−Rl,h[j]

)
+ ‖p̄k(Xl,h[zj ])− p∗(Xl,h[zj∗])‖1 −

√
2βk(Xl,h[zj ])

)
≤

∑
l∈T jk,zj

∆j
l

and by fixing |T jt,zj | = N j
t (zj) = u < t, and using Azuma-Hoeffding’s inequality, we derive

Pk
(
Gjk(z̄)1{E} ≥

√
Hu logK

)
≤ P

 ∑
l∈T jk,zj

∆j
l ≥

√
Hu logK

 ≤ K−2.

Therefore, by using union bounds, we can write

P (Z∗ /∈ Ck) ≤
dY∑
j=1

P(Zj∗ /∈ Cjk)

≤
dY∑
j=1

∑
zj∈Zj

k−1∑
u=1

P
(
Gjk(zj) ≥

√
Hu logK

)

≤ P(Ē) +

dY∑
j=1

∑
zj∈Zj

k−1∑
u=1

P
(
Gjk(zj)1{E} ≥

√
Hu logK

)
≤ dYHCK−1 (19)

We can now decompose the second term of (6) according to whether the sampled latent factorization
is in Ck or not, as in the previous section. Formally, we have

E

[
K∑
k=1

E
k

[
V k(πk, Zk)− V∗(πk)

]]
≤ E

[ K∑
k=1

(
V k(πk, Zk)− V∗(πk)

)
1{Zk ∈ Ck}

]

+H

K∑
k=1

P(Z∗ /∈ Ck)

From (19), we know that the second term is upper bounded by dY CH2. Meanwhile, we can bound
the first term as follows

E
[ K∑
k=1

(
V k(πk, Zk)− V∗(πk)

)
1{Zk ∈ Ck}

]
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≤ E
[ K∑
k=1

H

H∑
h=1

dY∑
j=1

(
r̄k(Xk,h[Zkj ])−R∗(Xk,h[Zj∗])

+ ‖p̄k(Xl,h[Zkj ])− p∗(Xl,h[Zj∗])‖1
)
1{Zkj ∈ Cjk}

]
= H
√

2E

[
K∑
k=1

H∑
h=1

dY∑
j=1

βk(Xk,h[Zkj ])

]
+ E

[
K∑
k=1

H

H∑
h=1

dY∑
j=1

(
r̄k(Xk,h[Zkj ])−R∗(Xk,h[Zj∗])

+ ‖p̄k(Xl,h[Zkj ])− p∗(Xl,h[Zj∗])‖1 −
√

2βk(Xk,h[Zkj ])
)
1{Zkj ∈ Cjk}

]
(1)
≤ H
√

2E

 K∑
k=1

H∑
h=1

dY∑
j=1

βk(Xk,h[Zkj ])

+ E

 dY∑
j=1

∑
zj∈Zj

GjK+1(zj) + dY CH


(2)
≤ H
√

2E

 K∑
k=1

H∑
h=1

dY∑
j=1

βk(Xk,h[Zkj ])

+

dY∑
j=1

∑
zj∈Zj

1

dY

√
HN j

K+1(zj) logK + dY CH

≤ H
√

2E

 K∑
k=1

H∑
h=1

dY∑
j=1

βk(Xk,h[Zkj ])

+

√
CKH logK + dY CH

where in step (1) we use the definition ofGjK+1(z) and in step (2) we upper bound the same quantity.

Bayesian regret for a product latent hypothesis space. Exploiting the Z-sparseness assumption,
we can write

BR(K) = Õ
(
H2dYN

Z +H
5
2 dYN

1+Z
2

√
K +

√
CKH + dY CH

2
)

(20)

Notably, this rate is sublinear in the number of episodes K and the number of latent local factoriza-
tions C, exponential in the degree of sparseness Z.

