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ABSTRACT

In this paper, we tackle learning tasks on graphs with missing features, improv-
ing the applicability of graph neural networks to real-world graph-structured data.
Previous diffusion-based imputation methods overlook the presence of channels
with low-variance features, and these channels contribute very little to the per-
formance in graph learning tasks. To overcome this issue, we propose a new
diffusion-based imputation scheme using synthetic features in addition to ob-
served features. The proposed scheme first identifies channels with low-variance
features via pre-diffusion and generates a synthetic feature for a randomly cho-
sen node in each low-variance channel. Then, our diffusion process spreads the
synthetic features widely while considering observed features simultaneously. Ex-
tensive experiments on graphs with various rates of missing features demonstrate
the effectiveness of our scheme, achieving state-of-the-art performance in both
semi-supervised node classification and link prediction.

1 INTRODUCTION

Graph neural networks (GNNs) have achieved significant successes in graph learning tasks such
as node classification (Kipf & Welling, 2016a; Veličković et al., 2017) and link prediction (Kipf
& Welling, 2016b; Salha et al., 2019). In the real world, since a wide range of data contains en-
tities with relations, these data can be represented in graphs and many problems are formulated
as graph learning tasks (Wu et al., 2022; Liao et al., 2021). However, real-world graph-structured
data often include missing features for various reasons (e.g., private information in social networks
and measurement failure), which hinders GNNs from being directly applied to the real-world data.
Therefore, applying GNNs to graphs with missing features has received great attention as a task
termed graph learning task with missing features (Chen et al., 2020; Taguchi et al., 2021).

Recent diffusion-based imputation approach (Rossi et al., 2022; Um et al., 2022) imputes missing
features by diffusing observed features along edges channel-wisely. The diffusion-based methods
demonstrate the following two advantages against conventional neural-network-based imputation
methods (Monti et al., 2017; Chen et al., 2020): 1) superior performance and 2) fast imputation
without learnable parameters. A crucial observation is that the accurate reconstruction of missing
features does not necessarily result in good performance in graph learning tasks (Um et al., 2022).
That is, producing features that are close to their original values and generating features that lead to
good performance in graph learning tasks are distinct tasks.

However, the diffusion-based methods overlook the presence of channels with low-variance features
as shown in Figure 1. When all observed features within a low-variance channel have almost the
same values, the diffusion process fills all missing features in the channel with nearly the same
values. In our work, we empirically discover these channels referred to as low-variance channels
and theoretically prove that a zero-variance channel is made when values of all observed features
in the channel are the same. The channels with nearly the same feature values across entire nodes
contribute very little to performance in graph learning tasks which require distinct representations
of nodes or node pairs.

To increase feature variances of low-variance channels, we propose a novel diffusion-based impu-
tation scheme called Feature Imputation with Synthetic Features (FISF). FISF generates synthetic
features different from observed features and injects the synthetic features into a randomly chosen
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Figure 1: Distributions of variances for each feature channel. The distributions for imputation meth-
ods are calculated from imputed matrices for the CiteSeer dataset with 90%/99.5% missing features.
While existing diffusion-based imputation methods (FP and PCFI) produce output with many low-
variance channels (outlined in red), FISF can address the problem of low-variance channels.

node in each low-variance channel. Then, FISF spreads the generated synthetic features and makes
the channels deviate from low variances. We show that GNNs with an imputed feature matrix from
FISF demonstrate remarkable performance in graph learning tasks with missing features.

Our key contributions are summarized as follows: 1) We discover low-variance channels in outputs
from diffusion-based imputation methods, which provide little assistance in performance on graph
learning tasks. 2) This work is the first attempt for feature imputation using synthetic features for
graph learning tasks with missing features. 3) We demonstrate that the use of synthetic features
significantly enhances performance on graph learning tasks under various missing feature settings.

2 RELATED WORK

2.1 LEARNING ON GRAPHS WITH MISSING FEATURES

Dealing with missing data has long been an active research field in machine learning (Allison, 2009;
Troyanskaya et al., 2001). Methods for handling missing data in graph-structured data can be cate-
gorized into three groups.

(i) GNN Architecture. Several methods propose new GNN architectures to perform learning tasks on
graphs with missing features. GCN for missing features (GCNMF) (Taguchi et al., 2021) combines a
GCN (Kipf & Welling, 2016a) layer with a Gaussian mixture model that represents missing features.
Jiang & Zhang (2020) develops a message passing layer that only aggregates known features. Graph
feature neural network (GRAFENNE) (Gupta et al., 2023) consists of three-phase message-passing
layers to address heterogeneous and dynamic features. However, these methods, with their specially
designed layers, cannot take advantage of the off-the-shelf GNN models.
(ii) Reconstruction. Reconstruction-based methods train models by minimizing reconstruction er-
ror between the observed features and their reconstructed values. Recurrent Multi-Graph CNN
(RMGCNN) leverages recurrent neural networks to complete a feature matrix (Monti et al., 2017).
Structure-attribute-transformer (SAT) (Chen et al., 2020) models the joint distribution of graph struc-
tures and node features. Max-entropy graph autoencoder (MEGAE) (Gao et al., 2023) maximizes
the entropy of latent features in autoencoders to alleviate the spectral concentration problem. While
these methods aim to accurately reconstruct missing features, achieving accurate reconstructed fea-
tures does not necessarily guarantee high performance in downstream tasks (Um et al., 2022).

(iii) Diffusion. Diffusion-based methods impute missing features by diffusing known features along
edges. Feature propagation (FP) (Rossi et al., 2022) iteratively propagates known features channel-
wisely and fills in missing features. Pseudo-confidence-based feature imputation (PCFI) (Um et al.,
2022) calculates pseudo-confidence of each feature value and leverages pseudo-confidence as the
importance of feature values during diffusion. These methods tend to make missing features very
similar to each other when a few observed features are highly similar, resulting in minimal feature
differences between nodes. Our approach encourages distinct features between nodes, which can
further enhance the performance of downstream GNNs in graph learning tasks.
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Figure 2: A brief overview of feature imputation with synthetic features (FISF). First, pre-diffusion
constructs a full feature matrix X̃ by imputing missing features via channel-wise diffusion. Then,
we inject synthetic features into a missing node in each low-variance channel of X̃ . Finally, diffu-
sion with synthetic features produces X̂ which is a final output of FISF. X̂ is fed to a downstream
GNN which performs a given graph learning task.

2.2 OTHER RELATED WORK

To spread synthetic features widely, we assign different importance based on distance encoding.
Distance encoding is a technique that utilizes graph-distance measures (e.g., shortest path distance,
generalized PageRank scores (Li et al., 2019)) measured between a node and a designated node set.
You et al. (2019) proposes an aggregation scheme using the computed distance of a given node from
sampled anchor node sets. Zhang & Chen (2018) and Li et al. (2020) leverage encoded distance
as extra node features for link prediction. Position-aware graph neural network (P-GNN) (Zhang
et al., 2021) unifies several techniques including distance encoding into a labeling trick. Poisson
learning (Calder et al., 2020) addressing a problem in Laplacian learning is also relevant to our
work. However, the problems being addressed are different, and the causes of each problem are also
different. In Calder et al. (2020), proposed Poisson learning is a feature-agnostic method that only
propagates given labels like LP (Zhuŕ & GhahramaniŕH, 2002), tackling semi-supervised classifica-
tion. Furthermore, the problem addressed in Calder et al. (2020) arises from the very narrow area
of a localized spike, generated by the propagation of a given label. The problem assumes having a
wide variety of labels evenly distributed despite very low label rates. However, we discover and ad-
dress the problem of low-variance channels caused by nearly identical observed values with a feature
channel. We provide theoretical proof about the cause of the problem of low-variance channels.

3 NOTATION AND PROBLEM DEFINITION

An undirected connected graph can be represented as G = (V, E ,A) where V = {v1, . . . , vN} is the
set of N nodes, E is the edge set, and A ∈ {0, 1}N×N is an adjacency matrix. X = [xi,a] ∈ RN×F

denotes a node feature matrix where F is the number of feature channels and xi,a represents the a-th
channel feature value of vi.

