On the Design of KL-Regularized Policy
Gradient Algorithms for LLM Reasoning

Yifan Zhang*!'? Yifeng Liu*! Huizhuo Yuan! Yang Yuan3*
Quanquan Gu'? Andrew Chi-Chih Yao31

!'University of California, Los Angeles 2Princeton University
31I1S, Tsinghua University ~ “Shanghai Qi Zhi Institute

Abstract

Policy gradient algorithms have been successfully applied to enhance the reasoning
capabilities of large language models (LLMs). KL regularization is ubiquitous,
yet the design surface, choice of KL direction (forward vs. reverse), normalization
(normalized vs. unnormalized), and estimator (k1 /k2/ks), is scattered across the
literature and often intertwined with off-policy estimation. We ask a focused
question: under the off-policy setting, what weighting is required for each KL
variant so that the surrogate we optimize yields the exact gradient of the intended
KL-regularized objective? We answer this with a compact, unified derivation we
call the Regularized Policy Gradient (RPG) view. RPG (i) unifies normalized and
unnormalized KL variants and shows that the widely-used k3 penalty is exactly the
unnormalized KL; (ii) specifies conditions under which REINFORCE-style losses
with stop-gradient are gradient-equivalent to fully differentiable surrogates; (iii)
identifies and corrects an off-policy importance-weighting mismatch in GRPO’s
KL term; and (iv) introduces RPG-Style Clip, a clipped-importance-sampling
step within RPG-REINFORCE that enables stable, off-policy policy-gradient
training at scale. On mathematical reasoning benchmarks (AIME24, AIME25),
RPG-REINFORCE with RPG-Style Clip improves accuracy by up to +6 absolute
percentage points over DAPO. Notably, RPG is a stable and scalable RL algorithm
for LLM reasoning, realized via (a) a KL-correct objective, (b) clipped importance
sampling, and (c) an iterative reference-policy update scheme.
Project Page: https://github.com/complex-reasoning/RPG

1 Introduction

Reinforcement learning (RL), particularly policy gradient (PG) methods, provides a powerful frame-
work for solving sequential decision-making problems in complex environments. These methods
have been successfully applied in diverse domains, ranging from robotics to game playing, and have
recently become instrumental in fine-tuning large language models (LLMs) to align with human
preferences and instructions [Ouyang et al., 2022] and enhancing the reasoning capabilities of LLMs
[Shao et al., 2024, Guo et al., 2025]. Classical PG algorithms like REINFORCE [Williams, 1992]
optimize policies directly but often suffer from high gradient variance. Advanced methods like
Proximal Policy Optimization (PPO) [Schulman et al., 2017] improve stability and sample efficiency,
enabling large-scale applications, often by operating in an off-policy manner and employing tech-
niques like training critic models for the estimation of value functions. Our theme in this paper is
stability and scalability: which design choices in KL-regularized PG matter for robustness under
off-policy sampling, and practical throughput on modern LLM stacks?

A crucial technique for stabilizing policy optimization, especially when deviating from strictly on-
policy updates or aiming to control policy complexity, is regularization. Kullback-Leibler (KL)

*Equal contribution; fCorresponding authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AL

https://github.com/complex-reasoning/RPG

Goal: Stable and Scalable LLM Reasoning

T

RPG Core Engine

1. Construct J(6)) =E_¢[R] — 8- KL
o

2. Derive Ve J(01))

3. Formulate Surrogate Loss £(6("))
(t+1)
0

Inputs (Iteration ¢):

Current Policy /)

Reference wg“é

Rewards R(z

Outputs:

(t+1)

Updated Policy 7,

4. Optimize to get 7,

- ! S Update for next it-
eration (t + 1):

(t+1)
Totd

(t+1)
— Ty

Key Design Qonﬁguraﬁon

1. KL Divergence Type: 2. KL Form: 3. Loss Estimator:
« Forward KL(moiq||ms) + Normalized « Fully Differentiable
* Reverse KL(mg||moid) « Unnormalized (UKL / k3) + REINFORCE-style

Figure 1: Overview of the iterative Regularized Policy Gradient (RPG) framework proposed in this

work. At each iteration ¢, the central RPG Core Engine processes inputs: the current policy 7r((9t) ,a

. t . ., . .
reference policy 7r((ﬂd), and associated rewards R(x). The engine’s operation encompasses four main

steps: (1) constructing the KL-regularized objective J (60 (t)), which combines the expected reward
with a KL divergence term; (2) deriving the off-policy policy gradient V) J(6®)); (3) formulating

a corresponding surrogate loss function £(6 (t)); and (4) optimizing the policy parameters to yield an

updated policy Wét+1), aimed at enhancing LLM reasoning capabilities. The specific behavior of the

RPG Core Engine is configured by three key design choices: (i) the KL Divergence Type (Forward
KL(mowa||mg) or Reverse KL(mg||mo1a)); (ii) the KL Form (Normalized or Un-normalized, e.g., using
UKL / k3 estimators); and (iii) the Loss Estimator type (Fully Differentiable or REINFORCE-style

with Stop-Gradient). The framework operates iteratively, with the updated policy Wét+1) from one

iteration informing the inputs for the next, including the update of the reference policy wélt; 1), to

facilitate continuous learning and performance improvement.

divergence is a commonly used regularizer, penalizing the deviation of the learned policy my from
a reference policy e (€.g., policy from previous iteration mg_,, or a fixed prior policy 7SFT) KL
regularization helps prevent destructive policy updates, encourages exploration around known good
policies, and can prevent catastrophic forgetting or overly confident outputs [Ouyang et al., 2022].

Despite the widespread use of KL regularization in methods such as PPO (often implicitly through
reward penalties) and explicit formulations like GRPO [Shao et al., 2024], there exists a considerable
variety in how the KL divergence is formulated and estimated. Different choices include Forward KL
and Reverse KL, handling potentially unnormalized distributions [Minka et al., 2005] (leading to
unnormalized KL (UKL) and unnormalized reverse KL (URKL) formulations), and the use of various
estimators like the k5 and k3 estimators [Schulman, 2020] designed to potentially reduce variance or
offer different properties compared to the standard log-ratio (k1) estimator. Furthermore, the interplay
between the choice of KL formulation, the policy optimization setting (on-policy vs. off-policy), and
the derivation of appropriate surrogate loss functions (fully differentiable vs. REINFORCE-style
gradient estimators) can lead to subtle differences.

This paper provides systematic derivations and a unifying treatment of KL-regularized policy gradient
methods, and revisits classical REINFORCE through the lens of clipped importance sampling. Our
main contributions are summarized as follows:

* We derive policy gradients and corresponding surrogate losses for Forward/Reverse KL, in normal-
ized (KL) and unnormalized (UKL) forms, under off-policy sampling with importance weights.

* We give both fully differentiable surrogates and REINFORCE-style losses (with stop-gradient)
and prove their gradient-equivalence to the intended regularized objective (Proposition E.1, Ap-
pendix N).

* We introduce RPG-Style Clip, a clipped-importance REINFORCE estimator (PPO-Clip-like) that
substantially improves stability and variance control while preserving the RPG gradients.

* We reveal the equality between the ks estimator and unnormalized KL (Appendix F), and show that
GRPO’s KL penalty omits an essential importance weight under off-policy sampling. We provide a
corrected estimator and loss consistent with the intended objective.

* We present an iterative training framework that periodically updates the reference model to satisfy
KL constraints while allowing the policy to depart meaningfully from the initial checkpoint.

* On math reasoning, RPG-REINFORCE (with RPG-Style Clip) yields stable and scalable training
and outperforms DAPO by up to +6 absolute points on AIME24/25.

2 Regularized Policy Gradients

We now derive policy gradient estimators for objectives regularized by KL divergence, assuming
an online and off-policy setting where expectations are estimated using samples drawn from an old
policy myq via importance sampling. In the main text, we focus on the unnormalized objectives
(UFKL/URKL) and summarize the corresponding surrogate losses in Table 1. The normalized
formulations (FKL/RKL) and their losses are moved to Appendix G (see also Table 4). All proofs are
deferred to Appendix M.

2.1 Unnormalized Forward KL Regularization

In scenarios where distributions might not be normalized (i.e., fw m(x)dx # 1), the standard KL
divergence might not fully capture the dissimilarity. The unnormalized forward KL divergence
addresses this by adding a mass correction term. Let 7,14 (2) be a potentially unnormalized reference
measure with total mass Z,q = fx Tod (z)dz. Let Tola(x) = mo1a(x)/Zoia be the corresponding
normalized probability distribution, such that [Toq(z)dz = 1.

Table 1: Summary of fully differentiable surrogate loss functions £(6) for unnormalized KL-
regularized objectives (main text). Minimizing £(6) corresponds to maximizing J(6) = E,,[R(x)]—
3 - Divergence. Samples z are drawn from 7o1q = 7o1a/Zola- These losses yield —VgJ(0) via dif-
ferentiation. Notation: w(z) = mg(x)/mo1a(x), R(z) is reward, /3 the regularization strength, and
Zold = f Told- Normalized counterparts are in Appendix G (Table 4).

Regularization (Unnormalized) Surrogate loss (expectation w.r.t. To14)
Forward (UFKL) Zoa E[—w(z)R(z) + B(w(z) — logw(z) — 1)]
Reverse (URKL) Zoa E[~w(z)R(z) + B(w(x)logw(z) — w(x))]

Definition 2.1 (Unnormalized Forward KL). The unnormalized forward KL divergence [Minka et al.,
2005, Zhu and Rohwer, 1995] between the measure 7,14 and the density 7y is defined as:

UKL(7o1a||mg) = /7‘(’01(1(1‘) log m dx+/(779(x) — Tola()) da .

Generalized KL Mass Correction

This form is particularly relevant when dealing with reference measures that may not be perfectly
normalized or when connecting to certain KL estimators like k3 (see Remark D.2).

Consider the objective using UKL regularization as follows:
JUFKL(H) = EINWG [R(x)] — ﬂ UKL(ﬂ'OldHﬂ'g). (21)

To estimate this off-policy using samples from the normalized reference 7o1q(x) = To1a(2)/Zo1a, We
define the importance weight w(z) = 7y (z)/moa(z) (using the unnormalized 7,1q). The gradient
and corresponding loss function, incorporating the total mass Z,q of the reference measure, are given
in Proposition 2.2.

Proposition 2.2 (Policy Gradient and Differentiable Loss for Unnormalized Forward KL). Consider
the unnormalized KL regularized objective function in Eq. (2.1). The gradient of Jypkr, () is:

Vodurke(0) = ZoaEan | (w(@)R(z) = 8 (w(z) =1)) Vologme(a)] -

The corresponding surrogate loss for gradient descent optimization, estimated using samples {x;} ~
Told, 18

LurkL(0) = ZolaBoni,, [—w(@)R(x) + B(w(z) —logw(x) —1)],
satisfying VQEUFKL(G) = —VoJurkL (9)

Table 2: Combined performance metrics with 4k context length on the AIME24, and AIME25
mathematical reasoning benchmarks, showing “Last” and “Best” scores. The “Last” score is from the
400th training step, assuming the training process remained stable to that point. The highest score in
each column is bolded, and the second highest is underlined. RPG and RPG-REINFORCE methods
are highlighted with light cyan and light green backgrounds, respectively.

Method AIME24 AIME25
Last Best Last Best
GRPO 0.3458 0.3677 | 0.2896 0.3042
DAPO 0.4063 0.4479 | 0.3510 0.3938

RPG-URKL 0.3990 0.4219 | 0.3438 0.3792

RPG-REINFORCE-UFKL | 0.4281 0.4375 | 0.3771 0.4042
RPG-REINFORCE-URKL | 0.4458 0.4531 | 0.4125 0.4313

| |
| |
RPG-UFKL ‘ 0.4031 04396 ‘ 0.3625 03979

Remark 2.3 (Interpretation of UFKL Loss and Gradient). The regularization component of the
surrogate loss Lyrkr(0), specifically ZoaE,z,,,[8(w(z) — logw(z) — 1)], corresponds to an
off-policy estimate of the unnormalized forward KL divergence term /3 - UKL(7mo1q||79) present in
the objective Jurkr,(6). This connection is established via the k3 estimator (see Remark D.2 and
Appendix F). Furthermore, the gradient term — 3 (w(x) — 1) effectively modifies the reward, guiding
Ty to match not only the shape of m,q but also its overall mass Z,)q, due to the mass correction
component in UKL(7o14||7g).

Case ¢, > 0 Case ¢; <0
: ‘ — ‘ : ‘ ‘
Grad via ¢;
J 085 e e R — Grad =0 3 -1
=T (N R SO OO FUUUUY S =
.8 ko)
Q o
% % 1.5
o 1 - o
(] Q
2 2 =2
Q Q
— —
0.5 L | | \ | —2.5 I I | \ |
0.5 g1 g 15 2 © 2.5 0.5 g1 & 15 2 © 2.5
[+ [+
w; = mo(xs)/mold(T4) w; = mo(xs) /ol (i)

Figure 2: Visualization of the loss coefficient £; vs. importance weight w; based on the specific
implementation in Algorithm 2. This version swaps the main branching condition compared to
previous versions (branches on 1; > 0). The plot assumes ¢; = — log 7y (x;) = 1 for visualizing
the value of £;. The line styles indicate the nature of the gradient Vy.L;: Solid blue: Gradient
exists, flowing only via ¢;. The coefficient multiplying V¢; depends on SG(w;). Dotted magenta:
Gradient is zero. This occurs when ¢; is detached via SG in the loss calculation. Left: Case ¢; > 0.
Right: Case ¢; < 0.

