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Abstract001

Dependency parsing is a crucial task in natu-002
ral language processing that involves identify-003
ing syntactic dependencies to construct a struc-004
tural tree of a sentence. Traditional models005
conduct dependency parsing by constructing006
embeddings and utilizing additional layers for007
prediction. We propose a novel method for008
performing dependency parsing using only a009
pre-trained encoder model with a text-to-text010
training approach. To facilitate this, we define011
the structured prompt template that effectively012
captures the structural information of the depen-013
dency tree. Our experimental results demon-014
strate that the proposed method achieves out-015
standing performance when comparing to tra-016
ditional models, in spite of relying solely on017
an encoder model. Moreover, this method can018
be easily adapted to various encoder models019
that are suitable for different target languages020
or training environments, and it easily embody021
special features into the encoder models.022

1 Introduction023

Dependency parsing is a crucial task in natural024

language processing, involving the analysis of syn-025

tactic relationships between words in a sentence.026

Traditionally, dependency parsing has been per-027

formed in 2 steps: 1) creating word-level embed-028

dings, 2) identifying the head word of each word029

and their dependency relation using the created em-030

beddings. In the past, the first step of dependency031

parsing generally used simple pre-processed con-032

textual vectors for initializing embeddings (Li et al.,033

2018; Strzyz et al., 2019; Vacareanu et al., 2020).034

These days, because pre-trained language models,035

such as BERT (Devlin et al., 2019), achieve a high036

ability to capture contextual characteristics, recent037

dependency parsing approaches tend to initialize038

word embeddings solely using the pre-trained lan-039

guage models and perform better than past methods040

(Amini et al., 2023). In the second step of depen-041

dency parsing, previous studies have shown that042

graph-based methods, such as biaffine (Dozat and 043

Manning, 2017), yield good performance in iden- 044

tifying relations. Consequently, this approach was 045

extended to learn the subtree information of the de- 046

pendency tree (Yang and Tu, 2022). Since the struc- 047

tural characteristics of dependency trees increased 048

training complexity and difficulties, some studies 049

use the sequence tagging method for parsing (Li 050

et al., 2018; Amini and Cotterell, 2022). These 051

approaches add simple layers after embedding con- 052

struction and label the words into structural infor- 053

mation sequentially. In particular, the hexatagging 054

method achieved state-of-the-art performance by 055

generating structural information with a finite set 056

of tags through decoding (Amini et al., 2023). In 057

addition, Lin et al. (2022) have shown that encoder- 058

decoder models perform well to generate relation 059

unit text from the input text. This demonstrates 060

that dependency parsing can be accomplished with 061

pre-trained language models alone. 062

In this paper, we propose a novel method to per- 063

form dependency parsing solely on pre-trained en- 064

coder models that are constructed by prompt engi- 065

neering using additional tokens as soft prompts. We 066

think that prompt engineering can effectively con- 067

vert the text-to-structure task in dependency pars- 068

ing to the text-to-text task by pre-trained language 069

models, just like the sequence tagging method. 070

Hence, the output text sequence of the proposed 071

method has to reflect the tree structure of depen- 072

dency parsing well. For this, we develop several 073

soft prompts so that our model can identify the 074

structural information of the tree structure, and 075

then do the Structuralized Prompt Template (SPT) 076

for each processing unit of dependency parsing 077

using the developed soft prompt. We believe that 078

prompt learning with the structuralized prompt tem- 079

plate enables effective and efficient dependency 080

parsing only on the pre-trained language mod- 081

els. Eventually, by learning through the structural- 082

ized prompt template, the Structuralized Prompt 083
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Figure 1: Overview of the Structuralized Prompt Template based Dependency Parsing (SPT-DP) method.