Let d(vi, vj |A) be the shortest path distance between the i-th node and the j-th node on G with A.
Then, we define a function dset(·) as dset(vi|V ′,A) = minvj∈V′d(vi, vj |A) where V ′ ⊆ V . That
is, we use dset(vi|V ′,A) to denote the shortest path distance between the i-th node and its nearest
node in a node set V ′ ⊆ V on G with A.

Partially observed/known features mean that X has missing elements. V(a)
k denotes a set of nodes

whose a-th channel feature values are known. V(a)
u denotes a set of nodes whose a-th channel feature

values are missing/unknown (i.e., V(a)
u = V \ V(a)

k ). We refer to V(a)
k and V(a)

u as source nodes and
missing nodes, respectively. By rearranging the whole nodes based on whether the feature value is
known or not for each channel, the whole features and the adjacency matrix for the a-th channel can
be written as

x(a) =

[
x
(a)
k

x
(a)
u

]
, A(a) =

[
A

(a)
kk A

(a)
ku

A
(a)
uk A

(a)
uu

]
, (1)
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where x(a), x(a)
k , and x

(a)
u are column vectors for the a-th channel. A(a) and A represent the same

graph structure although the node order of A(a) is rearranged from A. We use B:,z to denote the
z-th column of a matrix B.

We tackle a problem of graph learning tasks containing missing features, where our goal is to achieve
maximum performance in downstream learning tasks. Formally, graph learning tasks containing
missing features can be expressed as

Ŷ = f({x(a)
k }Fa=1,A) (2)

where Ŷ denotes a prediction for desired output of a given task. Here, f is a function to find in the
problem. Like other imputation methods tackling the problem, we decompose f into two steps as
f = gθ ◦ h. Here, h is a feature imputation scheme and gθ is an off-the-shelf GNN model using a
full feature matrix obtained via h.

4 PROPOSED METHOD

4.1 OVERVIEW OF FISF

We present an imputation scheme called feature imputation with synthetic features (FISF), which
minimizes performance degradation in graph learning tasks despite high rates of missing features.
Figure 2 shows a brief overview of FISF which consists of two diffusion stages: pre-diffusion and
diffusion with synthetic features. Using a pre-imputed feature matrix obtained via pre-diffusion (see
Section 4.2), we calculate the variance of features for each channel. We then create a synthetic
feature in each low-variance channel (see Section 4.3). The second diffusion stage updates the
features in low-variance channels by spreading the synthetic features widely (see Section 4.4). The
stage produces a final output feature matrix of FISF, which is fed to gθ to perform downstream tasks.

4.2 PRE-DIFFUSION

We adopt channel-wise inter-node diffusion in PCFI (Um et al., 2022) as pre-diffusion. For nota-
tional convenience, we temporarily rearrange whole nodes channel-wisely as described in Section 3.
Specifically, for the a-th channel, we reorder the nodes in the order of V(a)

k and V(a)
u , i.e., x(a) and

A(a) are made by reordering A. After the diffusion is completed, we restore the node ordering to
the original one.

The channel-wise inter-node diffusion calculates and utilizes pseudo-confidence (PC) (Um et al.,
2022), which acts as the importance of each feature value during the diffusion. We use Si,a to denote
the shortest path distance between the i-th node and its nearest source node for the a-th channel, i.e.,
Si,a = dset(vi|V(a)

k ,A(a)). We let X̃ be a pre-imputed feature matrix via pre-diffusion. Then,
following Um et al. (2022), PC (ξi,a) of x̃i,a is assigned by ξi,a = αSi,a(0 < α < 1) where α
is a hyper-parameter. Thereafter, the transition matrix for the pre-diffusion is built by a weighted
adjacency matrix W (a) ∈ RN×N given by

W
(a)
i,j =

{
ξj,a/ξi,a if A(a)

i,j = 1

0 if A(a)
i,j = 0,

(3)

where W
(a)
i,j takes a role of message passing strength from the j-th node to the i-th node in the pre-

diffusion. For a row-stochastic transition matrix, we normalize W (a) to W
(a)

= (D(a))−1W (a)

where D(a) is a diagonal matrix with diagonal entries D
(a)
ii =

∑
j Wi,j . Then, to preserve the

known features x
(a)
k during the pre-diffusion, we replace the first |V(a)

k | rows in W with one-hot
vectors indicating V(a)

k . As a result of the replacement, we attain the pre-diffusion transition matrix
W̃ (a) expressed by

W̃ (a) =

[
Ikk 0ku

W
(a)

uk W
(a)

uu

]
, (4)

where Ikk ∈ R|V(a)
k |×|V(a)

k | is an identity matrix and 0ku ∈ R|V(a)
k |×|V(a)

u | is a zero matrix.
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The pre-diffusion is implemented by iterative propagation steps using W̃ (a) as

x̃(a)(t) = W̃ (a)x̃(a)(t− 1), t = 1, · · · ,K;

x̃(a)(0) =

[
x
(a)
k
0u

]
,

(5)

where x̃(a)(t) is an imputed feature vector after t propagation steps and 0u is a zero vector with
a length of |V(a)

u |. After K propagation steps, we obtain x̃(a)(K). As K → ∞, the recursion
converges and x̃(a)(K) reaches a steady state (see the proof in Appendix A)). Based on the proof
that initial values for x(a)

u do not affect the steady state, we initialize x
(a)
u with zeros (i.e., 0u). We

use x̃(a)(K) with large enough K to approximate the steady state.

We rearrange {x̃(a)(K)}Fa=1 in the original order to reorder the nodes considering the syn-
thetic features in the second diffusion stage. Then, by stacking the originally ordered vectors in
{x̃(a)(K)}Fa=1 along the channels, we obtain a pre-imputed feature matrix X̃ which is an output of
the pre-diffusion.

4.3 SYNTHETIC FEATURE GENERATION

When all given known features in the a-th channel (i.e., elements in x
(a)
k ) have the same value c,

lim
t→∞

x̃(a)(t) becomes a vector where entire elements are c (see the proof in Appendix B)). We refer
to a channel with the same or nearly the same feature values as a low-variance channel. The low-
variance channel does not contribute to distinguishing nodes. In semi-supervised node classification,
distinctive node representations are crucial to classify nodes into multiple classes. In the case of link
prediction, the same representation across nodes also makes the representations of node pairs the
same. Therefore, we aim to make imputed features in that channel become distinctive across nodes
by injecting a synthetic feature that acts as a known feature.

We first identify low-variance channels to inject synthetic features. We calculate the variance of X̃:,a

(i.e., pre-imputed feature values in the a-th channel) for all a ∈ {1, . . . , F}. Then r% of channels
are selected in order of lowest to highest variance, where r is a hyper-parameter between 0 and 100.
Fl denotes the set of low-variance channel indices. For each channel in Fl, we randomly choose
one node with a missing feature to inject a synthetic feature. For a selected node v

(b)
s in a channel

b ∈ Fl, we inject a synthetic feature with randomly sampled value x(b)
s from a uniform distribution

on [0, 1]. Consequently, |Fl| number of synthetic feature values are injected and {(v(b)s , x(b)s )}b∈Fl

is combined with the result of pre-diffusion (X̃) for the second diffusion stage called diffusion with
synthetic features.

4.4 DIFFUSION WITH SYNTHETIC FEATURES

Diffusion with synthetic features (DSF) produces X̂ = [x̂i,a] ∈ RN×F which is a final output
of FISF. DSF receives X̃ from the pre-diffusion and {(v(b)s , x(b)

s )}b∈Fl
. Then DSF updates X̃ by

replacing features in the low-variance channels (i.e., X̃:,b for all b ∈ Fl). The purpose of DSF is to
increase the variance of low-variance channels by using synthetic features.

