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Abstract

Pan-privacy was proposed by (Dwork et al., 2010)
as an approach to designing a private analytics sys-
tem that retains its privacy properties in the face of
intrusions that expose the system’s internal state.
Motivated by federated telemetry applications, we
study local pan-privacy, where privacy should be
retained under repeated unannounced intrusions
on the local state. We consider the problem of
monitoring the count of an event in a federated
system, where event occurrences on a local device
should be hidden even from an intruder on that de-
vice. We show that under reasonable constraints,
the goal of providing information-theoretic dif-
ferential privacy under intrusion is incompatible
with collecting telemetry information. We then
show that this problem can be solved in a scalable
way using standard cryptographic primitives.

1. Introduction

Private federated telemetry systems allow for collection
of aggregate statistics from a population, while ensuring
a strong privacy guarantee for individuals. For example,
private federated learning and statistics have been used
to collect webpage and search engine popularities from
Chrome browsers (Erlingsson et al., 2014), learn popular
emojis (Apple’s Differential Privacy Team, 2017), collect
Covid epedimiological metrics (Apple and Google, 2021),
collect browser performance metrics (Helmer et al., 2018),
collect operating system telemetry (Ding et al., 2017), and
train keyboard models (Xu et al., 2023; Zhang et al., 2023).

These systems typically rely on the client device storing
information about usage on device, and periodically, at ap-
propriate times, taking part in a protocol that computes an
aggregate. These protocols use encryption to protect this
data from an eavesdropper. In some cases, additional cryp-
tographic protocols are used to protect the individual contri-
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butions from the server computing the aggregate (Bonawitz
et al., 2017; Corrigan-Gibbs and Boneh, 2017). Finally, the
aggregate itself protects individual contributions by noise
addition to provide a differential privacy guarantee.

In some applications, one may want to additionally protect
against an attacker that has access to the device. For ex-
ample, a computer in a public library may be accessed by
one user, and later by another. In such a case, we would
want to ensure that the second user cannot learn about the
activity of the first user by inspecting the internal state of
the device. In this work, we initiate the study of estimating
population statistics while ensuring privacy against an on-
device intruder. We call this model local pan-privacy, as it
aims to protect against an intrusion at the local device, much
as pan-privacy protects against an intrusion at the server.

We study locally pan-private algorithms for some fundamen-
tal statistical tasks in a simple streaming setting. There are
n devices in total. For each device, at each time step, an
event of interest, such as an application crash while using
a feature, may or may not occur. Thus, each device’s input
is a sequence of 7" bits. The device can communicate with
the server at the end of the 7" time steps, and we require
that the protocol retains its privacy properties in the face
of multiple intrusions on device (c.f. Remark 4). The first
statistic we study is COUNTNONZERO, which counts the
number of devices on which the event occurred in at least
one of the 7" time steps. In the standard local privacy model,
this task can be accomplished by each device sending a
randomized response of a bit corresponding to whether on
not the event occurred at any of the 7" steps. Such a proto-
col can also lead to near-optimal central privacy guarantees
via shuffling or aggregation (Feldman et al., 2020), when
the responses are aggregated by a trusted server, or by a
secure aggregation system. In this work, we focus on the
setting where we either have a trusted server, or where the
secure aggregation system uses a two-server architecture as
in PRIO (Corrigan-Gibbs and Boneh, 2017).

We also study two additional statistics of the event count
distribution: the mean number of occurrences per device,
and a histogram of the number of occurrences, appropriately
bucketed. As with the COUNTNONZERO, these tasks also
admit simple and commonly-used algorithms in the local
privacy model, based on the Laplace mechanism (Dwork
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et al., 2006) and on RAPPOR (Erlingsson et al., 2014) re-
spectively. We remark that these simple tasks underpin
a large number of private federated statistics, and can en-
able a much richer set of data science tasks. For example,
Zhu et al. (2020); Chadha et al. (2024) use histograms over
small known domains to discover heavy hitters over large
domains.

We show that local pan-privacy is severely limited if we in-
sist on providing (information-theoretic) differential privacy
in the face of intrusions. Our lower bound shows that for
the COUNTNONZERO task, the error of any algorithm must
be /T times larger than that needed for local differential
privacy alone. This lower bound holds even when the event
occurs at most once on each device.

Theorem 1 (Informal version of Theorem 9). Any locally
pan-private algorithm (for ¢ = 1) for COUNTNONZERO
on n devices, for large enough T, must incur additive error
Q(vV/nT), even though a local DP algorithm can estimate
COUNTNONZERO with additive error Q(/n).

We then show that under standard cryptographic assump-
tions, local pan-privacy can be ensured without this over-
head. We present algorithms for all of the aforementioned
problems, for both the single- and the two-server models,
showing that local pan-privacy comes at no additional cost
in the privacy-utility trade-off. Our protocols need a public-
key encryption scheme, with a few additional properties that
are satisfied by commonly-used encryption schemes. We
note that public-key encryption is already used to protect
the communication from a network intrusion, so local pan-
privacy does not increase the complexity of the required
assumptions. While we can define local pan-privacy broadly
as a computational differential privacy guarantee against
a local intruder, our protocols actually provide a stronger
semantic security guarantee.

Theorem 2 (Informal version of Theorem 10). Suppose
that we have a public-key encryption scheme that is reran-
domizable. Then there is a streaming algorithm for COUNT-
NONZERO in the single-server and in the two-server model
with the following properties.

e The on-device algorithm satisfies computational local
pan-privacy, the on-device sequence of states on any
pair of input streams are computationally indistinguish-
able.

* The on-device state consists of O(1) ciphertexts, and
the device sends one message consisting of O(1) ci-
phertexts.

e In the local and aggregator model of differential pri-
vacy, the algorithm achieves privacy-utility trade-offs
that are within constant factors of algorithms without
the local pan-privacy constraint.

In a rerandomizable encryption scheme, a ciphertext can be
“rerandomized” (using only the public key) to create a new
ciphertext encrypting the same plaintext, which is indistin-
guishable from a fresh encryption of a different plaintext,
see Definition 2.8. A similar result to Theorem 2 holds for
building approximate histograms, as well as for estimating
the mean number of events. The latter requires slightly
stronger assumptions on the encryption scheme (namely,
the scheme needs to be additively homomorphic).