E.3 REFINEMENT 2: DEGREE OF PRIOR KNOWLEDGE

Finally, we aim to capture the dependency in the degree of prior knowledge η in the Bayesian regret.
To do that, we have to express C = maxj∈[dY ] |Zj | in terms of η. We can write

C =

Z∑
i=0

(
dX
i

)
=

Z∑
i=0

CdXi

where we count the empty factorization when i = 0. Given a graph hyper-prior that fixes η < Z
edges for each node j ∈ [dY ], we can count the number of admissible local factorizations as

C =

Z−η∑
i=0

(
dX − η

i

)
where we count the factorization with only the edges fixed a priori when i = 0. We can build an
upper bound on C as follows.

C =

Z−η∑
i=0

(
dX − η

i

)
≤ 2dX−η−1 exp

(
(dX + η − 2Z − 2)2

4(1 + Z − dX)

)
≤ 2dX−η exp

(
(dX + η − 2Z)2

4(1 + Z − dX)

)
=: φ(dX , Z, η)
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Since it is hard to interpret the rate of the latter upper bound, we derive a looser version that is easier
to interpret. We have

C =

Z−η∑
i=0

(
dX − η

i

)

= 2dX−η −
dX−Z−1∑
i=0

(
dX − η

i

)
≤ 2dX−η − 2dX−Z + 1

≤ 2dX−η

From the latter we can notice that each unit of the degree of prior knowledge η make the hypothesis
space shrink with an exponential rate, and thus the corresponding regret terms as well. In particular,
by plugging-in the upper bound C ≤ 2dX−η = 2dX

2η in the Bayesian regret in (20), we obtain the
final upper bound, which is

BR(K) = Õ
(
H2dYN

Z +H
5
2 dYN

1+Z
2

√
K +

√
2dX−ηKH + dY 2dX−ηH2

)
. (21)

E.4 HIGH PROBABILITY CONFIDENCE WIDTHS

Here we define high-probability confidence widths on the reward function and transition model
along the lines of Hong et al. (2022b), but with the difference that the confidence widths are defined
for all factors and their possible assignments rather than for state-action pairs as in the tabular setting.
We denote as ck(x[zj ]) and φk(x[zj ]) the confidence widths for the j-th factor of the reward function
and the transition model respectively. In the following, we indicate withRF and pF the mean reward
and transition model of the FMDP F respectively.

Reward function. First, we write the posterior mean reward for the j-th factor, given a factor-
ization z as r̄k(x[zj ]) = EF∼Pk(·|z)[RF (x[zj ])]. We wish to have a high probability bound of the
type

Pk (|RF (x[zj ])− r̄k(x[zj ])| ≥ ck(x[zj ])) ≤
1

K

for all j ∈ [dY ] and possible assignments x[zj ] ∈ Ω. By the union bound, we have

Pk
(∣∣RF (x[zj ])− r̄k(x[zj ])

∣∣ ≥ ck(x[zj ])

)

= Pk

 dY⋃
j=1

⋃
x[zj ]∈Ω

{
|RF (x[zj ])− r̄k(x[zj ])| ≥ ck(x[zj ])

}
≤

dY∑
j=1

∑
x[zj ]∈Ω

Pk
(
|RF (x[zj ])− r̄k(x[zj ])| ≥ ck(x[zj ])

)
.

Applying a union bound again to the latter expression, we can derive the following one-sided bound:

Pk
(
RF (x[zj ])− r̄k(x[zj ]) ≥ ck(x[zj ])

)
≤ 1

2KdYNdX
.

According to Lemma E.1, R∆ := RF (x[zj ]) − r̄k(x[zj ]) is a σ2-subgaussian random variable
with σ2 = 1/

(
4
(
‖αRk (zj)‖1 + 1

))
. Therefore, through the Cramèr-Chernoff method exploited in

Lemma E.2, we have that the high probability bound above holds if

exp

(
−ck(x[zj ])

2

2σ2

)
≤ 1

2KdYNdX
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which holds if and only if

ck(x[zj ]) ≥
√

2σ2 log(2KdYNdX )

=

√
log(2KdYNdX )

2
(
‖αRk (x[zj ])‖1 + 1

) (plugged-in σ2 of R∆)

Hence, we pick ck(x[zj ]) :=

√
log(2KdYNZ)

2(‖αRk (x[zj ])‖1+1)
, where Z is a lower bound on the value of dX ,

which holds due to the Z-sparseness assumption.