Template based Dependency Parsing (SPT-DP)084

method achieves the effective and efficient perfor-085

mance by reducing the gap between pre-training086

and fine-tuning because it is based on only the pre-087

trained language models for the text-to-text task.088

As a result, the performance of the proposed089

method surpasses the ones of most existing meth-090

ods: 96.95 (UAS) and 95.89 (LAS) on En-091

glish Penn Treebank (PTB;Marcus et al. (1993)).092

On the 2.2 version of Universal Dependencies093

(UD2.2;Nivre et al. (2018)), it obtains the state-of-094

art performance in 2 languages out of 12 languages095

when using the cross-lingual Roberta (Liu et al.,096

2019) model. Furthermore, our method achieves a097

performance comparable to that of the SOTA model098

with a complicated and heavy architecture in the099

Korean Sejong dataset.100

In summary, we enumerate our main contribu-101

tions as follows:102

1. We define the structuralized prompt template103

that well reflects structural information of the104

dependency tree with soft prompts.105

2. We fine-tuned our model with the structural-106

ized prompt template as prompt engineering,107

which can convert the text-to-structure task108

(dependency parsing) to the text-to-text task109

by the pre-trained language model.110

3. The proposed method achieves high perfor-111

mance only using the pre-trained language112

model and the structuralized prompt template,113

which has several strong points of easy train-114

ing, requiring small memory, and fast infer-115

ence time.116

2 Structuralized Prompt Template117

As aforementioned, the structuralized prompt tem-118

plate is invented so that the pre-trained model119

can directly perform dependency parsing through120

prompt engineering using additional tokens as soft 121

prompts. Since the dependency parsing inputs a 122

sentence and outputs its dependency tree, we need 123

to convert the raw input text to a formatted text se- 124

quence that well contains the structural information 125

of the dependency tree. We define the structural- 126

ized prompt template to generate the formatted text 127

sequence with useful information for the depen- 128

dency parsing. The template utilizes newly defined 129

special tokens, which are added in the look-up table 130

and used as soft prompts. 131

2.1 Dependency Parsing with Text 132

Representation 133

Basically, dependency parsing is a task to find a 134

word with a dependency relation and determine 135

its corresponding dependency label for each word. 136

To express the structured dependency relationships 137

through the prompt template for each word, several 138

conditions should be satisfied; 1) Each template 139

must be distinguished by its pattern through whole 140

training, 2) it must be able to indicate its position, 141

3) it must be able to refer to the other word template 142

with dependency relationship through the output, 143

and 4) it must be able to express the dependency 144

relation label through the output. 145

In the first condition, we ensure that the language 146

model can distinctly recognize each template by 147

following a consistent pattern rather than a specific 148

token through all the training process. To satisfy 149

the second condition, we use the <index> prompts 150

that serve two roles: representing the template and 151

indicating the template’s position. Because the 152

<index> prompts represent the relative position of 153

templates in a formatted text sequence, each tem- 154

plate can refer to other template with dependency 155

relationship regardless of any input sequence using 156

the <index> prompts. For the third condition, we 157

add the [HEAD] prompt in the second position of 158

the template, which has a dependency relation with 159
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Figure 2: i’th input SPT and its output sequence.