DSF treats a synthetic feature x(b)
s as known features x(b)

k during diffusion. Then the updated known
node set becomes V(b)

k∗ = V(b)
k ∪ {v(b)s }. Thus the updated unknown node set becomes V(b)

u∗ =

V(b)
u \ {v(b)s }. That is, v(b)s is moved from V(b)

u to V(b)
k∗ . Similar to pre-diffusion, we first temporarily

reorder all the nodes in the order of V(b)
k∗ and V(b)

u∗ . By reordering, features and the adjacency matrix
in the b-th channel in Fl can be expressed as

x(b) =

[
x
(b)
k∗

x
(b)
u∗

]
, A(b) =

[
A

(b)
k∗k∗ A

(b)
k∗u∗

A
(b)
u∗k∗ A

(b)
u∗u∗

]
, (6)

where x
(b)
k∗ and x

(b)
u∗ are column vectors and x

(b)
k∗ contains x(b)

s . The length of x(b)
k∗ and x

(b)
u∗ are

|V(b)
k |+ 1 and |V(b)

u | − 1, respectively.
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The preparations above are the same as the pre-diffusion, except for assuming x(b)
s as a known

feature. However, simply diffusing features of V(b)
k∗ as pre-diffusion results in x(b)

s influencing only
its surroundings. This is because not only x(b)

s but also known features with nearly the same values
diffuse. For example, if a given graph has 10, 000 nodes and 90% features are missing in the b-
th channel, there exist 1, 000 known features with nearly the same feature values in the channel.
Known features spread to their surrounding features through diffusion and make the surrounding
features be similar to their own value. Thus, it is hard for x(b)s to have a wide influence across nodes.
This issue hinders the channel from deviating from a low variance since most of the features become
nearly the same value.

To overcome the issue, we design DSF to give more influence to synthetic features than that of
known features. For the wide diffusion of x(b)

s , we leverage the shortest path distance from v
(b)
s .

We measure the shortest path distance from v
(b)
s to all nodes in V . Formally, we use Ss

i,b to denote

d(vi, v
(b)
s |A(b)) and measure Ss

i,b for all vi ∈ V .

Then the PC ξsi,a of x̂i,a is computed based on the shortest path distance from only the synthetic

node v
(b)
s , not from the whole known nodes. That is, ξsi,a is defined by ξsi,a = βSs

i,a(0 < β < 1)

where β is a hyper-parameter. As vi is positioned closer to v
(b)
s , ξsi,a increases. We also use usual

PC (ξ∗i,b) based on distances from the whole known nodes V(b)
k∗ containing v

(b)
s . We calculate S∗

i,b =

dset(vi|V(b)
k∗ ,A(b)) and obtain PC calculated by ξ∗i,b = αS∗

i,b(0 < α < 1). While both ξi,b and ξ∗i,b
play a role as the importance of each feature value, ξi,b is determined by the distance from only
synthetic node v(b)s in contrast to ξ∗i,b considering the distances from whole known nodesV(b)

k∗ . Using
the PCs, we define a weighted adjacency matrix M (b) ∈ RN×N by

M
(b)
i,j =


ξ∗j,b
ξ∗i,b

·
ξsj,b
ξsi,b

if A(b)
i,j = 1

0 if A(b)
i,j = 0.

(7)

M
(b)
i,j is the strength of a message passing from the j-th node to the i-th node in the DSF.

The term ξ∗j,b/ξ
∗
i,b, strengthens a message passing from a high-PC feature to a low-PC feature as

in the pre-diffusion (see Eq. 3). However, different from the pre-diffusion, the synthetic feature of
v
(b)
s is considered as one of the nodes in V(b)

k . Thus the influence of the synthetic feature is very
weak compared to the many observed similar features. To widely spread the synthetic feature, we
introduce the term ξsj,b/ξ

s
i,b, which strengthens a message passing from a feature of a node near v(b)s

to a feature of a node far from v
(b)
s . This term makes the synthetic feature spread widely compared

to observed features. The design goals of the two terms naturally combine through multiplication
in Eq. 7. ξ∗i,b is 1 for both v ∈ V(b)

k and x(b)s . However, ξsi,b is 1 for x(b)s while it is at most β for

v ∈ V(b)
k . Therefore, in the second stage diffusion, the synthetic feature has a greater influence than

observed features.

To construct a transition matrix, we prepare a row-stochastic matrix by normalizing M (b) to M
(b)

=

(D′(b))−1W (b) where D′(b) is a diagonal matrix with D
′(b)
ii =

∑
j Mi,j . Then, we replace the first

|V(b)
k∗ | rows in M with one-hot vectors representing V(b)

k∗ to preserve x
(b)
k∗ including x(b)s . By the

replacement, we obtain a DSF transition matrix M̃ (b) as follows:

M̃ (b) =

[
Ik∗k∗ 0k∗u∗

M
(b)

u∗k∗ M
(b)

u∗u∗

]
, (8)

where Ik∗k∗ ∈ R|V(b)

k∗ |×|V(b)

k∗ | is an identity matrix and 0k∗u∗ ∈ R|V(b)

k∗ |×|V(b)

u∗ | is a zero matrix.

We define diffusion with synthetic features (DSF) by
x̂(b)(t) = M̃ (b)x̂(b)(t− 1), t = 1, · · · ,K;

x̂(b)(0) =

[
x
(b)
k∗

0u∗

]
,

(9)
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Figure 3: Accuracy (%) on semi-supervised node classification tasks under structural-missing set-
ting with rm ∈ {0.5, 0.9, 0.995, 0.999}. Cases where accuracy cannot be measured due to out-of-
memory errors are not included.

where x̂(b)(t) denotes an imputed feature vector after t propagation steps and 0u∗ denotes a zero
vector of the same length as |V(b)

u∗ |. As K → ∞, x̂(b)(K) converges (see the proof in Appendix A).
With sufficiently large K, we approximate the steady state lim

t→∞
x̂(b)(t) to x̂(b)(K). We perform

DSF in the b-th channel for all b ∈ Fl and obtain {x̂(b)(K)}b∈Fl
. Since vectors in {x̂(b)(K)}b∈Fl

have different ordering from the original one, we restore ordering of all the vectors according to
the original order. To construct X̂ ∈ RN×F , we prepare X̃ ∈ RN×F from the pre-diffusion and
replace X̃:,b for all b ∈ Fl with the corresponding vector in {x̂(b)(K)}b∈Fl

. The feature matrix with
the replaced columns is X̂ , a final output of FISF. X̂ is fed to a GNN to perform a given task.

5 EXPERIMENTS

We perform comparative evaluation of FISF against state-of-the-art methods on two main graph
learing tasks: semi-supervised node classification and link prediction.

5.1 DATASETS AND BASELINES

Datasets. We conduct experiments on graph datasets from two different domains: citation networks
(Cora, CiteSeer, PubMed (Sen et al., 2008), and OGBN-Arxiv (Hu et al., 2020)) and recommenda-
tion networks (Photo and Computers (Shchur et al., 2018)) from Amazon. In the citation networks,
nodes and edges represent documents and citation links, respectively. In the case of recommenda-
tion networks, nodes represent goods and an edge connects two nodes only when the nodes (i.e.,
products) are frequently bought together. Further information on the datasets is in Appendix D.1.

Baselines. We compare FISF with LP (Zhuŕ & GhahramaniŕH, 2002) and five state-of-the-art meth-
ods for graph learning tasks with missing features. (1) LP that does not use any feature propagates
partially given labels for semi-supervised node classification. (2) GCNMF (Taguchi et al., 2021)
and (3) GRAFENNE (Gupta et al., 2023) are GNN architecture-based methods. (4) MEGAE (Gao
et al., 2023) is a reconstruction-based method. (5) FP (Rossi et al., 2022) and (6) PCFI (Um et al.,
2022) is diffusion-based methods. Since imputation methods (including MEGAE, FP, PCFI, and
FISF) combine with GNNs to perform downstream tasks, we commonly utilize vanilla GCN (Kipf
& Welling, 2016a) models for semi-supervised node classification. In link prediction, we commonly
utilize graph auto-encoder (GAE) models for the imputation methods.

5.2 EXPERIMENTAL SETUP

We follow the missing setting in Um et al. (2022). To evaluate models on graphs containing missing
features, we remove a fixed rate (e.g., 90%) of features in the datasets. A missing rate denoted as rm
represents the rate of feature removal. We fill the positions where features are removed with NaN
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Table 1: Performance on semi-supervised node classification tasks at rm = 0.995, measured in
accuracy (%). Standard deviation errors are given. OOM denotes an out-of-memory error.