Transition model. The derivation is analogous to the one for the reward function, hence here we
report only the differences. First, we write the posterior mean transition probability for the j-th
factor, given a factorization z as p̄k(y[j] = n | x[zj ]) = EF∼Pk(·|z) [pF (y[j] = n | x[zj ])], which is
the probability, according to the posterior at time k, over the element n ∈ [N ] of the domain of the
j-th component of Y . Since we want to bound the deviations over all components of a factor, we
define the vector form of the previous expression as p̄k(x[zj ]) = (p̄k(y[j] = n | x[zj ]))n∈[N ]. By
following the same steps as for the confidence width of the reward function, we get

φk(x[zj ]) :=

√
N log(2KdYNZ)

2
(
‖αPk (x[zj ])‖1 + 1

) (22)

where the
√
N term is due to (Lattimore & Szepesvári, 2020, Theorem 5.4.c), since the l1 norm

sums over Nσ2-subgaussian random variables and therefore the induced random variable is (Nσ2)-
subgaussian.

E.5 AUXILIARY LEMMAS

Lemma E.1 (Theorem 1 and 3 of Marchal & Arbel (2017)). Let X ∼ Beta(α, β) for α, β > 0.
Then X − E[X] is σ2-subgaussian with σ2 = 1/(4(α + β + 1)). Similarly, let X ∼ Dir(α) for
α ∈ Rd+. Then X − E[X] is σ2-subgaussian with σ2 = 1/ (4 (‖α‖1 + 1)).

Lemma E.2 (Theorem 5.3 of Lattimore & Szepesvári (2020)). If X is σ2-subgaussian, then for any
ε ≥ 0,

P(X ≥ ε) ≤ exp

(
− ε2

2σ2

)
Lemma E.3 (Value Difference Lemma, Lemma 6 Hong et al. (2022b)). For any MDPs M′,M,
and policy π,

VM′(π)−VM(π) ≤ E
M

[
H∑
h=1

RM′ (Sh, Ah)−RM (Sh, Ah) +H ‖pM′ (Sh, Ah)− pM (Sh, Ah)‖1

]

Proof. This upper bound can be obtained by trivially upper bounding with 1 the reward at each step,
and therefore with h the value function within the statement in (Jin et al., 2020a, Lemma C.1).

Lemma E.4 (Deviations of Factored Reward and Transitions Osband & Van Roy (2014)). Given
two reward functions R and R̄ with scopes {zj}dYj=1 we can upper bound the deviations by

|R(x)− R̄(x)| ≤
dY∑
j=1

|Rj(x[zj ])− R̄j(x[zj ])|

and, given two transition models p and p̄ with scopes {zj}dYj=1 we can upper bound the deviations
by

|p(x)− p̄(x)| ≤
dY∑
j=1

|pj(x[zj ])− p̄j(x[zj ])|
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Lemma E.5. For episode k and latent factorization z ∈ Z , let βk(x[zj ]) = ck(x[zj ])+φk(x[zj ]) for
any j ∈ [dY ] and x[zj ] ∈ Ω. Let Λ0,z = min

{
minj,x[zj ] ‖αR0 (x[zj ])‖1,minj,x[zj ] ‖αP0 (x[zj ])‖1

}
indicates the minimum level of concentration between the reward function and transition model
priors for any factor and latent factorization z. Then, we have
K∑
k=1

H∑
h=1

dY∑
j=1

βk(Xk,h[zj ]) ≤ HdYNdX+dYNH

√
NdXKH log(4KdYNdX ) log

(
1 +

KH

2NdXΛ0,z

)

Proof. We define Nk(x[zj ]) =
∑k−1
l=1

∑H
h=1 1{Xl,h[zj ] = x[zj ]} as the number of times the as-

signment x[zj ] was sampled up to episode k for factor j. We can decompose the sum as
K∑
k=1

H∑
h=1

dY∑
j=1

βk(Xk,h[zj ])

