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ABSTRACT

In autonomous driving (AD), online high-definition (HD) map estimation is gaining
increasing attention. To examine how online-estimated HD maps impact down-
stream tasks, the protocol of online mapping based motion prediction emerges.
This protocol follows a two-stage training paradigm: online mapping models are
firstly trained and then used to output map elements which are fed as inputs for
motion prediction models. In this paper, we conduct in-depth study to investigate
the challenges and misunderstandings associated with the protocol and propose
OMMP-Bench, a well-defined and insightful benchmark of online map based
motion prediction. We identify that the current dataset splits are unsuitable for
two-stage training, leading to a severe train-validation gap, and thus we design
a new data partitioning split. Furthermore, we find that the perception range of
map prediction models does not fully meet the requirements of motion prediction,
resulting in a lack of map elements for agents far from the ego vehicle. This issue
is obscured by incorrect metrics that evaluate only the ego vehicle’s trajectory. We
address it by refining the metrics to evaluate all moving vehicles and separately
report performance for agents under different distance ranges. Further, to alleviate
the issue of missing map elements for faraway agents, we introduce a new baseline
that directly uses image features generated by the online mapping model. These
features are not constrained by perception range and could supplement environ-
mental information around agents beyond the online map’s coverage. We further
explore how different map elements influence motion prediction, as existing online
mapping models have different designs of output format. We conduct thorough
experiments to verify the proposed corrections and will open source the related
code and checkpoints. We hope OMMP-Bench could solve the long-standing
mis-usage and misunderstanding of the emerging field and provide insights for
further co-development of online mapping and motion prediction models.

1 INTRODUCTION

Motion prediction plays a critical role in an autonomous driving system, which forecasts the future
movements of surrounding agents based on their past trajectories as well as map elements. Traditional
motion prediction methods |Zhou et al.| (2022); Shi et al.| (2022); |Gu et al.| (2021)), as in Fig. E] (a),
assume the availability of high-definition (HD) maps with rich static environmental information,
such as lane markings, centerlines, and crosswalks. Such information aids in predicting agent
movement |Gao et al.| (2020b).

However, HD map creation is expensive due to the need for extensive data collection and manual
annotation, with updates required every 2-3 months |Li et al.|(2022). This limits the use of methods
that rely on HD maps. To mitigate this, online mapping models Liao et al.[(2023a); |L1 et al.| (2024);
Yuan et al.[(2024) have gained significant attention in recent days. These models utilize raw sensor
data (e.g. from cameras and LiDAR) to generate HD maps of the vehicle’s surroundings in real
time, providing essential information for motion prediction (and other downstream tasks). Online
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Figure 1: Overview of Our Study.

maps reduce the reliance on high-definition map annotations. However, the errors may impact the
performance of downstream tasks such as motion prediction.

To analyze the impact of using online maps on motion prediction and promote the co-development of
the two fields, the online map based motion prediction protocol emerges in 2024 |Gu et al.| (2024a)
(CVPR 2024 Best Paper Final List), as shown in Fig.[2|(c), which attracts keen attention from the
research community. It is formulated by using online maps (including features generated by online
mapping models) and agents’ ground truth history trajectories as inputs to the motion prediction
model. Pioneering works|Gu et al.|(2024azb) all adopt a two-stage paradigm. At the first stage, sensor
data is used to train an online mapping model [Liao et al.|(2023a); [Li et al.|(2024); Yuan et al.| (2024).
Then, in the second stage, the online mapping model generates inference results for the map. This
predicted map, along with historical trajectory data, is then used to train a motion prediction model.
As a brand new paradigm, it is at an early stage. In this paper, we delve deep into it and identify the
following misunderstandings and challenges:

Inappropriate Dataset Splits. The official splits of typical autonomous driving datasets such as
nuScenes Caesar et al.| (2019) are composed of training, validation, and test sets, a standard way for
regular machine learning problems. However, under the two-stage training online map based motion
prediction, there are two issues: (1) The online mapping model is trained on the training set first.
Then, to set up the training data for the motion prediction model, the online mapping model would
infer on the training set under existing protocol |Gu et al.| (2024a). The predicted map would be
very accurate since the online mapping model is trained on this set. However, this is not the
case during validation where the motion prediction model would take the online mapping model’s
prediction on the validation set as inputs. At the validation set, the online mapping model has much
lower accuracy and thus introduces a huge train-val gap for the downstream motion prediction
model. (2) Additionally, as pointed out in|Yuan et al.| (2024), there are spatial overlaps among the
training and validation set of nuScenes. As a result, the official train-val split could not fully reflect
the generalization ability of the online mapping models. To alleviate these two issues, we design a
new partition for OMMP-Bench by cutting nuScenes into three parts without any geometry overlap:
a map training set, a motion training set, and a motion validation set. The online mapping model
is trained on the map training set and generates online maps on the motion training set and motion
validation set.

Different Considered Range for Online Mapping and Motion Prediction. Popular online mapping
models, such as MapTR/MapTRv2 |Liao et al.|(2023ab) used in the protocol of |Gu et al.|(2024a)), have
rather small pre-defined range (for example, 15 x £30 meters) due to the difficulty of prediction
for distant map elements. However, for the motion prediction part, the nearest agent could be more
than 100 meters away from the ego vehicle. As a result, there are a bunch of agents that do not
have map elements nearby, which could significantly degenerate the accuracy of prediction|Gao
et al.|(2020b). The pioneering protocol |Gu et al.| (2024a3b) sidesteps this issue by only calculating
the motion prediction accuracy of the ego vehicle during evaluation. However, motion prediction is
mainly designed to avoid potential collision with other agents, which the existing protocol fails to
evaluate at all. To this end, in OMMP-Bench, we propose to only evaluate non-ego agents. Further,
to compensate for those agents without any context, we propose a simple yet effective baseline
that leverages the image feature around those agents as environmental information to address the
out-of-map issue.
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Figure 2: Paradigm Comparison for Different Settings to Study Motion Prediction.

Non-discriminative Metrics. For the motion prediction protocol |Gu et al.| (2024a) in nuScenes,
we observe that there are lots of static agents and all motion models could perfectly predict static
trajectories for these agents. As a result, the large number of easy cases would cause the metrics
less distinguishable, and thus we propose to only evaluate non-static agents, similar to the design of
Argoverse Lambert & Hays|(2021); Wilson et al.| (2021) and Waymo |Ettinger et al.|(2021)). Further,
since agents within and outside the perception range of online mapping models have rather different
inputs, we separately report the motion prediction metrics of agents nearby or far away from the ego
vehicle to evaluate motion prediction models’ accuracy under different conditions.

Formulation of Online Map. As the output formulations of online mapping [Liao et al.| (2023ajb);
Li et al.| (2023) are still open problems, we investigate the influence of different existing formulations
for motion prediction models on OMMP-Bench to provide insights for new designs in the online
mapping community.

Notably, there is another line of study taking a step further where the agent and map inputs for motion
prediction are both inference results of upstream modules, like ViP3D |Gu et al.[(2023)) and PIP Jiang
et al| (2022), as shown in Fig.[2](b). This line of research contributes important insights regarding
the recent emergence of end-to-end autonomous driving. However, the study of online mapping’s
influence on motion prediction perspective introduces additional complexity by coupling motion
prediction performance with that of object detection and tracking. For example, if a vehicle is not
detected, its trajectory cannot even be predicted. To avoid misconception and offer clear insights, in
this work, we focus on the online map based motion prediction setting.

Our contributions are summarized below:

* We discover the misconceptions of data and tasks in online mapping based motion prediction,
including inappropriate dataset splits, different considered ranges, and non-discriminative metrics.

* We propose a well-defined benchmark OMMP-Bench with a new partition and separate evaluation
within and outside situations to avoid misleading conclusions.