Structural missing
Method CORA CITESEER PUBMED PHOTO COMPUTERS OGBN-ARXIV

Full features 81.87± 1.59 69.32± 0.57 77.45± 2.17 91.69± 0.78 86.19± 0.78 72.30± 0.10

LP 74.54± 1.79 65.42± 1.80 71.67± 4.94 82.27± 2.72 76.01± 1.84 67.56± 0.00
GCNMF 31.33± 2.73 24.84± 2.44 40.48± 0.53 25.60± 0.17 37.21± 0.08 9.00± 6.27
GRAFENNE 20.2± 10.98 17.58± 2.94 33.12± 2.43 21.10± 17.39 16.31± 11.84 13.66± 12.23
MEGAE 33.6± 5.04 29.61± 7.12 OOM 68.78± 2.48 51.07± 2.82 OOM
FP 71.86± 2.82 58.61± 1.74 71.96± 3.06 85.42± 3.16 76.62± 1.94 68.03± 0.52
PCFI 74.62± 1.78 66.06± 3.26 74.47± 2.54 87.49± 1.50 79.02± 1.22 68.78± 0.25

FISF 79.29± 1.72 69.68± 2.47 76.90± 1.50 88.22± 0.79 79.40± 1.11 69.92± 0.17

Uniform missing
Method CORA CITESEER PUBMED PHOTO COMPUTERS OGBN-ARXIV

Full features 81.87± 1.59 69.32± 0.57 77.45± 2.17 91.69± 0.78 86.19± 0.78 72.30± 0.10

LP 74.54± 1.79 65.42± 1.80 71.67± 4.94 82.27± 2.72 76.01± 1.84 67.56± 0.00
GCNMF 34.01± 8.08 29.71± 5.12 40.08± 0.45 25.59± 0.16 37.20± 0.08 5.86± 0.00
GRAFENNE 20.55± 13.65 19.32± 7.42 34.75± 4.26 29.96± 20.92 21.74± 15.94 15.52± 11.70
MEGAE 29.77± 0.42 26.10± 3.40 OOM 59.36± 3.01 42.32± 3.17 OOM
FP 77.58± 1.98 68.55± 2.33 72.62± 4.18 87.50± 1.49 80.75± 0.70 68.82± 0.07
PCFI 78.82± 1.48 68.94± 1.95 76.28± 2.52 88.09± 1.41 81.80± 0.71 69.26± 0.17

FISF 79.09± 1.73 69.52± 1.81 77.53± 1.28 88.32± 1.37 82.12± 0.51 69.81± 0.16

values. We remove features in the following two ways: structural missing and uniform missing.
First, in the case of structural missing, we randomly select nodes at a ratio of rm from entire nodes
and remove all the features of the selected nodes. Second, uniform missing removes randomly
selected feature values with a ratio of rm from a feature matrix X . We report average performance
(e.g., accuracy, ROC AUC, and AP) after five runs of experiments under a fixed setting. Therefore,
for each missing way, we randomly generate five different binary masks with the same size of X for
each dataset. These masks indicate the locations in X where features are missing.

For semi-supervised node classification tasks, we randomly create five different train-
ing/validation/test node splits for all the datasets except for OGBN-Arxiv which has a fixed split
according to the specific criteria. For link prediction tasks, we also randomly create five different
training/validation/test edge splits of each dataset. OGBN-Arxiv is excluded from the link predic-
tion tasks due to out-of-memory errors. Grid search is employed to tune α, β, and γ, the three
hyper-parameters of FISF. α and β are searched within {0.1, 0.3, 0.5, 0.7, 0.9}. γ is chosen from
{10, 30, 50, 70, 90}. For all the methods including FISF, we tune hyper-parameters based on vali-
dation sets. We utilize the publicly released code for all the baselines. All models are implemented
in Pytorch (Paszke et al., 2019) and Pytorch Geometric (Fey & Lenssen, 2019). Further implemen-
tation details including dataset splits, training details, and baseline implementations are provided in
Appendix D.2.

5.3 SEMI-SUPERVISED NODE CLASSIFICATION RESULTS

To investigate how rm affects semi-supervised node classification accuracy, we conduct experi-
ments by increasing rm while keeping all other settings fixed. Figure 3 demonstrates accuracy
under structural-missing settings with varying rm. The accuracy of LP remains consistent since
LP does not utilize features. For all methods except for LP, the accuracy tends to decrease as rm
increases. While diffusion-based imputation methods outperform the other methods, FP and PCFI
suffer performance degradation as rm increases. However, FISF shows robust performance despite
high rm regardless of the datasets. The performance gain of PCFI tends to increase as rm increases
and the gain is significant when rm ∈ {0.995, 0.999}. Note that FISF using only 0.1% of features
(i.e., rm = 0.999) performs similarly to or even outperforms FISF with full features on Cora, Cite-
Seer, and PubMed. Moreover, for rm ∈ {0.5, 0.9}, FISF improves the classification accuracy under
most missing settings.

We then conduct experiments to investigate how semi-supervised node classification accuracy varies
depending on the missing ways (structural and uniform missing) at the same rm = 0.995. Table 1
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Table 2: Performance on link prediction tasks at rm = 0.995, measured in ROC AUC score (%).
Standard deviation errors are given. The best result is highlighted in bold and underlined, while the
second-best result is highlighted only in bold. OOM denotes an out-of-memory error.

Structural missing
Method CORA CITESEER PUBMED PHOTO COMPUTERS

Full features 92.20± 0.96 90.55± 1.36 96.41± 0.25 95.70± 0.32 93.71± 0.65

GCNMF 67.44± 0.45 68.34± 1.79 87.20± 0.28 81.00± 0.25 82.92± 0.19
GRAFENNE 53.79± 5.26 62.96± 13.82 60.11± 6.10 66.44± 1.74 67.23± 1.71
MEGAE 67.13± 0.75 69.34± 2.46 OOM 86.53± 1.97 84.89± 1.77
FP 83.85± 1.32 79.83± 2.18 78.54± 1.13 94.25± 0.58 91.27± 0.71
PCFI 86.75± 0.84 79.38± 1.81 82.49± 0.82 96.65± 0.25 94.54± 0.37

FISF 87.26± 1.44 84.12± 1.17 83.19± 0.78 95.86± 0.21 94.70± 0.30
FISF+NIP 87.16± 1.46 84.20± 1.70 83.28± 0.42 96.35± 0.18 95.29± 0.32

Uniform missing
Method CORA CITESEER PUBMED PHOTO COMPUTERS

Full features 92.20± 0.96 90.55± 1.36 96.41± 0.25 95.70± 0.32 93.71± 0.65

GCNMF 63.46± 1.04 63.50± 3.40 81.73± 3.13 80.98± 0.17 82.95± 0.11
GRAFENNE 68.49± 17.00 61.38± 13.53 65.74± 11.32 68.53± 6.57 70.16± 4.12
MEGAE 65.86± 1.22 62.21± 3.18 OOM 84.25± 1.35 84.95± 2.20
FP 86.79± 1.36 81.55± 2.30 76.87± 2.89 95.96± 0.17 94.10± 0.33
PCFI 87.35± 1.28 82.33± 1.88 84.68± 0.75 97.05± 0.16 95.62± 0.24

FISF 87.44± 0.80 83.45± 2.53 85.33± 0.47 96.64± 0.18 95.13± 0.35
FISF+NIP 87.70± 0.77 82.53± 1.94 85.32± 0.48 96.67± 0.21 96.09± 0.24

summarizes the classification accuracy of FISF and the other methods. While most nodes have some
observed features in uniform-missing settings, (1−rm) of nodes do not have observed features at all
in structural-missing settings. Therefore, the performance of methods tends to be better in uniform-
missing settings than in structural-missing settings. For both missing ways, FISF outperforms the
state-of-the-art methods across all the datasets.

5.4 LINK PREDICTION RESULTS

Table 2 summarizes the ROC AUC score on link prediction tasks at rm = 0.995. (The AP com-
parison results are in Appendix E.1.) NIP denotes node-wise inter-channel propagation included
in PCFI (Um et al., 2022), which refines an output matrix from channel-wise diffusion. Since NIP
is effective in link prediction tasks, we demonstrate the ROC AUC score of FISF and FISF+NIP
(FISF followed by NIP). FISF and FISF+NIP achieve state-of-the-art performance in three and
four settings, respectively, out of 10 settings. Even in the remaining three settings, FISF+NIP still
demonstrates the second-best scores which are comparable with the best scores. That is, FISF and
FISF+NIP achieve strong performance across all five datasets regardless of missing ways. As high-
lighted scores in Table 2 shows, FISF demonstrates its effectiveness on link prediction tasks with
missing features.

