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ABSTRACT

Inspired by the great success of Masked Language Modeling (MLM) in the natural
language domain, the paradigm of self-supervised pre-training and downstream
fine-tuning has also achieved remarkable progress in the field of genomic sequence
modeling. However, existing research often either relies on scaling up pre-training
data and parameters, which brings a heavy computational burden, or lacks a sys-
tematic method to avoid the loss of prior information with compact architectures.
In this work, we propose a Hybrid Architecture Distillation (HAD) approach, lever-
aging both distillation and reconstruction tasks for more efficient and effective
pre-training. Specifically, we employ the NTv2-500M as the teacher model and de-
vise a grouping masking strategy to align the feature embeddings of visible tokens
while concurrently reconstructing the invisible tokens during MLM pre-training.
To validate the effectiveness of our proposed method, we conducted comprehensive
experiments on the Nucleotide Transformer Benchmark and Genomic Benchmark.
Compared to models with similar parameters, our model achieved excellent per-
formance. More surprisingly, it even surpassed the distillation ceiling-teacher
model on some sub-tasks, which is more than 500 x larger. Lastly, we conducted a
comprehensive analysis of the HAD architecture, including linear probing repre-
sentation evaluation, which demonstrates both the strong representation capacity
of HAD and the validity of our teacher model selection for distillation. t-SNE
visualization further supports these findings, providing an intuitive view of the
model’s representation ability.

1 INTRODUCTION

In the realm of DNA sequence modeling, the paradigm of self-supervised pre-training followed by
fine-tuning is catalyzing significant advancements, fundamentally reshaping how genomic data is
interpreted and utilized (Chen et al.| (2022)); Zhang et al.|(2024). Within this transformative landscape,
masked language modeling (MLM) has prominently emerged as a primary technique. By pre-training
models on vast, unlabeled DNA datasets, these methods can learn effective representations for
downstream genomic tasks Ji et al.[|(2021); Zhou et al.| (2023)); Dalla-Torre et al.| (2024); Nguyen
et al.| (2023)); [Schiff et al.|(2024)); [Li et al.| (2024). These learned representations are foundational for
numerous downstream genomic tasks, greatly improving predictive capabilities and fostering deeper
biological insights [Linder et al.|(2025); Li et al.| (2024).

Scaling up the parameter size of models, especially in Transformers-based work Ji et al.| (2021));
Zhou et al.|(2023); |Dalla-Torre et al.[(2024), is a prevalent method for enhancing pre-trained models.
Though this approach can often bring certain performance gain, it inevitably results in considerably
higher computational demands Ru et al.| (2025)).

Consequently, an alternative and also crucial research direction that focuses on novel, compact and
efficient architectures has emerged Nguyen et al.| (2023); [Schiff et al.|(2024); |Consens et al.| (2025).
However, although these compact architectures provide desirable computational efficiency, they
often struggle to match the in-depth representation learning and performance of those larger or more
extensively pre-trained counterparts |Dalla-Torre et al.| (2024)); Schiff et al.| (2024)). Compact models,
despite their efficient pre-training capable of processing tens of billions of nucleotide tokens |Schiff
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et al.| (2024)), often hit capacity limits early, restricting their ability to learning complex patterns
from massive genomic data. Conversely, larger models undergo far more extensive training Dalla-
Torre et al.| (2024) for deeper extraction of subtle biological feature. Thus, achieving profound
representation learning in compact models remains a key challenge.

To overcome these limitations, we
propose a novel framework for
genomic sequence modeling with
Hybrid Architecture Distillation
(HAD). HAD uses a hybrid stu-
dent architecture to capture a wide
range of DNA sequence features,
from key local feature to the global
interactions, within only 1M pa- (-7 param.)
rameter. Based on a bidirectional
Gated Delta Net (GDN)|Yang et al.
(20244a), it combines linear com-
plexity with adaptive memory con-
trol via two complementary mecha-
nisms: the gating mechanism selec-
tively erases irrelevant or redundant
non-functional sequence segments,
the delta update rule accurately mod-
ifies memory by identifying specific
short sequences. To integrate comprehensive global information, this GDN backbone is augmented
with a self-attention layer |Dao et al.| (2022); Dao|(2024). This hybrid approach harnesses combined
strengths, effectively integrating GDN'’s proficiency in capturing local and long-range sequential
patterns with attention’s capacity for unifying global context.
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Figure 1: Comparison of model representation performance
against pretraining nucleotide bases. The vertical axis shows
linear probing accuracy as a measure of representation ability,
as detailed in Section ] while the horizontal axis represents
pretraining data on a logarithmic scale. Circle sizes correspond
to model parameters.

Our model empowers compact architecture with deep biological understanding through hybrid
learning tasks, implemented within an innovative parallel dual-branch pretraining framework. These
tasks distinctively combine two complementary objectives: a high-level feature alignment with a
large teacher model using visible DNA nucleotides, and a low-level nucleotide reconstruction task
focusing on masked positions. For the high-level alignment, our devised grouping masking strategy
directs the student to align its feature embeddings of visible tokens with those from the teacher model,
Nucleotide Transformer v2 |Dalla-Torre et al.| (2024)(>500M), to gain more sophisticated biological
insights. Concurrently, the low-level reconstruction branch try to predict the original identities of
masked nucleotides by using the learned representation of visible nucleotides from aliment branch
as context, which is implemented by a cross-attention mechanism and motivates our model to learn
fundamental DNA sequence patterns and local grammar. This hybrid framework ensures HAD
develops both profound representation and fine-grained understanding of DNA sequence.

To validate our proposed method’s effectiveness, we conduct comprehensive evaluation on the widely
used Nucleotide Transformer Benchmark and Genomic Benchmark. Our compact genomic model,
with only 1M parameters, exhibits remarkable efficacy, outperforming competing models of similar
size and surprisingly surpassing its large teacher model, NTv2, which has 500M parameters. Further-
more, we perform linear probing evaluation, demonstrating the robustness of HAD’s representation
learning and underscoring the value of NTv2 as the distillation target. More intuitive visual analysis
based on t-SNE further reveals that our model effectively captures intrinsic feature patterns and
discriminative genomic representations across diverse DNA categories. These results highlight the
capacity of HAD to bridge the knowledge of large transformers into compact genomic models,
confirming its effectiveness for both genomic sequence modeling and various downstream tasks.

2 METHODOLOGY

2.1 OVERALL PIPELINE

Traditional self-supervised learning for DNA sequences, such as Masked Language Modeling (MLM),
typically processes a partially masked input sequence X,,, (derived from X) through a unified encoder
to predict the original nucleotides at masked positions m, optimized via a reconstruction objective:
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Figure 2: Proposed Hybrid Architecture Distillation (HAD) pre-training pipeline. The upper branch
performs feature alignment on visible nucleotides, distilling high-level knowledge from a pre-trained
teacher model to the student model. The lower branch focuses on the low-level reconstruction
of masked nucleotides, leveraging contextual information from the student’s visible nucleotide
representations.