* We introduce a boundary-free baseline that utilizes image features to mitigate the unaligned range
issue between the online mapping and motion prediction model.

* We evaluate existing methods on OMMP-Bench and analyze the effect of map element selection
on motion prediction models.

2 RELATED WORK

Online Map Estimation. Online HD map estimation methods generate HD maps from sensor
data such as cameras and LiDAR. Early models |[Zhou & Krahenbiihl (2022) approached online
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map estimation as a BEV segmentation. These models first generated BEV features from sensor
data using 2D-BEV transformations, then predicted the semantic category of each BEV grid cell,
producing a gridded HD map. However, gridded maps lack continuity and instance information.
Consequently, recent online map prediction models tend to generate vectorized maps. HDMapNet |Li
et al.| (2022) extracts vectorized maps from gridded maps using complex post-processing, while
VectorMapNet|Liu et al.{(2023) is the first model to directly generate vectorized maps in an end-to-end
manner. MapTR |Liao et al.|(2023ajb)) introduces a unified permutation-equivalent modeling method
to accurately represent point groups, and StreamMapNet [Yuan et al.| (2024)) leverages temporal
information for map prediction. LanSegNet|L1 et al.|(2024])) introduces the concept of lane segments,
combining map element detection with centerline perception.

Motion Prediction. Pioneering deep learning based motion prediction methods opt to use rasterized
images to represent the scene [Tang & Salakhutdinov|(2019); |[Lee et al.|(2017); [Zhao et al.[(2019);
Chai et al.|(2020); |Cui et al.| (2019); Hong et al.|(2019). These approaches project map elements onto
a top-down image based on 2D coordinates, with different elements painted on separate channels,
allowing convolutional neural networks (CNNs) to extract map information. Later, vector-based
approaches for map encoding have shown superior performance in multiple challenges. These
methods typically employ 1D CNNs or LSTMs Hochreiter & Schmidhuber| (1997) for temporal
data, PointNet Qi et al.|(2017) to process polylines, and GNNs to handle interactions between agents
and map elements. VectorNet |Gao et al.| (2020a) uses sub-graphs for lane and agent encoding,
followed by a global fully-connected graph to capture relationships. SceneTransformer Ngiam!
et al.| (2021) introduces a factorized spatio-temporal network, applying Transformers to a fully-
connected spatial/temporal graph alternately. LaneGCN [Liang et al.| (2020) employs four modules
for aggregating scene information, while TPCN |Ye et al.|(2021) treats coordinate data as point clouds.
Recently, HiVT and MTR [Shi et al.| (2022)) adopt pure Transformer architecture. Their following
works QCNet Zhou et al.[(2023) and MTR-++|Shi et al.|(2023) introduce ego-centric representation [Jia
et al.| (2022) to enhance performance.

Online Map Based Motion Prediction. To study the influence of online mapping on motion
prediction, pioneering work MapUncertaintyPrediction (Gu et al.| (20244a) sets up the first protocol
in the field and conveys potential error information by predicting the uncertainty of each point in
the predicted vectorized map. Following work MapBEVPrediction |Gu et al.[(2024b)) incorporates
BEYV features from the online map prediction model into the motion prediction model, eliminating
the need for the decoder in the map model and the encoder for maps in the motion prediction model
during inference. However, as mentioned above, the newly proposed protocol has several issues and
we aim to overcome them and provide a clearer protocol and benchmark for the field. There are more
advanced end-to-end models like ViP3D |Gu et al.| (2023)), PIP Jiang et al.|(2022), UniAD |Hu et al.
(2023)), and VAD Jiang et al.|(2023)), which further make the agent input of motion prediction be the
results of an upstream module as well. However, it makes the motion prediction performance deeply
entangled with object detection accuracy so it is difficult to analyze the actual influence caused by the
errors of online mapping.