3 Experiments

In this section, we empirically evaluate our proposed Regularized Policy Gradient (RPG) framework,
including both its fully differentiable (RPG) and REINFORCE-style (RPG-REINFORCE) variants.
We compare their performance against established baselines on challenging mathematical reasoning
tasks using large language models, including GRPO [Shao et al., 2024] and DAPO [Yu et al., 2025].
Our evaluation focuses on task-specific accuracy, training stability, and key training dynamics such
as reward, policy entropy, and response length.

Tables 2 and 5 summarize the performance of our RPG algorithms against baselines with 4k and 2k
context lengths, reporting both the last and best scores achieved during training on these benchmarks.

AIME24 accuracy mean@32 AIME25 mean@32

0.35

o
w
8

0.30

AIME25 mean@32
&

AIME24 accuracy mean@32

o
N
S

— GRPO
— DAPO
0.15 RPG-UFKL
—— RPG-URKL
RPG-REINFORCE-UFKL
—— RPG-REINFORCE-URKL

0.15

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Step Step

(a) AIME24 (b) AIME25

Actor Entropy

2800

Actor Entropy

0 5 100 150 200 250 300 350 400 0 5 100 150 200 250 300 350 400
Step step

200
Step

(c) Reward (Critic Score) (d) Entropy (e) Response Length

Figure 3: Performance of RPG and REINFORCE-Style Regularized Policy Gradient (RPG-
REINFORCE) methods compared to baselines with 4k context length.

Figure 3 and 5 complement these results by illustrating the evaluation scores and training dynamics
for the fully differentiable RPG variants and baselines when training the Qwen-3-4B model. These
figures display performance on the AIME24 and AIME25 benchmarks, alongside key training
metrics: reward (critic score), policy entropy, and average response length. Across settings, the
RPG-REINFORCE variants with RPG-Style Clip consistently deliver the strongest results, surpassing
DAPO and our differentiable RPG by up to +6 absolute points on AIME24/AIME25 at 4k context
(see Figure 3).

The quantitative results in Table 2 demonstrate the competitive performance of the proposed RPG
and REINFORCE-style RPG frameworks with 4k context length. On AIME24, RPG-REINFORCE
variants lead, with RPG-REINFORCE-URKL achieving the best “Best” score (0.4531) and the best
“Last” score (0.4458), while RPG-REINFORCE-UFKL attain a second best “Last” score (0.4281).
For AIME25, RPG-REINFORCE-URKL still achieves the top “Best” score (0.4313) and a strong
“Last” score (0.4125) and RPG-REINFORCE-UFKL is second only to that. Overall, RPG and
RPG-REINFORCE methods rank at or near the top across benchmarks and metrics, while exhibiting
stable training dynamics.

4 Conclusion

We introduced RPG, a framework for deriving and organizing KL-regularized policy gradient al-
gorithms for online, off-policy RL. We provided derivations for policy gradients and surrogate
loss functions covering forward/reverse KL, normalized/unnormalized distributions, and both fully
differentiable and REINFORCE-style estimators. Beyond derivations, we revisited the classical
REINFORCE algorithm and made it viable off-policy through RPG-Style Clip and iterative refer-
ence updates. On LLM reasoning, these design choices deliver stable and scalable training with
competitive and superior accuracy relative to strong baselines.

References

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach,
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A highly
capable language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Ustiin, and Sara Hooker. Back to basics: Revisiting reinforce-style optimization for learning
from human feedback in llms. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 12248-12267, 2024.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland, Michal
Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning from

human preferences. In International Conference on Artificial Intelligence and Statistics, pages
4447-4455. PMLR, 2024.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: 1. the method
of paired comparisons. Biometrika, 39(3/4):324-345, 1952.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. In Forty-first International Conference
on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024, 2024.

Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 4299-4307, 2017.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. RAFT: reward ranked finetuning for generative
foundation model alignment. Trans. Mach. Learn. Res., 2023, 2023.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models. arXiv
preprint arXiv:2501.03262, 2025.

Kaixuan Ji, Guanlin Liu, Ning Dai, Qingping Yang, Renjie Zheng, Zheng Wu, Chen Dun, Quanquan
Gu, and Lin Yan. Enhancing multi-step reasoning abilities of language models through direct
g-function optimization. arXiv preprint arXiv:2410.09302, 2024.

Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
Aaron Courville, and Nicolas Le Roux. Vineppo: Unlocking 1l potential for llm reasoning through
refined credit assignment. arXiv preprint arXiv:2410.01679, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pages 611-626, 2023.

Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo. Remax: A
simple, effective, and efficient reinforcement learning method for aligning large language models.
In Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July
21-27, 2024, 2024.

Tiangi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J. Liu, and Jialu
Liu. Statistical rejection sampling improves preference optimization. In The Twelfth Interna-
tional Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net, 2024.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019,
2019.

Mathematical Association of America’s American Mathematics Competitions MAA. 2024 AIME-I,
2024a. URL https://artofproblemsolving.com/wiki/index.php/2024_AIME_I. Ac-
cessed: 2025-05-08.

Mathematical Association of America’s American Mathematics Competitions MAA. 2024 AIME-II,
2024b. URL https://artofproblemsolving.com/wiki/index.php/2024_AIME_II. Ac-
cessed: 2025-05-08.

Mathematical Association of America’s American Mathematics Competitions MAA. 2025 AIME-I,
2025a. URL https://artofproblemsolving.com/wiki/index.php/2025_AIME_I.

Mathematical Association of America’s American Mathematics Competitions MAA. 2025 AIME-II,
2025b. URL https://artofproblemsolving.com/wiki/index.php/2025_AIME_IT.

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-
free reward. Advances in Neural Information Processing Systems, 37:124198-124235, 2024.

Tom Minka et al. Divergence measures and message passing. Technical report, Microsoft Research,
2005.

Rémi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland,
Zhaohan Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Come Fiegel, Andrea
Michi, Marco Selvi, Sertan Girgin, Nikola Momchev, Olivier Bachem, Daniel J. Mankowitz,
Doina Precup, and Bilal Piot. Nash learning from human feedback. In Forty-first International
Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024, 2024.

OpenAl. ChatGPT, 2022. URL https://chat.openai.com/.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730-27744, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728-53741, 2023.

John Schulman. Approximating kl divergence. http://joschu.net/blog/kl-approx.html,
March 2020. Accessed on October 20, 2025.

John Schulman, Philipp Moritz, Sergey Levine, Michael 1. Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In Yoshua Bengio and
Yann LeCun, editors, 4th International Conference on Learning Representations, ICLR 2016, San
Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

https://artofproblemsolving.com/wiki/index.php/2024_AIME_I
https://artofproblemsolving.com/wiki/index.php/2024_AIME_II
https://artofproblemsolving.com/wiki/index.php/2025_AIME_I
https://artofproblemsolving.com/wiki/index.php/2025_AIME_II
https://chat.openai.com/
http://joschu.net/blog/kl-approx.html

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient RLHF framework. In Proceedings
of the Twentieth European Conference on Computer Systems, EuroSys 2025, Rotterdam, The
Netherlands, 30 March 2025 - 3 April 2025, pages 1279-1297. ACM, 2025.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229-256, 1992.

Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yiming Yang, and Quanquan Gu. Self-play
preference optimization for language model alignment. In The Thirteenth International Conference
on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025, 2025.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
Iterative preference learning from human feedback: bridging theory and practice for rlhf under
kl-constraint. In Proceedings of the 41st International Conference on Machine Learning, pages
54715-54754, 2024.

Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, and Jason Weston. Some things are more cringe than
others: Preference optimization with the pairwise cringe loss. arXiv preprint arXiv:2312.16682,
18, 2023.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Deheng Ye, Zhao Liu, Mingfei Sun, Bei Shi, Peilin Zhao, Hao Wu, Hongsheng Yu, Shaojie Yang,
Xipeng Wu, Qingwei Guo, et al. Mastering complex control in moba games with deep reinforce-

ment learning. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pages
6672-6679, 2020.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale.
arXiv preprint arXiv:2503.14476, 2025.

Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi Wang,
TianTian Fan, Zhengyin Du, Xiangpeng Wei, et al. Vapo: Efficient and reliable reinforcement
learning for advanced reasoning tasks. arXiv preprint arXiv:2504.05118, 2025.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqgi Tan, Chang Zhou,
and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
models. arXiv preprint arXiv:2308.01825, 2023.

Yifan Zhang, Ge Zhang, Yue Wu, Kangping Xu, and Quanquan Gu. Beyond bradley-terry models: A
general preference model for language model alignment. In Proceedings of the 42nd International
Conference on Machine Learning, 2025.

Yao Zhao, Rishabh Joshi, Tiangi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-hf:
Sequence likelihood calibration with human feedback. arXiv preprint arXiv:2305.10425, 2023.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yuqgiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint
arXiv:2507.18071, 2025.

Huaiyu Zhu and Richard Rohwer. Information geometric measurements of generalisation. Preprint,
1995.

https://arxiv.org/abs/2505.09388

Appendix

Related Work

Preliminiaries
B.1 KL Regularization in Policy Gradients
B.2 Group Relative Policy Optimization (GRPO)

REINFORCE and Proximal Policy Optimization (PPO)
C.1 REINFORCE s
C.2 Proximal Policy Optimization (PPO)

Unnormalized Reverse KL Regularization

REINFORCE-Style Regularized Policy Gradients
E.1 RPG-Style Clip: dual-clip truncation of importance ratios

Equivalence of k3 Estimator and Unnormalized KL Divergence

Normalized KL Regularization
G.1 Forward KL Regularization
G.2 Reverse KL Regularization

REINFORCE-Style Regularized Policy Gradients with Various KL Regularization
Forms

H.1 Rationale for REINFORCE-Style Loss Formulation
H.2 REINFORCE-Style RPG with Forward KL Regularization
H.3 REINFORCE-Style RPG with Unnormalized Forward KL Regularization
H.4 REINFORCE-Style RPG with Reverse KL Regularization
H.5 REINFORCE-Style RPG with Unnormalized Reverse KL Regularization

More on Algorithmic Details
I.1 Stabilization Techniques for Regularized Policy Gradients
[.2 Stabilization Techniques for REINFORCE-Style Regularized Policy Gradients

Detailed Experimental Setup

More Experiment Results
K.1 The performance with 2k contextlength
K2 Ablation Study

Proofs of Theorem B.1 (Generalized Policy Gradient Theorem)
Proofs for Regularized Policy Gradients

M.1 Proof of Proposition G.1 (Policy Gradient and Differentiable Loss for Normalized
Forward KL) e

11

12
12
13

13
13
14

14

15
15

16

16
16
17

17
17
17
18
18
18

18
18
19

21

23
23
24

27

27

M.2 Proof of Proposition 2.2 (Policy Gradient and Differentiable Loss for Unnormalized
Forward KL) e

M.3 Proof of Proposition G.3 (Policy Gradient and Differentiable Loss for Normalized
Reverse KL) o . e

M.4 Proof of Proposition D.3 (Policy Gradient and Differentiable Loss for Unnormalized
Reverse KL) e

N Proofs for REINFORCE-Style Regularized Policy Gradients
N.1 Proof of Proposition H.1 (REINFORCE-style Policy Gradient for Forward KL) . .

N.2 Proof of Proposition H.3 ((REINFORCE-style Policy Gradient for Unnormalized
Forward KL) e

N.3 Proof of Proposition H.4 (REINFORCE-Style Loss)
N.4 Proof of Proposition H.5 (REINFORCE-Style Loss for Unnormalized Reverse KL)

O Broader Impact and Limitations

P NeurlIPS Paper Checklist

10

28

29

30

31
32

32
33
33

33

34

A Related Work

Fine-tuning large language models (LLMs) using human feedback has become a critical step in
developing capable and aligned Al systems. Broadly, methods fall into two main categories: those
relying on policy optimization using an explicit reward model learned from feedback, and those
directly optimizing policies based on preference data.

RLHF via Policy Optimization. The classic RLHF involves training a reward model (RM) 4 (x, y)
to predict human preferences and then using reinforcement learning to optimize the language model
policy my to maximize the expected reward from the RM, often regularizing against deviating too far
from an initial reference policy m..¢. This approach was pioneered by Christiano et al. [2017] and
gained widespread prominence with its application to LLMs like InstructGPT [Ouyang et al., 2022]
and ChatGPT [OpenAl, 2022], which utilized Proximal Policy Optimization (PPO) [Schulman et al.,
2017]. PPO became a workhorse due to its relative stability, achieved by constraining policy updates
via a clipped surrogate objective. The standard PPO setup for RLHF involves the policy 7y, a value
function V,;, the RM 7, and the reference policy 7.

