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Abstract

We introduce multiple physics pretraining (MPP), an autoregressive task-
agnostic pretraining approach for physical surrogate modeling. MPP in-
volves training large surrogate models to predict the dynamics of multiple
heterogeneous physical systems simultaneously by learning features that are
broadly useful across diverse physical tasks. In order to learn effectively in
this setting, we introduce a shared embedding and normalization strategy
that projects the fields of multiple systems into a single shared embed-
ding space. We validate the efficacy of our approach on both pretraining
and downstream tasks over a broad fluid mechanics-oriented benchmark.
We show that a single MPP-pretrained transformer is able to match or
outperform task-specific baselines on all pretraining sub-tasks without the
need for finetuning. For downstream tasks, we demonstrate that finetuning
MPP-trained models results in more accurate predictions across multiple
time-steps on new physics compared to training from scratch or finetuning
pretrained video foundation models.

1 Introduction

In recent years, the fields of natural language processing and computer vision have been
revolutionized by the success of large models pretrained with task-agnostic objectives on
massive, diverse datasets [1–3]. This has, in part, been driven by the use of self-supervised
pretraining methods which allow models to utilize far more training data than would be
accessible with supervised training [4]. These so-called “foundation models” have enabled
transfer learning on entirely new scales. Despite their task-agnostic pretraining, the fea-
tures they extract have been leveraged as a basis for task-specific finetuning, outperforming
supervised training alone across numerous problems especially for transfer to settings that
are insufficiently data-rich to train large models from scratch [5].
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Deep learning for computational science has begun to see first steps in this direction. Large
domain-specific pretrained models have emerged in diverse fields such as chemistry [6, 7],
medicine [8, 9], astrophysics [10, 11], and climate [12] and the trend only seems to be growing
as more and more models are developed for new fields both as refined versions of existing
large language models and as new models trained entirely on field-specific data.
In this work, we demonstrate that similar approaches can be extended to the surrogate
modeling of spatiotemporal physical systems. Spatiotemporal prediction tasks, like those
found in fluids, solids, or general continuum mechanics, have attracted significant attention
from the deep learning community. From direct prediction methods [13–17] to neural PDE
solvers [18, 19], researchers have sought to develop fast, accurate models for physics either as
faster surrogates for the partial differential equation (PDE) solvers that dominate the field
or to simulate systems that cannot be exactly described or resolved by current mechanistic
models and available hardware. While directly outperforming PDE solvers is difficult [20],
deep learning has already begun to impact fields like atmospheric science [21–23] and cos-
mology [24–26], where the systems are too large or too imprecisely described to be simulated
exactly.
Unfortunately, outside of a few observation-rich outliers, settings where numerical simulation
is expensive or unreliable also tend to be settings where the difficulty of acquiring training
data makes it impractical to train surrogates conventionally. Most deep learning-based
surrogates thus far have focused on specific problems or individual families of parameterized
PDEs. However, for these low-data settings, it would be valuable to have large, task-agnostic
models with a broad understanding of common physical behavior to act as a foundation for
finetuning.
Contributions. We introduce Multiple Physics Pretraining (MPP), a new approach for
task-agnostic pretraining of physical surrogate models. Our method enables large-scale pre-
training for transfer across diverse physics which we study using fluid-oriented benchmarks.
Our specific contributions are:

• We develop MPP, a pretraining approach in which we embed multiple hetereoge-
neous physical systems into a shared embedding space and learn to autoregressively
predict the dynamics of all systems simultaneously.

• We show that single transformer models pretrained with MPP are able to match
or surpass modern baselines trained only on specific pretraining sub-tasks without
applying task-specific finetuning to the MPP models.

• We demonstrate the transfer capabilities of models trained with MPP on systems
with limited training examples (referred to as low-data systems thereafter).

• We open-source our code and provide our pretrained models at a variety of sizes for
the community to experiment with on their own tasks.

2 Background

Notation. Let S be an arbitrary physics-driven spatiotemporal dynamical systems, either
described by a parameterized family of PDEs with fixed parameters, or where snapshots
are gathered from observation of a unique physical phenomenon. To simplify notation,
we discuss systems with a single state variable in one spatial dimension. A continuous
state variable for system S is represented as uS(x, t) : [0, LS ] × [0,∞) → R. We discretize
the system uniformly in space and time at resolutions NS , TS respectively. A snapshot
uS
t ∈ RNS represents the value of state variable uS at all NS spatial discretization points at

time t. Our pretraining task is then to learn a single model M that can take a uniformly
spaced sequence of TS snapshots US

t = [uS
t−Ts∆tS

, . . . ,uS
t ] from system S sampled from

some distribution over systems and predict M(US
t ) such that M(US

t ) ≈ uS
t+∆tS

.

Autoregressive Pretraining. In vision and language, the dominant pretraining strategies
include autoregressive prediction [27], masked reconstruction [2, 3], and contrastive learning
[1]. In language, autoregressive generation emerged as a convenient self-supervised task. In
surrogate modeling of dynamical systems, next-step prediction is often a primary goal. This
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makes autoregressive pretraining a natural choice of objective for training time-dependent
surrogate models.
We note that it is common to use the simulation parameters to condition the predictions
of models operating on PDE-generated data [28–30]. In MPP, the model must instead
implicitly infer the impact of these parameters on the dynamics from the history provided
in US

t .

Surrogate Modeling for Spatiotemporal Physical Systems. We are primarily concerned with
modeling dynamical systems varying in both time and space, where the time evolution of
the system is intrinsically tied to spatial relationships amongst the state variables according
to physical laws. Partial differential equations (PDEs) are one of the primary modeling tools
for this setting. They are often derived from fundamental conservation laws of properties
such as mass, momentum, and energy [31]. Many PDEs describe variations of the same
physical laws, which is why concepts like diffusion, advection, reactivity, and connections
between time and spatial gradients appear in many different PDEs. These shared underlying
principles suggest we can extract features relevant to multiple physical systems.