At a high level, this is achieved by maintaining a state on
device that contains information about the stream so far,
but in encrypted form. Since the local device does not
have the private key, this ensures that the on-device state
contains no useful information for an adversary that does not
collude with the server. The challenge then is to maintain
the state under updates to the stream, and we show that for
our tasks of interest, this is feasible. We remark that a public-
key fully homomorphic encryption (FHE) scheme can be
used to achieve computational local pan-privacy, as any
algorithm for the on-device computation can be made locally
pan-private by keeping the state encrypted at all times and
operating on the encrypted state. However, this is overkill:
FHE schemes incur a large space and time overhead, and
in this work we strive to rely on more minimal and more
efficient cryptographic primitives.

We provide privacy at the level of the whole device, and
not just at the event level. Thus a user may use the shared
device multiple times during our collection period, and our
algorithms will protect all of their interactions. Our model
allows for continuous intrusion: the adversary can see the
state of the device before and after each update. In our
example of a shared device, this means that the attacker can
see the memory contents of the device before and after a user
is using it (but not while they are using it). Thus from our
point of view, the updates to the state are atomic. Finally, we
show that the existence of a public-key encryption scheme is
necessary for the existence of an accurate locally pan-private
algorithm for COUNTNONZERO.

Theorem 3 (Informal version of Theorem 6.1). Suppose
that we have a locally pan-private algorithm for COUNT-
NONZERO that has additive error less than n/4 with high
probability. Then we can build a public key encryption
scheme.

1.1. Related Work

Pan-privacy (Dwork et al., 2010) was proposed as an ap-
proach to designing data analysis algorithms that do not
maintain a disclosive internal state. In particular, they main-
tain privacy even under intrusions. This notion was studied
in several subsequent works, e.g. (Mir et al., 2011). The
goal of maintaining privacy in the presence of potential in-
trusions on a user’s device is common to several settings.
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Examples include web browsing, where several popular
browsers offer a mode where browsing history is not stored
on device and chat apps where messages are ephemeral. In
many situations, it may be undesirable to keep any infor-
mation from events in such settings. In others, statistical
information about events such as application crashes may be
useful to improve the user experience. The notion of history
independence (Micciancio, 1997; Naor and Teague, 2001)
shares similar goals of ensuring that the memory represen-
tation of a data structure does not leak information about
the history of interactions with a data structure. Oblivious
RAM algorithms (Goldreich and Ostrovsky, 1996) share a
similar goal of ensuring that the memory access pattern of
an algorithm does not leak information about the inputs it is
being run on. Forward Secrecy (Giinther, 1990) addresses a
similar goal of protecting old communications from future
intrusions.

Organization:

We present some preliminaries and definitions in Section 2.
Section 3 presents our lower bound for the information-
theoretic privacy case. We present algorithms in the single-
and two-server settings in Section 4 and Section 5 respec-
tively. Section 6 shows that public-key cryptography is
needed, and we conclude with some open problems in Sec-
tion 7. For lack of space, some of the results, and some
proofs are deferred to supplementary material.

2. Definitions and Preliminaries

We first recall the definition of differential privacy.

Definition 2.1 ( (e, §)-Indistinguishability). We say that
two random variables Y and 'Y’ on a finite set R are (£, )
indistinguishable if for for every S C R,

Pr[Y € S] < e Pr[Y' € S]+4,
and Pr[Y’ € S] < e Pr[Y € S]+4.

When two r.v.’s are (¢, 0)-indistinguishabile, we will often
call them e-indistinguishable.

Definition 2.2 (Differential Privacy). A mechanism M :
D™ — R is (g, 6)-differentially private if for any pair of
neighboring datasets x, X', the random variables M (x) and
M (x") are (g, 0)-indistinguishable.

Here neighboring datasets typically means datasets that dif-
fer in the input of one user.

We consider a data stream x = z1,..., 27, where each
x; € D. In this work we will be concerned with the case
that D = {0,1}. A streaming algorithm is defined by a
set of functions. The function Initialize (usually left im-
plicit) sets up the state on device, including the state sg, and
potentially some state on the server to allow coordination

between the two. We have a sequence of functions, where
State; : D xS — Sis a(possibly randomized) function that
takes the input at time ¢ and the current state s,_1, and maps
to the new state. Given an input stream z1,...,zp € D
and an initial state sg (we will sometimes omit sg as
an argument for brevity), let s, = State;(x;;s;—1) and
State(z1,...,27) = (S0, 81,---,5T).

An estimation algorithm is defined by additional functions
Out and A, where Out maps st to an output space O, and
Est takes a vector of n elements from O and computes an
estimate of the desired statistic.

Definition 2.3 (Local pan-privacy). We say a streaming
algorithm defined by a set of functions State; is -locally
pan-private if for any pair of streams X = x1,...,xT and
x' = al,...,xk, the state vectors State(x) and State(x')
are e-indistinguishable.

Remark 4. Several remarks are in order. (a) The definition
considers neighboring datasets to differ in the full stream
at one device. Thus it provides user-level privacy. (b) We
require that privacy holds against an adversary that can
monitor the internal state on the device after each event,
and all communication out of the device. In other words, we
guard against multiple intrusions, or continuous intrusion.
The problem becomes easier if we only had to guard against
a single intrusion. However, for the examples that motivate
this work (shared device such a public computer), restrict-
ing the adversary to a single intrusion is unnatural. (c) A
natural generalization of our model can allow the device to
send multiple messages, while making sure to account for
the potential information leakage from the event of sending
or not-sending a message (that may be observable by an
adversary). This generalization does not make the model
stronger, as an algorithm that is locally pan-private in this
model can store the messages it would have sent, and send
them at step T." (d) In some settings, one may only be in-
terested in a smaller set of admissible streams x, and one
can naturally adapt the definition above by requiring the
streams x and X' to be admissible. We have aimed to keep
the definition above simple, at the expense of generality.
One can replace the quantifier over x,x’ above to require
them to lie in some set X of admissible streams.

The following definitions capture the standard notions of
privacy for such algorithms.

Definition 2.4. We say an estimation algorithm is (g,J)-
locally differentially private if for any pair of streams
X = 21,...,ep and X' = xi,...,x%, the dis-
tributions Out(State(x)) and Out(State(x')) are (e,0)-
indistinguishable.

Definition 2.5. We say an estimation algorithm is (g,)-
aggregator differentially private if for any pair of streams x

'If we were concerned about the size of S, the many-messages
version of the model may be more powerful.
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and X', and any set of (n — 1) streams {y9) ;7:_11 the distri-
butions defined by >""'," Out(State(y ")) + Out(State(x))
and Y7~ Out(State(y))) + Out(State(x')) are (e, )-

indistinguishable.

We next define computational indistinguishability. A “se-
curity” parameter A will control various quantities in these
definitions. The adversary will be computationally bounded
to be polynomial in A\, and we say a function in A is neg-
ligible if it approaches zero faster than the inverse of any
polynomial in A.