3  ONLINE MAPPING BASED MOTION PREDICTION

3.1 PRELIMINARY

To study the influence of online mapping on motion prediction, following the pioneering protocol |Gu
et al.| (2024aib)), there are two stages. At the first stage, sensor data is used to train an online mapping
model Liao et al.| (2023a); [Li et al.| (2024); |Yuan et al.|(2024). Then, in the second stage, the online
mapping model generates inference results. This predicted map, along with historical trajectory
data, is then used to train a motion prediction model. By studying the performance of the final
motion prediction model, it could provide insights on (1) the designs of online mapping models
to better fit the requirements of motion prediction and (2) the designs of motion prediction to
be more robust to imperfect online maps. Note that all existing online mapping based motion
prediction models are conducted only on nuScenes (Caesar et al.,|2019) dataset because it provides raw
camera data, HD maps, and trajectories of agents in the same scenario while others such as Waymo
motion (Ettinger et al.,[2021)) or Argoverse2 motion (Wilson et al.,[2021)) do not. In the following
sections, we delve into the details of the existing protocol of online map based motion prediction and
discuss its misconceptions and our corresponding solutions in our proposed OMMP-Bench.
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Figure 3: Comparison of Default (Upper) and Proposed (Lower) Protocol. Four standard steps of
online mapping based motion prediction: (D training the map model; Q) using the trained map model
to generate maps to train the motion model; @training the motion model; @ conduct inference with
the trained map and motion model. Under the default setting in|Gu et al.|(2024a) (Upper), it would
introduce train-val gaps for the motion model due to the huge difference in map accuracy. Under the
proposed setting (Lower), the motion model could use maps of similar accuracy during both training
and evaluation.

Table 1: Comparison of Different Splits with MapTRv2-CL and HiVT. The metrics are calculated
on all moving non-ego vehicles.

Split Setting | Train Map Model Train Motion Model Evaluation | minADE| minFDE| MR/|
1 (Ours) Map Train Motion Train Motion Val 0.6308 1.2487 0.1558
2 Map Train + Motion Train ~ Map Train + Motion Train Motion Val 0.7006 1.3501 0.1817
3 (Default)|Gu et al.|(2024a) | nuScenes Train nuScenes Train nuScenes Val 0.6839 1.3362 0.1732

0.6373 1.2261 0.1580

nuScenes Train (Sub 50%) nuScenes Train (Another Sub 50%) nuScenes Val

4

3.2 INAPPROPRIATE DATA SPLITS

In classic machine learning problems, one commonly used data partition strategy is training, vali-
dation, and test set, which is widely adopted by existing autonomous driving datasets (Caesar et al.
(2019); |Wilson et al.[(2021); [Ettinger et al.|(2021). However, for the task of online map based motion
prediction, we find that the default split adopted in|Gu et al.|(2024a) is unsuitable under the two-stage
training pipeline. Specifically, under the official training and validation split of nuScenesCaesar
et al.| (2019), the protocol would be (1) Training the online mapping model on the sensor data of the
training set; (2) Using the online mapping model to inference on the training set to generate online
maps; (3) Training the motion prediction model with the online maps on the training set; (4) Evaluate
the motion prediction performance on the validation set with online mapping model inference on
validation set first, as shown in Fig. [3|(Upper). As a result, in the training data of motion prediction,
the online maps are highly accurate since the online mapping model is inference on its training
set. However, during evaluation, the online mapping model encounters data it has not seen before,
resulting in a significant drop in map accuracy and a shift in the distribution. This distribution shift
greatly degenerates the performance of the motion prediction model.

Another issue of nuScenes data split has been pointed out in recent online mapping work Yuan et al.
(2024). Since map elements are rather static, online mapping models could perform well on the
locations covered by the training set, even with different sensor data. Unfortunately, there exist large
spatial overlaps between the training and validation set Yuan et al.| (2024)) of nuScenes, as their
data partition strategy divides data based on different driving logs, shown in Fig. 4] (Upper). As a
result, the default split would overestimate the generalization ability of online mapping models.