≤
K∑
k=1

H∑
h=1

dY∑
j=1

1{Nk(Xk,h[zj ]) ≤ h}+

K∑
k=1

H∑
h=1

dY∑
j=1

1{Nk(Xk,h[Zj ]) > H}βk(Xk,h[zj ])

where we upper bound by 1 the regret in a step due to one factor. Therefore, the first term is upper
bounded by HdYNdX since there are at most NdX assignments for each j ∈ [dY ] and the same
one can appear in the sum at most H times, thus removing the dependency on K. Due to the
assumption of Z-sparseness, we will later use the bound HdYNZ . As for the second term, we
define Nk,h(x[zj ]) = Nk(x[zj ]) +

∑h−1
p=1 1{Xk,p[zj ] = x[zj ]} as the number of times x[zj ] was

sampled up to step h of episode k, for factor j. We split βk into ck and φk. For ck we have:
K∑
k=1

H∑
h=1

dY∑
j=1

1{Nk(Xk,h[zj ]) > H}ck(Xk,h[zj ])

=

K∑
k=1

H∑
h=1

dY∑
j=1

1{Nk(Xk,h[zj ]) > H}
√

log(2KdYNZ)

2
(
‖αRk (Xk,h[zj ])‖1 + 1

)
=

K∑
k=1

H∑
h=1

dY∑
j=1

∑
x[zj ]∈Ω

1{Nk(x[zj ]) > H}
√

log(2KdYNZ)

2‖2αRk (Xk,h[zj ])‖1 + 2Nk(x[zj ]) + 2

≤
K∑
k=1

H∑
h=1

dY∑
j=1

∑
x[zj ]∈Ω

√
log(2KdYNZ)

2‖2αRk (Xk,h[zj ])‖1 +Nk,h(x[zj ])

≤
√

log(2KdYNZ)

dY∑
j=1

∑
x[zj ]∈Ω

√√√√NK+1(x[zj ])

NK+1(x[zj ])∑
u=1

1

2‖αRk (Xk,h[zj ])‖1 + u

≤
√
NdXKH log(2KdYNZ)

dY∑
j=1

√√√√KH/NdX∑
u=1

1

2Λ0,z + u

≤ dY

√
NdXKH log (2KdYNZ) log

(
1 +

KH

2NdXΛ0,z

)
where in the first step we have plugged-in ck as picked in Section 4, in the second step have ex-
ploited the posterior update rule, in step three we have used that if Nk(x[zj ]) > H we have that
Nk,h(x[zj ]) ≤ Nk(x[zj ]) + H ≤ 2Nk(x[zj ]), and in the remaining passages we have used known
bounds as in (Hong et al., 2022b, Lemma 6). Analogously, for φk we can derive the following.
K∑
k=1

H∑
h=1

dY∑
j=1

1{Nk(Xk,h[zj ]) > H}φk(Xk,h[zj ])

≤ dYNH
√
NdXKH log (4KdYNZ) log

(
1 +

KH

2NdXΛ0,z

)
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Notice that again, due to the Z-sparseness, we can replace in the steps above NdX with NZ . Com-
bining the terms, we have:

K∑
k=1

H∑
h=1

dY∑
j=1

βk(Xk,h[zj ]) ≤ HdYNdX+2dYNH

√
NdXKH log (4KdYNZ) log

(
1 +

KH

2NdXΛ0,z

)

31



Published as a conference paper at ICLR 2024

F ADDITIONAL EXPERIMENT WITH VARYING PRIOR KNOWLEDGE

In Section 6, we reported results for C-PSRL with a fixed degree of prior knowledge η = 2. It is
interesting to see how changing the degree of prior knowledge affects the regret of C-PSRL. To this
end, in Figure 3, we report an additional experiment in the same setting of Figures 2a, 2b where we
compare C-PSRL with η ∈ {1, 2, 3, 4} against F-PSRL, which corresponds to C-PSRL with η = 5,
meaning the full graph is provided as an input to the algorithm. Note that we omit PSRL from the
plot here to get a clearer view of the regret curves.