Definition 2.6. Let {D)}y and {D) } be two ensembles
of distribution. We say that they are f(\)-computationally
indistinguishable if for any non-uniform probabilistic poly-
nomial time algorithm A,

| Pr[A(z) =1]— Pr [A(z) = 1] < f(V).

ZNDA ZND/)\

When two ensembles are f(\)-computationally indistin-
guishable for negligible function f, we say that they are
computationally indistinguishable.

We use a public-key encryption scheme.

Definition 2.7. A public key encryption scheme is defined
by the following set of probabilistic polynomial time (p.p.t.)
algorithms.

Key Generation KeyGen(-) takes a security parameter in
unary 1* and outputs a pair of keys (kpriv, kpub), each
in {0, 1}*.

Encryption Enc(m, kpys) takes a message m and a public
key kpyp and outputs an encryption ¢ € {0,1}*.

Decryption Dec(c, kpriv) takes a ciphertext ¢ and a pri-
vate key ki, and outputs a message m.

These functions have the following properties:

Correctness Suppose that (kpriv, kpuy) < KeyGen(11)
for some \. Then for any m € {0, 1}, it holds that
Dec(Enc(m, kpup), kpriv) equals m.

Semantic Security For any m,m/, the encryptions
Enc(m, kpuy) and Enc(m/, kpu,) are computation-
ally indistinguishable.

We rely on encryption schemes that allow re-encryption
of an encrypted message.> Informally, a rerandomizable

2This is slightly weaker than the usual notion of rerandomizable
encryption, as we allow ¢ and @, (¢, kpus) to be distinguishable.
‘We show that this notion is necessary and sufficient for our pur-
poses.

encryption allows for an encrypted message to be “reran-
domized”, i.e. to be replaced by a new encryption of the
same message, that is indistinguishable from a new encryp-
tion. Here and in the rest of the paper ®,/(-) denotes the
t-fold composition ®,.(D,.(... (P,-(+)))).

Definition 2.8. A public key encryption scheme is reran-
domizable if there is a function ®,(c, kpuy) with the fol-
lowing properties. For any m,m’, and any t > 0, let
c = ®.(Enc(m, kpuw)) and ¢ = @, (Enc(m’, kpu)),
and let ¢ = O, (c, kpyy) and d = O, (¢, kpup). Then
Dec(¢, kpriv) = Dec(C, kpriv). Furthermore, the tuple
(¢, €) is computationally indistinguishable from (c,c’).

Note that this definition implies that for any ¢ and any m, m/,
the distributions ®,.‘ (Enc(m)) and @, (Enc(m’)) are com-
putationally indistinguishable. We remark that we do not re-
quire a rerandomized ciphertext to be indistinguishable from
a freshly generated one: it need only be indistinguishable
from a rerandomized encryption of any different plaintext
(for the same number of rerandomizations t).

Mironov et al. (2009) defined and related different notions
of computational differential privacy, and those notions can
be extended to local pan-privacy. We state a version of this
definition next.
Definition 2.9 (Computational (e, §)-indistinguishability).
Let {Dx} and { D) } » be two ensembles of distribution. We
say that they are computationally (e, §)-indistinguishable
if for any non-uniform probabilistic polynomial time algo-
rithm A,

Pr [A(z) =1] <e°-

ZND)\

Pr [A(z) = 1]| + 6 + negl()).
z~DY
When two ensembles of r.v.s are computationally (g,0)-
indistinguishabile, we will often call them computationally
e-indistinguishable.
Definition 2.10 (Computational Local Pan-Pri-
vacy,IND-CDP version). We say a streaming algorithm de-
fined by a set of functions State, is computationally e-locally
pan-private if for any pair of streams X = x1, ..., xr and
x' = xl,...,xl, the state vectors State(x) and State(x')
are computationally e-indistinguishable.

We recall some basic mechanisms that will be useful. We
refer the reader to Dwork and Roth (2014) for their privacy
proofs.

Definition 2.11 (Randomized Response). Let e > 0. The
randomized response mechanism 2RR. : {0,1} — {0,1}
is an e-DP mechanism defined as:

b with probabilty ﬁ%

2RR:(b) = { 1—b with probabilty H%

The following observation about implementing randomized
response will be useful.
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Observation 5. Let b € {0,1} and e > 0. Then 2RR.(b)
ef—1

can be implemented by outputting b with probability &,
and outputting a random bit otherwise.

We will use the following lemma that says that any 2-input
local randomizer is a post-processing of a randomized re-
sponse.

Lemma 2.1. (Kairouz et al., 2015) Let R : {0,1} —» S
be an e-DP local randomizer. Then there exists a post-
processing function h : {0,1} — S such that R(0) =
h(2RR(0)) and R(1) = h(2RR.(1)).

The following utility bounds for randomized response are
standard (Feldman et al., 2020).

Theorem 6. Let eg > 0. Then for any by, ..., b, € {0,1},
one can post-process their randomized responses {y; =
2RR.,(b;)} to derive an estimate S of S =) b; such that

E[S] = S; E[|§—S|]§O< n(1—|—(1+00)2)>

Theorem 7. Let (¢,9) € (0,1). Then there is an £ such
that for any by, ..., b, € {0, 1}, the randomized responses
{yi = 2RR.,(b;)} are (g,9)-DP in the aggregator model.
Further their sum can be post-processed to derive an esti-
mate S of S = 3", b; such that

E[S]=S; E[S - 5| < O(y/log §/e).

Let x = x1,...,27 be an input stream with each z; €
{0,1}. We denote by 1(x) the predicate (max; z; = 1).
For a set of streams {x(V}7_,, the COUNTNONZERO value
is defined as 3°, 1(x(?).

3. Lower Bound

In this section, we prove a lower bound showing that
information-theoretic local pan-privacy incurs a non-trivial
cost on the achievable accuracy for the basic COUNT-
NONZERO task. Without local pan-privacy, this task can
be solved easily. Each device maintains 1(x1.;), which can
be done with a single bit of state. Randomized response
on this state after 7" steps allows us to estimate COUNT-
NONZERO with additive error O(1/¢) in the aggregator

DP setting (Theorem 7), and O(,/n(1 + ﬁ)) in the
local DP setting (Theorem 6). In contrast, we show that
information-theoretic local pan-privacy entails a polynomial

dependence on 7T'. This lower bound holds for the case when
the input streams are restricted to have at most a single ‘1°.