3 Related Work

Foundation models. Massive pretrained models dubbed “foundation models” [5], particu-
larly large transformer-based architectures [32], have recently attracted significant attention.
The most prevalent foundation models are pretrained language models like GPT [27, 33, 34]
and BERT [3]. Emergent abilities [35] demonstrated by large language models highlight
the importance of scale in manifesting higher-order capabilities absent at smaller scales.
Vision has seen similar developments with the growth of masked [2, 36] and contrastive [1]
pretraining. The data in this work is insufficiently diverse to call the resulting models “foun-
dational”. However, we provide the first large-scale implementation of successful multiple
nonlinear physics pretraining for spatiotemporal systems.

Scientific transfer learning. The high cost of training scientific models from scratch has
led to significant exploration of transfer learning. Prior work has explored transfer learning
in operator networks in such scenarios as conditional shift [37] or new domains, boundary
conditions, or distributions over parameters [38–41]. However, these too need to be retrained
from scratch for new differential operators in the PDE. More recently, efforts have been made
to explore transfer across operators and benefits from training on multiple physical systems
simultaneously. [30] in particular explores how transfer scales in this setting. However, their
study is limited to steady-state linear systems with periodic boundary conditions. Other
works have explored similarly restricted classes or low dimensional, low resolution systems
[42, 43].

4 Scalable Multiple Physics Pretraining

4.1 Compositionality and Pretraining

Many specialized PDEs demonstrate a form of compositionality, as a range of physical
phenomena can be described by core components like nonlinear advection or diffusion, but
then are augmented or restricted by specialized terms representing concepts like buoyancy or
system constraints. To motivate a useful pretraining procedure from this compositionality,
we want to show two things:

1. Learning partially overlapping physics is beneficial for transfer learning
2. Single models can simultaneously learn many types of physics

If both of these are true, then we could train a single model which could transfer effec-
tively to many types of physics. We start by examining the first assertion in a very simple
spatiotemporal setting: constant-coefficient advection-diffusion. Let ψ(x, t) be a scalar de-
fined on a periodic spatial domain, v a constant one-dimensional velocity coefficient and δ
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a constant diffusion coefficient, then:

Advection: ∂ψ

∂t
+∇ · (vψ) = 0 (1a)

Diffusion: ∂ψ

∂t
+∇ · (−δ∇ψ) = 0 (1b)

Advection-Diffusion: ∂ψ

∂t
+∇ · (vψ−δ∇ψ) = 0. (1c)

If our first assertion is true, we would expect pretraining on the advection and diffusion
terms individually could be beneficial for transfer to advection-diffusion equations.
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Figure 1: Finetuning a model pre-
trained on large amounts of ad-
vection and diffusion data outper-
forms models trained from scratch
on advection-diffusion data across a
wide range of data availability (16-
100K examples).

We find that this is indeed the case. We pretrain a
spatiotemporal transformer model on a large amount
of trajectories (100,000 each) with uniformly sampled
coefficients (v ∈ [−3, 3], δ ∈ [10−3, 1.]) generated
from the advection and diffusion equations while fine-
tuning on restricted samples from advection-diffusion
simulations. The pretrained model is able to achieve
much lower error with far fewer samples (Figure 1)
despite the fact that it never saw advection and dif-
fusion occurring in the same trajectory during pre-
training.
To address question two, we must handle much larger
spatial resolutions, varying scales, and heterogeneous
relationships between fields. Over the rest of this
section, we develop an approach for handling these
challenges.

4.2 Architecture

Axial Attention. Given the success of large trans-
former models in other domains, we employ a scal-
able axial attention [44–46] transformer backbone. For a (2+1)-dimensional system with
T ×H ×W tokens, conventional dense attention attends over all tokens simultaneously and
has cost O((HWT )2). Axial attention instead performs a series of attention operations over
each axis in turn, limiting the cost to O(H2 +W 2 + T 2). In Figure 2, it can be seen that
while we perform attention on each axis independently, spatial attention utilizes one set of
linear projections for both the height (y) and width (x) axes.
Axial attention has been used in a number of video transformers [47, 48] due to the improved
scalability in higher dimensions. While the tools used in our transformer backbone were
introduced in prior work, our choice of using fully axial attention differs from ViViT which
opted to only separate space and time attention. We favor scalability over maximizing
accuracy and so chose the fully axial formulation. In subsequent sections we refer to this
architecture as an Axial ViT (AViT).

Field Embedding and Normalization. Embedding multiple physical systems into a single
shared representation is complicated by the fact that fields from different systems may
operate on entirely different scales in terms of both magnitude and resolution. This is one
of the primary challenges that must be addressed for multiple-physics pretraining.
To unify the magnitudes, we utilize reversible instance normalization [49, RevIN]. We com-
pute the mean and standard deviation of each channel over the space-time dimensions and
use them to normalize the input fields. These statistics are saved and used to denormalize
the model outputs. While this approach was initially developed for time-series forecasting,
the effect is similar to that reported in Subramanian et al. [30], where it was found to be
beneficial to rescale the inputs to a fixed norm during training.
After rescaling, the data is projected into a shared embedding space. This is the only
component with weights that are unique to each source system. Given a system S with
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Figure 2: (Left) MPP works by individually normalizing each example using Reversible
Instance Normalization (RevIN) then embedding each field individually into a shared, nor-
malized space. A single transformer backbone can then predict the next step for multiple
sets of physics. We use an AViT backbone which attends over space and time axis se-
quentially. Spatial attention is further split by axis, though these share linear projection
weights. (Right) The embedding and reconstruction matrices are formed by subsampling a
larger 1× 1 convolutional filter using unique field indices passed with the input data.