6 CONCLUSION

In this paper, we propose a novel scheme called Feature Imputation with Synthetic Features (FISF)
for graph feature imputation. FISF consists of two diffusion stages: pre-diffusion and diffusion
with synthetic features (DSF). The pre-diffusion stage outputs a pre-imputed feature matrix and then
feature variances of channels are calculated using the pre-imputed matrix. After generating synthetic
features in low-variance channels, DSF spreads these synthetic features widely by utilizing distance
encoding, resulting in the final imputed feature matrix. Through extensive experiments on both semi-
supervised node classification and link prediction, we demonstrate that FISF outperforms existing
methods handling graph learning tasks with missing features. FISF can extend its applicability to
hypergraphs and heterogeneous through clique expansion and meta-paths, repectively. We leave the
extension of FISF as future work.
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A PROOF OF CONVERGENCE OF DIFFUSION STAGES

Our FISF consists of two diffusion stages: pre-diffusion and DSF. Both stages utilize row stochastic
transition matrices for diffusion. We prove the convergence of the two diffusion stages as follows.

Proposition 1. The pre-diffusion transition matrix for the a-th channel is defined by

W̃ (a) =

[
Ikk 0ku

W
(a)

uk W
(a)

uu

]
,

where W̃ (a) is a row-stochastic. Using W̃ (a), the pre-diffusion in the a-th channel is defined by

x̃(a)(t) = W̃ (a)x̃(a)(t− 1), t = 1, · · · ,K;

x̃(a)(0) =

[
x
(a)
k
0u

]
,

Then, lim
K→∞

x̃(a)(K) converges.

The proof of Propostion 1 refers to Um et al. (2022). After we establish the convergence of pre-
diffusion, we demonstrate that this proof extends to cover the convergence of DSF. To start, we
introduce two lemmas.

Lemma 1. W
(a)

is the row-stochastic matrix calculated by W
(a)

= (D(a))−1W (a) where D(a)

is a diagonal matrix that has diagonal entities D
(a)
ii =

∑
j Wi,j . W

(a)

uu is the |x̂(a)
u | × |x̂(a)

u |
bottom-right submatrix of W

(a)
and let ρ(·) denote spectral radius. Then, ρ(W

(a)

uu ) < 1.

Proof. Consider W
(a)

uu0 ∈ RN×N , where the bottom right submatrix is denoted as W
(a)

uu and all the
other elements are zero. That is,

W
(a)

uu0 =

[
0kk 0ku

0uk W
(a)

uu

]
where 0kk ∈ {0}|x̂

(a)
k |×|x̂(a)

k |, 0ku ∈ {0}|x̂
(a)
k |×|x̂(a)

u |, and 0uk ∈ {0}|x̂(a)
u |×|x̂(a)

k |. Given that W
(a)

represents the weighted adjacency matrix of the connected graph G, W
(a)

uu0 ≤ W
(a)

element-wisely

and W
(a)

uu0 ̸= W
(a)

. Furthermore, considering that W
(a)

uu0 + W
(a)

constitutes the weighted ad-

jacency matrix of a strongly connected graph, we can conclude that W
(a)

uu0 + W
(a)

is irreducible
based on Theorem 2.2.7 in Berman & Plemmons (1994). Consequently, applying Corollary 2.1.5 in
Berman & Plemmons (1994), ρ(W

(a)

uu0) < ρ(W
(a)

). Since the spectral radius of a stochastic matrix

is one according to Theorem 2.5.3 in Berman & Plemmons (1994), we have ρ(W
(a)

) = 1. More-

over, since both W
(a)

uu0 and W
(a)

uu share the same non-zero eigenvalues, it follows that ρ(W
(a)

uu0) =

ρ(W
(a)

uu ). Ultimately, this leads to the conclusion that ρ(W
(a)

uu ) = ρ(W
(a)

uu0) < ρ(W
(a)

) = 1.

Lemma 2. Iuu −W
(a)

uu is invertible where Iuu is the |x̂(a)
u | × |x̂(a)

u | identity matrix.

Proof. Since 1 is not an eigenvalue of W
(a)

uu by Lemma 1, 0 is not an eigenvlaue of Iuu − W
(a)

uu .

Thus Iuu −W
(a)

uu is invertible.

We now prove Propostion 1 as follows.

Proof. Unfolding the recurrence relation gives us

x̂(a)(t) =

[
x̂
(a)
k (t)

x̂
(a)
u (t)

]
=

[
Ikk 0ku

W
(a)

uk W
(a)

uu

] [
x̂
(a)
k (t− 1)

x̂
(a)
u (t− 1)

]
=

[
x̂
(a)
k (t− 1)

W
(a)

uk x̂
(a)
k (t− 1) +W

(a)

uu x̂
(a)
u (t− 1)

]
.
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Since x̂
(a)
k (t) = x̂

(a)
k (t − 1) in the first |x̂(a)

k | rows, it follows that x̂(a)
k (K) = . . . = x̂

(a)
k . That is,

x̂
(a)
k (K) retains the values of x(a)

k . Therefore, lim
K→∞

x̂
(a)
k (K) converges to x

(a)
k .

Now, we focus solely on the convergence of lim
K→∞

x̂
(a)
u (K). When we unroll the recursion for the

last |x̂(a)
u | rows,

x̂(a)
u (K) = W

(a)

uk x
(a)
k +W

(a)

uu x̂
(a)
u (K − 1)

= W
(a)

uk x
(a)
k +W

(a)

uu (W
(a)

uk x
(a)
k +W

(a)

uu x̂
(a)
u (K − 2))

= . . .

= (

K−1∑
t=0

(W
(a)

uu )
t)W

(a)

uk x
(a)
k + (W

(a)

uu )
K x̂(a)

u (0)

By Lemma 1, lim
K→∞

(W
(a)

uu )
K = 0. Therefore, lim

K→∞
(W

(a)

uu )
K x̂

(a)
u (0) = 0, regardless of the initial

state for x̂(a)
u (0). (we replace x̂

(a)
u (0) with a zero column vector for simplicity.) Hence, our focus

shifts to lim
K→∞

(
∑K−1

t=0 (W
(a)

uu )
t)W

(a)

uk x
(a)
k .

Given that Lemma 1 establishes ρ(W
(a)

uu ) < 1, and Lemma 2 affirms the invertibility of (Iuu −
W

(a)

uu )
−1, the geometric series converges as follows

lim
K→∞

x̂(a)
u (K) = lim

K→∞
(

K−1∑
t=0

(W
(a)

uu )
t)W

(a)

uk x
(a)
k = (Iuu −W

(a)

uu )
−1W

(a)

uk x
(a)
k .

In conclusion, the recursion in the pre-diffusion converges.

In the case of DSF, the DSF transition matrix M̃ (b) in Eq. 8 is also row stochastic. The distinction
between W̃ (a) and M̃ (b) lies solely in the number of channels where diffusion is performed and the
sizes of each sub-matrix. Therefore, the convergence of the DSF can also be established through the
proof of Proposition 1.

B PROOF OF THE PROPOSITION IN SEC 4.3

We refer to the proposition in Section 4.3 as Proposition 2.

Proposition 2. In pre-diffusion (channel-wise inter-node diffusion (Um et al., 2022)), when all given
known features in the a-th channel (i.e., elements in x

(a)
k ) have the same value c, lim

t→∞
x̃(a)(t)

becomes a vector where entire elements are equal to c.