Each client receives a stream of inputs x1, ...,z € {0, 1},
can communicate once to the server, and the goal of the
server is to compute the number of clients such that 1(x) =

1. We will prove the following theorem. Note that this
means that the correlation between the message a device
sends, and 1(x) is at most O(1/v/T)

Theorem 8. Let A be an e-locally pan-private client-side
algorithm for the COUNTNONZERO task comprising of the
pair State and Out. Then there exists inputs x and x' such
that 1(x) =0, 1(x') = 1, and

TV (Out(State(x)), Out(State(x'))) < O((e* —1)/VTe?).

This bound, coupled with standard techniques (e.g. (Duchi
et al., 2013)), yields the following lower bound. This shows
that for large 7, local pan-privacy must come at a significant
cost.

Theorem 9. Let A be an e-locally pan-private algo-
rithm run on n clients, and let S be any estimate of
COUNTNONZERO(xW) ... x(™) derived from the the
outputs of A. For T > 16e°, S has expected error

Q(y/nTes /(e —1)2).

Algorithm 1 fp
1: Require: State, Out, initial state sg

2. Input: b

3: if b = O then

4: Return Out(State((0,...,0);s0))

5: else

6: Select f ~ Uniform([T])

7. Setx; =1land z; = 0 fort € [T]\{t}
8: Return Out(State((x1,...,271);S0))
9: end if

We will now prove Theorem 8. We start by using the locally
pan-private algorithm A to construct a randomized function
fp from {0, 1} to the output space of the algorithm. On
input ‘0’, this algorithm runs A on the all 0’s stream. On
input ‘1’ it will put a 1 at a uniformly random place in the
stream (with other x;’s being 0) and run .4 on the resulting
stream. Since 1(x) is different on these two streams, we
expect this fp to behave differently enough on 0 and 1.
We will argue that the local pan-privacy constraint prevents
these distributions from being too far.

Towards this goal, we first argue that the output of a locally
pan-private algorithm can be obtained as a post-processing
of randomized responses of individual z;’s.

Lemma 3.1. Given an initial state s, there exists a post-
processing function g such that

State((x1,...,27);50) = g(2RRe(x1), ..., 2RR(xT)).

Proof. We will first show that if State is e-DP then for
all t € [T] and any state s;_1, State;(-;s;—1) is e-DP.
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Lett € [T], s4—1 € S, and zy4,x} € {0,1}. Further, let
{wvYven ey € {0,137 and {sv }peprp oy € 8771
then
Pr(State;(z;;s;1) = s
Pr(State;(z}; s:—1) = st
Pr(State;(xs; s¢—1) = 5¢)
- Pr(State;(x}; si—1) = s¢)
H Pr(Statey (zy;sp-1) = s¢)
(

X

\—/\—/\/\/

ST Pr(Statey (zy;sp-1) = s¢/)
Pr(State((llv <y Lty "axT);SO) = (517 7ST))
- Pr(State((z1,...,7},...,27);50) = (51,--.,57))
< ef.

Thus the map State;(;s;—1) can be viewed as a local
DP mechanism, and thus Lemma 2.1 implies that it can be
written as a postprocessing of a randomized response. Given
te€[T)and s;—q1 € S, let by, , : {0,1} — S be such
that for b € {0,1}, State;(b;si—1) = hes,_, (2RR(D)).
Then we can define g(by,...,br) = (s1,...,57) where
St = ht,st,l(bt) O

We next argue that this, and the fact that our distributions
on x are exchangeable implies that the output really is a
post-processing of the count of the number of 1s in the
randomized responses.

Lemma 3.2. Given any initial state s, there exists a post-
processing function h such that fp(0) = h(Bin(T, ee+1 )

and fp(1) = h(Bin(T — 1, 27) + Ber(z55 -s-l))' Further,

Tv(fp(0), fp(1)) M
< TV (Bin(T, ), Bin(T — 1, A7) + Ber( e+1))
()
1
~0 ((g 1) Teg) . 3

Proof. By Lemma 3.1, there exists g {0,1}T

ST such that State((z1,...,77);s0) can be written as
g(2RR (1), ..., 2RR.(z7)). Under our distribution on x
conditioned on b, the random variables x;’s are exchange-
able, and thus conditioned on the count of 1s in 2RR.(x;)’s,
all permutations are equally likely. The function A is then
described in Algorithm 2. This implies the first part of the
claim. The inequality Eq. (2) is a consequence of the data
processing inequality. The second inequality is standard.
For completeness, we give a proof in Appendix A.

O

Lemma 3.2 implies Theorem 8 and completes the proof of
our lower bound.

Algorithm 2 h
1: Require: g, Out
2: Input: m € [T
3: Sample b uniformly at random from {b €
{0,137 | by = m}.
4: Return Out(g(b)).

4. The Single-Server Model

In this section, we will discuss the single-server model. We
will require a rerandomizable public-key encryption scheme.
Our computational local pan-privacy will be achieved by
the device storing encryptions of any sensitive state. As
the device does not hold the private key, the on-device state
is computationally indistinguishable from a sequence of
encryptions of 0.

4.1. Counting Devices that have at least one occurrence

Let us first consider the problem of differentially privately
computing the number of clients for which the sensitive
event occurs at least once. In Section 4.2 we will discuss
how to extend our approach to building a histogram of the
number of occurrences of the sensitive event.

We start by describing how the count will be stored and
updated on device. At the beginning of the collection pe-
riod, the client initializes the state to be an encryption of 0.
At each time step, the device updates the state. If z; is 1,
i.e. if the sensitive event has occurred in this time step, the
device replaces the state with a fresh encryption of 1, with
an appropriate number of rerandomizations applied. If z; is
0, the device rerandomizes the current state. This continues
until the end of the time horizon. Pseudo-code is given in
Algorithm 3. This algorithm does not reveal anything about
whether or when updates have occurred to an intruder, even
if the intruder can view the internal state of the device after
each time step. The intrusion resistance comes from the fact
that an intruder can not distinguish between a fresh (reran-
domized) encryption of 1, and a rerandomization a current
encrypted value. Formally, the state after ¢ steps is compu-
tationally indistinguishable from ®,."(Enc(0)). Finally, the
device uses randomized response to send their encrypted bit
to the server. This can be done without needing to decrypt
the state using Observation 5. The sent message is com-
putationally indistinguishable from ®,” 1 (Enc(0)). We
remark that for most practical cryptosytems, @, (Enc(b))
has the same distribution as Enc(b) so that we can opti-
mize the algorithm by replacing the ®,.(Enc(b)) steps by
Enc(b).