state variables u(x, t), v(x, t), p(x, t) ∈ R, we project each sample point or “pixel” into a
space of dimension Demb:

e(x, t) = u(x, t)eu + v(x, t)ev + p(x, t)ep (2)

where e are embedding vectors in RDemb . This can be seen as a convolution with 1 × 1
filters where the input channels of the filter are sub-selected to correspond to the fields
present within a given dataset. On the right side of Figure 2, the filter is assembled by sub-
selected columns of the larger filter corresponding to the provided fields. It is important
to note that this initial projection setup is amenable to fine-tuning to unseen field types.
This can be achieved by adding new channels to the initial embeddings, and training them
from random initialization. In our models, the shared full resolution space is converted into
patched tokens by a sequence of strided convolutions separated by pointwise nonlinearities
as in Touvron et al. [50].
The predictions are reconstructed from the processed tokens by reversing this process. The
tokens are decoded by a sequence of transposed convolution blocks and projected onto the
output fields by taking coordinate-wise inner products with reconstruction vectors r:

u(x, t+∆t) = 〈e(x, t+∆t), ru〉. (3)
This can similarly be implemented as a 1 × 1 convolution with the output channels of the
convolution filter sub-selected. The mean and standard deviation computed from the inputs
are then applied to these normalized outputs to produce the final de-normalized predictions
as in Kim et al. [49].

4.3 Balancing Objectives During Training

Task Sampling. Our pretraining procedure operates on multiple levels of sampling. The
task distribution varies in system S, spatial resolution NS , and time resolution TS and we
want diverse batches that accurately capture the signal this provides. However, sampling
a full batch from multiple systems at different resolutions simultaneously would be ineffi-
cient on modern hardware as it would require batch processing of differently shaped tensors.
Multi-GPU training adds an additional complication as the variance in execution time due
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to unbalanced workloads can lead to inefficient hardware usage. We mitigate both of these
concerns with a simple randomization scheme involving gradient accumulation. Gradient
accumulation utilizes multiple backward passes per synchronization step. We therefore sam-
ple a single system S uniformly from S for each micro-batch. With m micro-batches per
synchronization step, we reduce the work-per-GPU variance σ2

B to 1
mσ

2
B, significantly reduc-

ing the average lost cycles due to work discrepancies. This could likely be further reduced
by an approximate packing problem solution [51], but we found the random approach was
sufficient for our needs. As we employ gradient accumulation in order to increase our batch
sizes, this sampling procedure incurs no additional cost.

GPU 1 GPU N

Fewer dead
cycles on
average

GPU 1 GPU N

All-
reduce

Unused cycles
accumulate

... ...

All-
reduce

All-
reduce

Varying native resolutions
for different physics lead to

high utilization variance. 

Gradient accumulation
with interspersed physics

reduces variance.

Figure 3: Processing different physics (in-
dicated by color) with different native
resolutions incur varying wall-clock times
(arrow lengths). To reduce the loss of
GPU-cycles, we use gradient accumula-
tion as a stochastic load-balancing mech-
anism, reducing the variance in work be-
tween all-reduce synchronizations.

Scaled Training Objective. The simplest ap-
proach to obtaining updates from the different
tasks is to add their gradients. However, as the
magnitudes of the state variables can vary signif-
icantly between systems, unweighted losses will
result in the gradients from the problems with
the largest scales drowning out losses on smaller
scales [52]. To partially control this behavior,
we train using the normalized MSE (NMSE) de-
fined as:

LNMSE =
1

|B|
∑
S∈S

‖M(US
t )− uS

t+1‖22
‖uS

t+1‖22+ε
(4)

where B ⊂ S denotes the micro-batch and ε
is a small number added for numerical stabil-
ity. This does not account for the full varia-
tion in difficulty. Even if sub-task losses have
similar magnitudes at the start of training, it
is possible for some systems to converge quickly
while other losses remain high. Nonetheless, we
found that this allows our training process to
produce strong results on multiple systems si-
multaneously.

5 Experiments

We design our experiments to probe two vital questions about the utility of MPP:

1. Can large transformer models learn the dynamics of multiple physical systems si-
multaneously?

2. Does MPP provide a finetuning advantage over existing spatiotemporal foundation
models for new autoregressive prediction tasks?

Data. We use the full collection of two-dimensional time-dependent simulations from
PDEBench [53] as our primary source for diverse pretraining data. This includes systems
governed by four unique nonlinear PDEs at a variety of state variables available, resolutions,
initial conditions, boundary conditions, and simulation parameters. The specific PDEs are
the compressible and incompressible Navier-Stokes equations, the shallow-water equations,
and a 2D Diffusion-Reaction equation. Full details on the data used can be found in Ap-
pendix B.1.

Training settings. TS is fixed at 16 for all experiments as our VideoMAE comparison in
Section 5.2 was unable to scale to larger sizes without gradient checkpointing. Autoregressive
training is performed only one step ahead—no longer rollouts, noise corruption, or post-
processing are included for stability. Training from scratch and MPP pretraining are always
performed on the AViT architecture described in section 4.2. Full training details including
data splits, optimization details, and hardware are documented in Appendix C.
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Table 1: NRMSE comparison between MPP-pretrained models and dedicated baselines.
MPP-pretrained models learn multiple physical systems at least as well as standard base-
lines. Top performing within size range and overall are bolded. Dashes indicate precision
not available. † While the PINN is much smaller, these models are fit per-example.

Model #Param SWE DiffRe2D CNS M1.0 CNS M0.1
MPP-AViT-Ti 7.6M 0.0066 0.0168 0.0442 0.0312
UNet 7.7M 0.083- 0.84– 0.4725 1.6650
FNO 466K 0.0044 0.12– 0.1685 0.2425
PINN 8.5K† 0.017- 1.6— — —
ORCA-SWIN-B 88M 0.0060 0.82– — —
MPP-AViT-B 116M 0.0024 0.0106 0.0281 0.0172
MPP-AViT-S 29M 0.0039 0.0112 0.0319 0.0213
MPP-AViT-L 409M 0.0022 0.0098 0.0208 0.0147

5.1 Pretraining Performance

Training “Near” “Far”

Figure 4: Kinetic energy for rep-
resentative incompressible training
and compressible finetuning data.
The “near” compressible snapshot
resembles the training snapshot
while “far” displays turbulent small
scales not seen in the incompressible
simulation.