RLHF via Direct Preference Optimization. An alternative and increasingly popular approach
bypasses explicit reward modeling by directly optimizing the policy my based on preference data,
typically pairwise comparisons (., ;) indicating that response y,, is preferred over y; for a given
prompt z. Inspired by the Bradley-Terry model [Bradley and Terry, 1952], Direct Preference
Optimization (DPO) [Rafailov et al., 2023] derived a simple loss function directly relating preference
probabilities to policy likelihoods under 7y and a reference policy 7..¢. DPO maximizes the relative
likelihood of preferred responses using a logistic loss: Lppo x —E[log o(8Alogp)], where Alogp
is the difference in log-probabilities of y,, and y; between mg and m,t. DPO’s simplicity and
effectiveness led to its wide adoption in models like Llama-3 [Grattafiori et al., 2024], Qwen2 [Yang
et al., 2024], and Phi-3 [Abdin et al., 2024]. Numerous variants have followed: SLiC-HF [Zhao et al.,
2023] uses a pairwise hinge loss for calibration; IPO [Azar et al., 2024] uses an identity link function;
SimPO [Meng et al., 2024] offers a simpler objective focusing on the margin; KTO [Ethayarajh
et al., 2024] handles binary (good/bad) feedback; DQO [Ji et al., 2024] incorporates direct Q-value
modeling; RAFT [Dong et al., 2023], RSO [Liu et al., 2024] and RFT [Yuan et al., 2023] use a
rejection sampling perspective. Recognizing that preferences might evolve, iterative methods like
Iterative DPO [Xiong et al., 2024], PCO [Xu et al., 2023] and SPIN [Chen et al., 2024] alternate
between generation/preference learning and policy updates, often using the current policy’s outputs
in a self-improvement loop. Game theory offers another lens, with Nash Learning from Human
Feedback (NLHF) [Munos et al., 2024] framing RLHF as finding a Nash equilibrium between policies.
Self-play ideas appear in SPPO [Wu et al., 2025] and GPO [Zhang et al., 2025], where the policy
generates pairs for comparison. Methods like GPM [Zhang et al., 2025] aim to handle more general
preference structures efficiently using latent embeddings beyond pairwise comparisons.

RL for Enhancing LLM Reasoning. Beyond general alignment with human preferences, RL
techniques are increasingly explored to specifically enhance the multi-step reasoning capabilities of
LLMs in domains like mathematics, coding, and complex instruction following. In these contexts,
RL optimizes the policy to generate sequences (e.g., chain-of-thought, code blocks) that lead to
successful outcomes, often using rewards derived from external feedback like unit test results,
execution outcomes, or correctness checks by an automated judge or specialized reward model trained
on reasoning quality. For instance, the DeepSeekMath model [Shao et al., 2024] employed the
GRPO algorithm, a value-free PPO variant, demonstrating significant improvements in mathematical
problem-solving benchmarks through RL fine-tuning. DeepSeek-R1 [Guo et al., 2025] represents
efforts in applying advanced techniques potentially involving RL for complex tasks, although specific
methods might vary. Furthermore, preference-based methods like SPPO and GPO have been applied
to reasoning-specialized models such as Kimi-1.5 [Team et al., 2025], and the resulting improvements
observed on benchmarks involving coding and math suggest that preference-based RLHF can also
contribute to refining reasoning abilities, potentially by optimizing implicit properties related to
logical consistency and correctness within the preference data. The need for a value function (critic
model) used in PPO incurs significant computational costs, and standard PPO can face stability
challenges with sparse rewards common in LLM tasks. Addressing these issues has driven recent
work. Several methods aim to improve efficiency by removing the value network: ReMax [Li
et al., 2024] adapts REINFORCE [Williams, 1992] using Monte Carlo returns and normalization;
GRPO [Shao et al., 2024] uses a group-average reward baseline and adds a k3-based KL penalty
to the objective; and VinePPO [Kazemnejad et al., 2024] uses MC sampling from intermediate

11

steps. Other approaches focus on stability and alternative baselines, such as RLOO [Ahmadian et al.,
2024], which uses leave-one-out statistics within a group, and REINFORCE++ [Hu, 2025], which
enhances REINFORCE with token-level KL penalties (using the ko estimator) and normalization.
Dr. GRPO [Liu et al., 2025] identifies and corrects a bias found in GRPO’s advantage estimators,
DAPO [Yu et al., 2025] introduces strategies like Clip-Higher, reward over-sampling, and a token-
level loss to handle long sequences and entropy collapse, while VAPO [Yuan et al., 2025] builds upon
it with length-adaptive advantage estimation. Recently, GSPO [Zheng et al., 2025] was proposed
with sequence-level rewards and used in the Qwen3 model series [Team, 2025].

Our contribution is to make the off-policy weighting and estimator equivalences explicit across
normalized/unnormalized variants, to identify a bias introduced when these weights are omitted (as in
the GRPO KL term), and to provide corrected surrogates that are gradient-equivalent to the intended
objectives. The design-space view makes transparent how several recent algorithms arise as special
cases.

B Preliminiaries

Policy gradient (PG) methods are a cornerstone of modern reinforcement learning (RL), optimizing pa-
rameterized policies 7y by estimating the gradient of an expected objective function J () with respect
to the policy parameters 6. Typically, J(0) represents the expected cumulative discounted reward
over trajectories T = (S, ag, 70, $1, - - - , ST, @1, r7) generated by the policy: J(8) = E;wr, [G(T)],
where G(7) = ZtT:O ytr, is the trajectory return (with discount factor), and the expectation is
taken over the trajectories sampled according to the policy 7y (a|s) and the environment dynamics
p(s’|s, a). The Generalized Policy Gradient Theorem (GPPT) provides a foundation for deriving
these gradients (see Appendix L for the proof).

Proposition B.1 (Generalized Policy Gradient Theorem). Let 7y(x) be a probability density or
mass function parameterized by 0, representing the probability of sampling item x. Let f(x, 6) be
a scalar-valued function associated with x, potentially depending on #. Under suitable regularity
conditions, the gradient of the expectation E,,~,[f(x, #)] with respect to ¢ is:

veEsza [f(.%’, 9)] = Em~7r9 [f(.%’, 9)V9 log We(x) + v@f($7 0)] . (B.1)

The term E[fV log 7] reflects how changes in 6 affect the probability of sampling x, while E[V f]
reflects how changes in 6 directly affect the function value f.

The classic REINFORCE algorithm [Williams, 1992] applies the GPPT to the standard RL objective
J(0) = Eron, [G(7)]. Inthis case, f(7,6) = G(7), the total trajectory return, which does not depend
directly on 6 (i.e., VyG(7) = 0). The theorem simplifies, and the gradient can be expressed using
per-timestep contributions [Sutton et al., 1998]:

T
VoJ(0) =E;r, Z GV logmg(at|st)| ,

t=0

where G; = ZT ' v*=tr). is the return-to-go from timestep ¢. Due to space limit, we defer the
detailed introduction of REINFORCE to Appendix C.1.

B.1 KL Regularization in Policy Gradients

A common technique to stabilize policy optimization, especially in off-policy settings or when
fine-tuning large models, is regularization. The Kullback-Leibler (KL) divergence is frequently used
to penalize the deviation of the learned policy 7y from a reference policy my..f (which could be 7g_,,
an initial supervised fine-tuned model, or another prior). KL(P || Q) > 0 with equality iff P = Q
almost everywhere. It is asymmetric (i.e., KL(P || Q) # KL(Q || P)). Minimizing the forward
KL KL(7yef || o) encourages 7y to cover the support of 7o (zero-forcing), while minimizing the
reverse KL KL(mg || mref) encourages 7y to be concentrated where 7,.of has high probability mass
(mode-seeking).

Adding a KL penalty to the RL objective, such as J(0) = E,[R] — 8 KL(mg|| 7t), helps control
the policy update size, prevents large deviations from .., encourages exploration near known good
policies, and can mitigate issues like catastrophic forgetting or overly confident outputs, particularly
relevant in LLM fine-tuning [Ouyang et al., 2022]. For PPO (see Appendix C.2), this penalty can be
incorporated implicitly via reward shaping: r; = r; — B log(mg(at|st)/mret (at|st)). Alternatively, it

12

can be added explicitly to the objective function, as in GRPO. The specific form of the KL divergence
(forward/reverse), whether distributions are normalized (KL vs. UKL), and the choice of estimator
(e.g., standard log-ratio vs. ks estimator [Schulman, 2020]) can vary, leading to different properties
(mode seeking v.s. zero-forcing) and gradient estimators, as explored later in this paper (Sections 2
and E).

B.2 Group Relative Policy Optimization (GRPO)

Group Relative Policy Optimization (GRPO) [Shao et al., 2024] adapts the PPO framework for
training LLMs, notably by eliminating the need for a learned value function (critic). Instead of using
GAE, GRPO estimates the advantage A; ; at token ¢ of output o; based on the relative rewards within

a group of G outputs {01, ..., 0c} sampled from the old policy mg_,, for the same prompt g.

Crucially, GRPO modifies the PPO objective by explicitly adding a KL regularization term directly
to the objective function. Its objective (simpliﬁed notation) is:

o]

Z (Chp -8 KLest(Fe(R) 17rvet (- |h”)))]

Jarpro(0) = Equp(Q),{o:}~mora [Z

;| <

where h; ; = (g, 0; <) is the history, J, Chp(@) represents the PPO-Clip term from Eq. (C.3) applied

using the group-relative advantage estimate EM, and m..f is a reference model (e.g., the initial SFT
model). For the KL penalty, GRPO employs the k3 estimator form [Schulman, 2020], evaluated per

token o;
—log —1.
79 (0i4 | hit)

Wref(oi t | hz t) Wref(oi t | hz t) Wref(oi t | hzt)
KLest (7o ||7ref) = K (- . = ’ : : -
(o) = Ma(ois [ha) % molone i)
This uses the functional form k3(y) = y — logy — 1 as discussed in Schulman [2020], applied with

Y = Tret (0i,¢|hi) /T (05 t|hi ¢). This form is related to the unnormalized reverse KL divergence,
UKL(mg||7ref) (see Section D and Appendix F for a detailed discussion).

% multiplying the k3 term. The direct subtraction without this weight means

the gradient derived from GRPO’s objective does not, in general, correspond to the gradient of the
intended off-policy objective JP — 3 UKL (g ||y). For clarity, a corrected off-policy estimator
for the GRPO KL component at history h; ; is
_ Tref (04t i,
KLGrpo-comrected (Pi,t50) = Eo, ,mmora(hi.0) {wi,t k3 <W>] ;

which is consistent with URKL/UKL depending on direction (see Section 2 and Appendix F). Our
results in Section 2 provide derivations for KL-regularized objectives that explicitly account for
off-policy sampling via importance weights. Related work is detailed in Appendix A.

C REINFORCE and Proximal Policy Optimization (PPO)
C.1 REINFORCE

W; ¢t =

REINFORCE performs Monte Carlo (MC) updates after sampling a complete trajectory, using the
sampled return G as an unbiased estimate of the state-action value function Q™ (s, a;). However,
these MC estimates often exhibit high variance, leading to slow and unstable learning.

To reduce variance, a state-dependent baseline b(s;) (commonly an estimate of the state value
function, V™ (s;)) is subtracted from the return-to-go:
T
VoI (0) =Err, | > (Gi — b(s:)) Vo log m(as,)

t=0

T
Z Vg log my at|st)] .
= (.1

Here, A, = G —b(s,) is an estimate of the advantage function A™ (s, a;) = Q™ (sy, az) — V™ (sy).
Subtracting a baseline that only depends on the state s; does not bias the gradient estimate, since
Ea,mmo(s) [0(5t) Ve log mg(ai|si)] = b(st)Ve 3, me(ai|s:) = b(s:)Vel = 0. REINFORCE with
baseline is typically implemented by minimizing the loss:

’TNTFQ

EREINFORCE(G) = _ETNTFQ

T
ZSG(@)log We(at|3t)] ; (C2)

t=0

13

using the stop-gradient operator SG(-) to prevent gradients from flowing into the advantage estimate

Ay. As REINFORCE uses samples collected under the current policy 7y for gradient estimation, it is
an on-policy algorithm.

C.2 Proximal Policy Optimization (PPO)

On-policy methods like REINFORCE can be sample-inefficient, requiring new trajectories for each
gradient update. Proximal Policy Optimization (PPO) [Schulman et al., 2017] improves stability
and sample efficiency by enabling multiple updates using the same batch of data collected under a
slightly older policy mg,,,. This makes PPO effectively off-policy. PPO achieves this by optimizing a
surrogate objective function that discourages large deviations between the current policy 7y and the
old policy m,,,. The most widely used variant, PPO-Clip, employs a clipped objective:

JPPOClip () — g, [min (wt(e)ﬁt, clip(w; (0),1 — e, 1 + e)ﬁt)} , (C.3)

where the expectation E; is taken over timesteps in the collected batch sampled from 7,4. Here,

wy(0) = % is the importance sampling ratio. A, is an advantage estimate, typically computed

using Generalized Advantage Estimation (GAE) [Schulman et al., 2016], which leverages observed
rewards and a learned state-value function V'(s) to reduce variance.