To address the aforementioned issue, we manually check the whole dataset and split it into three
spatially disjoint sets for OMMP-Bench: map train set, motion train set, and motion val set, as
shown in Fig. 4| (Lower). Under this setting, the online map based motion prediction protocol is
executed as: (1) training the online mapping model on the map train set; (2) using the trained map
model to generate maps on the motion train set; (3) training the motion prediction model on the
motion train set; (4) evaluate the motion prediction on the motion val set with online mapping model
inference on the motion val set first, as shown in Fig. [3|(Upper). In this way, we make sure the online
mapping model has never encountered data from the two motion related subsets and thus the
accuracy of online maps is similar. As a result, the motion prediction model adapts to the less precise
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Table 2: Online Mapping Performance (mAP) under
Different Perception Range.

Map model | 30x60m  100x100m

MapTR 0.124 0.014
MapTRv2-CL | 0.164 0.002

Table 3: Motion Prediction Performance of HiVT
under GT Maps with Different Range.

Range | minADE| minFDE| MR]
30x60m 0.6154 1.2382 0.1448 ider ——

100x100m | 06003 12243 M3 gy hicent oeeption Range

maps, eliminating the train-validation gap. As shown in Table[I] the split of OMMP-Bench leads to
an explicit performance enhancement compared to the default split, demonstrating the importance of
reducing the train-val gap.

3.3 DIFFERENT CONSIDERED RANGE FOR ONLINE MAPPING AND MOTION PREDICTION

Autonomous driving, as an outdoor task, naturally requires defining a range of considerations to
avoid unbound and unnecessary computation. Currently, most online mapping models Liao et al.
(2023a3b); [Li et al.[(2023) set a rather limited perception range, due to the inherent difficulty of
detecting a line in long distance with cameras. For example, MapTR only covers a 30x60m area
(£15 x £30m). As shown in Table 2] when extending the online mapping model to a longer range,
the perception performance would drastically degenerate.

On the other hand, motion prediction tasks usually consider agents as far as more than 100 meters
away from the ego vehicle in nuScenes. As a result, a large portion of the predicted agents does not
have map elements around them, which means no surrounding information and causes degenerated
performance. In Table[3|and Fig.[6] we could conclude that the absence of map elements can impact
motion prediction for other vehicles, and simply expanding the perception range of the map prediction
model leads to decreased map accuracy, ultimately failing to improve motion prediction performance.
This indicates that current online map prediction models cannot fully meet the perception range
requirements of downstream motion prediction tasks.

To enable those distant agents to obtain environment information, we propose a new baseline in
OMMP-Bench to allow all agents to extract features from their corresponding nearby regions of
raw image features. In this way, image features have the benefit that it does not have out-of-scope
issues unlike BEV features |Gu et al.| (2024b)). As shown in Fig. [/} We implement the integration
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Figure 6: Visualization of Performance under Different Perception Range. Using long-range GT
map could give explicit guidance for the far away agents while using long-range online map is not
helpful.
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Figure 7: Proposed Baselines to Alleviate Out-of-Scope Issue (Left). Illustration of Out-of-Scope
Agents. (Right) Applying Deformable Attention for all agents to retrieve image features enables
each agent to have its own environment information.

of agent and image features using Deformable Attention. We donate the image features extracted
from a backbone {Iy,I5,...,In.} € REXW ‘where (H,W) is the size of image features and NV, is
the number of multi-view images. Using the intrinsic and extrinsic parameters and agent positions,
we project each agent onto an image feature. For the i-th agent projected onto image feature T(i) at

location R?, its feature is denoted by A; € RP.

The aggregated features are then computed as follows:

A; = DeformAtt(A;, pi, Ir(;)) (1
As shown in Table [} this straightforward yet effective baseline
addresses the issue of agents extending beyond the map’s perceptual
boundaries and achieves SOTA performance.