First, we compare MPP-pretrained models to dedi-
cated baselines from prior work across all available
systems. The models are pretrained at a variety of
sizes so we can begin to explore to benefits of scal-
ing our approach. Precise model sizes can be found
in Appendix C.1. Unlike the baselines which are
trained on only one system and so must only learn
one parameter regime, our models (denoted by MPP-
AViT-*) must handle all systems and regimes with-
out finetuning. The effect of physical parameters,
forcing, and simulation parameters must be inferred
from context US

t . The PINN [18], UNet [54], and
FNO [13] results are sourced from Takamoto et al.
[53] while the results from Shen et al. [55] with a
finetuned SWIN [56] are used for ORCA. Results are
reported in terms of Normalized RMSE (NRMSE,
the square root of Equation 4) averaged over fields
and examples, as in Takamoto et al. [29].
Our pretrained models are able achieve high-end performance on all datasets (Table 1)
despite the difficulty of multi-task training [52]. In fact, there is only one case where our
pretrained models do not outperform all baselines. In some cases, the improvement over the
baselines is nearly an order of magnitude in NRMSE and the performance improves with
scale. However, we clarify that we are not claiming these results are optimal—we can, for
instance, improve upon them by finetuning our own models on specific tasks. Rather, this
experiment answers affirmatively that large transformers can learn multiple sets of dynamics
simultaneously. Trajectories from pretrained models are displayed in Appendix D.4.

5.2 Transfer to Low-data Domains

We remove all compressible fluid data from the training corpus and pretrain on the three
remaining spatiotemporal systems. We evaluate transfer to two specific compressible Navier-
Stokes datasets:

• “Near”: M = 0.1, viscosity= 10−2, Random Periodic Initial Conditions
• “Far”: M = 1.0, viscosity= 10−8, Turbulent Initial Conditions

Snapshots of the kinetic energy for the finetuning systems and incompressible training data
are visualized in Figure 4. While quantitatively evaluating the physics gap is an unsolved
problem, the names reflect both prior physical knowledge and qualitative evaluation. “Near”
features a low Mach number, the dimensionless quantity that correlates with compressible
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Figure 5: NRMSE for transfer learning tasks. Solid lines are one-step error. Dashed lines
are averaged error over five step rollouts. The MPP model shows clear performance benefits
in both cases. The more turbulent behavior of “far” seems to be difficult to learn from
scratch or from video data, but pretraining on physical data leads to much stronger results.

behavior, and viscosity similar to that of the incompressible simulation. ”Far“ has wildly
different turbulent behavior that induces small scale structure never seen during training.
However, despite the similarity in physical behavior, the simulations are still quite different:
the compressible and incompressible simulations in PDEBench differ in spatial and temporal
resolution, initial condition distribution, boundary conditions, viscosity, and velocity range
in addition to the difference in compressibility. We use these sets to compare the finetun-
ing performance of MPP, training from scratch, and an existing pretrained spatiotemporal
transformer, VideoMAE [36] pretrained on both K400 [57] and SSV2 [58] datasets.

Table 2: Memory usage during
finetuning on 16×3×512×512
inputs for batch size 1 using
mixed precision.

Model Max Memory
VideoMAE 79.3 GB
AViT-B 24.7 GB
AViT-Ti 6.7 GB
AViT-S 11.5 GB
AViT-L 59.7 GB

Figure 5 shows that the MPP models outperform Video-
MAE and training from scratch by a large margin in
the low-data regime. Numerical results are listed in Ap-
pendix C. VideoMAE displays surprisingly strong finetun-
ing performance given that the pretraining data is con-
ventional video, but it is unable to match the much lower
memory (Table 2) MPP-AViT-B in either setting. Pre-
dictably, both pretraining approaches are less accurate in
the long-run on the turbulent “far” dataset. However,
in the short-term the physical pretraining seems to pro-
vide an even larger advantage in this regime compared to
the far smoother “near” data. Rollout visualizations are
included in Appendix D.5.

6 Conclusion

Limitations and Future Work. Creating a true foundation model for fluids, continuum
mechanics, or general physics requires significantly more data diversity capturing far more
behavior at resolutions that are practically useful to researchers in these fields than what is
included in this paper. Additionally, the architecture used in our current work assumes uni-
formly gridded data. Training a foundation model that can be extended to engineering-grade
problems requires the ability to handle highly non-uniform grids and arbitrary geometries.
Nonetheless, this work addressed important roadblocks in the development of foundation
models for these fields.
The worlds of science and engineering are filled with complex phenomena that could tremen-
dously benefit from fast surrogates, but that are lacking sufficient data for training those
surrogates. Our approach, Multiple Physics Pretraining, offers new opportunities for train-
ing highly transferable models for use in these settings. We demonstrated that transformers
are able to be finetuned effectively when trained on partially overlapping physics. This sug-
gests value in large pretrained models trained on diverse physics. Our experiments showed
transformers pretrained with MPP learn multiple sets of physics competitively with many
dedicated approaches and that this knowledge transfers even across significant physical
gaps. As physical datasets for machine learning mature, this capability paves the way for
the development of true foundation models for spatiotemporal physics.
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A Experiment on Broader Usage of Pretrained Representations

One of the fascinating aspects of large pretrained models is the utility of their learned
features for entirely new types of prediction problems. We explore this behavior with the
inverse problem of parameter estimation for two parameters:
Forcing Identification for Incompressible Navier-Stokes We attempt to identify the constant
forcing term used in the incompressible Navier-Stokes simulation from an input trajectory
US

t . We divide the validation set from pretraining, taking 1,000 trajectories as the new
training set and using the rest for validation. Results are reported on the original test set.
Buoyancy for Incompressible Navier-Stokes For this, we turn to an additional fluid mechanics
benchmark, PDEArena [28]. This benchmark includes an incompressible Navier-Stokes
simulation with variable buoyancy. Since this set was not used during training, we take
1,000 randomly sampled trajectories for train, 100 for validation, and a further 1,000 for
testing.