Proof. In accordance with the given assumption, entire elements in x
(a)
k have the value of c. Here,

we can initialize x̂(a)(0) with the same values as c. According to the proof of Proposition 1,

lim
K→∞

x̂
(a)
u (K) = (Iuu − W

(a)

uu )
−1W

(a)

uk x
(a)
k and x̂

(a)
k (K) = x

(a)
k . This means that initializing

x̂(a)(0) with the values of c does not affect the final output, lim
K→∞

x̂(a)(K). Formally, pre-diffusion

of which steady state is the same as that of Eq. 5 can be expressed as follows:

x̃(a)(t) = W̃ (a)x̃(a)(t− 1), t = 1, · · · ,K;

x̃(a)(0) =

[
ck
cu

]
,

(10)

where ck and cu are column vectors with lengths of |V(a)
k | and |V(a)

u |, respectively, filled only with
the value c.
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Since W̃ (a) is row stochastic,
∑K−1

j=0 W̃
(a)
i,j = 1 for all i ∈ {1, . . . , N}. Therefore, in Eq. 10 , the i-

th element in x̃(a)(1) is calculated as
∑K−1

j=0 W̃
(a)
i,j ·c = c ·

∑K−1
j=0 W̃

(a)
i,j = c for all i ∈ {1, . . . , N}.

That is, x̃(a)(1) is filled only with the value c, which is the same as x̃(a)(0). Thus, even if this

recursion repeats, x̃(a)(t) remains the same as
[
ck
cu

]
, which results in lim

t→∞
x̃(a)(t) =

[
ck
cu

]
where

entire elements are equal to c.

C ADDITIONAL EXPERIMENTS

C.1 ABLATION STUDY

Table 3: Ablation study of FISF. SS node classification denotes semi-supervised node classification.
# denotes the number of synthetic features injected into a low-variance channel. * denotes the
optimal hyper-parameter at the setting.

Task SS node classification Link prediction
Dataset Cora CiteSeer

# β γ ACC AUC AP
1 1 0 74.62± 1.78 79.38± 1.81 82.98± 0.86
1 1 100 78.50± 1.91 83.63± 1.69 85.42± 1.79
1 1 * 78.52± 1.94 83.46± 1.84 85.32± 1.59
1 * 100 78.78± 1.51 58.67± 13.44 60.27± 14.40
2 * * 78.88± 1.91 82.11± 2.43 83.61± 2.50
1 * * 79.29± 1.72 84.12± 1.17 85.85± 1.38

We conduct an ablation study to investigate the effectiveness of the elements in FISF. We per-
form both semi-supervised node classification and link prediction. For ablation study on semi-
supervised node classification, we conduct experiments on Cora under a structural-missing setting
with rm = 0.995. For link prediction, we utilize CiteSeer under a structural-missing setting with
rm = 0.995. β takes a role in spreading synthetic features widely and γ implies the ratio of selected
low-variance channels to diffuse with synthetic features. Table 3 demonstrates the results of the
ablation study. The results show that the performance gain by introducing synthetic features (i.e.,
γ ̸= 0) is significant. The optimal β and the optimal γ synergistically enhance the performance,
resulting in considerable improvements. The bottom two rows in Table 3 demonstrate that injecting
two synthetic features into row-variance channels leads to degradation in performance. This shows
the validity of injecting a single synthetic feature into a low-variance channel.

Figure 4: Semi-supervised node classification accuracy with different β and γ. The blue dashed
lines indicate existing state-of-the-art performance.

We further analyze the effect of β and γ on Cora under a structural missing settings with rm =
0.995. Figure 4 shows the accuracy of FISF models with different β and γ. A small β results in
the performance degradation. This is because too small β assigns excessive influence to synthetic
features, which hinders the spread of known features. We can observe significant performance
improvement by introducing with small γ.
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C.2 HYPERPARAMETER SEARCH FOR FISF

Despite the outperforming performance of FISF, conducting a hyperparameter search for FISF with
three hyperparameters (α, β, and γ) can be burdensome in certain situations. However, both α and
β (0 < α, β < 1) play a shared role in a base of distance during calculating PC (i.e. ξ∗i,b = αS∗

i,b

and ξsi,a = βSs
i,a ). Thus we can combine them into one, i.e., α = β. By doing this, the search

complexity can be reduced from 53 to 52 without the performance degradation by setting five search
points for each hyperparameter. Table 4 and Table 5 show that the FISF* with the light search does
not degrade performance on semi-supervised node classification and link prediction. The version
with the light search requires from 20 minutes to 10 hours depending on the datasets, therefore this
burden is manageable for practical usage of FISF.

Table 4: Performance on semi-supervised node classification tasks at rm = 0.995, measured in
accuracy (%).

Structural missing
Method CORA CITESEER PUBMED PHOTO COMPUTERS OGBN-ARXIV Average

FISF 79.29± 1.72 69.68± 2.47 76.90± 1.50 88.22± 0.79 79.40± 1.11 69.92± 0.17 77.24
FISF* 78.68± 1.72 69.68± 2.47 76.74± 1.84 88.22± 0.79 79.40± 1.11 69.92± 0.17 77.11

Uniform missing
Method CORA CITESEER PUBMED PHOTO COMPUTERS OGBN-ARXIV Average

FISF 79.09± 1.73 69.52± 1.81 77.53± 1.28 88.32± 1.37 82.12± 0.51 69.81± 0.16 77.73
FISF* 79.09± 1.73 69.52± 1.81 76.89± 2.01 88.32± 1.37 81.56± 0.47 69.81± 0.16 77.53

Table 5: Performance on link prediction tasks at rm = 0.995, measured in ROC AUC score (%).
Structural missing

Method CORA CITESEER PUBMED PHOTO COMPUTERS Average

FISF 87.26± 1.44 84.12± 1.17 83.19± 0.78 95.86± 0.21 94.70± 0.30 89.03
FISF* 86.80± 1.27 84.12± 1.17 82.46± 0.94 95.76± 0.33 94.39± 0.82 88.70

Uniform missing
Method CORA CITESEER PUBMED PHOTO COMPUTERS Average

FISF 87.44± 0.80 83.45± 2.53 85.33± 0.47 96.64± 0.18 95.13± 0.35 89.60
FISF* 87.56± 1.29 81.15± 1.17 82.46± 0.69 95.68± 0.42 94.94± 0.27 88.36

C.3 CONTRIBUTION OF LOW-VARIANCE CHANNELS IN DOWNSTREAM TASKS

Figure 5: Accuracy (%) on semi-supervised node classification tasks while increasing the proportion
of excluded channels from the original feature matrix.

In order to experimentally confirm little contribution of low-variance channels in downstream tasks,
we compare performance by excluding partial channels from the original feature matrix using two
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different ways. The first way (red lines in Figure 5 and Figure 6) is excluding channels in descending
order of variance, starting from the highest, based on a fixed proportion. Then, as the second way
(blue lines), we exclude channels from the lowest variance in ascending order, i.e., the low-variance
channels are removed first.

Figure 5 demonstrates the results on semi-supervised node classification tasks. Since a low-variance
channel contains nearly identical values that do not aid in distinguishing nodes, the classification
accuracy denoted by blue lines persists despite an increasing removal proportion of low-variance
channels. However, cases of channel removal from the highest variance suffer significant perfor-
mance degradation even with low proportion of channel removal.

Figure 6: ROC AUC score (%) on link prediction tasks while increasing the proportion of excluded
channels from the original feature matrix.

As shown in Figure 6, little contribution of low-variance channels is also evident in link prediction
tasks. Since identical representations among nodes results in consistent representations across node
pairs, low-variance channels also contribute very little to performance in link prediction tasks.

C.4 DISCUSSION ON SMOOTHNESS

Table 6: log(ED) of imputed features under a structural-missing setting with rm = 0.995, where
ED is the Dirichlet energy. Original denotes original given features.

Missing way Structural Uniform
Method ↓ CORA CITESEER PUBMED CORA CITESEER PUBMED
Original 4.36 4.49 3.11 4.36 4.49 3.11
FP 1.90 1.94 0.798 1.89 1.91 0.805
PCFI 3.14 2.59 1.49 2.52 2.64 1.43
FISF (Ours) 3.25 2.92 4.15 2.69 2.70 4.34

We generate a synthetic feature in a low-variance channel in order to make features in that channel
distinctive across nodes. To investigate smoothness (feature homophily), we compare the smooth-
ness of output features obtained through imputation methods. For this comparison, we employ
Dirichlet energy, a representative criterion for measuring smoothness on a graph. As shown in Ta-
ble 6, FP displays the lowest Dirichlet energy among the imputation methods. In contrast, FISF
makes Dirichlet energy of the imputed features similar to that of the original features. Note that
our FISF shows the highest Dirichlet energy (distinctiveness) among the methods. Through the out-
performing performance of FISF over the existing methods, we can confirm that features with low
dirichlet energy (high feature homophily) does not always ensure good performance in downstream
tasks while smoothness is an inductive bias of GNNs.