At the end of the collection period, the goal of the server is
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Algorithm 3 COUNTNONZERO, Client Algorithm
Require: T, ¢y, Enc,®,.,x =z1,..., 27

1: Initialization
¢ =Enc(0)

N

3: State Update

4: fort=1:T do
5: if x; = 1 then
6: c=®,'(Enc(1))
7: else

8 c=o.(c)
9: end if

10: end for

11: Send to Server
€0 —

12: = Ber(eéo_d)

13: if r = 0 then

14: r’ = Ber(1/2)

15: if ' = 1 then

16: c= o, (Enc(0))
17 else

18: c= o, (Enc(1))
19: end if

20: else

21: c=®,(c)

22: end if

23: Return c

to compute a differentially private estimate of the number of
devices for which the sensitive event occurred at least once.
Since they have the private key, they can decrypt the local
reports from each client, then aggregate and de-bias the
resulting sum in the same way they would for randomized
response. The following result follows:

Theorem 10. Ler £ > 0. Suppose that each client i uses
Algorithm 3 on its input x9). Then the server can esti-
mate COUNTNONZERO on inputs {x}1_ with expected
error O < n (1 + ufj%)) and eg-local differential
privacy. For any (,6) € (0, 1), there is an £g such that the
mechanism is (g, §)-aggregator DP, and has expected error

O(y/log 5 /€). The client algorithm satisfies computational
0-local pan-privacy.

4.2. Computing Histograms of the Number of
Occurrences

In this section we will consider how to compute a histogram
of the number of clients that have a particular number of
occurrences. We will solve a slightly more general problem,
where we are given a k and the goal is to estimate for each

i €{0,1,...,k — 1} the number of devices with count |x|;
equal to ¢, as well as the number of devices with count at
least k. While one could always set k& = T, this generaliza-
tion can allow more efficient solutions in the regime where
T is large and the number of occurrences per device is much
smaller than 7'. To handle this last bucket of count at least
k, we will maintain an (encrypted) indicator d; for each ¢,
of the event |x|; > i.

At the beginning of the collection period, the device initial-
izes k 4 1 counters to be an encryption of the initial his-

togram, i.e. ¢o = Enc(1l),¢; = Enc(0),...,cx = Enc(0).
Additionally, it initializes dy = Enc(1) and d; = Enc(0)
for each ¢ = 1,...,k. At each time step, if an event has

not occurred, all the counters are rerandomized. If an event
has occurred then all the counters are rerandomized and
shifted by 1. The counter ¢ is set to be an Enc(0), and dj
is set Enc(1). At the end of T steps, the device has the de-
sired values (vg, v1, ..., vk) in (co, €1, - - -, Ck—1, dk ), Since
¢; encrypts 1(|x|; = 4) and dj, encrypts 1(|x|; > k). Tt
uses randomized response on each of these to send the result
to the server. We defer the full pseudocode to Algorithm 5.

Upon receiving the reports from each client, the server can
decrypt the randomized responses. We sum these reports
and use the standard de-biasing for randomized response
to obtain an unbiased estimate of each histogram bucket
count. Note that the sensitivity of the vector (vy, ..., vg) is
1 as at most one of the values can be 1. Thus even though
k randomized responses are sent, the noise added does not
grow with k. Since we run randomized response on each
coordinate of the histogram, Theorem 6 and Theorem 7
implies that

Theorem 11. Algorithm 5 is computationally 0-locally
pan-private, and €g-local DP with respect to the
server. It estimates the histogram with expected error

0] ( n (1 + uii@)) for each bucket count. More-

over, for any (,0) € (0,1), there is an €y such that the
mechanism is (£, §)-aggregator DP, and has expected error

O(y/log  /€) for each bucket count.

4.3. Computing the Average Number of Occurrences

Computing the average number of occurrences per-device
can be done using histograms, under the assumption that
no count is larger than k. Alternatively, the resulting av-
erage can be viewed as an average of a truncation (at
k) of the original counts. However using the estimate
2.6 = Elei - {4 : ¢i = j}| will result in error that
scales as O(k?). In Appendix B, we show that using an
encryption scheme that has one additional property, we can
reduce the error to O(k), matching the bound one would get
in the central model.
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5. The Two-Server Model

In this section we will address the two-server model
of (Corrigan-Gibbs and Boneh, 2017), where the client
sends secret-shares of their data to two servers. Any sensi-
tive information stored locally will be secret-shared with the
shares encrypted by the public keys of two separate servers
at all times. This scheme is protected against continuous
intrusion by an adversary that does not collude with either
of the servers.

In the two-server model, we often want to additionally pro-
tect the server against malicious clients who seek to poison
the result by sending secret-shares of invalid reports. For
example, instead of sending a secret-sharing of O or 1, a
malicious device may send a secret-sharing of a million to
skew the result. We will build on zero-knowledge proofs of
validity for the predicates of interest. Our construction will
maintain encrypted secret-shares of the state. The additional
complexity arising from these proofs is that to construct
the proof of validity, one needs to know the secret-shared
data. To address this, we make use of an important fact. The
proofs in Prio depend on the input being secret-shared (as
they must), but conditioned on the input, do not depend on
the encryptions of the secret-shares. This allows the proofs
to remain valid when we rerandomize the encryptions. Thus
our algorithms will generate proofs of validity when the
relevant secret-shares are created. One can rerandomize
the encryptions of the secret-shares and the proofs, without
impacting the validity of the proofs.

5.1. Counting Devices that have at least one occurrence

We first consider the problem of counting the number of
devices that have at least one occurrence in the two-server
model. The on-device and server-side algorithms will both
be very similar to the single-server setting but with the addi-
tion of secret-sharing of any sensitive information on device,
and creating validity proofs. For lack of space, we defer the
detailed pseudocode to Algorithm 6 in Appendix D.

We remark that this algorithm can resist an intrusion by an
adversary that does not collude with either of the two servers.
This can be relaxed to allow the adversary to collude with
one of the two servers. The place where the collusion with
a server can create a challenge is that a colluding server
can help the adversary detect whether its share is changed
in step 9 or if only the encryption is rerandomized and the
share itself is unchanged (step 14). If we use an additively
homomorphic encryption scheme (see Definition B.1), we
can create new secret-shares under the encryption instead,
so that each ¢() is an encryption of a fresh random field
element after each update. This allows for non-interactive
proofs, including the SNIPs (Corrigan-Gibbs and Boneh,
2017) that use Beaver triples. Each client sends the secret-
shares of their contribution to the two servers. Each server

can then decrypt the shares with their private key and ag-
gregate the result. The sum of the shares at the two servers
can then be de-biased to give the final result. The servers
can also validate the proofs to ensure that the secret-shared
values are all in {0, 1}.