Table 3: RMSE for inverse problem tasks. Er-
ror from constant prediction included for con-
text.

Training Forcing Buoyancy

MPP 0.20±.008 0.78±.006

Scratch 0.43±.012 0.77±.005

Best Constant 1.00±.000 0.77±.000

We see mixed results (Table 3). Pretrain-
ing reduces the error in the forcing task
by nearly half, but largely fails to outper-
form the optimal constant prediction in the
buoyancy task. Prior work [59] outper-
formed this constant prediction on buoy-
ancy through Lie-transformation based con-
trastive pretraining using a convolutional
architecture, so the task does appear to
be possible. Since the AViT trained from
scratch also fails to outperform a mean pre-
diction, this is not a failure of MPP specif-
ically, but it is an interesting observation. It is plausible that the use of the same attention
weights in both spatial dimensions makes it difficult to disentangle directional magnitudes
for scalar prediction. However, at this stage, it appears the MPP-pretrained model has
significant advantages on the dense prediction task that strongly resembles the pretraining
task, but no visible advantages for scalar prediction.

B Data Details

B.1 PDEBench

To train and evaluate our models, we use the publicly available PDEBench dataset2 [53].
We summarize the data included in this section. This dataset comprises a suite of time de-
pendent and time independent simulations based on common PDE systems, generated with
varying parameters, initial conditions, and boundary conditions. Specifically, PDEBench
uses a discretized ground-truth solver with high precision to evolve the vector-valued solu-
tion to a given PDE at one time step to the solution at one time step later. When compiled
across time steps, the vector-valued solutions take the form x ∈ RT×C×H×W , where T de-
notes the total number of times steps, H and W denote the spatial height and width of the
simulation grid and C denotes the parameter space representing the velocity (vx and vy),
pressure (p) and density (ρ) fields, such that C = 4. For our study, we focus on the 2D fluid
dynamics simulations in PDEBench. These are outlined loosely below; for more details, we
refer the reader to Takamoto et al. [53]:
Compressible Navier-Stokes: These equations are used to model the pressure and velocity of
both laminar and turbulent Newtonian fluids, and are applied to many real-world problems,
from aerodynamics to interstellar gas dynamics. In the regime in which the density of the

2https://github.com/pdebench/PDEBench
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fluid can change due to pressure variation, the equations can be expressed:
∂tρ+∇ · (ρv) = 0, (5)

ρ (∂tv + v · ∇v) = −∇p+ η∇2v + (ζ + η/3)∇(∇ · v) (6)
∂t(ε+ ρv2/2) +∇ ·

[
(p+ ε+ pv2/2)v − v · σ′] = 0, (7)

where ρ is the fluid density, v is the fluid velocity, p is the fluid pressure, ε is the internal
energy, σ′ is the viscous stress tensor, η is the shear viscosity, and ζ is the bulk viscosity.
For our transfer experiments, we use the following two sets of data in particular:

1. A set of 1,000 trajectories on a H ×W = 512× 512 regular grid over T = 100 time
steps (where the separation between steps is ∆t = 0.005). Additionally, (M,η, ζ) =
(1.0, 10−8, 10−8), where M , η, ζ denote the Mach number, the shear viscosity, and
the bulk viscosity, respectively. The velocity field is initialized with a turbulent
field, while the inital pressure and density fields are taken to be uniform.

2. A set of 10,000 trajectories on a H ×W = 128× 128 regular grid with (M,η, ζ) =
(0.1, 0.01, 0.01). The time steps and initializations are as above.

Incompressible NS: In the incompressible regime, which typically occurs in fluids with low
Mach numbers (as it rules out density and pressure waves like sound or shock waves), the
Navier-Stokes equations simplify to:

∇ · v = 0, (8)
ρ (∂tv + v · ∇v) = −∇p+ η∇2v + f , (9)

where v is the velocity, ρ is the density, p is the pressure, η is the viscosity, and f is the
external force. The simulation in PDE bench is augmented by an immersed tracer that is
transported by the velocity field:

∂tρsmoke = −v · ∇ρsmoke (10)
These equations are typically used to model a variety of hydrodynamics systems such as
weather. This data is produced at resolution 512×512 with time step of .0005. The dataset
contains a total of 1000 trajectories with 1000 time steps each.
Shallow water: In the event that the horizontal length scale of the fluid is significantly
greater than the vertical length scale, the incompressible Navier-Stokes equations can be
depth-integrated to derive the shallow water equations. These describe flow below a pressure
surface in a fluid, and are given by

∂th+∇ · (hv) = 0, (11)

∂t(hv) +∇ ·
(
1

2
hv2 +

1

2
grh

2

)
= −grh∇b, (12)

where h is the water depth, v is the velocity, b is the bathymetry, and gr is the reduced
gravity. For our data, we use 1,000 trajectories on a H × W = 128 × 128 regular grid
over T = 100 time steps. The specific simulation used is a 2D radial dam break scenario,
where the water height is initialized as a circular bump in the center of the domain with a
uniformly randomly sampled radius.
Diffusion-Reaction: The Diffusion-Reaction equations arise in systems with many interacting
components and can be represented in the general form

∂tu = D∇2u+R(u), (13)
where u is a vector of concentration variables, D is a diagonal matrix of diffusion coefficients,
and R describes all local reaction kinetics. The most common application of diffusion-
reaction equations is in chemical reactions, however they can also be used to describe a
variety of dynamical processes. For our data, we use 1,000 trajectories on a H × W =
128×128 regular grid over T = 100 time steps. The reaction functions for the activator and
inhibitor are defined by the Fitzhugh-Nagumo equation [60], and their diffusion coefficients
are Du = 1× 10−3 and Dv = 5× 10−3 respectively. The initial conditions are generated as
standard Gaussian random noise.
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B.2 PDEArena

In addition to the 2D Incompressible Navier-Stokes data incorporated from PDEBench,
we also include 2D Incompressible Navier-Stokes data from PDEArena [28]. This includes
a set of 5,200 training trajectories (and 1,300 validation and test trajectories each) on a
H ×W = 128 × 128 regular grid from which we take T = 16 timesteps for prediction. As
with the PDEBench simulations, the PDEArena simulations include a viscosity parameters
of ν = 0.01 and Dirichlet boundary conditions, however they also include a buoyancy term
f ∈ [0.2, 0.5] in the y direction.