Notably, in many practical implementations, especially in Reinforcement Learning from Human
Feedback (RLHF) for large language models [Ouyang et al., 2022], a KL divergence penalty against a
reference policy .o (€.g., the initial supervised model) is often incorporated implicitly by modifying
the reward signal before calculating the advantage. For example, the reward used for GAE calculation
might become r; = r; — S log(mg(as|st)/mrer(at]s¢)). When this r} is used within GAE to compute
Ay, the KL penalty term is effectively folded into the advantage estimate that multiplies the importance
weight w;(0) in the objective function. This approach contrasts with adding the KL penalty as a
separate term to the final objective, as seen in GRPO (Section B.2) or the formal derivations in
Section 2.

The hyperparameter € (e.g., 0.2) defines the clipping range [1 — €, 1 + €] for the importance ratio
wy (). This clipping limits the influence of potentially noisy importance weights when the policy
changes significantly, preventing destructive updates and further stabilizing the off-policy training.
PPO optimizes the policy s by maximizing J*FO-Clip(9).

D Unnormalized Reverse KL Regularization

Similar to the forward case, we can define an unnormalized reverse KL divergence, relaxing the
normalization constraint on the reference distribution 7y1q. Let 714 (2) be a potentially unnormal-
ized reference measure with total mass Z,q = f Told()dz. Let Toa(x) = mo1a(x)/Zo1a be the
corresponding normalized probability distribution.

Definition D.1 (Unnormalized Reverse KL). The unnormalized reverse KL divergence between the
density my and the measure 7,q is defined as:

UKL(7mg||mo1a) = /779(36) log mo(2) dm—i—/(ﬂold(x) —ﬂg(x))dac.

v Told ()

Generalized KL Mass Correction
The mass correction term simplifies to Zoiq — [mg(2)dz.
Remark D.2. (Equivalence to k3 estimator) The k3 estimator [Schulman, 2020], often used for its
empirical properties (e.g., in GRPO [Shao et al., 2024]), is defined for a density ratio y(z) as:

k3(y) ==y —1—logy. (D.1)
As shown in Appendix F, this functional form directly relates to unnormalized KL divergences.

For instance, KLy, (7g|mo1d) := Egrmy [k3(moa(x)/me(x))] is equivalent to UKL (7g||meia). This
equivalence relationship justifies the exploration of UKL/URKL formulations within our framework.

Consider the objective using URKL:
JurkL(0) = Egnry [R()] — B UKL(70|7o1a), (D.2)

where UKL is defined above. As with UFKL, we derive the gradient and loss using expectations over
the normalized reference 7o1q and the importance weight w(z) = mg(z) /mo1a () (with unnormalized
Told)- The results are summarized in Proposition D.3.

14

Proposition D.3 (Policy Gradient and Differentiable Loss for Unnormalized Reverse KL). Consider
the reverse unnormalized KL regularized objective function in Eq. (D.2). The gradient of Jyrkr(0)
is:

Vo JurkL(0) = ZoiaBymsoy [w(x) (R(m) — Blog w(m))Ve log g (m)} .

A corresponding surrogate loss for gradient descent optimization, estimated using samples {xz;} ~
7701(1, is:

LUrkL(0) = ZowEans,, [—w(z)R(x) + B(w(z)logw(z) — w(x))],

satisfying Vo Lurkr(0) = —VeJurkw(0). The constant Z,q scales the loss and gradient and may
be omitted in practice.

Remark D.4 (URKL Loss and Mass Correction). The surrogate loss Lyrkr (6) is designed such
that its gradient is —VyJurkw(f). Specifically, the term ZoqE, 5, [8(w(x) log w(z) — w(x))]
in the loss directly relates to the off-policy estimation of the unnormalized reverse KL divergence
BUKL(7gl||mo1a), omitting a constant related to the total mass Z,4 which does not affect the
gradient. The policy gradient’s effective reward scaling factor, (R(z) — S logw(x)), is simpler than
its normalized RKL counterpart.

E REINFORCE-Style Regularized Policy Gradients

In Section 2, we derived policy gradient estimators and corresponding fully differentiable surrogate
losses £(6) for KL-regularized objectives. Those losses were constructed such that Vo£(0) =
—VJ(0) directly, typically by setting £(0) = —Jis(0) (where Jis is the importance-sampled
objective) up to constants. Notice that the gradients derived in Section 2 (Theorems 2.2 through D.3)
share a structural similarity with the REINFORCE estimator:

VeJ(0) =E [Weight(z, 0) Vg log mg ()]

T~ Tsampling

where Tgampling 1S To1d OF its normalized version 714, and Weight(z, §) encapsulates the reward and
KL regularization terms, differing for each specific objective.

Proposition E.1 (Gradient-Equivalence of Surrogates). For each KL-regularized objective J(6)
derived in Section 2, the corresponding REINFORCE-style losses in Table 3 satisfy VyL£(0) =
—VJ(0) under the standard regularity assumptions used in the policy-gradient theorem. In particular,
the stop-gradient operator ensures that dependence of the weight on 6 (through importance ratios)
does not leak unintended gradients. A proof sketch follows directly from the policy-gradient theorem
and is completed in Appendix N.

This structural similarity motivates an alternative REINFORCE-style implementation using the stop-
gradient operator SG. The general form of such losses and the detailed rationale for how they yield
the target gradient via automatic differentiation are presented in Appendix H.1 (see Eq. (H.1)).

We explore these REINFORCE-style estimators as part of our framework, as they offer an alternative
implementation path and demonstrate competitive empirical performance (Section 3). Proofs are in
Appendix N. In the main text, we tabulate the unnormalized REINFORCE-style losses; normalized
counterparts are deferred to Appendix H.

Table 3: REINFORCE-style surrogate losses £(6) for unnormalized KL-regularized objectives using

the stop-gradient operator (SG). These losses yield the target gradient via automatic differentiation.
Compare with the fully differentiable losses in Table 1. Normalized versions are given in Appendix H.

Regularization (Unnormalized) REINFORCE-style loss (sampling = ~ 7o14)
Forward (UFKL) —IE[SG(Zold(w(ac)R(x) — B(w(x) — 1))) log (z)]
Reverse (URKL) —E [SG(Zoww(z)(R(z) — Blogw(z))) log e (x)]

E.1 RPG-Style Clip: dual-clip truncation of importance ratios

Large importance ratios w(zx) = :fd(a) induce high variance and destabilize off-policy updates.

Our RPG-Style Clip follows the dual-clip method implemented in Algorithm 1 in the appendix:
we clip w into [1 — €1, 1 + €3] and additionally impose a lower bound for negative advantages.

15

Table 4: Summary of fully differentiable surrogate losses for normalized KL-regularized objectives
(counterparts to Table 1). Here x ~ 7o, w(x) = mo(x)/To1a ().

Regularization (Normalized) Surrogate loss (sampling = ~ mq)

Forward (KL) E[-w(z)R(z) — Blogme(z)]
Reverse (KL) E[w(z) (—R(x) + Blog w(x))]

Let g(ax,) denote the regularized advantage analogue determined by the chosen objective (e.g.,
Aurkr = (R—b)—pSlogw, Agkr, = (R—b)— 3 (logw+1)). The loss used in our implementation is
LRPG-Clip(, gy max(— w(w) A 927 —clip(w(z), 1 —e, 1 + fz)g(l';Hz), R A:(:E;) >0,

’ min<max(—w(z) A(z;0), —clip(w(z), 1 — €1, 1+ €2) A(;0)), —c Az; 9)), A(z;0) <0,
with €1, €2 > 0 and ¢ > 1. The choice of A for each divergence (URKL/UFKL/RKL/FKL) matches
the gradients in Section 2 and is instantiated in Algorithm 1.

F Equivalence of %3 Estimator and Unnormalized KL Divergence

As mentioned in Section D, the k3 estimator for KL divergence [Schulman, 2020] is equivalent to the
unnormalized KL (UKL) divergence. The k3 function is defined as k3(y) =y — 1 — log y.

Forward KL-k3 and UKL (7gq||7g): The forward KL-k3 divergence is
KLy, (motal|79) = By [k3 (7o () /Tota(2))]-

D {kg (mo ())} CEn, [mo(x) |~ log o (z) }

Told () Tod () Told ()

- /L Tota() (gjig) - 1) da — /l Towa(2) log 711((?) dz

= UKL(oua]|7g).

Reverse KL-k3 and UKL (7g||7qa): The reverse KL-k3 divergence is
KLy, (mo[|7ota) 1= Bz [k3(mora(x) /o ())]-

D [k;g (Wold($>>:| .. [md(x) 1 log Wold(a?)]

mo(x) o () 7o(z)
= /xﬂﬂ(x) (7;0;(%) - 1> dz — /wwo(a:) log 7::;‘1((;)) dz

N /.(T()ld(m) — 7o (w))dz + / 7o () log mo(2) dx

- Tola ()

= UKL(ﬂ'gHTrO]d).

G Normalized KL Regularization

For completeness, we collect here the normalized KL formulations that were previously in the main
text. Their proofs remain in Appendix M.

G.1 Forward KL Regularization
Consider the objective function with forward KL regularization:
JrL(0) = Epory [R(2)] — BKL(7o14 || 70)- (G.1)

Proposition G.1 (Policy Gradient and Differentiable Loss for Forward KL). The gradient of Jpky,(6)
with respect to 6 is:

VoJrkL(0) = Egaroy [(w(z)R(z) + 8) Vg log me(z)]

16

where w(x) = mg(x)/To1a(x). A corresponding surrogate loss is:
Lrkn(0) = Ezoroy [—w(x)R(x) — Blog 7r9(x)],
which satisfies Vg Lpkr, (9) = —VoJrkL (9)
Remark G.2 (Connection to Maximum Likelihood Estimation). If R(z) = 0, maximizing Jpkr,(0)
reduces to minimizing 5 KL (714 ||), i.e., MLE on samples from 7,4.
G.2 Reverse KL Regularization

Consider the reverse KL objective:

JRKL(0) = Egpor, [R(2)] — BKL(7p || To1d)- (G.2)
Proposition G.3 (Policy Gradient and Differentiable Loss for Reverse KL). The gradient of Jrk1,(6)
is:

VoIrkL(0) = Eamryy [w(2)(R(z) — Blogu(a) + 1)) Vo logmo(x)]
A corresponding surrogate loss is:
LrrL(0) = Eprryg [w(z) (—R(z) + Blogw(z))],

with Vo Lrk1,(0) = —VeJrkL(6).

REINFORCE-style RPG with normalized KL regularizations. REINFORCE-style losses for
FKL/RKL appear in Appendix H (Table analogues to Table 3).

H REINFORCE-Style Regularized Policy Gradients with Various KL
Regularization Forms

H.1 Rationale for REINFORCE-Style Loss Formulation

As noted in Section E of the main text, the derived off-policy policy gradients (Theorems G.1 through
D.3) share a structural similarity with the REINFORCE estimator:
VH‘](H) = EOCN‘ITsampnng [Weight(x’ 0)V9 log o (.Z‘)] .

This structure suggests an alternative way to implement the gradient update, analogous to the
REINFORCE-style approach used in the on-policy setting. Specifically, one could define a surrogate
loss of the form:

LREINFORCE-style (0) = —Eammm, [SG (Weight(z, 0)) log ()] . (H.1)
The rationale is that applying automatic differentiation to this loss should yield:

A B e [SG (Weight(z, 0)) Vg log ()]

When this gradient is used for optimization, the stop-gradient SG is conceptually removed, resulting in
an update aligned with —VJ(6). This relies on SG preventing gradients from flowing through the 6-
dependence within Weight(x, #) (specifically, the dependence via the importance weight w(z)). The
following subsections detail these REINFORCE-style loss formulations for each KL regularization
type.

H.2 REINFORCE-Style RPG with Forward KL Regularization

We can convert Forward KL regularization of RPG to REINFORCE-style using the stop-gradient
operator:

Proposition H.1 (REINFORCE-Style Loss for Forward KL). For the forward KL regularized
objective function in Eq. (G.1), the corresponding REINFORCE-style surrogate loss function for
gradient descent optimization via automatic differentiation is:

LETTORCED 9y = |, oSG (w(z)R(x) + B) log mo(z)] ,

where w(z) = mp(x)/mo1a(x). This loss aims to produce the gradient —V Jrk1,(6) via automatic
differentiation.

Remark H.2. This REINFORCE-style loss requires SG to prevent backpropagation through w(z) in
the weight term. Baselines can be added to R(z) inside SG for variance reduction (see Appendix I).
In practice we further apply RPG-Style Clip (Section E.1) by replacing w with w and, when present,
log w with log @ inside SG(-).

V 9 LREINFORCE-style (#)

17

H.3 REINFORCE-Style RPG with Unnormalized Forward KL Regularization

Similarly, we can also transform the Unnormalized Forward KL Regularization of RPG into
REINFORCE-style as follows:

Proposition H.3 (REINFORCE-Style Loss for Unnormalized Forward KL). For the objective
JurkL(0) = Er, [R(z)] — 8 UKL(7o14a||7mg), whose gradient (sampling from 7o1q) is

Vo JurkL(8) = Epzoyy[Zota(w(z)R(x) — S(w(z) — 1)) Ve log me(z)] (Proposition 2.2), a corre-
sponding REINFORCE-style surrogate loss is:

LRGN (0) = — By, [SC (Zow (w(z)R(x) — Blw(z) — 1)) log me(x)],

where Tolq = Told/Zola and w(z) = mp(x)/mo1a(x) (using unnormalized 741q). This loss aims to
produce the gradient —Vg Jyrkr (#) via automatic differentiation.