5.2. Computing Histograms of the Number of
Occurrences

Using the same approach as we did for COUNTNONZERO,
we can extend our algorithm for histograms in the single-
server setting to work in the two-server model as well. As
with the COUNTNONZERO algorithm, the validity property
that is being validated is that each of the k£ + 1 reported
values are in {0, 1}. Thus the same approach to constructing
validity proofs suffices. For brevity, we omit a detailed
description of the algorithm.

6. On the need for rerandomizable Public-key
cryptography

We show that a rerandomizable public-key encryption
scheme is necessary for computational O-local pan-privacy.
Recall that any locally pan-private algorithm also has an
Initialize operation, that creates some shared state be-
tween the client and the server(s). In our implementations,
this operation would be one that provides the public keys to
the clients, and creates the initial state s.

Theorem 6.1. Suppose that we have a set of algorithms
Initialize, {State;}._;, Out, and Est that define a com-
putationally 0-locally pan-private streaming algorithm that
estimates COUNTNONZERO on any set of inputs with er-
ror at most n/4, with probability 1 — negl(n) for large
enough n. Then for any security parameter \ and given a
T = poly (\), we can define functions KeyGen, Enc, Dec
that define a public-key encryption scheme, where each of
these operations runs in poly (\) time. The scheme is reran-
domizable in the sense of Definition 2.8, supporting up to
T — 1 rerandomizations.

Proof. We will build an encryption scheme that can encrypt
a single bit b. The basic idea of the construction is to sim-
ulate running the algorithm on n clients, where for each
client ¢, the first input in the stream ;vgl) is set to b. The
internal state of all the clients will comprise the encryp-
tion. The decryption will simulate the state transformations
given x%z) = 0 all the way to T, generating the outputs, and
running Est on the outputs. The utility guarantee implies
that the decryption recovers the original intended bit. The
local pan-privacy implies the security of the scheme. Finally
rerandomization is achieved by simulating a single state
transformation. We give details next.

For a suitably large n = poly (1), KeyGen will run the
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Initialize operation n times, and return the set of n client
states, including the state séz) for each client, as a public
key kpub, and the n server states as private key kp,.;,,. Addi-
tionally, the parameter 1" will be included in both the keys.
Given a bit b, Enc(b, kpyp) will simulate for each ¢, one
step of the locally pan-private algorithm on input b starting

at state 8(()1) to derive a set of states sgl). The encryption

will be defined as (1, {sgi)}?:l). In general, valid cipher-
texts will look like (¢, {sgl)}?:l), for some ¢ < T, and

some set of states {sgi)}?:l. Given such an encryption, the

Dec algorithm will simulate, for each ¢, running the state
transformations State;. 1, ..., Stater on sii)
x,(:zzl = 0, followed by running Out to generate a set of n
messages. It then runs Est on the collection of n messages,

and returns 0 if the answer is smaller than n/2, and 1 oth-

with input

erwise. Finally, ®,. on a ciphertext ¢ = (¢, {s§i>}$:1) (for
t < T') will simulate, for each ¢, running the state transfor-
mations State;; on sgl) with input :cgfgl = 0 to get an

updated state 51(521 The updated ciphertext ¢’ is then set to

(t+1, {3§21 ?_,). Any input ciphertexts with ¢ > T are
rejected by P,..

It is easy to see that Dec(Enc(b, kpub), kpriv) comprises
an exact simulation of running the COUNTNONZERO al-
gorithm on n clients on inputs (b,0,0,...,0), followed
by rounding the final estimate. Since the correct an-
swer to COUNTNONZERO on these inputs is bn and
the estimation algorithm has error n/4 with high proba-
bility, we conclude that the encryption scheme satisfies
Dec(Enc(b, kpub), kpriv) = b except with negligible prob-
ability.

The security of the encryption follows from the com-
putational local pan-privacy. Indeed if we had an effi-
cient algorithm A that can distinguish Enc(0, kpyp) and
Enc(l, kpus), then by a standard hybrid argument, it can be
used to distinguish State(0, sg) and State(1, sg), which
violates the computational 0-local pan-privacy.

The rerandomization is essentially simulating one step in
the decoding. It is therefore immediate that for any valid
ciphertext, Dec(®, (¢, kpup), kpriv) and Dec(c, kpriy) are
running exactly the same simulation and thus are identically
distributed. Finally, the security of the rerandomization
follows once again from the hybrid argument: if we could
distinguish iterated rerandomizations of 0 from those of 1,
we would get a distinguisher that can learn the first input x;
from the local state at some later time step ¢. O

We note that the proof uses instances which have either
zero or one ‘1’ in each input stream. Thus any accurate
algorithm for histogram estimation implies one for COUNT-
NONZERO with the same accuracy, and hence would also

imply a public-key encryption scheme.

We next extend this argument to handle a large class of -
locally pan-private algorithms for € > 0. This result will
apply to locally pan-private algorithms that use at most log-
arithmic space, and which use the same state transformation
function State at all time steps.

Theorem 6.2. Let e € (0,1). Suppose that we have a set of
algorithms Initialize, State, Out, and Est that define a
computationally e-locally pan-private streaming algorithm
that estimates COUNTNONZERO on any set of inputs with
error at most n/4, with probability 1 — negl(n) for large
enough n, and for up to T steps, using S bits of space.
Then for any security parameter \, we can define functions
KeyGen, Enc, Dec that define a (% + T - negl(}N)-
secure public-key encryption scheme, where each of these
operations runs in poly (\,2%) time. The scheme is reran-
domizable in the sense of Definition 2.8, supporting up to
T — 1 rerandomizations.

We defer the proof to Appendix C. Note that if 7! is
negl()\) and S is O(log A), then the resulting public-key
encryption scheme is secure.

7. Conclusions

In this work, motivated by privacy concerns on shared de-
vices, we introduce the notion of local pan-privacy. We show
that while information-theoretic local pan-privacy may be
too strong a requirement for basic telemetry tasks, compu-
tational versions of this definition can be achieved without
sacrificing on utility. We present algorithms for the funda-
mental tasks of counting the number of devices where a
sensitive event occurs, as well as histograms of event counts,
both in the trusted server and the two-server models. Our
algorithms use public-key encryption schemes, and we show
that such schemes are necessary to achieve computational
local pan-privacy.