Lree == Y logp (ym | Xom), e
meM

where M is the set of masked positions and p (y,, | X, ) represents the predicted probability of y;
given X ns. However, conventional MLM may not fully enable compact models to learn the deep
features seen in much larger, extensively pre-trained models, especially when leveraging massive
datasets. Thus, our Hybrid Architecture Distillation (HAD) framework significantly innovates
upon this to bridge this gap by introducing a dual-branch pipeline. This design enables synergistic
learning through two distinct yet complementary objectives: high-level feature alignment on visible
nucleotides and low-level reconstruction of masked nucleotides, moving beyond the single-stream
processing of conventional MLM.

The overall pipeline of HAD is illustrated in Figure 2] It begins by conceptually dividing the input
sequence X into visible nucleotides X, and masked positions X,,,. In the first branch, the student
model S processes X, (via its character-level tokenizer) into a hidden representation Z$ . This is then
aligned with the corresponding visible representation Z/ derived from a large, pre-trained teacher
model 7 (which processes the full X using its k-mer tokenizer and backbone, followed by filtering for
visible parts). This feature-level distillation provides explicit high-level guidance. The second branch
reconstructs the nucleotides at masked positions. For this, a decoder module integrates contextual
information from the student’s visible nucleotide representations Z with initial embeddings derived
from the masked positions X ». This integration yields context-aware representations for the masked
nucleotides, Z‘/S\A. An LM Head subsequently maps these representations Z<, o vocabulary logits
to predict their original types, optimized with a loss analogous to Lg... Thus, HAD distinctively
conditions masked nucleotide reconstruction on information from the visible pathway, a key departure
from standard MLM’s reliance on local masked context alone.

2.2 HYBRID LEARNING TASKS

Masking Strategy for Tokenizer Mismatch. Traditional random nucleotide masking is unsuitable
for our hybrid learning task, as such strategies can create information inconsistencies and leakage
during feature alignment between the k-mer level teacher and character-level student models, im-
pairing distillation. To ensure consistent information and effective feature alignment, we therefore
propose a two-stage mask sampling method.

Specifically, the first stage implements “teacher group masking” at the k-mer level (Figure [3t). Here,
we randomly select 15% of k-mer units (e.g., for a sequence of length N and 6-mers, N /6 units)
to define the masked regions for the teacher model. By masking entire k-mer blocks, it presents a
more structurally coherent and challenging masked context. For our student model, which operates at
a character-level, this encourages learning from larger obscured spans during distillation, thereby
fostering the acquisition of more valuable, high-level features. The second stage then involves
mapping these k-mer level mask indices to the corresponding character-level positions for the student
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TGATTCTTAAGA: TMATTMTTAAGA- TGATTC GTTAAG GATTCTTAAGA-
STTTTCCAGAAAT TTTMCCAMAAAT TTTTCC ACTCTT TTTCCAGAAAT-
‘GAGGATTCAGAT GAMGAMTCAGAT M AGAAAT NE TCAGAT:
ACTCTTGCTTCT ACTCTMGCTMCT ACTCTT TTAAGA CTCTTGCTTCT-
SGTTAAGGTGACG GTTAAGMTGACM GTTAAG GTTAAG Tl ¢ GliHlcA c l6l-.
SGGTAGGTCAAGA GGMAGGTCMAGA GGTAGG M G TGl G M =
SCTTATGACCTAA-SCTTAMGACCTAA CTTATG GGTAGG TTATGACCTAA -
“GCGTCTAATGTA GCGTCTMATGMA M CTTATG M AATGTA-
S“CCATGGCGTAGG CATGGCGTAGM- CCATGG CCATGG CATGGCGTAGG-
“GTAGTGGTTCGC TAGMGGTTCGEC GTAGTG GTAGTG A cliniciclini c lel c

(a) Original sequence (b) Random masking (c) Teacher group masking (d) Student mask mapping

Figure 3: Two-stage masking strategy in HAD. This strategy is designed to prevent information
leakage and enhance feature learning for the student model during distillation.

model (Figure [3{d). This two-stage approach ensures consistent mask positioning between the teacher
and student, prevents information leakage, and importantly, enhances the quality of feature learning
for the student through more meaningful group-level masking.

Feature Alignment of Visible Nucleotides. With the visible and masked nucleotide positions
established by our two-stage masking strategy, the first of our hybrid learning tasks focuses on feature
alignment using these visible nucleotides. These visible segments are processed through the student
model’s hybrid architecture (detailed in Section to obtain its representation ZS. This student
representation is then aligned with the corresponding features Z/ derived from a large-scale teacher
model, NTv2 (a pure Transformer architecture with SO0M parameters). Pre-trained on a multi-species
dataset using over 1 trillion tokens, the NTv2 teacher model exhibits strong biological representation
capabilities. The primary goal of this alignment is to enable the student model to inherit the teacher’s
sophisticated biological expertise and learned high-level features from the visible portions of the
sequence.

The alignment process faces two main challenges: differing hidden dimensions and sequence length.
The student model has a hidden dimension of ds = 128, while the teacher model has d = 1024.
Additionally, the student model uses a character-level tokenizer, producing sequences of length
L = N, whereas the teacher model uses a k-mer tokenizer with k = 6, resulting in sequences of
length Ly mer = %. To address these, we first apply average pooling to the student model’s sequence
representations, reducing the sequence length from L to Ly to match the teacher model’s output.
This is done over non-overlapping 6-mer windows. After aligning the sequence length, we use
a projection layer to map the student model’s hidden representations from dg to dp. These two
operations align both the sequence length and feature dimensions, facilitating appropriate feature
alignment.

The feature alignment is achieved by minimizing the Mean Squared Error (MSE) loss between the
student and teacher model representations. Since only visible nucleotides are aligned, the teacher
model extracts representations for visible nucleotides based on pre-sampled mask indices. The MSE
loss is computed as:

Lpis

1
= WZHZ‘E—ZZH% )

veY

where V' denotes the set of visible nucleotide positions. Within the sum, Z¢ is the student model’s
representation at a visible position v € V, and Z is the teacher model’s representation at the same
position v. By minimizing this loss, we ensure that the student model effectively aligns its visible
nucleotide representations with the teacher model’s.

Reconstruction of Masked Nucleotides. To preserve the model’s capability for low-level nu-
cleotide understanding, a masked nucleotide reconstruction task remains essential. However, due to
our framework’s clear division of visible and masked nucleotide processing pathways, a dedicated
decoder mechanism is necessary for this reconstruction. In our approach for this task, the masked
nucleotide positions are initialized randomly rather than using a fixed [MASK] token. We also ensure
that positional information is added to the representations of both visible and masked nucleotides
before they enter their respective model pathways. This explicit positional encoding preserves crucial
spatial information, enabling accurate reconstruction of the original masked nucleotide positions.