C Experiment Details

C.1 Model Configurations

The following architectural decisions were used across all AViT models trained in this paper:

• Pre/Post Norm: Pre-norm [61]
• Normalization Type: Instance Normalization [62]
• Activations: GeLU [63]
• QK Norm: Yes [64]
• Patching: hMLP [50]
• Decoder: Transposed hMLP (this is equivalent to the transposed convolutions men-

tioned in the main text).
• Causal Masking: False - We only evaluate the loss on the T + 1 prediction.

Furthermore, we examine the performance of our models on the aforementioned PDE sys-
tems when the size of the model is scaled. Vision transformers have a variety of parameters
that control the model’s size, including the number of processor blocks, the dimensionality of
patch embeddings and self-attention, the dimensionality of Multi-Layer Perceptron (MLP)
blocks, the number of attention heads, and the patch size applied on the input tensors. In
previous studies on language [65–67] and vision [68], it has generally been noted that model
performance is typically only weakly dependent on shape parameters, and instead depends
largely on non-embedding parameter count given a fixed compute budget and dataset size.
As such, we follow the general scaled architectures set forth by Zhai et al. [68] for vision,
and scale all aspects of the model shapes simultaneously to select a variety of model sizes
for testing. These are detailed in 4.

Position Biases and Boundaries. While in most cases, we would like the model to infer
boundary conditions from the provided history, we make an exception to this policy for pe-
riodic boundaries as they change the continuity of the domain. Transformers are inherently
permutation equivariant, and it is essential to include position biases so that the model can
learn locality.
With a slight modification, we can use our position biases to capture the change in locality
imposed by periodic boundaries. T5-style [69] relative position encodings (RPE) utilize a
lookup table to access learned embeddings corresponding to ranges of “relative distance”.
For periodic boundary conditions, we modify the relative distance computation to account
for neighbors across the periodic boundary. We find that this minor change enables gener-
alization to periodic boundary conditions whether or not they are included in the training
data.

Software. All model development and training in this paper is performed using PyTorch
2.0 [70].

Hardware. All training for both pretraining and finetuning is done using Distributed Data
Parallel (DDP) across 8 Nvidia H100-80GB GPUs.
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Table 4: Details of the various model architectures and scales explored.

Model Embed Dim. MLP Dim. # Heads # Blocks Patch Size # Params
AViT-Ti 192 768 3 12 [16, 16] 7.6M
AViT-S 384 1536 6 12 [16, 16] 29M
AViT-B 768 3072 12 12 [16, 16] 116M
AViT-L 1024 4096 16 24 [16, 16] 409M

C.2 Exp 1: Pretraining Performance

For both MPP and scratch models, we train using the following settings:

• Training Duration: 200K steps
• Train/Val/Test: .8/.1/.1 split per dataset on the trajectory level.
• Task sampling: Uniformly sample task, then uniformly sample trajectory from task

without replacement. We treat every 400 model updates (1 model update=5 micro-
batches) as an “epoch” and reset the task pool.

• Micro-batch size: 8
• Accumulation Steps: 5
• Optimizer: Adan [71]
• Weight Decay: 1E-3
• Drop Path: 0.1
• Base LR: DAdaptation [72]
• LR Schedule: Cosine decay
• Gradient clipping: 1.0

Note, we use the automated learning selection strategy DAdaptation during pretraining runs
in large part to avoid excessive hyperparameter tuning of our own models. In finetuning ex-
periments, comparison models are tuned manually following the recommended settings from
the model publishers to avoid differences being due to compatibility with the parameter-free
method.

Data For pretraining, we use all PDEBench datasets. These are described in Section B.1.
In particular, we use the compressible and incompressible Navier-Stokes, Diffusion-Reaction
2D, and Shallow Water data.

C.3 Experiment 2: Transfer to Low-Data Domains

In this experiment, we compare the transferability of our MPP-Pretrained models to general-
purposes pretrained video masked autoencoders [VideoMAE; 36] for frame prediction on
video-like PDEBench data [53].
For MPP and training from scatch, we use the following settings:

• Training Duration: 500 epochs
• Train/Val/Test: X/.1/.1 split per dataset on the trajectory level. Note that X is

due to the fact that we test varying amounts of training data. These are subsampled
from the training split of 80%.

• Batch size: 8
• Accumulation Steps: 1 (No accumulation)
• Optimizer: Adan [71]
• Weight Decay: 1E-3
• Drop Path: 0.1
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• Base LR: DAdaptation [72]
• LR Schedule: Cosine decay
• Gradient clipping: 1.0

Data We study transferability of VideoMAE models for spatiotemporal prediction on
video-like scientific data.
AViT Models are pretrained on datasets generated from three PDEs: Incompressible Navier-
Stokes, Shallow Water, and Diffusion Reaction 2D.
We focus on transfer to the two datasets “Near” and “Far” (see Sect. 5.2) of fluid dy-
namics simulations taken from the PDEBench dataset [53]. These simulations solve the
compressible Navier-Stokes equations in a 2D geometry with periodic boundary conditions
(see Appendix B.1 for additional details).