Our work raises many natural question. Our lower bound in
Theorem 8 relies on instances with at most a single 1, and
shows a v/T" gap in the error. We conjecture that this can be
strengthened to an 2(T") gap when one allows the instances
to have arbitrarily many 1s. While we have given algo-
rithms for the most common telemetry tasks, other telemetry
tasks may raise additional challenges. The validity proofs
in the more general setting (when an adversary can col-
lude with one of the servers) in our approach need to be
non-interactive. We leave open the question of designing
efficient zero-knowledge proofs for other predicates, that
are compatible with local pan-privacy.
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Impact Statement

This paper presents work whose goal is to advance the field
of Differentially Private Machine Learning. There are many
potential societal consequences of our work, none which we
feel must be specifically highlighted here.
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A. On the TV distance between Binomials

In this section, we will prove the following inequality.

Theorem 12. Let T > 2 and p € (0, ). Then

TV (Bin(T,p), Bin(T — 1,p) + Bern(l —p)) = 2(1 — 2p)(§:§ Pr[Bin(T,p) = [Tp|]

< (1-2p)//4p(1 —p)T)

Proof. Note that Bin(T,p) = Bin(T — 1,p) + Bern(p). Since we can couple Bern(p) and Bern(l — p) so that they
agree with probability 2p, and differ by 1 otherwise, it follows that

TV (Bin(T,p), Bin(T — 1,p) + Bern(1 —p)) = (1 —2p) - TV (Bin(T — 1,p), Bin(T — 1,p) + 1).

We now write

T
2TV (Bin(T — 1,p), Bin(T — 1,p) + 1) = Z | Pr[Bin(T — 1,p) = m| — Pr[Bin(T — 1,p) = m — 1]|

_ XT: (Tﬂ; 1);;’”(1 —p)Ttm (;:: i)pm‘l(l -p)" "

m=0
_ a 1 T . .
_n;)mm(m)p (1= p)T™|p(T — m) — (1 — p)m|

T ) ™ .
:E)Tp(lm(m)p (1=p)" " pT —m|

Letting f(m) denote pT' — m, we can thus write

1

20V(Bin(T = Lp), Bin(T = Lp)+ )= a5 E

(1A (X1

The value | f(X)| is the absolute deviation of a binomial random variable Bin (T, p) from its expectation. An exact formula
for the mean absolute deviation of a binomial was given by de Moivre (1730) (see Diaconis and Zabell (1991) for a
historical perspective on this formula). De Moivre showed that

E  [IX —Tpl] =2[Tp](1 - p)Pr[Bin(T,p) = [Tp]]
X~Bin(T,p)

T P —[Tp[+1
= 2<[TM)(TMP(T (1 —p)T- i,

Plugging this bound gives the claimed equality. To prove the upper bound, we use Jensen’s inequality:

JBE [If(X)HS\/ E [f(X)7
X~Bin(T,p) X~Bin(T,p)

Now observe that

E (X)’]=_ E _ [(X—pD))’
X~Bin(T,p) X~Bin(T,p)

=p(l-p)T.
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It follows that

1
2TV (Bin(T — 1,p), Bin(T — 1,p)+ 1) < | ———,
(Bin(T ~ 1.p). Bin(T = Lp) + 1) | =

so that

1
Ap(1 —p)T
Berend and Kontorovich (2013) show that the bound from Jensen’s inequality above (which is the only inequality in this

proof) is tight up to a v/2 factor for all p € (%, 1-— %) When p < %, the mean absolute deviation is bounded by 27'p and
this is tight up to a factor of e. A symmetric bound holds forp > 1 — % O

TV (Bin(T,p), Bin(T — 1,p) + Bern(l —p)) < (1 — 2p)

B. Averages via Additively Homomorphic Encryption

We recall the definition of additively homomorphic encryption scheme. Several popular public-key encryption schemes or
standard variants of those, including Paillier, RSA and El Gamal, and lattice-based schemes, satisfy these properties.

Definition B.1. A public key encryption scheme as defined in Definition 2.7 is partially homomorphic over a group
(G,*) if there is a p.p.t. algorithm (-, kyyp) with the property that for any pair of valid ciphertexts c1,ca,
Dec(®4(c1,c2, kpup)) = Dec(cr, kpriv) + Dec(ca, kpriv); and a p.p.t. algorithm Q. that takes a group element and a
ciphertext, and outputs another ciphertext with the property that for any c and any o € G, Dec(®. (o, ¢, kpup), kpriv) =
a * Dec(c, kpriv)-

We will omit kp,; as an argument from ®; and ®, in the rest of the section and write ®, (c1,c¢2,...,cx) to mean
D, (c1,Py(coy.. ., Pi(ch1,c)...)).

Given an additively homomorphic encryption scheme, we will build on Algorithm 5 to design a locally pan-private
algorithm for means. Recall that the histogram algorithm already gives us encryptions of indicators of |z|; = j for each
j€{0,1,...,k}. We will only need to redefine the Send to Server subroutine. Building on these, the client computes an
encryption of the number of occurrences by multiplying each encrypted bit by the number of occurrences and summing
together. Since only one of the coordinates is an encryption of 1, the sum is the number of occurrences. The client can then
privatize by adding discrete Gaussian noise (Canonne et al., 2022; Kairouz et al., 2021) to the encrypted sum before sending
to the server.

Algorithm 4 Averaging, Client Algorithm

Require: k,T,Enc,®,,®,,x,0?
: Send to Server
fori=0,1,... kdo
S; = (I)*(i, Ci)
end for
T~ Nz(o, k02)
Sk+1 = Enc(r)
Return @ (sg, -, Sk+1)

AR A SR N vy

Upon receiving the reports from each client, the server simply decrypts and takes the average of the noisy reports. For an
appropriate choice of o is easy to show the following.

Theorem 13. There is a computationally 0-locally pan-private for estimating the sum, which is (¢, do)-local DP with

respect to the server. It estimates the sum with expected error O (k nlog %0/5()). Moreover, for any (g,0) € (0, 1), there

is an o such that the mechanism is (e, 8)-aggregator DP. and has expected error O (k/log % /¢).

C. Proof of Theorem 6.2
‘We recall Theorem 6.2
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Theorem 6.2. Let ¢ € (0,1). Suppose that we have a set of algorithms Initialize, State, Out, and Est that define a
computationally e-locally pan-private streaming algorithm that estimates COUNTNONZERO on any set of inputs with error
at most n/4, with probability 1 — negl(n) for large enough n, and for up to T steps, using S bits of space. Then for any

€

security parameter A\, we can define functions KeyGen, Enc, Dec that define a (\/T + T - negl(\))-secure public-key

encryption scheme, where each of these operations runs in poly (\,2°) time. The scheme is rerandomizable in the sense
of Definition 2.8, supporting up to'I' — 1 rerandomizations.