Under review as a conference paper at ICLR 2026

z,
Gated MLP Linear Projection
Self Attention RMS Norm
s s /I Gated Delta Rule
wad[ LV ] Zrey
GDN Block N GDN Block Q K \V4 a
GDN Block GDN Block N L2 L2
[ ] SiLU SiLU SiLU
Forward Seq Reverse Seq \\ ShortConv  ShortConv ShortConv
Xfwd DD M| Arev \
“\ Linear Linear Linear Linear Linear

Char Tokenizer

1

Visible Nucleotide
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(GDN) backbone with a self-attention layer for efficient sequential processing and global context
integration within a compact 1.1M parameter budget. Within the GDN, « serves as a data-dependent

gate controlling memory erasure, while 3 acts as the update strength from the delta rule.

For the Decoder, we use Cross Attention(CA), where the masked nucleotides act as the query, and
the visible nucleotides serve as both the key and value. The masked nucleotides’ representations,
as queries, attend to the visible nucleotides’ representations to produce the corresponding masked

3)

sequence. The CA operation is computed as follows:
K7

CA (Qm,K,,V,) = softmax (Q v ) Vo,

Vi,

where Q,,, is the query (masked nucleotides), K, and V,, are the key and value (visible nucleotides),
and dj, is the dimensionality of the keys. This attention mechanism allows the model to focus on the

relevant information in the visible nucleotides while reconstructing the masked nucleotides.

Finally, an LM Head maps the resulting masked representations Z<, to vocabulary logits, producing a
probability distribution for each masked nucleotide. The optimization objective for this reconstruction
is to minimize a cross-entropy function analogous to Lge. (Same as Equation equation [T)).

2.3 HYBRID STUDENT ARCHITECTURE
Our hybrid architecture for DNA sequence modeling is founded on the Gated Delta Net (GDN) |Yang
et al.| (2024bga). The state S; of GDN at each time step ¢ is dynamically updated based on its previous

“

state S;_1 and current inputs, following the principle:
S =81 (at (I - ﬂtktktT)) + 61&”!&"7?'

Equation equation {] details how GDN dynamically updates its memory S, for our DNA sequence
modeling, using complementary “Gated” and “Delta Rule”” mechanisms. The gating, via a; and the
(I — Bikik]) term, allows the model to selectively clear or retain prior nucleotide context, effectively
filtering information from less relevant DNA segments based on the current key k;. The Delta Rule
component, B;v;kI, then precisely incorporates features from the current input nucleotides (key k;,
value v,), ensuring significant DNA patterns update the memory. To enable bidirectional modeling,
we process the original sequence Xyyq and its reverse X, with separate GDN modules, yielding
S, and adding it to

forward Zg, , and reverse Z3, hidden states. These are combined by reversing Z



Under review as a conference paper at ICLR 2026

Table 2: Nucleotide Transformer Benchmark Results. Performance of HAD against baseline
models and its NTv2 teacher. Results are means from 10-fold cross-validation with 10 random seeds;
best performance is in bold, second-best is underlined. Error bars represent the range (maximum-
minimum) across the 10 seeds. The final column, Agggent-Teacher Shows the performance difference
between HAD and its teacher.

Dataset Enformer DNABERT-2 HyenaDNA Caduceus NT(Teacher) HAD(Student) A Student-Teacher
Param. 252M 117M 1.6M 1.9M 498.3M 1.1M -497.2M
Histone Markers

H3 0.719 40.048 0.785 40.033 0.779 40.037 0.815 4-0.048 0.784 4-0.047 0.822 40.007 +3.8%
H3Kl14ac 0.288 0.077 0.591 £0.028 0.612 £0.065  0.631 £0.026  0.551 40.021 0.684 1-0.041 +13.6%
H3K36me3  0.344 40.055 0.591 £0.020 0.613 £0.041 0.601 +£0.129  0.625 4-0.013 0.653 +0.031 +2.8%
H3K4mel 0.291 40.061 0.511 4+0.028 0.512 40.024 0.523 40.039 0.550 +0.021 0.571 4-0.037 +2.1%
H3K4me2 0.211 40.069 0.336 £0.040 0.455 £0.095  0.487 +0.170  0.319 40.045 0.562 +0.033 +24.3%
H3K4me3 0.158 +0.072 0.352 +0.077 0.549 +£0.056  0.544 £0.045 0.410 £0.033 0.643 +0.052 +23.3%
H3K79me3  0.496 4:0.042 0.613 £0.030 0.672 £0.048  0.697 £0.077 0.626 £0.026 0.712 4-0.022 +8.6%
H3K9%ac 0.420 4-0.063 0.542 40.029 0.581 40.061 0.622 4-0.030 0.562 4-0.040 0.656 4-0.023 +9.4%
H4 0.732 +0.076 0.796 £0.027 0.763 £0.044  0.811 +0.022  0.799 +0.025 0.806 +0.018 +0.7 %
H4ac 0.273 10.063 0.463 £0.041 0.564 £0.038  0.621 4+0.054  0.495 40.032 0.654 +0.039 +15.9%
Enhancer Annotation

Enhancer 0.451 40.108 0.516 £0.098 0.517 £0.117  0.546 +0.073 0.548 +0.144 0.571 +0.075 +2.3%
Types 0.309 40.134 0.423 £0.051 0.386 £0.185  0.439 4+0.054  0.424 40.132 0.467 +0.073 +4.3%
Promoter Annotation

All 0.954 4-0.006 0.971 +0.006 0.960 £0.005  0.970 £0.004  0.976 4-0.006 0.968 4-0.004 -0.8%
Non-TATA 0.955 40.010 0.972 £0.005 0.959 £0.008  0.969 £0.011 0.976 +0.005 0.968 4-0.005 -0.8%
TATA 0.960 +0.023 0.955 +0.021 0.944 £0.040  0.953 +0.016  0.966 +0.013 0.958 +0.009 -0.8%
Splice Site Annotation

All 0.848 +0.019 0.939 +0.009 0.956 +0.011 0.940 +0.027 0.983 +0.008 0911 +0.016 -7.2%
Acceptor 0914 £0.028  0.975 +0.006  0.958 £0.010  0.937 +£0.033  0.981 £0.011 0.858 +0.016 -12.3%
Donor 0.906 +-0.027 0.963 +0.006 0.949 +0.024  0.948 +0.025 0.985 +0.022 0.887 40.045 -9.8%

vad, allowing the model to capture dependencies from both upstream and downstream contexts. To
achieve efficient GPU utilization, GDN is parallelized using a chunk-wise method.