C.3.1 VideoMAE Settings

While VideoMAE does utilize spatiotemporal information, it was developed for a different
setting, so we fully document all details of our adaptation of it here both for reproducibility
and fairness in our comparison.
VideoMAE models are video transformers that were proven to be efficient data-learners for
self-supervised video pretraining [36]. They rely on an asymmetric encoder-decoder architec-
ture building on a vanilla ViT backbone with joint space-time attention. VideoMAE models
are pretrained by learning to reconstruct masked videos using a random tube-masking strat-
egy with a extremely high masking ratio (∼ 90%).
We make use of two publicly available models, hereafter called VideoMAE-K400 and
VideoMAE-SSV2, that were pretrained on Kinetics-400 dataset [K400; 57] and Something-
Something V2 dataset [SSV2; 58], respectively. Both datasets are made of short videos
(typically ≤ 10 s long) of human-object or human-human interactions. VideoMAE-K400
(respectively, VideoMAE-SSV2) was pretrained on ∼ 240k (∼ 170k) videos. We focus on
the models that build on a ViT-base backbone, so that their size (in terms of number of
trainable parameters) remains comparable to that of MPP-AViT-B. After adaptation of the
input and output linear layers as described below, the number of trainable parameters of
these models reaches ∼ 95M.

Number of channels. Same as the original pretraining procedure, the input data x ∈
RC×T×H×W is divided into non-overlapping joint space-time cubes of size 2 × 16 × 16.
These are embedded through a Conv3d layer, resulting in T

2 × H
16 × W

16 tokens. Since our
PDEBench data has C = 4 channels instead of 3 for the RGB videos from the pretraining
set, we had to adapt the number of input channels of this Conv3d layer accordingly. The
weights of this new layer were defined using a (rescaled) repetition of the pretrained weights
from the original layer. Similarly, the output number of features of the final linear projection
layer of the model had to be adapted to C = 4 channels. The weights and biases of this
layer were extended by consistently repeating the original pretrained weights and biases.

Positional encoding. The number of tokens resulting from our PDEBench data did not
match the number of tokens resulting from the pretraining datasets. Consequently, we also
had to adapt the pretraining positional encoding. We chose to interpolate accordingly the
original 1D sine/cosine positional encoding [32] using a trilinear interpolation after having
reshaped the token index axis onto a 3D grid.

C.3.2 Video MAE Finetuning Procedure

We describe the finetuning procedure of the pretrained VideoMAE models for frame predic-
tion. Frame prediction consists in predicting the next Tp frames of a video given a context
of Tc frames. Since the pretrained models manipulates space-time cubes of size 2 in time,
we naturally choose Tp = 2. The context size is taken to be Tc = 16 for consistency with
MPP-AViT models. We finetune the pretrained models for frame prediction by adapting
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Table 5: Effective learning rate for the finetuning of VideoMAE.

“Near” “Far”
VideoMAE (K400) 0.00039 0.00198
VideoMAE (SSV2) 0.00186 0.00150

the self-supervised training strategy in order to reconstruct the last Tp frames of a masked
video of T = Tc + Tp frames.

Masking strategy. For frame prediction, instead of the random tube-masking strategy, we
simply mask the last Tp frames of the input data.

Loss. We finetune our models by minimizing a NMSE loss. In this context, denoting by
x, y ∈ RC×Tp×H×W the output of our model and the target (masked frames), respectively,
the NMSE loss is defined by L(x, y) =

∑C
c=1

∑Tp

t=1‖xc,t − yc,t‖22/‖yc,t‖22.

Normalization of the data. Each set of PDEBench simulations is globally and channel-
wise rescaled so that pixel values all fit in [0, 1]. Additionally, we normalize channel-wise
the targets y ∈ RC×Tp×H×W by subtracting the global mean of the corresponding context
frames and then dividing by their global standard deviation.

Optimization. We finetune the pretrained models over 500 epochs and a (total) batch size
of 8 using AdamW optimizer [73]. Except for the learning rate, the remaining optimization
hyperparameters are chosen to be consistent with those used in the finetuning experiments
of [36] (Table 10). In particular, we choose a weight decay λ = 0.05, (β1, β2) = (0.9, 0.999),
a cosine learning rate decay scheduler with 5 warmup epochs, a drop path rate of 0.1, and
a layer-wise learning rate decay parametrized by 0.75. In this setting, the learning rate is
adjusted by performing a hyperparameter search monitored with WandB [74]. We report
the resulting optimal values per pretrained model and dataset in Table 5.

C.4 Exp 3: Broader Usage of Pretrained Representations

For MPP and training from scatch, we use the following settings:

• Training Duration: 500 epochs
• Train/Val/Test: 1000/100/1000 taken from original validation set or randomly de-

pending on whether data was used for training.
• Batch size: 24
• Accumulation Steps: 1 (No accumulation)
• Optimizer: Adan [71]
• Weight Decay: 1E-3
• Drop Path: 0.1
• Base LR: DAdaptation [72]
• LR Schedule: Cosine decay
• Gradient clipping: 1.0

D Additional and Extended Results

D.1 Position Bias Evaluation

We isolate the impact of position biases on our multi-task training objectives by constructing
an experiment that isolates their influence. Recall the advection equation from Equation 1:

∂ψ

∂t
+∇ · (vψ) = 0 (14)
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Table 6: Validation NRMSE for position bias comparison. Compares training performance
on data that differs only in boundary conditions.

Training Periodic Absorbing
Periodic Baseline 0.032 —
Absorbing Baseline — 0.295
Combined

Standard RPE 0.188 0.189
Periodic-Adjusted RPE 0.081 0.143

Table 7: Per dataset NRMSE comparison for M = 0.1 Compressible Navier-Stokes data.
R/T denote “random” and “turbulent” initial conditions from PDEBench. η = ζ are the
bulk and sheer viscosity.