Proof. We will use an encryption scheme very similar to the one in the proof above. For encryption, we will set z; to one for
arandom t € {1,2,...,T/2}, instead of setting z; to one in the proof of Theorem 6.1. The encryption algorithm simulates
the state transformation up to 7'/2 steps. Lemma 3.2 then allows us to argue the security of the encryption scheme. The
decryption simulates the state transforms up to step 7" and the correctness proof is as before. The additional challenge is to
argue that Enc, Dec run in polynomial time. This uses the fact that the result of applying the same randomized transform 7
times, on a state of size .S can be computed in time exp(O(5)) - log(7). We give details next.

As before, KeyGen will run the Initialize operation n times, and return the set of n client states, including the state s((f) for
each client, as a public key k5, and the n server states as private key ki, Additionally, the parameter 7" will be included
in both the keys. To define Enc, we consider the following randomized process. Given a bit b, we first create n independent
random streams which are zero everywhere, except for a randomly picked ¢; € {1,...,T/2}, where x(" is b. We then

(G

simulate, for each i, T'/2 steps of the locally pan-private algorithm on x(*) starting at state 50 ) to get 3%2. Enc(b, kpup)

is then defined as (7'/2, {3232}2;1) In general, valid ciphertexts will look like (¢, {sgi)}?:l), for some ¢t € [T'/2,T], and

some set of states {sgi) »_,. Given such an encryption, the Dec algorithm will simulate, for each 7, running the state
transformations State (7" — t) times on sgl) with input I(Ql = 0, followed by running Out to generate a set of n messages.
It then runs Est on the collection of n messages, and returns 0 if the answer is smaller than n/2, and 1 otherwise. As before,

&, on a ciphertext ¢ = (¢, {sgi)}?zl) (for t < T') will simulate, for each ¢, running the state transformations State on sgi)

with input 1'§21 = 0 to get an updated state 5%21. The updated ciphertext ¢’ is then set to (t + 1, {5§i+)1 ).

As before, Dec(Enc(b, kpub), kpriv) comprises an exact simulation of running the COUNTNONZERO algorithm on n
clients, where the input streams satisfy 1(x(?)) = b, followed by rounding the final estimate. Since the correct answer to
COUNTNONZERO on these inputs is bn and the estimation algorithm has error n/4 with high probability, we conclude that
the encryption scheme satisfies Dec(Enc(b, kpub), kpriv) = b except with negligible probability.

Now Lemma 3.2 implies that if the streaming algorithm was information-theoretically e-locally pan-private, then the 7'V
distance between the distributions Enc (0, k) and Enc(1, k) would be O(e/+/T). Mironov et al. (2009) show that
computational (e, §)-indistinguishability (Definition 2.9) is equivalent the existence of distributions Dy and D, such that
Dy and D; are O(e/+/T)-indistinguishable, and Dj, and Enc(b, kpup) are computationally indistinguishable. It follows that
Enc(0, kpyup) are Enc(1, kyyp) are computationally (0, O(e/v/T + T - neg1())))-indistinguishable.

The rerandomization, as before, is essentially simulating one step in the decoding. It is therefore immediate that for any
valid ciphertext, Dec(®, (¢, kpub), kpriv) and Dec(c, kpriy) are running exactly the same simulation and thus are identically
distributed. Finally, the security of the rerandomization follows once again from the hybrid argument: if we could distinguish
iterated rerandomizations of 0 from those of 1, we would get a distinguisher that can learn the b from the local state at some
later time step ¢.

Finally, we argue computational efficiency. The Enc and Dec algorithms need to simulate applying State” on input 07,
for a suitable 7, at most 2n times each. For a state space of size .9, the transformation is defined by a stochastic matrix M of
size 2° x 29. Applying this Markov kernel defined by M T times is equivalent to applying M 7. Since computing M " can
be done in time poly(2°) - log T by repeated squaring, and thus we get the claimed run time for the scheme. O

D. Deferred Pseudocode for algorithms
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Algorithm 5 Counter, Client Algorithm

Require: k£, T, Enc,®,,x = x1,292,...,27.

1:

oD

11:
12:
13:
14:
15:
16:
17:
18:

19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

35

Initialization
¢o = Enc(1); dp = Enc(1)
fori=1:kdo

¢; = Enc(0); d; = Enc(0)
end for

State Update
fort=1:Tdo
if z; = 0 then
fori =0:%kdo
C; = (I)T(CZ'), dl = (I)T(dz)
end for
else
co = ®,'(Enc(0)); dg = ®,'(Enc(1))
fori=1:kdo
Cp = ‘I)r(Ciq); d; = (I)r(difl)
end for
end if
end for

Send to Server
fori=0:k—1do
v = (I)T(Ci)
end for
Vg = (I>T<dk)
fori =0:kdo
r = Ber(2/(e® + 1)
if » = 0 then
r’ = Ber(1/2)
if 7’ = 1 then
vi = ®," ! (Enc(0))
else
v; = .7 (Enc(1))
end if
end if
end for
: Return (vg, ..., vg)
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Algorithm 6 COUNTNONZERO, Client Algorithm, Two-server model

Require: 7, Ency,®,1,Ency, ®ro,x =21,...,27
1: Initialization

2: (s, 5()) = secretShare(0)

3 (7M7) = validityProof (s, s(?)

4: (M, @) = (Ency(sM), Ency(s?))

5: (pM, p?) = (Ency (7M), Ency (7))

6. State Update

7: fort=1:Tdo

8: ifx; = 1 then

9: (s, 5)) = secretShare(1)

10: (71, 7)) = validityProof (s, s(2)

11: (W), ) = (<I>t (Ency(sM)), ®L,(Enca(s?)))
12: (p,p®) = (@}, (Enci (7)), @},(Ence (1))
13:  else

(D), 6®) = (B (1), By (c))

15: (P, p?) = (@r1(p™M), 212(p*)))

16:  end if

17: end for

18: Send to Server

19: 7 = Ber(2/(e® + 1)
20: if r = 0 then

21: ' =Ber(1/2)

22: ifr’ =1 then

23: (s, 5)) = secretShare(0)

24: (71'(1) 7)) =validityProof (s, s(?)

B (e ) = (B (e (1), 7 (B ()
26 (0, p®) = (@5 (Bney (r1))), 15 (Bnca(r))
27:  else

28: (s, 5)) = secretShare(1)

29: (71'(1) 7)) =validityProof(s(?),s(?)

0 (e = (B (zney (s0) 85 (Brea(s))
M (p,p®) = (@7 (mncy (1)), BT (mnca(r®))
32:  endif

33: end if

34z (e, e2) = (B3 (cV), Do)
35: (p(l)yp( )) (@ 1(p (1 ))7‘1%2(2?(2)))
36: Return (c (1>,p(1>, @ p@)
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