TO further Integrate global sequence 1nf9rma- Table 1: Comparison of parameter sizes and
tion, the bidirectional GDN backbone is en-
GFLOPs across models.

hanced with an attention mechanismVaswani

et al.| (2017). Specifically, following the final Model NTv2(500M)  Caduceus HAD

bidirectional GDN module, we append a single ~ Core Arch. Transformer ~ Bi-Mamba  Hybrid Bi-GDN

self-attention layer, implemented using Flash ~ Param. 500M LOM LIM
GFLOPs (L=512) 326.95 3.39 1.46

Attention Dao et al.| (2022); [Daol| (2024)). The
output from this attention layer is then processed
by a simple Gated MLP. This completes our hybrid architecture, designed to balance efficient sequen-
tial modeling with global contextual understanding. A quantitative comparison of parameter sizes
and computational costs (GFLOPs) with baseline models is summarized in Table[I]

GFLOPs (L=1026) 686.53 6.79 3.05

3 EXPERIMENTS

In this section, we present the experimental setup and results for evaluating our proposed method.
Our model is evaluated against state-of-the-art baselines on the Nucleotide Transformer and Genomic
BenchmarkgGresova et al.| (2023)). We also use t-SNE for visualization, aiming to validate the feature
learning capability transferred from the teacher to the student model within the HAD framework.

3.1 EXPERIMENTS SETTING

Pre-training. We employed the hybrid architecture that incorporates both distillation and recon-
struction tasks as described in Section 2] For comparison with baseline models, we used the exact
same pre-training dataSchneider et al.|(2017) as in Nguyen et al.[(2023)); [Schiff et al.|(2024), which
adopts the training/validation split proposed by |Avsec et al.|(2021)). When pretraining on the human
reference genomeSchneider et al.|(2017), we followed the RC equivariance inductive bias proposed
by [Schiff et al.|(2024)), implementing it using data augmentation, which has been proven to be an
effective and straightforward approach. We chose a sequence length of 1026 for two key reasons:
it’s suitable for our downstream tasks (most sequences in Nucleotide Transformer Benchmarks and
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Table 3: Genomic Benchmarks Results. Performance of HAD against baseline models. Results are
means from 5-fold cross-validation with 5 random seeds. The best performance in each row is in
bold, and the second-best is underlined. Error bars represent the range (maximum-minimum) across
the random seeds. The final row shows the average performance across all eight tasks, demonstrating
HAD’s strong overall results on this benchmark.

Dataset CNNGresovi et al. (2023 HyenaDNANguyen et al. (2023) MambaSchiff et al. (2024] CaduceusSchiff et al. (2024] HAD

Mouse Enhancers 0.715 £0.087 0.780 +0.025 0.743 £0.054 0.754 +0.074 0.788 +0.033
Coding vs Intergenomic 0.892 +0.008 0.904 +0.005 0.904 +0.004 0.915 +0.003 0.913 £0.003
Human vs Worm 0.942 +0.002 0.964 +0.002 0.967 £0.002 0.973 +0.001 0.971 40.001
Human Enhancer Cohn 0.702 £0.021 0.729 +0.014 0.732 £0.029 0.747 +0.004 0.744 £0.010
Human Enhancer Ensembl 0.744 £0.122 0.849 +0.006 0.862 £0.008 0.893 +0.008 0.909 +0.004
Human Regulatory 0.872 £0.005 0.869 +0.012 0.814 £0.211 0.872 £0.011 0.882 +0.012
Human OCR Ensembl 0.698 £0.013 0.783 +0.007 0.815 £0.002 0.828 +0.006 0.832 +0.003
Human NonTATA Promoters 0.861 £0.009 0.944 +0.002 0.933 £0.007 0.946 +0.007 0.960 +0.008
Average 0.803 0.853 0.846 0.866 0.875

Genomic benchmarks are < 1k bp), and its divisibility by 6 (the teacher’s k-mer size) helps resolve
tokenizer mismatches between our character-level student model and the k-mer based teacher model.
Our student model itself is configured with 4 Gated Delta Net (GDN) blocks, each with a dimension
of 128, resulting in a compact model with approximately 1.1 million parameters. Regarding the
teacher model, NTv2-500M was selected as the source of high-level knowledge, providing rich
feature representations.

Fine-tuning. We performed supervised training for each downstream task in both the Nucleotide
Transformer benchmarks and the Genomic Benchmarks. Our fine-tuning protocol, including the use of
post-hoc conjoiningZhou et al.|(2022a) for model RC invariance, strictly followed the configurations
outlined in |Schiff et al.|(2024)). To ensure a fair comparison, all baselines and their reported results
were adopted directly from |Schiff et al.|(2024), reflecting our identical experimental setup. Evaluation
metrics were chosen per benchmark: for Nucleotide Transformer Benchmarks, following |Nguyen
et al.| (2023)); Schiff et al.| (2024), we used Matthews Correlation Coefficient (MCC) for histone
marker tasks, F1 score for enhancer, promoter, and splice site annotation tasks (with accuracy for the
“splice site all” task). All Genomic Benchmark tasks were evaluated using Top-1 accuracy.

3.2 DOWNSTREAM EVALUATION

Nucleotide Transformer Benchmarks. The evaluation of our proposed HAD model on the Nu-
cleotide Transformer Benchmarks is presented in Table 2] With only 1.1M parameters, HAD is the
most compact model among all baselines, yet it demonstrates exceptional performance. It achieves
leading results in the majority of Histone Marker tasks and all Enhancer Annotation tasks, securing
the top position in 11 out of 18 tasks overall. Notably, as highlighted in the Aggent-Teacher COlUMN,
HAD consistently outperforms its significantly larger teacher model (NTv2, 500M parameters) across
numerous tasks, despite utilizing approximately 497.2M fewer parameters. This outcome underscores
that the feature alignment process integral to HAD not only facilitates effective knowledge transfer but
also empowers the student model to surpass the teacher’s performance ceiling, thereby significantly
enhancing its learning and capabilities on downstream genomic tasks.

Genomic Benchmarks. We further evaluated HAD on the Genomic Benchmarks, with results
detailed in Table[3] The selection of baseline models for comparison remained consistent with those
in Schiff et al.| (2024). In five of the eight downstream tasks within these benchmarks, our HAD
model achieved the highest score among the evaluated baselines. Encouragingly, HAD’s average
performance score of 0.875 across all tasks in these benchmarks was the highest among all reported
baselines.