Model R-η = 10−8 R-η = 10−2 R-η = 10−1 T-η = 10−8

MPP-AViT-Ti 0.0493 0.0274 0.0116 0.0339
UNet 0.66– 0.71– 5.1— 0.19–
FNO 0.28– 0.17– 0.36– 0.16–
MPP-AViT-S 0.0335 0.0176 0.0071 0.0217
MPP-AViT-B 0.0286 0.0162 0.0078 0.0169
MPP-AViT-L 0.0234 0.0145 0.0099 0.0136

We will define two sets of physics. In both cases, the function is defined on the 1D domain
x ∈ [0, 1]. We sample v ∼ Unif(−1, 1) and use initial conditions sampled from the set
of circular Gaussians with variances sampled from Unif(1/160, 1/5) and means sampled
from Unif(.25, .75). The two systems vary only in the choice of boundary conditions. The
first uses periodic boundary conditions, implying φ(0) = φ(1). The second uses absorbing
boundary conditions in which waves are not reflected back into the solution space. The
restricted functional form allows us to implement this exactly by extending the domain and
solving the periodic equations such that the constant velocity implies the waves exiting the
solution space never return.
In this experiment, we first train models (AViT-Ti with 1D patches) on each system individ-
ually using 10,000 examples each for 100 epochs to get a sense of the baseline performance.
We then train models with and without our modified position biases on the two systems
jointly (20,000 examples) to evaluate the impact of our change.
Table 6 shows that our modified position biases are more effective at training in the joint
setting. Both RPE schemes are able to improve on absorbing boundary with the additional
data. Standard RPE on the other hand struggles to learn the periodic baseline. Our
Periodic-adjusted variant is much more effective at learning the periodic data, though it
does not outperform the baseline.
It is interesting to note how large the effect of boundary conditions is on this problem.
The model trained on only periodic condition reaches nearly an order of magnitude higher
precision. While absorbing boundaries are complicated for numerical solvers, it seems as
though attention should be able to simply not attend to waves passing out of the domain.
The interaction of boundary conditions with attention therefore seems to be an important
direction for future study.

D.2 Exp1: CNS Expanded Results

Here we break out the Compressible Navier-Stokes (CNS) results from Table 1. Table 1
shows the comparison between our pretrained models and task-specific baselines; however,
due to space limitations the CNS was aggregated by mach number in the main text, so we
share the full CNS results here. M0.1 can be seen in Table 7. M1.0 can be seen in Table
8. Note that while it is conventional to describe these simulations in terms of dimensionless
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Table 8: Per dataset NRMSE comparison for M = 1.0 Compressible Navier-Stokes simula-
tions. R/T denote “random” and “turbulent” initial conditions from PDEBench. η = ζ are
the bulk and sheer viscocity.

Model R-η = 10−8 R-η = 10−2 R-η = 10−1 T-η = 10−8

MPP-AViT-Ti 0.0615 0.0327 0.0171 0.0594
UNet 0.47– 0.36– 0.92– 0.14–
FNO 0.35– 0.096- 0.098– 0.13–
MPP-AViT-S 0.0451 0.0223 0.0108 0.0425
MPP-AViT-B 0.0386 0.0195 0.0119 0.0365
MPP-AViT-L 0.0314 0.0171 0.0132 0.0282

Table 9: Test NRMSE for “Near” Compressible Navier-Stokes M0.1, η = .01.

# Training Samples (NRMSE ×10−1)
Model 100 200 400 600 800

T+1 T+5 T+1 T+5 T+1 T+5 T+1 T+5 T+1 T+5
VideoMAE (K400) 1.26 1.98 0.78 1.25 0.49 0.83 0.39 0.62 0.33 0.50
VideoMAE (SSV2) 0.95 1.61 0.63 1.04 0.42 0.66 0.33 0.52 0.25 0.39
MPP-AViT-B 0.66 1.13 0.42 0.81 0.27 0.55 0.22 0.35 0.19 0.30

numbers like the Reynolds number, these simulations are performed at relatively low reso-
lution, so it is likely they incur significant numerical diffusion. Thus we report the results
in terms of the nominal diffusion coefficients without making claims about the Reynolds
numbers of the simulation.
In examining the full CNS data, one interesting result jumps out - the most viscous systems
η = .1 seem to perform relatively worse with scale. For both subsets, S was the top
performing model at the highest viscosity. All other viscosities seem to benefit from scale.
This does seem to have a limit, however, as Ti again loses performance. It is also important
to remember that these results occur during multi-task training, so they cannot be directly
interpreted in the single-task setting.

D.3 Exp2: Numerical Results

We provide numerical results corresponding to Figure 5 in Tables 9 and 10. We refer to
Sect. 5.2 for discussion.

D.4 Pretraining Trajectories

Here we show example trajectories from pretrained models. Videos are included in the at-
tached supplementary material. After pretraining, we find that the model initially produces
strong predictions, but patch artifacts creep in over time.

D.5 Finetuning Trajectories

After finetuning, we find that the patch-based instability mostly disappears. Again, videos
displaying longer trajectories are available in the supplementary material.
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Figure 6: Pretraining trajectory.
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Figure 7: Pretraining trajectory.
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Table 10: Test NRMSE for “Far” Compressible Navier-Stokes

# Training Samples (NRMSE ×10−1)
Model 100 200 400 600 800

T+1 T+5 T+1 T+5 T+1 T+5 T+1 T+5 T+1 T+5
VideoMAE (K400) 1.16 1.60 0.79 1.10 0.73 0.96 0.53 0.70 0.49 0.65
VideoMAE (SSV2) 0.98 1.42 0.75 1.03 0.62 0.84 0.55 0.74 0.51 0.67
MPP-AViT-B 0.60 1.15 0.37 0.77 0.27 0.66 .32 0.63 0.24 0.48
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Figure 8: Pretraining trajectory.
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Figure 9: Pretraining trajectory.
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Figure 10: Pretraining trajectory.
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Figure 11: Finetuning trajectory.
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Figure 12: Finetuning trajectory.
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Figure 13: Finetuning trajectory.
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Figure 14: Finetuning trajectory.
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