Perhaps surprisingly, varying the prior causal knowledge does not affect the regret of C-PSRL in
a significant way. This may look discordant with the result in Theorem 4.1. However, we note
that this domain is extremely small, so that the regret rate is actually dominated by the first term.
Investigating the fine-grained impact of η in the regret of C-PSRL in larger domains (especially
when dX � Z) would be a nice corroboration of our theoretical analysis, which we leave as future
work.
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Figure 3: Regret and model error as a function of the episodes in the Random FMDP domain with
dX = 9, dY = 6, Z = 5, N = 2, H = 100. The plots report the mean and 95% c.i. over 20 runs.
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G NOTE ON CONFOUNDING

In this paper, we assume there is no confounding acting on the variables of a causal graph G =
(X ,Y, z). While this assumption brings the proposed problem formulation closer to the literature
on FMDPs (Osband & Van Roy, 2014; Xu & Tewari, 2020; Tian et al., 2020; Chen et al., 2020;
Talebi et al., 2021; Rosenberg & Mansour, 2021), we believe that extending our analysis to include
confounding would further narrow the gap between our formulation and real-world applications,
which may admit confounding. Here, we report a few notes on how confounding affects our results
and the additional challenges it brings, while we leave as future work a formal study on confounding
and how to deal with it.

Let us waive the no confounding assumption and admit the presence of a set of unobserved random
variables C = {Cj}dCj=1 taking values cj ∈ [N ]. In general, we can identify three types of confound-
ing according to how the unobserved variables C interact with the observed variables X ,Y:

(1) Confounding on X , i.e., there are causal edges of the form Xi ← Cj → Xk for some j ∈ [dC ]
and i, k ∈ [dX ]. This can be equivalently modeled through bi-directed edges in X × X ;

(2) Confounding between X and Y , i.e., there are causal edges of the form Xi ← Cj → Yk for
some i ∈ [dX ], j ∈ [dC ], and k ∈ [dY ]. This can be equivalently modeled through bi-directed
edges in X × Y;

(3) Confounding on Y , i.e., there are causal edges of the form Yi ← Cj → Yk for some j ∈ [dC ]
and i, k ∈ [dY ]. This can be equivalently modeled through bi-directed edges in Y × Y .

The type (1) can be easily incorporated in our analysis, as the confounding does not affect transitions
in any meaningful way. Specifically, our regret result (Theorem 4.1) would stand without changes,
whereas the causal discovery result (Corollary 5.1) would be slightly weakened. In particular, we
could still identify the edges in X ×Y since we observe all parents of each node in Y , however, the
edges in X × X cannot be discovered by our procedure.

The type (2) is arguably the most challenging: The confounding directly impact the transition prob-
abilities as P (X ,Y) = p(Y|X , C)p(X|C)p(C), where the conditioning C is unobserved. Our feeling
is that this case brings the model close to a Partially Observable MDP (POMDP, Åström, 1965)
formulation. Unfortunately, learning in POMDPs is known to be intractable in general (e.g., Krish-
namurthy et al., 2016), which means further structural assumptions shall be considered to deal with
this type of confounding.

The type (3) can also be problematic. With this type of confounding, we do not observe all of the
causal parents of the variables in Y , which may complicate modeling the transition probabilities in
some (rare) cases.

33


	Introduction
	Problem formulation
	Causal graphs
	Markov decision processes
	Causal structure induces factorization
	Reinforcement learning with partial causal graph priors

	Causal PSRL
	Regret analysis of C-PSRL
	Discussion of the Bayesian regret

	C-PSRL embeds a notion of causal discovery
	Experiments
	Related work
	Conclusion
	List of symbols
	Parametric priors and posterior updates
	Note on computational complexity
	Weak causal discovery
	Regret analysis
	Analysis for a general latent hypothesis space
	Refinement 1: Product latent hypothesis spaces
	Refinement 2: Degree of prior knowledge
	High probability confidence widths
	Auxiliary lemmas

	Additional experiment with varying prior knowledge
	Note on confounding