3.3 ABLATION STUDY

Ablation of Different Architectures. To investigate the effectiveness of our overall HAD frame-
work, we conducted an ablation study on the Nucleotide Transformer benchmarks (Figure[5]left). Our
full model (“HAD w/ Visible Distillation & Masked Reconstruction”), with its hybrid architecture
and dual-branch pretraining (visible distillation and masked reconstruction), was compared against
variants lacking key components or using altered training strategies. These included removing



Under review as a conference paper at ICLR 2026

ll [ 1

iy )

11 : ‘[ [
H3K4M] hi H3Kl4dac H4 H3 Donor ’

El  Enhancer  H3KAME3  H3K9AC

50M
100M
- 500M

L
L
e
H It r L] il I
1 |

Enhancer Types H3KAME2 H3K4MEI Enhancer H3KAME3 H3K36ME3 HIAC H3KIAC H3Kldac H3K79ME3 ~ H3  Donor

Figure 5: Ablation on pretraining scheme with different model architectures (left) and teacher model
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Table 4: Validation loss for different architectures.  Table 5: Perplexity scores with different

Areh. Step teacher models.
2k 4k 6k 8k 10k
Teacher Step
Masked Language Modeling
GDN w/o Attn. 1.0422  1.0290 1.0202 1.0127 1.0090 Model 2k 4k 6k 8k 10k
GDN w/ Attn. 1.0489 1.0273 1.0154 1.0068 1.0033 . c s .
Masked Language Modeling + Distillation
Masked Language Modeling + Distillation 50M 5876  5.835 5814  5.797 5.785
M Dis. 0.3167 0.3149 0.3111 0.2994 0.2901 100M 5720  5.679 5.646  5.622 5.609
V Dis. & M Rec. 03177 03164 0.3143 0.3118 0.3049 500M 5.217 4.903 4.708  4.599 4.538

self-attention and visible distillation (“HAD w/o Attn. & Visible Distillation””; GDN backbone,
MLM-only), omitting only visible distillation (“HAD w/o Visible Distillation”; hybrid architecture,
MLM-only), and distilling only from masked positions (“HAD w/ Masked Distillation). The full
HAD model significantly outperformed these ablations, highlighting that its hybrid architecture and
dual-branch learning strategy are crucial for its superior performance.

Table [] further details the pre-training losses for these ablated architectures. Among the MLM-
exclusive versions (“GDN w/o Attn.” and “GDN w/ Attn.”), both targeted masked nucleotide
reconstruction; the attention-equipped version achieved lower Cross-Entropy (CE) reconstruction
loss, indicating more effective pre-training. For distillation approaches, the MSE loss from “M
Dis.” (masked distillation) was lower than the visible distillation MSE component of “) Dis. & M
Rec.”. This discrepancy with the latter model’s established superior downstream performance could
be explained by two factors: first, visible distillation is more challenging due to a larger number
of targets; and second, component pre-training losses often misalign with overall downstream task
performance.

Ablation of Different Teacher Models. We further investigated the impact of teacher model size
on distillation performance by ablating the teacher component, employing NTv2 variants with S0M,
100M, and 500M parameters. As illustrated in Figure 3] (right), a significant enhancement in the stu-
dent model’s downstream task performance was contingent upon guidance from the S00M parameter
teacher. This observation highlights that a teacher model must possess substantial representational
capacity, likely a product of comprehensive pretraining on extensive nucleotide data, to serve as an
effective source of rich features for successful distillation to a smaller student architecture.

Further supporting this, the pre-training perplexity scores of these teacher models (Table[3) show a
clear hierarchy: the 500M teacher achieved the lowest perplexity, followed by the 100M and 5S0M
models across all evaluated training steps. This superior intrinsic language modeling capability of the
largest teacher model likely underpins its effectiveness as a richer feature source for distillation.

4 REPRESENTATION ANALYSIS

4.1 LINEAR PROBING ANALYSIS

Downstream task performance alone does not capture the full extent of a model’s representational
ability. To assess this, we evaluate models based on their few-shot representation ability, which
measures their ability to generalize to unseen biological data without fine-tuning.
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NTv2 (Teacher model) Caduceus (Compact baseline) Dataset Caduceus NTv2 HAD
H3Kl14ac 0.615 0.710 0.650

H3K36me3 0.615 0.839 0.650

H3K4mel 0.615 0.677 0.688

H3K4me2 0.539 0.677 0.625

HAD w/o Visible Distillation HAD(Our) H3K4me3 0.539 0.710 0.613
H3K79me3 0.615 0.613 0.713

Promoter 0.769 0.615 0.920

Splice Acceptors 0.692 0.692 0.812

Splice Donors 0.692 0.692 0.863

Mean 0.632 0.692 0.726

Enhancers @ Splice Site All

Figure 7: Linear Probing Representation Per-
formance comparison of Caduceus, NTv2, and
HAD on NT datasets. Each column shows Test
Accuracy (Acc) and Test AUC.

Figure 6: t-SNE visualization of pre-trained
model representations, highlighting HAD’s effec-
tive knowledge transfer from NTv2 through the
distillation branch, particularly for distinguishing
enhancer-related features.

We use a linear probe on the frozen hidden states of each model, trained on genomic sequences
from diverse sequence of . The final hidden states are extracted from the pre-trained models, and a
linear classifier is trained on these features for binary classification. This setup evaluates the model’s
few-shot ability to generalize to unseen biological data without fine-tuning.

Table[/|shows that HAD outperforms both NTv2 and Caduceus in few-shot representation ability,
demonstrating its superior generalization across a range of biological tasks. HAD builds on the
representations learned by NTv2, refining them to better capture biologically meaningful patterns
while maintaining the model’s compactness. This result highlights that HAD, through its design and
integration of NTv2’s representations, is not only effective in downstream tasks but also excels in
generalization, further establishing its strength as a compact yet highly capable model.

4.2 QUALITATIVE ANALYSIS

To investigate the effectiveness of feature learning specifically imparted by the distillation process
within our HAD framework, we employed t-SNE |Van der Maaten & Hinton| (2008) to visualize
representations from several models. We compared our full HAD model against the teacher model
(NTv2-500M |Dalla-Torre et al.|(2024))), Caduceus |Schiff et al.|(2024)), and the ablation variant “HAD
w/o Visible Distillation” described in Section[3.3] These models were used as feature extractors for
downstream task data from Enhancers and splice site all. As visualized in Figure[6] the NTv2-500M
teacher model exhibits a strong capability to distinguish Enhancers. In contrast, both Caduceus
and the “HAD w/o Visible Distillation” ablation fail to form meaningful clusters for these enhancer
features. Conversely, our complete HAD model clearly learns and separates these enhancer-related
features, effectively mirroring its teacher’s discriminative ability. This t-SNE analysis underscores
that HAD successfully acquires high-level feature representations from the teacher model through the
proposed distillation mechanism.