H.4 REINFORCE-Style RPG with Reverse KL Regularization

Proposition H.4 (REINFORCE-Style Loss for Reverse KL). For the objective Jrkr(0) =
E.,[R(x)]—BKL(mp || mo1a), whose gradient is Vo Jrkr,(0) = Ezrr,y [w(x)(R(z) — B(log w(z)+
1))Vy log mg(x)] (Proposition G.3), a corresponding REINFORCE-style surrogate loss is:

LRENFORCEe 9y — |, . [SG (w(z) (R(x) — Blogw(z) — B))logme(z)], (H2)

where w(z) = mg(x)/mo1a (). This loss aims to produce the gradient —VgJrkr,(6) via automatic
differentiation.

H.5 REINFORCE-Style RPG with Unnormalized Reverse KL Regularization

Proposition H.5 (REINFORCE-Style Loss for Unnormalized Reverse KL). For the objective
JurkL(0) = Er,[R(z)] — B UKL(mg||mo1a), whose gradient (sampling from 7o1q) is

VoJurkL(0) = Eypmzoy[Zoaw(x)(R(x) — Blogw(z))Velog mg(x)] (Proposition D.3), a corre-
sponding REINFORCE-style surrogate loss is:

LR RN (9) = —E, oz, [SG (Zoww(z) (R(z) — Blogw(x))) log me(x)],

where Told = Told/Zoid and w(x) = wp(x)/mo1a(x) (using unnormalized 7y14). This loss aims to
produce the gradient —VgJurkr (6) via automatic differentiation.

I More on Algorithmic Details

I.1 Stabilization Techniques for Regularized Policy Gradients
Practical implementations of off-policy policy gradient methods often require stabilization techniques
to manage variance or prevent destructively large policy updates. Common techniques include:

* Dual-Clip Objective: This method adapts the clipping mechanism from PPO, with a modification
for negative advantages proposed by Ye et al. [2020], to stabilize updates [Schulman et al., 2017].

The Dual Clip objective aims to maximize JPWCP = E, . [LPualClip (3 9)] where /T(z) is an
estimate of the advantage analogue (e.g., R(x) — b or the full term derived from the regularized
gradient), w(z) = 7 (x)/mo1a(x) is the importance ratio, and LP"CIP (z 0) is defined as:

— If A(z) > 0: LP%IClp (5 6) = min(w(z)A(z), clip(w(z),1 — €1, 1+ e2)A(x)).
- If A(z) < 0: LPwuCir(z) = max(min(w(z)A(z), clip(w(z),1 — €e,1 +
€2)A(x)), cA(z)).
where €1, e > 0 are clipping parameters and ¢ > 1 provides a lower bound for negative advantages.
To use this with gradient descent (which minimizes a loss £), we minimize the negative of the
Dual Clip objective term. Using — min(a, b) = max(—a, —b) and — max(a, b) = min(—a, —b),
the corresponding loss term for a single sample x is:

_ If A(z) > 0: LPwICHR (. g) = max(—w(x)ﬁ(x), —clip(w(z),1 — e1,1+ eg)ﬁ(x)).
— If A(z) < 0: Let Loy = max(—w(x)g(z), —clip(w(z),1 — e, 1+ 62)2(93)). Then,
LPuaClip (g) = min(Lchp, fc//l\(x)>

18

Here, E(az) should represent the advantage or an analogous term derived from the gradient of the
original (non-negated) regularized objective (e.g., Proposition G.3). The overall loss is £(#) =
Emom,q [LPU4CHP (22, 0)]. This loss function is differentiable with respect to 6 (which appears in
w(x) and potentially A\(x) if it includes terms like log w(x)).
This loss formulation ensures that updates are conservative. For positive advantages, it acts like
standard PPO-Clip. For negative advantages, it prevents the objective from becoming arbitrarily
large (loss becoming arbitrarily small) by introducing the lower bound cg(x) on the objective
(upper bound —cg(q:) on the loss).

* Baseline Subtraction: Used to define the advantage //l\(x) = R(x) — b(z), reducing the variance

of the gradient estimates. The baseline b(z) should ideally not depend strongly on 6. A common
choice is a value function estimate V (z) or simply the batch average reward b = & > R(x;). The

definition of A () might also incorporate regularization terms depending on the base objective
chosen (see RKL example below).

For instance, applying Dual Clip to stabilize the reverse KL objective (Proposition G.3). The gradient
involves the term w(z) ((R(z) — b) — B(logw(z) + 1)) V log mg. Using this Agky, in the Dual Clip

Analogue to A\RKL(as,w;b)
DualClip _ DualClip .
loss structure Lyper ' (0) = Egmomoa [Lrir (2, 0)] where:

d IfA\RKL(I’,’LU,b) 2 0:

E%ﬁcnp(m, f) = max (—w(x)A\RKL, —clip(w(z),1 — €1, 1+ 62)A\RKL> .

o If A\RKL<377 w; b) < 0: Let Lclip = max <—w(x)A\RKL7 —Clip(w(a:)7 1-— €1, 1+ €2)A\RKL> .

DualClip . n
Lk = (x,0) = mln(Lclim _CARKL)7

where ERKL(Q:, w;b) = (R(z) — b) — f(log w(x) + 1). Simpler approximations might use E(m) =
R(z) —b.

Using PPO-style clipping alters the optimization objective compared to the original KL-regularized
objectives, trading strict adherence for enhanced stability. The choice of base objective structure,
definition of A, and stabilization techniques depends on the specific application.

L2 Stabilization Techniques for REINFORCE-Style Regularized Policy Gradients

While the REINFORCE-style losses derived in this section (Table 3) provide theoretically grounded
gradient estimators for the regularized objectives, practical implementations often benefit significantly
from stabilization techniques common in policy gradient methods. These techniques aim to reduce
variance and control the magnitude of policy updates, which is especially crucial in the off-policy
setting where importance weights w(x) and can exacerbate instability.

* Baseline Subtraction and Regularized Advantage Definition: This is a standard variance
reduction technique. Critically, when combining with stabilization like PPO clipping in this
REINFORCE-style context, the term playing the role of the advantage (A;) that gets clipped should
ideally incorporate not just the baselined reward but also the regularization terms derived from the
objective’s gradient.

Recall the REINFORCE-style gradient structure Vg.J (0) = Ey e [Weight(x, 0) Vg log 7o (2)].
The PPO objective involves terms like wtgt. To align these, we define the regularized advantage
A; such that w; A; approximates the key part of Weight(x, 8). For example:
— For RKL (Proposition H.4), Weightg iy, = w(z)(R(z) — S(logw(x) + 1)). We define the
regularized advantage as ARKL = (R(z) — b(z)) — B(logw(x) + 1).
— For URKL (Proposition H.5), Weightyr k1, = Zoaw(z)(R(x) — Slog w(z)). Ignoring Z,4,
we define AVRKL — (R(z) — b(z)) — Blog w(x).

19

Algorithm 1 RPG with Dual-Clip Stabilization

Require: Reference policy mo14, Reward function R(x), Initial policy parameters 6o

Require: Base objective structure Jehosen (implies regularization type), Regularization strength 8 > 0
Require: Learning rate o > 0, Batch size N > 0, Number of epochs K > 1 per iteration

Require: Dual Clip parameters: €; > 0,e2 > 0,¢ > 1

Require: Baseline method (e.g., batch/group average, value function V)

1: Initialize policy parameters 6 < 6o
2: Initialize value function parameters ¢ (if baseline uses V)
3: for each training iteration do
4: Sample batch D = {z;} L1 ~ To1a > Collect data using old policy
5: Compute R; fori = 1..N
6: Compute baselines b; fori = 1..N (e.g., bi = + >, Byorbi = V(i)
7: for k = 1to K do > Multiple optimization epochs on the same batch
8: Initialize batch loss Lpaeh = 0
9: for i =1to N do
10: w; = ﬁ:‘l’;(”“gzj) ,logw; = log mg(z:) — log mola () > Compute importance weight
11: Define Advantage analogue /L based on Jehosen, R, bi, wi, B.
12: > Ex: For RKL, A; = (R; — b;) — B(log w; + 1). Note: A; depends on current 6 via w;
13: if Dual Clip enabled then
14: loss_term1; = —w; X A; > Negative of unclipped term, gradient flows through w;
15: W clipped = clip(w;, 1 — €1, 1A+ €2)
16: loss_term2; = —w; clipped X As > Negative of clipped term
17: Leip () = max(loss_term1;, loss_term?2;)
18: if A; > 0 then
19: Llerm(i) = Lclip(i) R
20: else N >A; <0
21: loss_lower_bound; = —c¢ x A; > Lower bound term
22: Lierm (1) = min(Leip (%), loss_lower_bound,)
23: end if
24: else
25: > Define base loss term (unclipped) based on chosen objective’s negative gradient structure
26: > Ex: For RKL loss (no clip): Liem (7)) = wi(—(R:i — bs) + Blogw;)
27: ,Clerm(i) = —w; X Al
28: end if
29: Loatch = Lpaich + Lierm (Z)
30: end for
31: L(0) = %ﬁbamh > Compute final batch loss for minimization
32: g+ VQE(H) > Compute gradient (flows through w; and A;)
33: 0 < OptimizerUpdate(0, g, @) > Update policy parameters
34: if using a learned baseline V, then
35: Update value function parameters ¢ (e.g., by minimizing E[(Vy (2;) — R;)?] over the batch)
36: end if
37: end for
38: end for

39: return Optimized policy parameters 6

— For FKL or UFKL, the structure might not cleanly separate into w(x) x (...). In such cases,

a common simplification is to use A, = R(x) — b(x) and accept that the clipping primarily
stabilizes the reward term’s contribution.

This calculated A\t (incorporating reward, baseline, and KL terms) is then treated as constant using
the stop-gradient operator, SG(A;), when plugged into the clipping loss function.

* RPG-Style Objective Clipping (Dual-Clip Variant): PPO [Schulman et al., 2017] introduces
objective clipping to limit the impact of large importance ratios w(z). The Dual-Clip variant [Ye
et al., 2020] refines this, particularly for negative advantages, using a lower bound parameter ¢ > 1.
When applied in the REINFORCE-style setting, the PPO Dual-Clip objective aims to maximize
(simplified notation, expectation over t ~ mo1q):

JDuaICIip (0) — Et [L?uaIClip (0)}

20

Case A(z) > 0(e.g., A =1) Case A(z) < 0(e.g., A=—1)

0 T T E—— 2.5 T T T T
) S N R S S—
2 05 . = 2f .
g g
g, -1t 1 &, 1sf .
E | e £
Q [}
@ —L5F Grad via w [2 1 7 ----------------- Grad =0 (w.r.t w) [
S | 1 I Grad =0 (w.r.t w) _S 1 Grad via w
_ | T I T 0.5 | T T T
0.5 g1 ¢ 1.5 2 © 25 0.5 g1 g 1.5 2 © 25
| + | +
w(z) = 7o () /Toa () w(z) = mo(x) /Mo ()

Figure 4: Visualization of the Dual-Clip loss term L£PU!CliP(z) vs. importance weight w(z),
as described in Section I.1 and Algorithm 1. This formulation is typically implemented as fully
differentiable w.r.t 6 (via w(z) and potentially A(z) if A depends on 6, e.g., via log w(z)), unlike
REINFORCE-style implementations that use SG(A) or SG(¢;) within the loss. For visualization,

~

A(x) is treated as constant (A = 1 left, A = —1 right) to isolate the effect of w. Solid blue: Loss
depends linearly on w, gradient VL flows via w(z). Dotted magenta: Loss is constant w.r.t w,

gradient VgL does not flow via w(z) in this segment (though it might flow via Aif A depends on 6).
Left: Case A < 0. Right: Case A > 0.

where ﬁt is the regularized advantage defined above (incorporating Ry, by, and KL terms), w;(0) =
Tolarls) and LU (6) is defined based on the sign of SG(A;):

Tola(at|st)
— IfSG(Ay) > 0: L2 (0) = min(w,(8) SG(Ay), clip(we(6),1 — 1,1 + €2) SG(Ay))
—If SG(A,) < 0: LP"(9) = max(min(w,(0)SG(A,),clip(we(F),1 — 1,1 +
€2) SG(Ay)), cSG(A,))
Here, €1, €5 are clipping hyperparameters, and c is the lower bound factor. Note that # influences
this objective only through w;(#), as A, is detached via SG.
To implement this using gradient descent (minimizing a loss), we minimize the negative of the
PPO Dual-Clip objective. The loss function becomes £P%IClip(9) = E,[£P"“(9)], where
£PUICP gy — _ [PwICtP () Explicitly:

— IfSG(A;) > 0: £2""P(9) = max(—w () SG(Ay), —clip(wy(0),1 — €1, 14 €2) SG(A,)).

— If SG(A;) < 0: Let Layp = max(—wy(0) SG(A;), —clip(wi(6), 1 — €1,1 + €2) SG(Ay)).
Then, £ () = min(Leip, —cSG(Ay)).