another template: its output is the <index> prompt160

of the template with dependency relationship. The161

fourth condition is resolved by adding the depen-162

dency label prompt. The look-up table should be163

extended for prompt engineering by adding three164

kinds of prompt sets: the index numbers of tem-165

plates (<index>), the dependency labels (<dep>),166

and the Part-of-Speech tags of words (<pos>). In167

addition, two more special tokens, [HEAD] and168

[DEP] are added as soft prompts and they take169

a role just like the masked token in the Masked170

Language Model (MLM) task. That is, we should171

infer which index is one of the prompt with correct172

dependency relation on [HEAD] and which depen-173

dency label is correct dependency label on [DEP];174

in actual, correct index and label exist in output175

sequence at the training phase and this process is176

similar to the MLM task, as shown in Figure 2. The177

[HEAD] and [DEP] prompts are also added in the178

look-up table for prompt engineering.179

2.2 Prediction Task using Soft Prompts:180

[HEAD] and [DEP]181

As aforementioned, the [HEAD] and [DEP]182

prompts are used to infer two main prediction tasks183

for the head word and the dependency label. They184

are arranged in second and third positions of the185

structuralized prompt templates and they make a186

pattern in the input formatted text sequence. In our187

approach, the model is fine-tuned to predict head188

word and dependency labels by the [HEAD] and189

[DEP] prompts.190

3 Prompt-based Training191

Our training method is similar to the sequential192

labeling. However, the formatted text sequence193

is composed of repeated SPTs, and the <index> 194

and dependency labels of the output sequence are 195

replaced by the [HEAD] and [DEP] prompts for 196

training; they are prompts for prediction tasks like 197

the MLM task. Moreover, the other difference 198

from sequence labeling is that our model trains in 199

every word and prompts not only the [HEAD] and 200

[DEP] prompts. In this training strategy, our model 201

well learns the patterns of the repeated SPTs in the 202

formatted text sequence. 203

The loss function for training is calculated by 204

the following equations. In Equation 1, X(input) is 205

the tokenized text that is a concatenated sequence 206

of SPTs in which <index> and dependency label 207

are replaced by [HEAD] and [DEP] prompts. In 208

Equation 2, Y (label) is the tokenized text that is the 209

formatted output sequence based on the repeated 210

SPT pattern. Each X and Y contain a special to- 211

ken of the model. Since 100 index numbers (0 99), 212

[HEAD], [DEP], POS tags, and dependency labels 213

are added to the look-up table, the lengths of X 214

and Y are always the same. This is a crucial con- 215

dition in training models based on the pre-trained 216

encoder. Since we train on all tokens in sequence, 217

the training loss is described in Equation 3. 218

Xinput = [x1, x2, ..., xN ] (1) 219
220

Ylabel = [y1, y2, ..., yN ] (2) 221
222

L = −
N∑
i=1

logP (yi|X) (3) 223

4 Experiments 224

4.1 Datasets and Pre-trained Language 225

Models 226

For the PTB dataset, we preprocess the data with 227

the v3.3.0 of Stanford Parser (de Marneffe and 228

Manning, 2008) to convert it into CoNLL format 229

and we organize this data by just following previ- 230

ous work (Mrini et al., 2020). For 2.2 version of 231

UD datasets from 12 languages, we follow previ- 232

ous work (Amini et al., 2023) for data splitting and 233

organizing. In UD2.2, the POS tag information 234

is not used for the experiments by omitting POS 235

prompts in the template. In the Sejong dataset, Ko- 236

rean words are composed of multiple morphemes, 237

the POS tags of the first and last morphemes are 238

used for this experiment. 239

XLNet-large for the Penn Treebank (PTB; Mar- 240

cus et al. (1993)) and multilingual BERT, XLM- 241
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bg ca cs de en es fr it nl no ro ru Avg.
Dozat and Manning (2017)♢ 90.30 94.49 92.65 85.98 91.13 93.78 91.77 94.72 91.04 94.21 87.24 94.53 91.82
Wang and Tu (2020)♢ 91.30 93.60 92.09 82.00 90.75 92.62 89.32 93.66 91.21 91.74 86.40 92.61 90.61
Yang and Tu (2022)♢ 91.10 94.46 92.57 85.87 91.32 93.84 91.69 94.78 91.65 94.28 87.48 94.45 91.96
Lin et al. (2022)* 93.92 93.75 92.97 84.84 91.49 92.37 90.73 94.59 92.03 95.30 88.76 95.25 92.17
Amini et al. (2023)♢ 92.87 93.79 92.82 85.18 90.85 93.17 91.50 94.72 91.89 93.95 87.54 94.03 91.86
SPT-DP (multilingual BERT) 91.20 90.81 92.22 79.68 87.36 90.33 88.31 92.00 89.37 90.64 86.12 93.17 89.27
SPT-DP (XLNet-large) - - - - 90.58 - - - - - - - -
SPT-DP (XLM-RoBERTa-large) 93.11 92.54 94.14 82.11 88.50 91.69 88.02 93.16 91.15 93.13 88.87 95.12 90.90

Table 1: 12 languages’ LAS scores on the test sets in UD 2.2. ♢ use multilingual BERT for embedding and * uses
T5-base model for sequence generation parsing.

PTB Sejong
Model UAS LAS UAS LAS
Zhou and Zhao (2019)* 97.0 95.43 - -
Mrini et al. (2020)* 97.42 96.26 - -
Dozat and Manning (2017) 95.74 94.08 - -
Wang and Tu (2020) 96.91 95.34 - -
Yang and Tu (2022) 97.24 95.73 - -
Lin et al. (2022) 96.64 95.82 - -
Amini et al. (2023) 97.4 96.4 - -
Park et al. (2019) - - 94.06 92.00
Lim and Kim (2021) - - 94.76 92.79
SPT-DP 96.95 95.88 94.52 92.36
SPT-DP (w/o <index>) 94.28 92.63 - -
SPT-DP (w/o <pos>) 96.76 95.66 94.47 92.35

Table 2: Results on PTB and the Sejong Korean dataset.
* use additional constituency parsing information so
they are not comparable to other methods.