5 CONCLUSION

We have introduced HAD, an effective framework for DNA sequence modeling that utilize hybrid
learning tasks, integrating feature alignment with masked nucleotide reconstruction. Our compact
(1.1M parameter) student model thereby learns rich, high-level biological features by distilling knowl-
edge from an extensively pre-trained and significantly larger teacher. Across different downstream
tasks, HAD not only outperformed most models with comparable parameters but also surprisingly
exceeded the performance of its 500x larger teacher model. Finally, both quantitative linear probing
and qualitative t-SNE analyses confirmed HAD’s effective knowledge transfer, balancing compactness
with robust discriminative feature learning.
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APPENDICES

A RELATED WORK

A.1 NETWORK ARCHITECTURE FOR DNA MODELING

In recent years, research in DNA sequence modeling has increasingly focused on the development
of more efficient model architectures, particularly in the context of Transformer-based models.
Notable works such as DNABERT |Ji et al.| (2021), DNABERT?2 Zhou et al.|(2023)), and Nucleotide
Transformer |Dalla-Torre et al.| (2024) have successfully employed standard Transformers as their
backbone networks, achieving impressive performance in genomic sequence tasks. However, these
models are not without limitations, especially their scalability to long-sequence modeling and their
relatively high inference costs. To address these challenges, recent advancements have turned to
more efficient modeling approachesFan et al.| (2024d:c; 2023} [2024bja); |Gu & Dao (2023); |Dao &
Gul(2024); |Yang et al.|(2024bja)); Behrouz et al.| (2024); Sun et al.[(2023). For instance, HyenaDNA
Nguyen et al.|(2023) introduces the Hyena operator, which reduces the model size to approximately
6.6M parameters while extending the model’s capacity to handle sequences up to 1M in length.
Similarly, Caduceus |Schiff et al.|(2024) proposes a bidirectional and RC-equivariant Mamba block
as the backbone, successfully incorporating the concept of selective structured state space models
(SSMs)Gu & Dao|(2023);|Dao & Gu!(2024) into the domain of DNA sequence modeling. In the realm
of RNN-based models, recent studies have enhanced the global modeling capacity by incorporating a
limited number of attention layers into the architecture. Additionally, recent works have introduced
novel computational strategies, such as the Delta Rule|Yang et al.|(2024bja)) and the Titans Behrouz
et al.| (2024), which aim to improve memory management and retrieval performance for sequence
modeling tasksArora et al.| (2023)); 'Wen et al.| (2024); |Yin et al.| (2025); |Akytirek et al.|(2024). These
developments indicate that adopting more efficient architectural designs and advanced computational
strategies can overcome the inherent limitations of existing models, offering promising avenues
for progress in DNA sequence modeling. This paper explores the potential of hybrid architectures
as backbone networks for DNA modeling, aiming to advance the field through these innovative
approaches.

A.2 KNOWLEDGE DISTILLATION FOR DNA MODELING

Knowledge distillation (KD) |Gou et al.| (2021); [Tang et al.| (2020); [Busbridge et al.| (2025) is a
model compression technique that transfers knowledge from a large, high-capacity teacher model
to a lightweight student model, enabling the latter to mimic the teacher’s behavior while reducing
computational costs. Initially proposed by|Hinton et al.|(2015)), KD leverages soft targets derived from
the teacher’s output distribution rather than relying solely on ground-truth labels, thereby capturing
richer inter-class relationships and enhancing generalization. Over time, KD has evolved into
diverse paradigms, including feature-based distillation (e.g., aligning intermediate representations),
contrastive distillation (e.g., preserving sample similarity structures), and relational distillation (e.g.,
modeling geometric relationships). Recent advancements extend KD to cross-architecture settings,
enabling knowledge transfer between heterogeneous model families (e.g., Transformer—MLP),
and self-distillation frameworks where the student iteratively refines its own outputs. In masked
image modeling (MIM)Cao et al.|(2020); Dong et al.| (2023); Xie et al.| (2022)); [Woo et al.| (2023);
Oquab et al.| (2023)); Zhou et al.| (2022b)), where models learn by reconstructing masked regions
of images, distillation has been instrumental in compressing large vision transformers (ViTs). For
instance, feature-based distillation aligns intermediate attention maps between teacher and student
models, preserving spatial-semantic patterns critical for reconstruction. While KD in DNA pretraining
remains underexplored, insights from related domains suggest promising directions, such as Distilled
DeepConsensus Belyaeva et al.| (2022)) and FinDNA |Yu et al.| (2025)), which applied KD and self-
distillation techniques in the DNA correction and prediction tasks respectively. Analogously, DNA
pretraining could leverage feature distillation to align latent representations of genomic sequences
between teacher and student models, preserving motifs and regulatory patterns. In this paper, we will
dive into this question and explore the potential of the knowledge distillation for hybrid architectures.
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B LIMITATIONS AND FUTURE WORK

Our proposed method delivers remarkable performance across a range of genomic and nucleotide
downstream tasks. However, it has a notable limitation in that it necessitates knowledge distillation
from a teacher model that is nearly 500 million parameters in size. This teacher model is significantly
larger than our model and demands substantial memory resources. Consequently, the development of
a more efficient distillation paradigm for DNA modeling emerges as a pressing need. In addition to
addressing this limitation, we also recognize the significant value of modeling long DNA sequences.
Long sequence DNA modeling has the potential to unlock deeper insights into genomic information
and enable more advanced applications. Another limitation lies in the distillation alignment approach,
which currently lacks further exploration. This HAD architecture with high-level alignment and
mask reconstruction techniques we use represent an initial attempt, and future work could benefit
from incorporating more advanced distillation frameworks from other fields to further enhance
performance.

C METHOD DETAILS

C.1 CHUNKWISE PARALLEL GATED DELTA NET

The Gated Delta Net (GDN), introduced in Section[2.3]and defined by the sequential update rule given
in Equation equation 4] presents inherent challenges for efficient parallelization on modern GPUs due
to its recurrent nature. This can lead to hardware under-utilization and limited throughput, particularly
when processing long DNA sequences. While some linear recurrences can be fully parallelized using
scan operations across the entire sequence length, direct application of such techniques to DeltaNet-
like architectures often incurs prohibitive computational costs (e.g., potentially O(L log Ld®) FLOPs
for sequence length L and dimension d) and substantial memory requirements for intermediate states
(O(LdQ)) Yang et al.|(2024b)). To overcome these limitations and ensure hardware-efficient training,
our student model employs the chunkwise parallel computation method for the GDN backbone, as
detailed in|Yang et al.| (2024bfa). This technique processes the input sequence in smaller, manageable
chunks, enabling substantial parallel execution within each chunk while limiting inter-chunk state
materialization. The chunkwise method can introduce a marginal increase in the total number of
arithmetic operations compared to an idealized sequential recurrent process, yet it generally maintains
the same asymptotic dependence on sequence length. Crucially, these potential minor costs are
outweighed by the significant practical advantages of enhanced hardware utilization and optimized
GPU memory access, resulting in considerably faster training times.