This PPO Dual-Clip loss function £P%C1P(§) replaces the simpler REINFORCE-style losses

derived earlier (like L;%IEFORCE'SMC in Eq. (H.2)). The gradient V£P"IClP(9) is computed via

automatic differentiation, where the gradient flows through w,(6) but is stopped at A,. This
approach uses the PPO objective structure with the appropriately defined regularized advantage for
stabilization in an off-policy REINFORCE-style update. Algorithm 2 details this implementation.

J Detailed Experimental Setup

Base Models and Datasets. We conduct experiments using the Qwen3-4B large language models
[Team, 2025]. For training, we utilize the DAPO-Math-17k dataset [Yu et al., 2025], filtered to include
only English samples, resulting in a 13.9k sample training set. Model performance is evaluated on
several mathematical reasoning benchmarks: AIME2024 [MAA, 2024a,b] and AIME2025 [MAA,

2025a,b].

21

Implementation and Framework. Experiments are implemented using the verl framework [Sheng
et al., 2025] with the vLLM engine [Kwon et al., 2023] for efficient LLM serving and inference.
For practical implementation of our RPG methods, we emphasize that the probabilities (or log-
probabilities) from the last iteration’s model (7r,1q) for the sampled data can be pre-computed and
stored. This allows the KL regularization terms to be calculated without needing to keep 7,1q in GPU
memory during the training step of the current policy my. Consequently, only one model (7g) needs
to be actively managed in GPU memory for training, which is faster and more memory-efficient
compared to approaches like GRPO that typically require access to at least two models (the current
policy and a reference/sampling policy) during optimization.

Iterative reference updates. To further stabilize optimization, we adopt an iterative reference-update
scheme: we periodically set m,q < 7 (every K optimizer steps, or when a moving average of
token-level KL exceeds a target). This realizes a practical KL trust region while avoiding over-
regularization toward the initial checkpoint. Further implementation details and hyperparameters
(learning rate, 3, clipping) are provided in Appendix J.

Stabilization and Advanced RL Techniques. Our RPG implementations (both fully differentiable
and REINFORCE-style) incorporate stabilization techniques like baseline subtraction and PPO-
style objective clipping (specifically, Dual-Clip [Ye et al., 2020, Schulman et al., 2017]), crucial
for robust off-policy learning. Detailed algorithmic descriptions are provided in Appendix I (see
Algorithm 1 for RPG with Dual-Clip and Algorithm 2 for the REINFORCE-style equivalent, along
with Figures 2 and 4 for visualization). For PPO-style clipping, we set (e, e2) = (0.2,0.28) for
RPG, RPG-REINFORCE and DAPO. For GRPO, we use (€1, €2) = (0.2,0.2). Furthermore, to
enhance training efficiency and data quality, we adopted techniques introduced by DAPO [Yu et al.,
2025], including a dynamic sampling strategy with a group filtering mechanism (which oversamples
challenging prompts and filters out those with near-perfect or near-zero accuracy based on initial
rollouts) and an overlong punishment component in the reward shaping to discourage excessively
verbose outputs. In addition, we enable RPG-Style Clip (Section E.1) for the REINFORCE-style
estimators, which we found to be the most sample-efficient and stable variant for RL training at larger
scales.

More Results and Discussion.

Similarly, Table 5 shows the experiment results with 2k context length. It can be observed that
RPG and RPG-REINFORCE variants demonstrate robust performance, often competitive with or
exceeding baselines. For example, RPG-REINFORCE-UFKL achieves the top “Best” scores for
AIME24 (0.3625) and AIME25 (0.3083), and the top “Last” score of AIME25 (0.2927), while
RPG-UFKL attain the top “Last” score of AIME24 (0.3427) and the second highest “Last” score of
AIME2S5 (0.2833). Their training curves in Figure 5 generally indicate good stability and effective
learning. The consistently high performance across various RPG formulations underscores the utility
of the systematically derived KL-regularized objectives explored in this work.

Moreover, these algorithms generally exhibit stable training progressions regarding reward (critic
score) and policy entropy, as shown in subfigures (c) and (d) in Figures 3 and 5, compared to some
baselines like GRPO, which can show more volatility. This stability likely contributes to their robust
benchmark performances (subfigures a-b). The response lengths (subfigure e) for RPG methods also
appear well-controlled. These observations align with the strong final scores reported in Tables 2
and 5 for these variants.

Hyperparameters. Unless otherwise specified, all experiments use AdamW optimizer [Loshchilov
and Hutter, 2019] with a learning rate of 1 x 1075, a weight decay of 0.1, and gradient clipping at
1.0. Training proceeds for 400 steps, including an initial 10 warm-up steps, after which a constant
learning rate is maintained. The global training batch size is 512. For each sample in the batch, we
roll out 16 responses using a temperature of 1.0. The per-GPU mini-batch size is 32, and experiments
are conducted on 8§ NVIDIA H100 GPUs. The maximum training and rollout length is set to 4,096
tokens for 2K context length and 8,192 tokens for 4K context length, with dynamic batching enabled.
The KL regularization coefficient 3 is set to 1 x 1074,

Specific Clipping Parameters and Adopted Techniques. As mentioned in Section 3, we set
(e1,€2) = (0.2,0.28) for RPG, RPG-REINFORCE and DAPO. For GRPO, we use (e1,€3) =
(0.1,0.1).

22

Algorithm 2 REINFORCE-Style RPG with Dual-Clip Stabilization

Require: Reference policy mo, Reward function R(z), Initial policy parameters 0o
Require: KL Component function Compute_KL_Component(z, 0, 714), KL Component Coefficient 8
Require: Learning rate o > 0, Batch size N > 0, Number of epochs K > 1 per iteration

Require: Dual Clip parameters: €1 > 0 (low), e2 > 0 (high), ¢ > 1
Require: Baseline method (e.g., batch average, value function V)
: Initialize policy parameters 6 < 6o

: Initialize value function parameters ¢ (if baseline uses V)

: for each training iteration do

Sample batch D = {x;} 7 ~ 7o

Compute rewards R; fori = 1..INV

Initialize batch loss Lyaen = 0
fori =1to N do

. mo(x4)
Wi = Toa@)
l; = —log mo(x;)
Api=R;—b;

Cxu,; = B - Compute_KL_Component(z;, 6, mou(x;))
A} = AR, + SG(Cxku,:)/ SG(w;)
1/1»; = A; X £y
if 1»; > 0 then
Whigh = 1 + €2
if w; < Whigh then

L= ’l/h X SG(’LUZ)

[Y W VUGG
CPOLRAFNDINELYNT QOO DNNE WD

else
21: A{r}igh = Ar; + SG(CKL,Z')/ SG(whigh)
22: 'l/}high = Aiﬁgh X SG(&)
23: Li = tnigh X SG(Whnign)
24 end if
25: else
26: Wiow = 1 — €1
27: if w; < wiow then
28: low = ARr,i +SG(CkL,i)/ SG(wiow)
29: wlow = Aiow X SG(&)
30: Ei = ’lblow X SG(wlow)
31: else if w; < c then
32: El = ’lﬁl X SG(wl)
33: else
34 L; = AR,i X SG(&) X c+ SG(CKL,z) X SG(&)
35: end if
36: end if
37: Lbatch = Loatch + L4
38: end for
39.' [,(9) = %Ebalch
40: g+ VoL(0)
41: 0 < OptimizerUpdate(0, g, «)
42: if using a learned baseline V, then
43: Update value function parameters ¢
44: end if
45: end for
46: end for

47: return Optimized policy parameters ¢

Compute baselines b; fori = 1..N (e.g., bi = + >, Byorbi = V(i)
for k = 1to K do > Multiple optimization epochs on the same batch

> Importance weight

> Negative log probability

> Baseline-subtracted reward
> KL component

> Effective advantage

> Branching term

> Grad exists
> Wi > Whigh

> <0

> Grad exists
>w; > ¢

> Compute average batch loss
> Compute gradient
> Update policy parameters

K More Experiment Results

K.1 The performance with 2k context length

We just display the last and best scores on AIME24 and AIME25 benchmarks in Table 5 for the
experiments with 2K context length. The results also demonstrate the superiority of our algorithms

over baselines, including GRPO and DAPO.

23

AIME24 accuracy mean@32 AIME25 mean@32

g5 | — &0

35— oweo

RPG-UFKL r—A
————i

RPG-REINFORCE-UFKL

— RPG-REINFORCE-URKL

M

0300 { ore

RPG-UFKL

— RPG-URKL
0.275 RPG-REINFORCE-UFKL.
—— RPG-REINFORCE-URKL

0.250

0.225

0.200

AIME25 mean@32

0.175

AIME24 accuracy mean@32

0.150

0.15

0.125

0.100
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Step Step

(a) AIME24 (b) AIME25

Citic Score Actor Entropy

Response Length

Actor Entropy

0 5 100 150 200 250 300 360 400 0 5 100 150 200 250 300 30 400 0 s 0 150 200 250 300 3% 400
step step Step

(c) Reward (Critic Score) (d) Entropy (e) Response Length

Figure 5: Training dynamics and benchmark performance for fully differentiable Regularized Policy
Gradient (RPG) and REINFORCE-Style RPG (RPG-REINFORCE) compared to baselines (GRPO
and DAPO) with 2k context length.

Table 5: Combined performance metrics with 2K context length on the AIME24, and AIME25
mathematical reasoning benchmarks, showing “Last” and “Best” scores. The “Last” score is from the
400th training step, assuming the training process remained stable to that point. The highest score in
each column is bolded, and the second highest is underlined. RPG and RPG-REINFORCE methods
are highlighted with light cyan and light green backgrounds, respectively.

RPG-REINFORCE-UFKL | 0.3396 0.3625
RPG-REINFORCE-URKL | 0.3188 0.3417

0.2927 0.3083
0.2792 0.2938

Method | AIME24 | AIME25
| Last Best | Last Best
GRPO 0.2563 0.2708 | 0.2323 0.2479
DAPO 0.3229 0.3281 | 0.2792 0.2844
RPG-UFKL 0.3427 0.3479 | 0.2833 0.2833
RPG-URKL 0.3260 0.3594 | 0.2677 0.2677

K.2 Ablation Study

To further investigate our algorithms, we implement an ablation study on the clip ratio and the effect
of the KL regularization coefficient.

K.2.1 Ablation on clip ratio

We first implement experiments with different clip ratios on REINFORCE-style RPG algorithms. We
choose (0.1,0.1) and (0.2, 0.28) for (€1, €2) since they are 2 typical choices of clip ratios [Schulman
et al., 2017, Yu et al., 2025], and the performance curves as well as key training dynamics are
displayed in Figure 6. It can be observed that although the critic score and response length are
similar for different settings, the actor entropy shows a huge difference in trend, demonstrating that an

24

adequately higher and clip-higher strategy proposed by DAPO may greatly contribute to the increase
of performance by decreasing the actor entropy.

AIME24 accuracy mean@32 AIME25 mean@32
RPG-REINFORCE-UFKL-CIp(0.1, 0.1)
0.35 | — RPG-REINFORCE-URKL-CIp(0.1, 0.1) 0.300
RPG-REINFORCE-UFKL-Clip(0.28, 0.28)
—— RPG-REINFORCE-URKL-Clip(0.28, 0.28)

RPG-REINFORCE-UFKL-CIip(0.1, 0.1)

—— RPG-REINFORCE-URKL-CIp(0.1,0.1)
RPG-REINFORCE-UFKL-CIip(0.28, 0.28)

—— RPG-REINFORCE-URKL-CIip(0.28, 0.28)

0.275

0.250

0.225

0.200

AIME25 mean@32

0.175

AIME24 accuracy mean@32

0.150

0.15

0.125

0.100

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Step Step
(2) AIME24 (b) AIME25

Actor Entropy

Response Length

100

0 50 10 150 200 25 300 30 400 0 50 10 150 200 25 300 30 400 0 50 10 150 200 250
Step Step Step

(c) Reward (Critic Score) (d) Entropy (e) Response Length

Figure 6: Performance of REINFORCE-Style Regularized Policy Gradient (RPG-REINFORCE)
methods with different clip ratios with 2k context length. Plots display accuracy on mathematical
reasoning benchmarks (AIME24, AIME25) and key training dynamics (reward, policy entropy,
response length).

K.2.2 Ablation on KL regularization coefficient

We also implement ablation studies on the effect of the KL regularization coefficient. We implement
experiments with REINFORCE-style RPG-UFKL (RPG-REINFORCE-UFKL) with 3 = 1 x 1073
and 1 x 104, and the results are shown in Figure 7. Figures 7(a) and 7(b) show that the coefficient
1 x 10~* performs better than 1 x 1072, and the trend in response length conforms to the performance,
indicating that longer response length may help with the improvement in performance.

We also dig into the effect of the iteratively updated reference model. We implement another
experiment with no iteratively updated reference model, and display the performance and dynamics
in Figure 7. It can be observed that the performance recovers with longer response length and much
lower actor entropy, showing that longer response length can be an important factor and indicator of
the performance on benchmarks.