RoBERTa-large, XLNet-large for Universal Depen-242

dencies 2.2 (UD2.2; Nivre et al. (2018)), and the243

Korean version of Roberta (Liu et al., 2019) for244

the Korean Sejong dataset are used for our experi-245

ments.246

4.2 Comparison Models247

(Dozat and Manning, 2017) presented the biaffine248

model as a graph-based method. (Wang and Tu,249

2020) introduced message passing for the second-250

order graph-based method. (Yang and Tu, 2022)251

invented a new method for projective parsing based252

on headed span. (Lin et al., 2022) proposed a pars-253

ing method with sequence generation. (Amini et al.,254

2023) utilized defined structural tags and sequen-255

tial tag decoding for parsing.(Lim and Kim, 2021;256

Park et al., 2019) constructed a dependency parser257

using the Korean morpheme version of BERT.258

4.3 Experimental Results259

Table 2 shows the performance of each model on260

the PTB dataset. The proposed method achieves261

the comparable performances to the SOTA models,262

which have extra complicated modules or extra con-263

stituency parsing information; these performances264

position in second place although our model uses265

only pre-trained languag models. In addition, we 266

do the ablation test about additional special tokens 267

(prompts) to construct SPT: <index> and <pos>. 268

As you can see in Table 2, the performance of 269

experiment without <index> shows more perfor- 270

mance decrease than one without <pos>. This 271

demonstrates that the configuration of the template 272

highly affects performance. As shown in Table 1, 273

when the experiments are conducted using multilin- 274

gual BERT in UD2.2, it shows lower performance 275

than other models. After we exploit a slightly 276

larger model, XLM-RoBERTa-large, our method 277

significantly improves performance for the most 278

part and the SOTA peformances are achieved in 279

2 languages. In addition, better performance was 280

achieved when learning UD2.2-en data through 281

XLNet-large, which was only pre-trained in En- 282

glish. This indicates that the type and size of the 283

pre-trained model significantly impact parsing per- 284

formance because we only use a pre-trained model 285

for parsing. Our method achieves comparable per- 286

formances to those of the SOTA model with a com- 287

plicated and heavy architecture in the Korean Se- 288

jong dataset for Korean. 289

5 Conclusions 290

In this paper, we introduce the SPT-DP, structural- 291

ized prompt template based dependency parsing 292

method. We perform text-to-text dependency pars- 293

ing by prompt engineering using additional tokens 294

using only pre-trained encoder models without any 295

layer. Despite solely utilizing the pre-trained en- 296

coder model, the proposed model achieves compa- 297

rable performances to existing models. Therefore, 298

our method has several strong points in that it can 299

be easily applied to various encoder models that 300

are appropriate to the target language or training 301

environment and easily embody special features 302

into the encoder models. 303
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Limitation304

In our method, there is a limitation with sequence305

length. Although sentences with too many words306

are occurred in rare cases, additional prompts also307

increase linearly with the number of words, which308

can make it difficult to use for encoder models with309

a short maximum length. In addition, additional310

research is needed to perform semantic dependency311

parsing with a dynamic number of relationships.312

Ethics Statement313

We perform dependency parsing using a pre-trained314

model. The datasets may contain ethical issues or315

biased sentences, but the model does not influence316

them through dependency parsing.317
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A Implementation Details425

For experiments for PTB, xlnet-large-cased1426

are used. For experiments for UD2.2, bert-427

multilingual-cased2, xlm-roberta-large3 and xlnet-428

large-cased are used. For the Korean Sejong429

dataset, we use roberta-large4, which is a pre-430

trained model for the Korean language. We use431

NVIDIA RTX A6000 for experiments. The models432

are fine-tuned with 8 batch size, 1e-5 learning rate,433

and 10 training epochs. We train models with the434

linear scheduler and AdamW as a optimizer.435
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