3.4 NON-DISCRIMINATIVE METRICS

The major purpose of motion prediction is to provide the intentions
of surrounding agents so that the planning module can avoid colli-
sion. However, under existing protocol, only ego vehicle’s motion
prediction performance is reported during evaluation, which is
against the purpose of motion prediction. Thus, in OMMP-Bench
we propose to predict other agents’ future trajectories.

Further, we observe that nuScenes contains a substantial number of
stationary or slow-moving vehicles, whose motion is relatively easy
for models to predict while fast-moving agents are generally more
challenging to predict. Therefore, we focused our evaluation on
moving vehicles , similar to popular motion prediction benchmarks

like Argoverse|Wilson et al.| (202 1)) and Waymo Ettinger et al.|(2021)).

= | _'L‘J
\
’ |
i
Figure 8: Comparison of

Evaluation Agent Selection
Strategy. Red vehicles repre-
sent the selected agents to re-
port motion prediction perfor-
mance about. (Left) Existing
protocol (@024atb)
only reports results on the ego
vehicle. (Right) The proposed
protocol evaluates the mo-
tion prediction performance of
ego vehicle and other moving
agents.
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Table 4: Comparison of Online Map Based Motion Table 5: Performance of HiVT under

Prediction. Different Online Map Element Types.
Base model | Method | minADE| minFDE| MR Divider Boundary Ped. crossing ~Centerline | minADE
HiVT+MapTR | base 0.6375 12592 0.1585 v X x x 0.8770
HiVT+MapTR | unc/Gu et al.}(2024a) | 0.6272 12487  0.1578 x v x x 0.6829
HiVT+MapTR | bev|Gu et al.|(2024b) | 0.6287 12364 0.1566 5 j X X ggggg
HiVT+MapTR | img(ours) 0.6163 1.2344 0.1519 X X % v 06631

v v v v 0.6308

Table 6: Motion Prediction Performance (minADE |) of Different Groups of Agents.

Models | Ego All Moving Static Moving Non-Ego Close = Moving Non-Ego Far
HiVT+MapTR 04015 0.2224  0.6307  0.002 0.5585 0.6997
DenseTNT+MapTR | 1.2114 0.9732 2.3069  0.009 2.0214 2.4140

We classify an agent as moving if it moves more than two meters
within three seconds.

As discussed in Sec[3.3] some agents might fall outside of the online mapping range. To measure
and observe this influence, we further divide agents into two groups: Moving-Non-Ego-Close and
Moving-Non-Ego-Far, where ''close' and 'far'' are decided by whether within the perception
range of online mapping models.

In summary, Fig. [§]illustrates the proposed evaluation agent selection strategy while Table[6|compares
the motion prediction results of different groups of agents. We could conclude that (1) The difficulty
of prediction is: Moving > Ego > Static. Both models perform nearly perfectly in predicting static
agents’ future trajectories, demonstrating the importance of excluding those from metrics. (2) The
faraway agents’ have worse performance compared to nearby agents, which is natural considering
the missing maps.

3.5 FORMULATION OF ONLINE MAP

HD Map, as an abstraction for road lines and traffic signs, could have rather different number of
semantic types across different datasets (Caesar et al.|(2019); Wilson et al.| (2021); [Ettinger et al.
(2021)) and across different online mapping models Liao et al.|(2023a;b); [Li et al.|(2024). For example,
in nuScenes, the official semantic types include dividers, boundaries, and pedestrian crossings. In the
extension of OpenLane series |Chen et al.| (2022); |Wang et al.|(2023); [Li et al.|(2024), centerlines,
describing the virtual mid-points of lanes, and topology representing the connection relations of
different map elements are introduced. In Table[5] we compare the influence of incorporating different
types of online map elements for motion prediction. Not surprisingly, feeding all possible map
element types into the motion prediction model leads to the best performance, as it has comprehensive
information. Further, we could observe that centerlines are most helpful and centerlines only achieve
the second best performance, which is natural since most people would like to drive following the
center of the lane. Thus, in OMMP-Bench we always feed all possible map elements into the
motion prediction model for the best performance while the existing framework |Gu et al.| (2024a)
only feeds one type of map elements into the motion prediction model at each time. It could be either
dividers, boundaries, or centerlines, depending on the availability of map elements in the scene.