25

AIME24 accuracy mean@32 AIME25 mean@32

— =
0.40 A—%
035

o 035
®

g o 0.30
: 3

2 0.30 Q

> §

3 g

£ E 025
H ©
8025 &

8 o]

3 H

o <

s 020
2020

||
|
0.15 | 0.15 /

—— RPG-REINFORCE-UFKL-1o-4 [—— RPG-REINFORCE-UFKL-1o4
—— RPG-REINFORCE-UFKL-10-3 | — RPG-REINFORCE-UFKL-10-3

RPG-REINFORGE-UFKL-1e-3-noferref | RPG-REINFORGE-UFKL-1e-3-noferref

0.10 0.10
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400

Step Step
(a) AIME24 (b) AIME25
Gt Score Actor Entropy

Response Length

2800

2600 \/ :
200
200

2000

Actor Entropy

Response Length

1800

1600

1400

(c) Reward (Critic Score) (d) Entropy (e) Response Length

Figure 7: Performance of REINFORCE-Style Regularized Policy Gradient (RPG-REINFORCE)
methods with different KL coefficients with 4K context length. Here "noiterref" indicates the model
is trained with no iteratively updated reference model. Plots display accuracy on mathematical
reasoning benchmarks (AIME24, AIME25) and key training dynamics (reward, policy entropy,
response length).

26

L Proofs of Theorem B.1 (Generalized Policy Gradient Theorem)

Proof. The proof relies on the log-derivative trick, Vomg(x) = m9(x) Vg log mg(z), and the product
rule under the integral sign:

VoEymr, [f(z,0)] = Vg/ﬂg(x)f(x,ﬂ)dx
~ [Volmola)f (.0t (Swap V. [)
— [(Voma(a))(2.6) + mo(a) (Vo (,6)) d
- / (m0(x) (Vg log me(2)) f (x, 8) + 70 (2) (Vo f(2,0))) dz (Log-derivative)

=/W@NWWWM%M@+VMW@M$
=Epn, [f(x,0)Vologmg(x) + Vo f(z,0)].

M Proofs for Regularized Policy Gradients

This section provides detailed proofs for the theorems presented in Section 2, demonstrating that
the gradients of the proposed fully differentiable off-policy surrogate losses correspond to the
negative gradients of the respective original objectives. The core tool used is the policy gradient
theorem: VoE,r, [f(2,0)] = Epor,[f(z,0)Vologme(z) + Vo f(x,0)]. We use the notation
w(z) = mg(x)/me1a(z) for the importance weight.

M.1 Proof of Proposition G.1 (Policy Gradient and Differentiable Loss for Normalized
Forward KL)

Proof. We start by rewriting the objective function Jrky, () using expectations with respect to the
fixed reference policy m1q. The first term, the expected reward under 7y, can be rewritten using
importance sampling:

Bury [R(@)] = [mo(e) R} = [W”fd(z) o () R(2)dT = By, [0(z) R(2)]

The second term is the forward KL divergence:

Tora(x
KMMMMPEWMJM “’]

mo()
=]ECENﬂ'Old [lOg Told (LL') - log Uy ([L‘)}
=]Ewwﬂold [_ log 7y (.’1?)] + Ewwﬂ'old [IOg Told (LU)]

Substituting these into the objective function:

JrkL(0) = Eonry [w(@)R(2)] = B (Esmrmoa[—10g o (2)] + Ezoroya [log Tola(@)])
= Eonroa[w(2)R(z) + Blog 7o ()] = BEonrya[log Tola(2)]-
Since mo1q(x) does not depend on 6, the term SE;r,, [log mo1a(z)] is a constant with respect to

6. Now we compute the gradient Vg Jrkr,(6). Assuming we can swap gradient and expectation
(standard assumption in policy gradient methods):

VoJrkL(0) = VoEyr, [w(z)R(z) + Blogme(z)]
= Eanrpa [Vo(w(z)R(x) + Slog mo(x))]
= Eonroa [(Vow(z)) R(2) + 8V log mp ()] -
We use the identity for the gradient of the importance weight:

Vow(z) = Vo < o ())

Told (l’)

27

1
= Wold()Vgﬂ'g(w)
_ mo(z) Vemg(x)
7ro1d() mo(x)
w(x)Vg log mg(x).

Substituting this back into the gradient expression:
VoJrkL(0) = Eprron [w(a:)(Vg log g (x))R(x) + BVglogmy (1‘)]
= EJL’NWold [(w(‘r)R(x) + ﬂ) v@ IOg ﬂp(ﬁ)] .
This proves the first part of the theorem.

Now, consider the surrogate loss function:

Lrkr(0) = Egnrgy [-w(z)R(z) — flogme(x)] .
We compute its gradient:
VoLrkL(0) = VoEymn, [—w(z)R(z) — Slog me(x)]
=Einrmoa [Vo(—w(z)R(z) — Blog me(x))]
= Eonmoq [-(Vow(x))R(z) — BV log 7 (2)]
= By [~w(2) (Vo log mo(x)) R(z) — BV log mp(x)]
= —Eyoro [(w(z)R(z) + B) Vg log mo(x)] .

Comparing this with the gradient of the objective function, we see that Vg Lrk1,(0) = —VgJrkr(0).
This confirms that minimizing Lgkr,(6) corresponds to maximizing Jrkr,(6) using gradient-based
methods. O]

M.2 Proof of Proposition 2.2 (Policy Gradient and Differentiable Loss for Unnormalized
Forward KL)

Proof. We start by expressing the components of Jyrkr,(f) using expectations over the normalized
reference distribution 7o1q(x) = 7o1d(2)/Zoa- The importance weight is w(z) = mg(x)/mo1a (),
which implies 7y (z) = w(z)mo1a(x) = w(x) ZoaTola ().

The expected reward term:
Epmr, [R(x)] = /mg(x)R(x)dx = /w(x)wold(x)R(x)d;v
= /w(x)zold%old(m)R(x)dx = ZoldEmN‘Trold [w(w)R(m)]

The unnormalized KL divergence term UKL (7q1q||7) has two parts. Part 1 (Generalized KL):

/WOld(ﬂf) log Toid () dr = /Zo1d7~rold(x) log Told(¢) dx

Wa(x) 7T9(1’)

1
= OldEIN%Old |:10g ’LU(.’I,'):| = ZOIdE(EN%Old [7 logw(x)} .

Part 2 (Mass Correction):
/ (o () — mora(x))da = / (w0(2)mo1a () — Tora(x))da

= /(w(x) — Do (x)de = /(w(x) — 1) ZogaTola(x)dx
= ZoldEpnzo, [w(z) — 1] = ZolaEpnz, [w(2)] — Zoa.
Combining these parts for the UKL term:
UKL(7o1d[m6) = ZouaEznzig [— log w(@)] + ZoldEzniy [w(2)] — Zowa.

28

Now, substitute everything into the objective Jyrkr, (0):
JurkL(0) = ZouEynz g [0(2) R(2)] — B (ZolaEgnzyg [~ log w(z)] + ZowaEgnzoyg [w(2)] — Zowa)
= ZoldEzniy, [W(2)R(2) + Blogw(z) — fw(z) + A].

To compute the gradient V Jurkr, (6), we differentiate the terms inside the expectation. The constant
term (5Z,)q (arising from f inside the expectation) vanishes upon differentiation.

v0JUFKL(9) Vo (ZolaBanzo [w(z)R(z) + Blogw(z) — fuw(z)])
= ZolaBonioq [Vo(w(z)R(x)) + BVe(logw(z)) — BVe(w(z))].

We need the gradients of w(x) and log w(x):

Vow(z) = w(x)Vglogme(z) (as derived in Proposition G.1 proof)

Vologw(x) = Vyo(log mg(x) — log mo1a(x)) = Vg log me(x).
Substituting these into the gradient expression:
VoJurkL(0) = ZowBanz,, [(Vow(z))R(x) + BV log me(z) — B(Vew(x))]

= ZoaBomiyy [w(x)R(x) Vo logme(x) + Vg log me(x) — fw(x)Velog me(z))

= ZowEgrz, [(w(z)R(x) — fw(z) + B) Ve log me(z)]

= ZoBonra | (w(@)R(w) = B (w(z) 1)) Vo logm ()] .
This proves the first part of the theorem.
Now, consider the surrogate loss function:

LurkL(8) = ZolaBanz,, [—w(@)R(x) + B(w(z) — logw(z) —1)] .

We compute its gradient:

VQEUFKL(G) = ZoaEznzo, [V
Old]EwNTl'Qld [
[

o(—w(z)R(x)) + BVe(w(z) —logw(x) —1)]
(Vow(z))R(z) + B(Vow(z) — Vg log w(z))]
oldEx~iy [—w(z)R(x)Vglog me(z) + B(w(z)Velog mg(x) — Vg log mg(x))]

= ZotaBsrraa | (~0(@)R(@) + fu(@) - 8)Volog mo(a)|
= ~ZaaBarryy | (w(@)R(@) — Bw(z) =1)) Vologmo(a)]

Comparing this with the gradient of the objective function, we find Vg Lyrk1(0) = —VeJurkL(0).
This confirms the surrogate loss function. Note that the constant —1 inside the logarithm term in
the loss Lypk1, corresponds to the constant 87,4 in the objective Jypkr, and does not affect the
gradient. O

M.3 Proof of Proposition G.3 (Policy Gradient and Differentiable Loss for Normalized
Reverse KL)

Proof. We rewrite the objective function Jrkr,(f) using expectations with respect to meq. The
expected reward term is E, ., [R(2)] = Egon,, [w(x) R(x)], as shown previously. The reverse KL
divergence term is:

T\ T
KL(|| owa) = Earor, [1og - fd((SM

By [log w(z)]

mo(z) logw(z)dz

/ (z) Tola () log w(x)dx

Tlold (ZC)
= Epnroa[w(2) log w(z)].
Substituting these into the objective function:

JRKL(0) = Earrmog [0(2) R(2)] = BEgnryy [w(2) log w(2)] = Egnmoy [w(2) R(2) — fw(z) log w(z)].

29

Now we compute the gradient Vg Jrkr,(0):
VoJrkL(0) = VoEgn.,, [w(z)R(x) — fw(x) logw(x)]
= Eonroa [Vo(w(z)R(2)) = BV (w(z) logw())] .
We need the gradient of w(z) logw(x):
Vo(w(z)logw(z)) = (Vew(z)) logw(z) + w(x)Ve(log w(z))

= (w(z)Vglogm(z)) logw(z) + w(z) (Ve log mg(x))

= w(z)Vglog mg(x)(log w(z) + 1).
Substituting this and Vyw(z) = w(z) Ve log mg(x) into the gradient expression for Jrkr,(6):

VoJrkL(0) = Eprryy [(Vow(x))R(x) — fw(x) Ve log mo(x)(log w(x) + 1)]
= Bunmpa [w(z)(Vologme(z)) R(z) — fw(x)(logw(z) + 1)V log mo ()]

= By [w(x) (R(a:) — Blogw(z) + 1)) Vo log g (x)} .

This proves the first part of the theorem.

Now, consider the surrogate loss function:

Lri1L(0) = Epmry, [w(2)(—R(z) + Blogw(z))] .
We compute its gradient:
VoLriL(0) = VoEByr,y [—w(x)R(z) + fw(z) log w(z))

= Bonmoa [Vo(—w(z)R(z)) + BVe(w(z) log w(z))]
= Bonmoa [-(Vow(z)) R(z) 4+ fw(x) Ve log m(z) (log w(x) + 1)]
=Epny [—w(z)(Veolog mg(z))R(x) + fw(z)(logw(z) + 1)Vg log mg ()]

=By, [w(x) (—R(:c) + Blog w(z) + 1)) Vo log (x)}
= —Eooroy {w(x) (R(ac) — B(logw(x) + 1)>Vg log we(x)} .

Comparing this with the gradient of the objective function, we confirm that VyLgrkr(6) =
—VoJrkL(8). O

M.4 Proof of Proposition D.3 (Policy Gradient and Differentiable Loss for Unnormalized
Reverse KL)

Proof. We again express the objective components using expectations over the normalized reference
distribution o4 (2) = 7o1a(x)/Zo1a, with w(z) = mg(x) /mo1a ().

The expected reward term: E, ., [R(z)] = ZoaEyr,, [w(z)R(2)].
The unnormalized reverse KL divergence UKL (mg||mo1q4) has two parts. Part 1 (Generalized KL):

/ o) log) g — / 7o) log w(z)dz

ol ()

= / w(x)mo1a (2) log w(x)dx

= /w(m)ZoldTrold(x) log w(z)dx

= Old]EwN%old [w(z) log w(x)]
Part 2 (Mass Correction):

/(Wold(m) — mp(x))dx = /Wold(x)dx — /Wg(x)da:

— Zoa— / (@) ol (z)da
/

= Zold — [w(x)ZoaToa(x)dx

30

= Zold — ZoldBgnzyy [w()].
Combining these for the UKL term:
UKL(’]TQHTFOM) = ZoldE:vrv%old [w($) log 'LU(JJ)] + Zold — ZoldEmN%old [w(x)}
Now, substitute into the objective Jyrkr(0):
JurkwL(0) = ZoldEz~%01d [w(z)R(z)] = B (ZotaEanzp, [w(7) logw(z)] + Zotd — ZotdEansyy [w(T)])
= LBy [w(z) R(z) — fuo(z) log w(z) — B+ Bu(z)] .
We compute the gradient Vg Jurkr (). The constant term — /37,14 vanishes upon differentiation.
VoJurkL(0) = Vo (ZoiaBunsz,,, [w(z)R(z) — fw(z) log w(x) + fw(z)])
= ZowBsnz g [Vo(w(z)R(z)) — BV (w(z)logw(z)) + BVew(z)].
Using the previously derived gradients Vow(z) = w(x)Vglog mg(x) and Vg(w(z) logw(z)) =
w(x)Vglog mg(z)(logw(z) + 1):
VGJURKL(H) Vo (ZoaEynzy, [w(z)R(2) — pw(z) log w(z) + Bw(x)])
= ZowEg~z 4 [Vo(w(z)R(z)) — 5V9(w(l") log w(z)) + BVew(z)]
= ZoEynzog [(Vow(2))R(z) — fw(z) Ve log mo(x) (log w(x) + 1) + B(Vew(z))]
= ZowE g~z [w(2)R(2)Velog mo () — fw(z)(logw(z) 4+ 1)V log me ()
+Bw(x) Vg log m(z)]

= Zo1aBpmsoy [w(m)Vg log 7 () (R(x) — Blogw(z) +1) + ﬂ)}
= ZoBanra [w(2) Vo log o () (R(x) — Blogu(z))|

= Zo1aEymsoy, lw(az) (R(x) — Blog w(m)) Vo log ﬂ@(m)] .