The core of the chunkwise parallel form lies in expressing the state update over a segment (or chunk)
of 7 steps in a manner amenable to parallel computation. By partially unrolling the recurrence relation
(Equation equation [4)), the state S[Tt} at the end of a chunk of r steps, originating from an initial state

S[t] for that chunk, can be written as:

Sty = Spy (H oy (I—ﬁft]kft]kﬂ )) Z Blyviykt H o, ( — Blykly kfﬂT) )
=1

j=i+1

=P
[t] 7Hf‘t]

In this formulation, Pf] represents the cumulative linear transformation applied to the initial state

Sy over the r steps within the chunk, and H[ 4 accumulates the contributions from the inputs v[t]
(associated with keys kft]) within the chunk. As demonstrated in|Yang et al.| (2024bfa), the terms P[ 4
and H[Tt] can be computed efficiently in parallel using the following expressions:

roo__ T T — - ’Y[T]
Pl = ( ZW "’[t]) . Hy =) & o ujy k] (6)
i=1
where 7[’1] = H;”:l aft]. The auxiliary vectors w’ft] and uft] (for i = 1,...,r within the chunk)

are computed using the following recurrences. These recurrences can themselves be structured for
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efficient parallel computation within the chunk, typically via parallel scan algorithms:

i—1

wihy = iy | kg = (wiy (K kL)) Q)

i—1 i
i i i i #,5T
uty = By | vl — 2o (“ft] ( e ’“ft]T’“[ﬂ)) ®)
=1 it

It is also common practice in the implementation of such architectures [Yang et al.[(2024a) to employ
normalization techniques (e.g., L2 normalization of keys and queries) to enhance training stability,
although these are not explicitly shown in the core update rules above. This chunkwise parallelization
mechanism is instrumental in allowing the GDN backbone of our student model to be trained
efficiently on modern GPU hardware, effectively harnessing their parallel computation capabilities
for processing DNA sequences encountered in genomic research.

C.2 REPRESENTATION ALIGNMENT BETWEEN STUDENT AND TEACHER

Algorithm 1 Average Pooling and Final Projection Operation

Input: Sequence X € RB*LinxDs: Pooling factor Pp.
Module Layers (initialized components):
Pooling Block:
Linearpoo : RPs — RPs (Internal linear projection)
LayerNorm: Layer normalization module
Dropout: Dropout module
Projection Layer:
Projection : RPs — RP7 (Projects to teacher dimension)
Output: Projected sequence Xy € REXLoutXDT where Loyt = [Lin/Pr].

10: if L (mod Pr) # 0 then

11: Lpadded — ’—L/PF—‘ x Pp

12: X < X padded to length Lyq44cq along the sequence dimension
13: end if

14: Loyt < L/Pp

15: Xgrouped < Reshape X from (B, Lpadded; Ds) into (B, Loyt, Pr, Ds)
16: Xmean < Mean of Xgouped along the dimension of Pr

17: Xpool_out — Dropout(LayerNorm(Linearpoor (Xmean)))

18: Xiinal — Projection(Xpool_out)

19: return Xy,

PRI AR

Rl

The main text (Section [2) explains why aligning student and teacher representations is necessary,
primarily to handle differences in their output sequence lengths and feature dimensions. To clearly
define the operational logic for this alignment, we provide Algorithm[I] This algorithm details the
specific steps involved: average pooling to match sequence lengths, followed by a projection layer to
align feature dimensions.

D EXPERIMENT DETAILS

D.1 DATA

Pra-training Datasets. Our pre-training utilized the human reference genomeSchneider et al.
(2017) as the primary data source. The genome was segmented and extended to a maximum length of
1,048, 576 base pairs, resulting in a training split of 34, 021 segments, which collectively amount to
approximately 35 billion nucleotide tokensNguyen et al.|(2023).

Fine-tuning Benchmarks. For the fine-tuning benchmarks, we collected data from two pri-
mary sources: the Nucleotide Transformer benchmarks (available at https://huggingfacel
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co/datasets/InstaDeepAl/nucleotide_transformer_downstream_tasks)and
the Genomic Benchmarks (available at https://github.com/ML-Bioinfo-CEITEC/
genomic_benchmarks). The NT benchmark datasets, originating from five peer-reviewed ge-
nomics studies, encompass 18 downstream tasks including promoter prediction, enhancer identifica-
tion (binary and multi-class), splice site detection, and epigenetic mark classification in yeast. The
Genomic Benchmarks provides a curated collection of sequence classification datasets focusing on
regulatory elements (such as promoters, enhancers, and open chromatin regions) from human, mouse,
and roundworm, derived from both existing literature and novel data mining of public databases.

D.2 TRAINING DETAILS

Pra-training. For the pre-training hyperparameters, we focused on settings suitable for downstream
tasks typically involving sequences shorter than 1k base pairs, such as those in the Nucleotide
Transformer Benchmarks and Genomic benchmarks. Consequently, we selected a sequence length of
1026 for our pre-training, a value divisible by £ = 6, which aids in managing the tokenizer mismatch
between our character-level student model and the k-mer based teacher model. We employed a batch
size of 1024. The learning rate was set to 3e — 3, utilizing the “cosine warmup” scheduling strategy.
For optimization method, we used “AdamW” with 31 = 0.9 and 8> = 0.95. The pre-training was
conducted for 10,000 global steps. Regarding the distillation process, we intuitively chose a 1 : 1
ratio for balancing the distillation and reconstruction objectives. All pre-training experiments were
conducted on a system equipped with 8 NVIDIA A800-40G GPUs.

Fine-tuning. We used the weights of the student model extracted from the pre-training phase,
excluding the decoder and other parts of the model. Specifically, we trained on the Nucleotide
Transformer Benchmark for 20 epochs and on the Genomic Benchmark for 10 epochs, employing
an early stopping strategy. The learning rates and batch sizes for the different tasks are listed in
the Table[6]and Table[7} All fine-tuning experiments utilized the same system equipped with eight
NVIDIA A800-40G GPUs.

Table 6: HAD Hyperparameter Selection for Nucleotide Transformer Benchmarks.

Categories Tasks LR Batch Size
H3 2¢3 256
H3K14ac 2e3 512
H3K36me3 2e73 512
H3K4mel le3 256
H3K4me?2 le™3 256
Histone markers H3K4me3 2e3 512
H3K79me3 le3 256
H3K9%ac 273 256
H4 le™3 512
H4ac 273 256
Enhancer annotation Enhancers 26_? S12
Enhancers types 273 512
Promoter all le™3 256
Promoter annotation  Promoter no TATA le3 256
Promoter TATA 2e 3 512
Splice sites acceptors  2e 73 256
Splice site annotation  Splice sites all 273 256
Splice sites donors 273 256

17


https://huggingface.co/datasets/InstaDeepAI/nucleotide_transformer_downstream_tasks
https://huggingface.co/datasets/InstaDeepAI/nucleotide_transformer_downstream_tasks
https://huggingface.co/datasets/InstaDeepAI/nucleotide_transformer_downstream_tasks
https://github.com/ML-Bioinfo-CEITEC/genomic_benchmarks
https://github.com/ML-Bioinfo-CEITEC/genomic_benchmarks

Under review as a conference paper at ICLR 2026

Table 7: HAD Hyperparameter Selection for Genomic Benchmarks.