Table 7: Average cosine similarity of imputed features by FISF, under a structural-missing setting
with rm = 0.995.

Dataset Inter-class Intra-class Ratioclass 1 class 2 class 3 class 4 class 5 class 6 class 7 Average
Cora 0.760 0.858 0.902 0.902 0.844 0.691 0.826 0.870 0.842 1.11
CiteSeer 0.279 0.267 0.341 0.636 0.282 0.513 0.380 - 0.403 1.45
PubMed 0.871 0.893 0.936 0.880 - - - - 0.903 1.04
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Table 8: Average cosine similarity of original features.

Dataset Inter-class Intra-class Ratioclass 1 class 2 class 3 class 4 class 5 class 6 class 7 Average
Cora 0.0578 0.841 0.113 0.0896 0.683 0.0690 0.0853 0.109 0.0883 1.53
CiteSeer 0.0470 0.655 0.0601 0.0617 0.0650 0.762 0.0581 - 0.0644 1.37
PubMed 0.0719 0.112 0.937 0.0779 - - - - 0.0946 1.32

To investigate smoothness within classes, we conduct further experiments. Table 7 demonstrates
the intra-class cosine similarity calculated from imputed features by FISF. Ratio denotes average
similarity/inter-class similarity. If Ratio is greater than 1, inter-class similarity becomes less than
the average intra-class similarity, which means the feature is distinctive enough for classification of
node features.

Table 8 shows the intra-class cosine similarity calculated from original features. The results indicate
that original features also have values of Ratio greater than 1 across the datasets. This means that
the datasets also originally have higher intra-class feature similarity compared to inter-class feature
similarity. Despite the introduction of synthetic features during diffusion, as shown in Table 7, we
can observe that imputed features by our scheme consistently maintains higher intra-class feature
similarity than inter-class feature similarity.

We also perform qualitative analysis on imputed features and deep features to compare imputation
methods. The qualitative analysis is conducted in structural missing settings with rm = 0.995.
Figure 7 and Figure 8 demonstrates the t-SNE plots visualizing imputed features and deep features,
respectively. FISF provides clearer cluster structures for both imputed features and deep features
than the other imputation methods.

Figure 7: t-SNE plot visualizing imputed features.
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Figure 8: t-SNE plot visualizing deep features in GCN.

C.5 FASTFISF

Table 9: Performance on semi-supervised node classification tasks at rm = 0.995, measured in
accuracy (%). FastFISF denotes FISF using FP instead of PCFI for pre-diffusion.

Structural missing
Method CORA CITESEER PUBMED PHOTO COMPUTERS OGBN-ARXIV Average

FISF 79.29± 1.72 69.68± 2.47 76.90± 1.50 88.22± 0.79 79.40± 1.11 69.92± 0.17 77.24
FastFISF 78.94± 1.92 69.42± 1.44 77.14± 0.94 88.10± 1.38 79.09± 1.42 69.53± 0.21 77.04

Uniform missing
Method CORA CITESEER PUBMED PHOTO COMPUTERS OGBN-ARXIV Average

FISF 79.09± 1.73 69.52± 1.81 77.53± 1.28 88.32± 1.37 82.12± 0.51 69.81± 0.16 77.73
FastFISF 79.29± 1.84 69.39± 1.57 77.41± 1.77 88.03± 1.46 81.70± 0.54 69.45± 0.18 77.55

We can utilize not only channel-wise inter-node diffusion in PCFI but also FP for pre-diffusion. We
define FISF using FP for pre-diffusion as FastFISF that can be efficient by using FP without calcula-
tion of shortest path distance. Table 9 demonstrates the results of FastFISF compared to the original
FISF on semi-supervised node classification tasks. For not low-variance channels, features obtained
via pre-diffusion are preserved until diffusion with synthetic features ends. Therefore, since PCFI
outperforms FP in terms of performance in downstream tasks, FISF shows slightly better perfor-
mance than FastFISF in most cases. However, since the performance of FastFISF is comparable to
FISF, FastFISF can be a fast variant of FISF without significant performance loss.

C.6 COMPLEXITY ANALYSIS

Here we discuss the complexity of FISF which involves two diffusion stages: pre-diffusion and
diffusion with synthetic features. FISF takes O(|E| + (1 + γF )N2) time under structural-missing
settings. Under uniform-missing settings, FISF takes O(|E|+ (1 + γ)FN2) time.

We observe that the majority of the computation time in FISF is consumed by employing Dijk-
stra’s algorithm to calculate shortest path distance for each channel. The time complexity of Dijk-
stra’s algorithm is O(N2). In pre-diffusion under structural missing settings, Dijkstra’s algorithm is
once utilized since nodes with observed features are equal across all the channels. However, under
uniform-missing settings, the time complexity of pre-diffusion increases to O(N2F ), considering
the use of Dijkstra’s algorithm across all channels.
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Table 10: Training time of methods. OOM denotes an out-of-memory error.
Missing way structural uniform
Method Cora PubMed Cora PubMed
GCNMF 10.3s 19.4s 9.87s 28.3s
GRAFENNE 47.9s 74.7s 51.1s 74.0s
MEGAE 1753s OOM 1801s OOM
FP 2.36s 3.12s 2.25s 2.90s
PCFI 2.45s 3.23s 11.1s 34.1s
FastFISF 13.4s 34.6s 11.8s 42.5s
FISF 13.4s 34.8s 17.6s 78.2s

In Appendix C.5, we conduct experiments with FastFISF which is a fast variant of FISF. To address
the increasing time complexity in uniform-missing settings, we can employ FastFISF where the time
complexity is O(|E|+ γFN2) regardless of missing way. Therefore, to address the increasing time
complexity of FISF in uniform-missing settings, we can employ FastFISF, accompanied by only a
slight performance loss.

Table 10 demonstrates the training time of methods. FP has the lowest training time among the
methods. However, FISF brings great performance improvement compared to FP. For instance, in
structural-missing setups with rm = 0.995, FISF achieves significant gains in node classification
accuracy over FP, showing improvements of 7.43% and 4.94% on Cora and PubMed, respectively.
We can further confirm that FastFISF significantly decrease the training time in uniform-missing
settings.

C.7 DISCUSSION ON JUSTIFICATION OF SYNTHETIC FEATURE INJECTION

Figure 9: Diffusing a synthetic feature for each low-variance channels results in distinctive imputed
features across nodes.

In low-variance channels, all missing features are filled with nearly the same values regardless of
connectivity, which can not provide any structural information. In contrast, in our scheme, for each
low-variance channel, the synthetic feature diffuses its value to its surroundings and creates a local
spike centered on the node with the synthetic features. Each node has larger differences in values
from the synthetic feature as the distance from the central node increases. If we inject one synthetic
feature into each low variance channel, but place it at a different location for each channel. Then the
diffused node feature vector containing every low-variance channel feature after diffusion becomes
distinctive from those of the other nodes by reflecting the graph structure. Figure 9 illustrates a
visualization of the distinctiveness of the diffused feature vector by our scheme.
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D EXPERIMENTAL DETAILS

D.1 DATASET DETAILS

Table 11 summarizes the dataset statistics. All the datasets used in this paper are provided in Pytorch
Geometric. Following Rossi et al. (2022) and Um et al. (2022), we conduct all experiments on the
largest connected graph of each dataset. FISF can also handle disconnected graphs by working on
each connected graph.

Table 11: Dataset statistics.
Dataset #Nodes #Edges #Features #Classes

CORA 2,485 5,069 1,433 7
CITESEER 2,120 3,679 3,703 6
PUBMED 19,717 44,324 500 3
PHOTO 7,487 119,043 745 8

COMPUTERS 13,381 245,778 767 10
OGBN-ARXIV 169,343 1,166,243 128 40

D.2 IMPLEMENTATION DETAILS

We conduct all the experiments on a single NVIDIA GeForce RTX 2080 Ti GPU and an Intel Core
I5-6600 CPU @ 3.30 Hz.