4 EXPERIMENTS

4.1 BENCHMARK

In summary, Compared with existing online map based motion prediction protocol, the proposed
OMMP-Bench has the following improvements:

1. New Split: we construct a new split on nuScenes dataset with three sets named the map train set,
motion train set, and motion val set, which contain 367, 397, and 86 scenes respectively. With
the new protocol proposed for training and evaluating online mapping based motion prediction
along with the dataset, the train-val gap is eliminated. The split is carefully checked to minimize
the spatial overlaps between the map train set and others, which is able to better evaluate the
generalization ability of online mapping models than the original split.

2. More Moving Agents: We predict other agents’ future trajectories which are aligned with the
purpose of motion prediction while the existing one only evaluates the ego vehicle. As the motion
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Table 7: Results of Existing Online Map Based Motion Prediction Methods on Proposed OMMP-
Bench.

. | Ego Moving Non-Ego Close Moving Non-Ego Far

Map Model  Motion Model - Method s ps e ST MRT [ minADE]  mmFDE]  MR] | mmADE] minFDE]  MR[
MapTR HivT base 0.4015 0.8576  0.0937 0.5585 1.1476  0.1305 0.6997 1.3657  0.1854
MapTR HivT unc 0.3839 0.8236  0.0956 0.5560 1.1548  0.1352 0.6946 1.3383  0.1795
MapTR HivT bev 0.3812 0.8070  0.0943 0.5328 1.1184  0.1339 0.6738 1.3174  0.1772
MapTR HivT img 0.3792 0.8032  0.0930 0.5275 1.1028  0.1332 0.6318 1.2780  0.1538
MapTR DenseTNT base 1.2114 23185 04183 2.0214 43053  0.4546 2.4140 5.0250  0.5055
MapTR DenseTNT  unc 1.0486 2.0875  0.3774 1.8123 4.0554 04279 2.3794 4.5621 0.4994
MapTR DenseTNT  bev 1.0856 2.0732  0.3781 1.8243 4.0384  0.4296 2.3771 4.6091 0.4991
MapTR DenseTNT  img 0.9921 1.8476  0.3593 1.6851 3.6264  0.3849 2.0702 41723 04382
MapTRv2-CL HiVT base 0.3976 0.8571 0.1025 0.5585 1.1412  0.1301 0.6999 1.3512  0.1805
MapTRv2-CL HivT unc 0.3862 0.8185  0.0898 0.5682 1.1751 0.1356 0.7071 1.3785  0.1856
MapTRv2-CL HivT bev 0.3882 0.8170  0.0920 0.5632 1.1692  0.1336 0.7242 1.3944  0.1972
MapTRv2-CL HivT img 0.3773 0.7991 0.0869 0.5175 1.0742  0.1320 0.6274 1.2631 0.1501
MapTRv2-CL  DenseTNT  base 1.1625 2.0731 0.3846 1.9528 4.1070  0.4284 2.2742 47492 04729
MapTRv2-CL  DenseTNT  unc 1.0424 2.0642  0.3570 1.7918 39362  0.4203 2.3666 4.8551 0.5152
MapTRv2-CL DenseTNT  bev 1.0068 1.9942  0.3482 1.7738 3.9626  0.4210 2.3537 4.6741 0.4997
MapTRv2-CL  DenseTNT  img 0.9770 1.8156  0.3563 1.6482 3.5829  0.3627 1.9836 4.0002  0.4128

of stationary vehicles is easy to predict, we further propose to only evaluate moving agents and
divide them into "close" and "far" groups.

3. All Map Elements: For the best performance, We use all possible map elements as input of the
motion prediction model, while the existing benchmark only feeds one type of map elements.