Tasks LR  Batch Size
Mouse Enhancers 5e—4 32
Coding vs. Intergenomic 2e3 128
Human vs. Worm 3e 3 256
Human Enhancer Cohn 3e3 512
Human Enhancer Ensembl le~3 256
Human Regulatory le™3 256
Human OCR Ensembl 3e3 256
Human NonTATA Promoters 2e~3 256

T-SNE Visualization Details. To assess the model’s ability to generalize across various genomic
features, we conducted a t-SNE analysis of model embedding. In addition to the visualizations, we
quantitatively evaluated the representation quality using KL Divergence and k-NN accuracy. These
metrics provide a quantitative measure of representation quality, beyond fine-tuning benchmarks. KL
Divergence measures the discrepancy between high-dimensional and low-dimensional probability
distributions, where lower values indicate better preservation of structure. k-NN Accuracy evaluates
how well clusters are separated in the low-dimensional space, with higher values indicating better
clustering.

We evaluated the model’s generalization on key genomic tasks including splice sites, promoters,
histone markers, and enhancers. The results showed that our HAD significantly outperforms the
NTv2-500M teacher model in both KL Divergence and k-NN accuracy, indicating superior learned
representations.

Combination Metric HAD w/o Visible Distillation NTv2-500M HAD
. . KL Divergence  2.520 1.957 0.991
Enhancer versus Splice sites all
k-NN Accuracy 0.193 0.260 0.668
KL Divergence  2.426 1.816 0.948
Enhancer versus H3
k-NN Accuracy 0.221 0.299 0.665
KL Divergence  1.958 1.743 0.908
Promoter all versus H3
k-NN Accuracy 0.232 0.287 0.700
KL Divergence  1.950 1.929 1.076
Promoter all versus Enhancers
k-NN Accuracy  0.236 0.274 0.634
. . KL Divergence  2.003 1.929 0.983
Promoter all versus Splice sites all
k-NN Accuracy 0.230 0.274 0.695
. . KL Divergence  2.003 1.806 0.811
H3 versus Splice sites all
k-NN Accuracy 0.230 0.284 0.719

Table 8: Zero-shot evaluation of model representation quality using KL Divergence and k-NN
Accuracy across multiple genomic task combinations. Lower KL Divergence and higher k-NN
Accuracy indicate better preservation and clustering of learned representations.

D.3 METRICS
This section defines the evaluation metrics used across Nucleotide Transformer Benchmarks. The
specific metric employed varies by task: Matthews Correlation Coefficient (MCC) is used for histone

markers and enhancer annotation; F1-score for promoter annotation and splice site acceptor/donor
tasks; and accuracy for the “splice site all” task. In these definitions, 7' P represents True Positives
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(correctly identified positive samples), T'N represents True Negatives (correctly identified negative
samples), F'P represents False Positives (negative samples incorrectly identified as positive), and
F'N represents False Negatives (positive samples incorrectly identified as negative).

Matthews Correlation Coefficient (MCC). The Matthews Correlation Coefficient is a robust
statistical rate which produces a high score only if the prediction obtained good results in all four
confusion matrix categories (true positives, false negatives, true negatives, and false positives). It
is particularly useful when the classes are of very different sizes, offering a balanced measure of
classification quality.

TPxTN —-FPxFN

MCC = €]
/(TP + FP)(TP+ FN)(TN + FP)(TN + FN)

F1 Score The F1 score is the harmonic mean of precision and recall, providing a single score that
balances both metrics. It is often used in scenarios where both false positives and false negatives are
important to consider, and is particularly valuable for datasets with imbalanced class distributions.

Precisi 11
(per-class) F1 = 2 recision x Reca

10
Precision + Recall’ (10)

where:

Precisi TP
recision = ———
ecisio TP+ FP

TP
l=———
Reca TP PN

Accuracy Accuracy measures the proportion of all predictions that are correct, considering both
true positives and true negatives. While it is a straightforward and intuitive metric, accuracy can be
misleading on imbalanced datasets where one class significantly outnumbers the others, as a high
accuracy might primarily reflect the correct classification of the majority class.

TP+ TN

A - 11
CWAY = TP Y TN + FP + FN an

E BORDER IMPACT STATEMENTS

Our work delves deeper into the potential of knowledge distillation when applied to hybrid archi-
tectures in the DNA masked modeling task. This exploration not only advances the representation
learning capabilities of DNA foundation models but also broadens the scope of knowledge distillation
applications in this specialized domain. By enhancing the representation learning of DNA foundation
models, our approach equips these models with a more refined ability to understand and process
genomic data. This, in turn, can drive progress in various genomic research and application areas.
Furthermore, the extension of knowledge distillation to DNA masked modeling tasks provides a new
avenue for improving model performance. Our work paves the way for more efficient and effective
DNA modeling approaches, potentially benefiting both research and practical applications in the field
of genomics.

F ASSETS

We list the existing assets and corresponding licenses in Tab[9]

G THE CLARIFICATION OF LLMs USAGE

The methods and experiments presented in this paper do not involve the use of large language
models (LLMs). LLMs were solely utilized for enhancing the clarity of the writing and for grammar
corrections.
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Table 9: Assets and their Licenses

Asset License
GRCh38Schneider et al.[(2017) CCBY 4.0
Genomic BenchmarksGresova et al.| (2023) Apache-2.0
Nucleotide TransformerDalla-Torre et al. (2024) CC BY-NC-SA 4.0
Flash Linear AttentionYang & Zhang| (2024) MIT
DNABERT/Ji et al.|(2021) Apache-2.0
DNABERT2Zhou et al.[(2023) Apache-2.0
HyenaDNA |[Nguyen et al.| (2023 Apache-2.0
FlashAttenti\_[%HOH Dao et al. ; Daol (2024) BSD-3-Clause
Pytorch|Ansel et al.[(2024) BSD-3-Clause
Pytorch Lightning|[Falcon & The PyTorch Lightning team|(2019) ~ Apache-2.0
Huggingface |Wolf et al.|(2020) Apache-2.0
Scikit-Learn |Pedregosa et al.[(2011) BSD-3-Clause

Numpy [Harris et al.| (2020 BSD-3-Clause
Matplotlib [Hunter| (2007 Matplotlib License
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