Semi-supervised node classification. We randomly create 5 different training/validation/test node
splits for each dataset except for OGBN-Arxiv. (The node split of OGBN-Arxiv is fixed according
to published years of papers (i.e., nodes).) Following the splits in Klicpera et al. (2019), we assign
20 nodes per class as training nodes. Subsequently, the number of validation nodes is adjusted to
ensure that when combined with the training nodes, it totals 1, 500. For test nodes, we include all
nodes except those designated as training or validation nodes.

Vanilla GCN models for imputation methods (MEGAE (Gao et al., 2023), FP (Rossi et al., 2022),
PCFI (Um et al., 2022), and our FISF) and GCNMF models are trained as follows. We utilize Adam
optimizer (Kingma & Welling, 2013) and set the maximum number of epochs to 10, 000. We use
an early stopping strategy based on validation accuracy, with a patience of 200 epochs. We apply
dropout (Srivastava et al., 2014) with the drop probability p. p and learning rates in all experiments
are searched in {0, 0.25, 0.5} and {0.01, 0.005, 0.001, 0.0001}, respectively, using grid search on
validation sets. We train GRAFENNE models by following the training details specified in Gupta
et al. (2023).

For all the baselines, we follow all the hyperparameters specified in the original papers or codes. If
hyperparameters (specifically, hidden dimension and the number of layers) for a specific dataset are
not clarified in the papers, we perform a hyperparameter search using a grid search approach. The
search ranges of hidden dimension and the number of layers are {16, 32, 64, 128, 256} and {2, 3},
respectively.

Link prediction. We randomly create 5 different training/validation/test edge splits for each dataset.
For each split, as the splits in Kipf & Welling (2016b), we assign 10% edges for the training set, 5%
edges for the validation set, and 85% edges for the test set.

For GAE models for the imputation methods, we commonly train the models as follows. We
use Adam optimizer and set the number of epochs to 200. Learning rates are searched from
{0.01, 0.005, 0.001, 0.0001} by grid search on validation sets. Following Kipf & Welling (2016b),
Taguchi et al. (2021), and Um et al. (2022), we leverage GAE models with 32-dimensional hidden
layer and 16-dimensional latent variables.

FISF implementation. For semi-supervised node classification tasks, we set the number of layers
and learning rates to 64 and 0.005, respectively. For link prediction tasks on Cora, CiteSeer, and
PubMed, we set learning rates to 0.01. We set learning rates to 0.001 for Photo and Computers. In
all experiments, we fix K to 100 and dropout is applied with p = 0.5. In the case of experiments
on OGBN-Arxiv, following FP (Rossi et al., 2022) and PCFI (Um et al., 2022), we leverage GCN
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Table 12: FISF hyper-parameters used in experiments on semi-supervised node classification tasks.
Missing way Structural missing Uniform missing

rm 0.5 0.9 0.995 0.999 0.995
Datasets α β γ α β γ α β γ α β γ α β γ
CORA 0.7 0.9 50 0.9 0.7 90 0.9 0.7 90 0.9 0.9 90 0.9 0.9 70

CITESEER 0.7 0.7 30 0.9 0.5 50 0.9 0.9 90 0.9 0.9 90 0.9 0.9 30
PUBMED 0.9 0.7 70 0.9 0.5 10 0.9 0.5 90 0.9 0.5 90 0.9 0.5 90
PHOTO 0.5 0.7 90 0.1 0.9 70 0.1 0.1 70 0.1 0.1 50 0.1 0.1 30

COMPUTERS 0.1 0.1 90 0.1 0.7 50 0.1 0.1 50 0.1 0.1 90 0.1 0.5 50
OGBN-ARXIV 0.3 0.3 10 0.1 0.3 30 0.1 0.1 90 0.1 0.1 70 0.1 0.1 90

Table 13: FISF hyper-parameters used in experiments on link prediction tasks.
Missing way Structural missing Uniform missing

rm 0.995 0.995
Datasets α β γ α β γ

Cora 0.5 0.9 90 0.3 0.9 10
CiteSeer 0.9 0.9 90 0.1 0.7 10
PubMed 0.1 0.3 70 0.1 0.5 90

Computers 0.1 0.9 10 0.1 0.9 70
Photo 0.1 0.7 10 0.1 0.7 10

layers with skip connections (Xu et al., 2018) and set the hidden dimension to 256. Hyperparamters
(α, β, and γ) of FISF used in experiments are summarized in Table 12 and Table 13. We will release
the code upon publication.

Baselines implementation. For LP, we use codes implemented in Pytorch Geometric (Fey &
Lenssen, 2019). The hyperparameter α of LP is searched from {0..95, 0.9, 0.8, 0.7, . . . , 0.1}. For
the baselines except for LP, we use code released by the authors of papers. The URL links for the
baselines are given in Table 14.

Table 14: URL links for baselines.
Baseline URL link

GCNMF https://github.com/marblet/GCNmf
GRAFENNE https://github.com/data-iitd/Grafenne
MEGAE https://github.com/zqgao22/max-entropy-gae
FP https://github.com/twitter-research/feature-propagation
PCFI https://github.com/daehoum1/pcfi
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E ADDITIONAL EXPERIMENTAL RESULTS

E.1 AP RESULTS ON LINK PREDICTION

Table 15: Performance on link prediction tasks at rm = 0.995, measured in AP (%). Standard
deviation errors are given. The best result is highlighted in bold and underlined, while the second-
best result is highlighted only in bold. OOM denotes an out-of-memory error.

Structural missing
Method CORA CITESEER PUBMED PHOTO COMPUTERS

Full features 92.62± 1.13 91.60± 1.44 96.59± 0.32 95.24± 0.39 93.77± 0.61

GCNMF 70.20± 0.80 69.19± 1.78 86.20± 0.32 80.58± 0.28 83.34± 0.17
GRAFENNE 64.70± 3.76 72.08± 9.71 70.43± 3.74 64.78± 0.84 66.56± 1.14
MEGAE 69.78± 0.78 70.85± 2.92 OOM 86.46± 1.65 86.12± 1.13
FP 86.40± 1.26 82.61± 1.96 83.98± 0.79 93.74± 0.57 91.50± 0.56
PCFI 88.63± 0.90 82.98± 0.86 87.07± 0.42 96.31± 0.25 94.58± 0.37

FISF 88.81± 1.35 85.85± 1.38 87.55± 0.35 95.33± 0.22 94.71± 0.26
FISF+NIP 89.35± 1.24 85.25± 1.85 87.62± 0.12 95.95± 0.18 95.41± 0.33

Uniform missing
Method CORA CITESEER PUBMED PHOTO COMPUTERS

Full features 92.62± 1.13 91.60± 1.44 96.59± 0.32 95.24± 0.39 93.77± 0.61

GCNMF 64.21± 2.01 65.06± 2.67 82.64± 2.17 80.61± 0.20 83.38± 0.12
GRAFENNE 75.04± 13.33 71.39± 9.71 73.56± 5.77 68.36± 7.71 69.79± 5.81
MEGAE 67.98± 1.85 63.67± 2.89 OOM 83.22± 1.48 85.11± 2.00
FP 88.67± 1.26 85.39± 1.89 82.99± 2.14 95.51± 0.19 94.06± 0.27
PCFI 89.13± 1.06 85.47± 1.82 88.20± 0.38 96.87± 0.20 95.55± 0.32

FISF 89.16± 0.77 85.17± 2.00 88.73± 0.36 96.27± 0.23 95.12± 0.32
FISF+NIP 89.23± 0.89 84.73± 2.00 88.72± 0.36 96.32± 0.26 96.12± 0.30

E.2 DISTRIBUTIONS OF FEATURE VARIANCES ON CORA

Figure 10: Distributions of variances for each feature channel on Cora dataset with 90%/99.5%
missing features. FP and PCFI generates output matrices with many low-variance channels outlined
in red, whereas FISF resolves the issue of low-variance channels.
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E.3 ZERO INITIALIZATION VS RANDOM INITIALIZATION

Figure 11: Distributions of variances for each feature channel with zero/random initialization for
missing features. Cora dataset with 99.5% missing features is commonly used.
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