4. New Baseline: We propose a new baseline that integrates raw image features into motion prediction
models, to provide agents that are out of the range of online maps with environmental information.

4.2 RESULTS

The results of existing online map based motion prediction methods on OMMP-Bench are shown in
Tab[/| yielding the following insights:

 Distant agents are hard to predict. On the one hand, across all methods, the accuracy of predicting
the ego vehicle’s motion is consistently better than predicting nearby vehicles, which in turn is
better than predicting the motion of distant vehicles. On the other hand, methods that improve the
motion prediction on ego vehicle prediction do not necessarily show similar improvements for
other vehicles. For example, for several combinations of the online mapping model and motion
prediction model, both MapUncertaintyPrediction Gu et al.|(2024a) and MapBEVPrediction|Gu
et al.[(2024b) methods improve ego vehicle prediction but show performance drops when predicting
close non-ego agents compared to base method. When predicting far non-ego agents with the
MapTRv2-CL+DenseTNT model, minADE increased by 4.1% and 4.0%. This also highlights the
challenge of our proposed metrics, encouraging the online map based motion prediction model to
deal with more difficult while realistic tasks.

¢ Stronger online mapping model benefits motion prediction. When using DenseTNT as the
downstream module, MapTRv2-CL achieves a reduction in minADE of 4.0% relative to MapTR.
Compared to MapTR, MapTRv2-CL provides higher map prediction accuracy and additionally
predicts centerlines. This indicates that a stronger online mapping model can supply downstream
models with richer and more accurate information, thereby enhancing their performance.

 Integrating image feature helps to predict agents far away. Our proposed baseline reaches a
better performance on predicting farther agents. Applied the method on the MapTRv2-CL+HiVT
model, the minADE decreased by 12.7%.

5 CONCLUSION

In this paper, we delve into the challenges and misunderstandings of the emerging online map based
motion prediction protocol, which includes inappropriate data splits, different considered ranges for
online mapping and motion prediction, and non-discriminative metrics. We propose the OMMP-
Bench, a benchmark with new data split, refined metrics, and a new baseline as the solution. We hope
OMMP-Bench could solve the misunderstanding of the new field and provide insights for further
co-development of online mapping and motion prediction models.
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6 ETHICS STATEMENT

The research conducted in the paper conforms with the ICLR Code of Ethics.

7 REPRODUCIBILITY STATEMENT

We describe the proposed module in Sec. [3]and detailed rules of the pipeline in Appendix [A] The
code and checkpoints will be open-sourced for reproduction.
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A DETAILED RULES OF OMMP-BENCH

Online Mapping Models. On OMMP-Bench, online mapping models must be trained on the map
train set. After training, the models perform inference on the motion train set and motion val set,
generating and storing information required for the training and testing of motion prediction models.
There are no restrictions on the output formulations or perception range of the online mapping
model. We no not evaluate the precision of online mapping with metrics such as mAP since the
output forms of different models may vary. Instead, we focus on their effectiveness in downstream
motion prediction tasks, allowing flexibility in exploring the most beneficial structures and output
formulations of online mapping models for motion prediction.
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Motion Prediction Models. On OMMP-Bench, motion prediction models are trained on the motion
train set and evaluated on the motion val set. Models receive the past 2 seconds of ground-truth
trajectories for each agent and predict trajectories for the next 3 seconds. These trajectories are
interpolated at 0.1-second intervals, with each agent having 20 points for past trajectories and 30
points for future trajectories. Models may predict up to six potential trajectories for each agent. All
moving vehicles, regardless of their distance from the ego vehicle, are evaluated. We report the
minADE, minFDE, and MR metrics for all moving vehicles, and categorize performance based on
their location within or outside the map perception range. Motion prediction models can use any
outputs or features produced by the online mapping model, such as online maps, BEV features, or
image features. However, they can not use offline maps in any form.

B LLM USAGE

LLMs are used in writing for improving grammar and correcting typos.
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