This proves the first part of the theorem.
Now, consider the surrogate loss function:
LUrkL(0) = ZowEanz,, [—w(z)R(z) + B(w(z)logw(z) — w(x))] .
We compute its gradient:
VoLurkL(0) = ZoldEmm [Vo(—w(z)R(x)) + Vo (w(z)log w(z) — w(z))]
= ZowEonzg [~ (Vow(2))R(z) + B(Ve(w(z) logw(z)) — Vow(x))]
= ZowEqgnz g [—w(@)R(x) Vo log mo(x)
—|—ﬁ((z)(log w(z) + 1)Valog mg(x) — w(x) Vg log 71'9(3:))]
= ZoldEomiy [—w(z)R(x)Vglog mo(z) + Bw(z)log w(x)Velog my(x)]
= ZoaBamryy [w(@)(~R(x) + Blog w(z)) Vo log mo(x) |

= —ZoldEgnz g

w(zx) (R(m) — Blog w(x)) Vg log mg (x)] .

Comparing this with the gradient of the objective function, we confirm that VyLygrky () =
—VoJurkL(6). The constant term +1 (corresponding to —/3Z.q in the objective) that appeared
in the derivation in Section D does not affect the gradient and is often omitted from the final loss
expression used in practice. O

N Proofs for REINFORCE-Style Regularized Policy Gradients

This section provides justifications for the REINFORCE-style surrogate loss functions presented in
Section E (Theorems H.1 to H.5). These proofs demonstrate how automatic differentiation applied
to the proposed losses, utilizing the stop-gradient operator SG, yields the correct gradient direction
(negative of the objective gradient derived in Section 2).

The core idea relies on the operational definition of the stop-gradient operator SG(-) within automatic
differentiation frameworks: Vg SG(f(6)) = 0, while the forward computation uses the value of f(6).
We use the notation w(z) = mg(z) /7o ().

31

N.1 Proof of Proposition H.1 (REINFORCE-style Policy Gradient for Forward KL)

Proof. The objective is Jrkr,(0) = Er, [R(z)] — 8 KL(7oq || mg). From Proposition G.1, its gradient
is:

VoJrKL(0) = Eznn,, | (w(2)R(2) + B) Vo logmo ()
—_———
Weightpyr, (,6)
The proposed REINFORCE-style surrogate loss is:
Lt T Y0) = ey [SG (w(@)R(x) +) log mo ()]

We compute the gradient of this loss as it would be computed by an automatic differentiation system.
Assuming the gradient can be swapped with the expectation:

VoL ORCEN () = —Eyr, [Vo (SG (w(@)R(z) +) log ()]

By | (V05G (w(@)R() + 8)) log mo ()
=0 by definition of SG
+SG (w(z)R(zx) + B) (Vo log my(x))]
= —Eaznnaq [SG (w(z)R(z) + B) Vg log mg(x)] -

This gradient expression, when used in an optimization algorithm (where SG is conceptually re-
moved), corresponds to applying updates proportional to:

= (“Borroq [(w(z)R(2) + 5) Vg log me(2)]) = Ve JrkL(0).

Thus, minimizing [,};]IEEEFORCE'SWE (0) using gradient descent with automatic differentiation effectively
performs gradient ascent on the original objective Jrkr,(9). O

N.2 Proof of Proposition H.3 ((REINFORCE-style Policy Gradient for Unnormalized
Forward KL)

Proof. The objective is Jurkr,(0) = Er,[R(z)] — S UKL(7o1a||7e). From Proposition 2.2, its
gradient is:

VoJurkL(0) = Exnsoy | Zold (w(z)R(x) — B (w(z) — 1)) Vo log 7o ()

Weight gy, (2,6)

The proposed REINFORCE-style surrogate loss is:
REINFORCE-styl
LyrkL (O) = ~Eonroy [SG (Zowa (w(@)R(x) — Bw(x) — 1)) log me ()] .
Computing the gradient via automatic differentiation:

VoL 7Y (0) = ~Eyion [Vo (SG (Zowa(- ..) log mo ()]

= —EIN;OM (V@ SG(ZOld(. ..))) 10g ﬁg(x) + SG(ZOld(. ..))(V@ log ﬂg(m))
=0

= ~Eonii [5G (Zou (w(@)R(z) — Slw(z) = 1))) Vo logme(z)]

This gradient corresponds to the update direction —VyJyrkr, (6) when the SG is dropped. Minimiz-
ing this loss achieves gradient ascent on Jyrkr,(6). If Zo1q is omitted, the same argument applies to
the proportionally scaled objective and loss.

32

N.3 Proof of Proposition H.4 (REINFORCE-Style Loss)

Proof. The objective is Jrkr(0) = Ex,[R(x)]— 8 KL(7g || mo1a). From Proposition G.3, its gradient
is:

VoJrin(0) = Epor, |w(z) (R(x) — B(log w(z) + 1)) Vo log ()

Weightg oy, (,0)
The proposed REINFORCE-style surrogate loss is:
Cracr 0 Y0) = ~Eanryy [SG (w(@) (R(x) — flogw(x) — §)) logmy ()]
Computing the gradient via automatic differentiation:

VoLpiy N(0) = ~Epryy [Vo (SG (w(@)(....)) log me(2))]

= —Epunoy | (VoSG(w(z)(...))) logme(x) + SG(w(x)(...)) (Vg logm(z))
=0
= ~Borgq [5G (w(z) (R(z) — Blogw(x) — B)) Vg log mo(x)] -

This gradient corresponds to the update direction —VyJrir,(6) when the SG is dropped. Minimizing
this loss achieves gradient ascent on Jgkr, (). O

N.4 Proof of Proposition H.5 (REINFORCE-Style Loss for Unnormalized Reverse KL)

Proof. The objective is Jurkr(0) = Ex,[R(x)] — B UKL(7g||7mo1a). From Proposition D.3, its
gradient is:

VoJurkr(9) = Eorors | Zowaw(z) (R(m) . Blogw(x)) Vo log 7o ()

Weighty i, (2,0)
The proposed REINFORCE-style surrogate loss is:

LORKL () = ~Eonig [SC (Zow(z) (R(z) — Slogw(x)) log my()]
Computing the gradient via automatic differentiation:

VoL mer X () = ~Eynz,yy [Vo (SG (Zoww(2)(. ..)) log mg ()]

=-E (Vo SG(Zoqw(x)(...))) log me(x)

=0

L~ Told

+ SG(Zojaw(z)(...)) (Vo logmg(x))

= —E,z, [SG (Zoaw(z) (R(z) — Blogw(zx))) Vg log me(x)] .

This gradient corresponds to the update direction —Vy Jurkt,(#) when the SG is dropped. Minimiz-
ing this loss achieves gradient ascent on Jurky (). If Z1q is omitted, the same argument applies to
the proportionally scaled objective and loss. O

O Broader Impact and Limitations

The methods developed in this paper contribute to the broader effort of enhancing the reasoning
capabilities of large language models. Improved reasoning in LLMs has the potential to significantly
benefit various fields, including scientific discovery, education, and complex problem-solving in
engineering and medicine. By providing more stable and efficient training algorithms, our work
can facilitate the development of more reliable and capable Al systems. However, as with any
advancement in Al capabilities, it is crucial to consider the ethical implications and ensure responsible
development and deployment of these technologies to mitigate potential misuse.

33

P NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We describe all the contributions and scope in the abstract and introduction
parts.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed aspects like using a fixed KL regularization coefficient (/3).
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

34

Justification: We list all the assumptions and proofs in Appendix L, M, and N.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We listed all the experiment details in Section 3 for reproduction of our work.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

35

Answer: [Yes]

Justification: The code and data required to reproduce the main experimental results are
provided at https://anonymous.4open.science/r/verl-neo-pub-3D2D. The sup-
plemental material will contain instructions for their use.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We just list all the training and test details in Section 3.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The error bars are not reported because it would be too computationally
expensive for repeated experiments on LLMs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

36

https://anonymous.4open.science/r/verl-neo-pub-3D2D
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We just list all the computer resources in Section 3.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research only explores more efficient methods for fine-tuning large
language models with reinforcement learning approaches. Therefore, the research conducted
in the paper conform, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Section O discusses potential positive societal benefits of improved LLM reasoning and also
acknowledges the need to consider ethical implications and mitigate potential misuse.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

37

https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work proposes a systematic framework for fine-tuning large language
models using reinforcement learning methods. To our knowledge, this work has no direct
path to any negative applications.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We add the citation to all the codes (verl: Apache-2.0 License), models
(Qwen2.5-7B-Instruct and Qwen2.5-Math-7B: Apache-2.0 License) and datasets (DAPO-
Math-17k: Apache-2.0 License; AMC23, AIME24 and AIME25 are downloaded from
huggingface: https://huggingface.co/math-ai, which sources from the website of

Mathematical Association of America’s American Mathematics Competitions) that we used
in this work.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

38

https://huggingface.co/math-ai

13.

14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code implementing our proposed RPG framework and experimen-
tal setup is released at https://anonymous.4open.science/r/verl-neo-pub-3D2D.
This code will be documented to facilitate understanding and use by other researchers. No
new datasets or pre-trained models are introduced beyond the code for the methods.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper only use open-source codes, checkpoints and datasets which do not
involve crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

39

paperswithcode.com/datasets
https://anonymous.4open.science/r/verl-neo-pub-3D2D

Justification: The paper only use open-source codes, checkpoints and datasets which do not
involve crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: This work aims at exploring more efficient methods for fine-tuning large
language models with reinforcement learning approaches. Therefore, LLMs, including
Qwen2.5-7B-Instruct and Qwen2.5-Math-7B are used and well described in the main part
of this paper.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

40

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Regularized Policy Gradients
	Unnormalized Forward KL Regularization

	Experiments
	Conclusion
	Appendices
	Related Work
	Preliminiaries
	KL Regularization in Policy Gradients
	Group Relative Policy Optimization (GRPO)

	REINFORCE and Proximal Policy Optimization (PPO)
	REINFORCE
	Proximal Policy Optimization (PPO)

	Unnormalized Reverse KL Regularization
	REINFORCE-Style Regularized Policy Gradients
	RPG-Style Clip: dual-clip truncation of importance ratios

	Equivalence of k3 Estimator and Unnormalized KL Divergence
	Normalized KL Regularization
	Forward KL Regularization
	Reverse KL Regularization

	REINFORCE-Style Regularized Policy Gradients with Various KL Regularization Forms
	Rationale for REINFORCE-Style Loss Formulation
	REINFORCE-Style RPG with Forward KL Regularization
	REINFORCE-Style RPG with Unnormalized Forward KL Regularization
	REINFORCE-Style RPG with Reverse KL Regularization
	REINFORCE-Style RPG with Unnormalized Reverse KL Regularization

	More on Algorithmic Details
	Stabilization Techniques for Regularized Policy Gradients
	Stabilization Techniques for REINFORCE-Style Regularized Policy Gradients

	Detailed Experimental Setup
	More Experiment Results
	The performance with 2k context length
	Ablation Study

	Proofs of Theorem B.1 (Generalized Policy Gradient Theorem)
	Proofs for Regularized Policy Gradients
	Proof of Proposition G.1 (Policy Gradient and Differentiable Loss for Normalized Forward KL)
	Proof of Proposition 2.2 (Policy Gradient and Differentiable Loss for Unnormalized Forward KL)
	Proof of Proposition G.3 (Policy Gradient and Differentiable Loss for Normalized Reverse KL)
	Proof of Proposition D.3 (Policy Gradient and Differentiable Loss for Unnormalized Reverse KL)

	Proofs for REINFORCE-Style Regularized Policy Gradients
	Proof of Proposition H.1 (REINFORCE-style Policy Gradient for Forward KL)
	Proof of Proposition H.3 ((REINFORCE-style Policy Gradient for Unnormalized Forward KL)
	Proof of Proposition H.4 (REINFORCE-Style Loss)
	Proof of Proposition H.5 (REINFORCE-Style Loss for Unnormalized Reverse KL)

	Broader Impact and Limitations
	NeurIPS Paper Checklist

